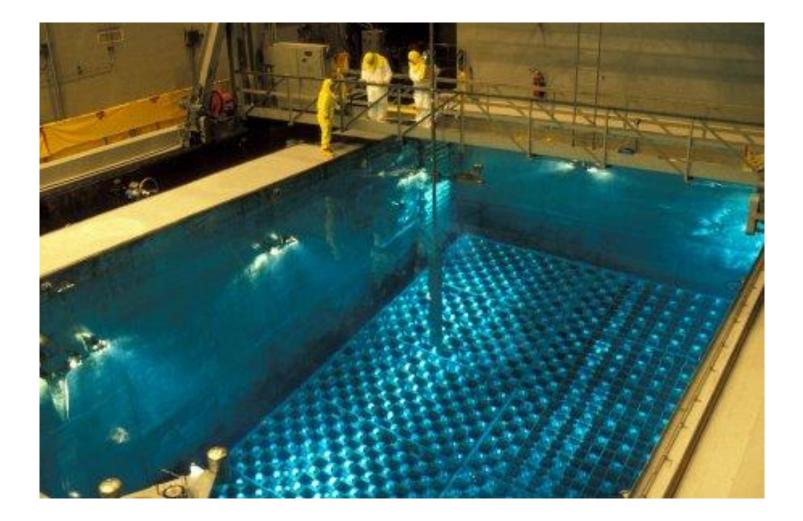
Invited Presentation to The Blue Ribbon Commission on America's Nuclear Future

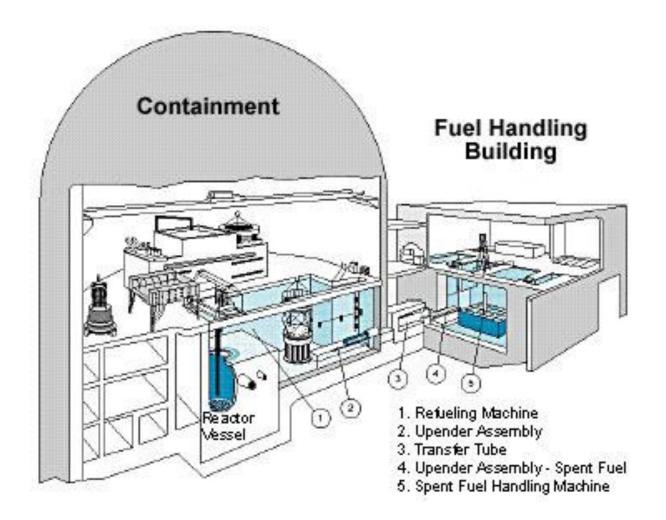
Public Meeting of the Subcommittee on Transportation and Storage Washington, DC, 23 September 2010

> by Gordon Thompson IRSS & Clark University <gthompson@irss-usa.org>

Plutonium Inventories

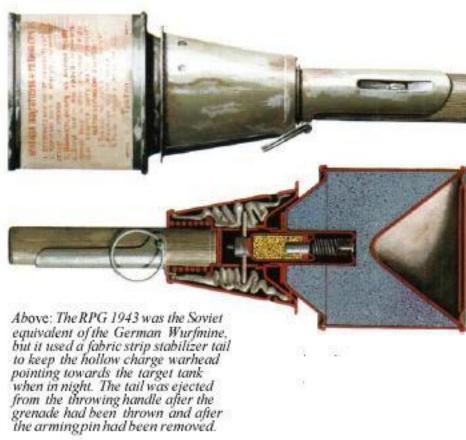


Chicago, 1943: 30 microgram (oxide)


One nuclear warhead: 3 to 4 kg (average)

Produced by commercial reactors worldwide, 1961 through 2010: 2.1 million kg

A Spent Fuel Pool


Typical PWR Layout

A Dry Storage Module

Shaped Charge Warhead, 1943

Performance of US Army Shaped Charge M3 (from FM 5-25, 1967)

Target Material	Indicator	Magnitude
Reinforced Concrete	Maximum wall thickness that can be perforated	60 in
	Depth of penetration in thick walls	60 in
	Diameter of hole	 5 in at entrance 2 in minimum
	Depth of hole with second charge placed over first hole	84 in
Armor plate	Perforation	At least 20 in
	Average diameter of hole	2.5 in

The Mistel Shaped Charge Delivery System, 1944

Junkers Ju 88 mit Messerschmitt Bf 109

Gegen Ende des Krieges war die Ju 88 die Maschine, welche am häufigsten zur unteren Einheit des Mistelsystems umgebaut wurde. Einige behielten für Erprobungsflüge ihre Kanzeln, bei anderen, wie hier im Bild, war bereits der massive Sprengkopf montiert.

Bunker Busting with Clustered Shaped Charges, 2008

National Infrastructure Protection Plan

Purposes of Protective Measures

- Deter the threat
- Mitigate vulnerabilities
- Minimize consequences

Types of Protective Measures Include

- Hardening facilities
- Building resiliency and redundancy
- Incorporating hazard resistance into initial facility design
- Initiating active or passive countermeasures

From: "Strategic National Security Challenges Facing the United States" by General (Ret) Barry McCaffrey, August 2010

Protecting US Critical Infrastructure

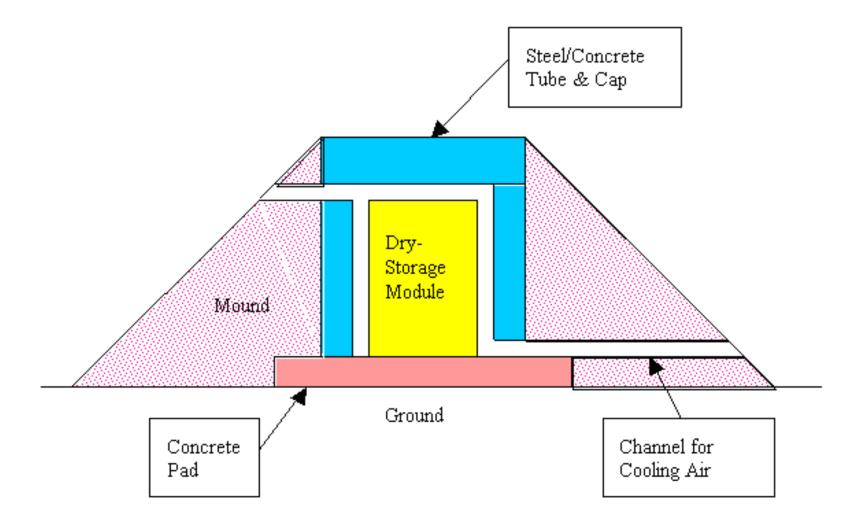
"It is impossible to defend everything against every conceivable threat. We must move beyond gates, guards, and guns. We need to design security features into new infrastructure. We need new technology to protect potentially high-casualty targets."

Statement by NRC Chair Richard Meserve, 2002

Paper in *The Industrial Physicist*, Oct/Nov 2002

"We cannot eliminate the terrorists' targets, but instead we must eliminate the terrorists themselves. A strategy of risk avoidance – the elimination of the threat by the elimination of potential targets – does not reflect a sound response."

Some Options to Reduce Spent Fuel Storage Risk


Spent Fuel Pools

- Revert to low-density, open-frame racks
- Transfer excess fuel to dry storage

Dry Storage Modules

- Harden the modules
- Beware of creating a repository by default

Schematic of One Approach to Hardening a Dry Storage Module

