

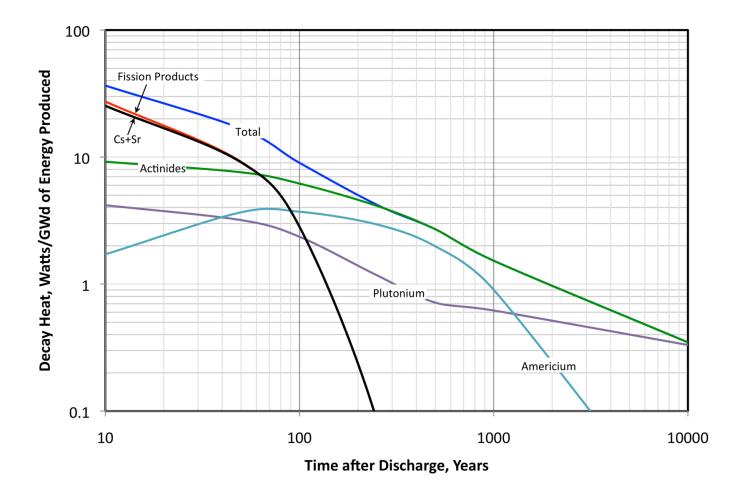
Waste Management Implications of Fuel Cycle Alternatives

Hussein S. Khalil Director, Nuclear Engineering Division Argonne National Laboratory

BRC Reactor & Fuel Cycle Technology Subcommittee Meeting Washington, DC October 12, 2010

Waste Generation Projections

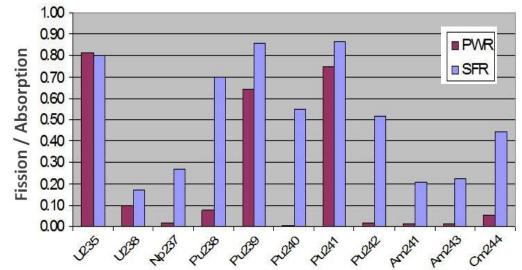
- Different scenarios considered in DOE System studies
 - Used-fuel discharge rate depends on nuclear power generation & fuel burnup
 - Used-fuel burnup affects its composition and emission characteristics
 - Recycle of used fuel leads to waste streams with lower actinide content
- DOE recently developed estimates of used fuel and waste quantities
 - Used-fuel amount and composition vs. burnup & cooling time
 - Four alternative nuclear energy use scenarios
 - Four alternative used-fuel recycle processes
 - A companion report projects LLW generation
- In all scenarios considered, both temporary storage of used fuel and long term waste isolation are required



Heat Generation is a Key Waste Characteristic

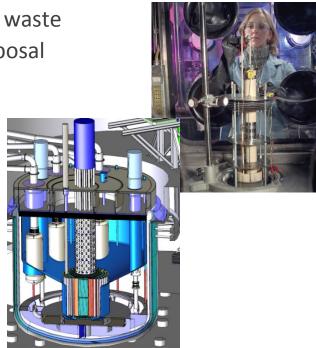
- Among the diverse waste attributes that impact, <u>heat generation</u> has a strong impact on disposal system capacity and operation
 - Thermal limits are defined to preclude degradation and perturbation of engineered or natural barriers
 - Waste emplacement capacity (density) and configuration constrained by heat load
 - Cooler wastes are more readily handled, could be placed into repository sooner, and require less ventilation
- Heat generation increases the complexity of modeling the performance (dose mitigation) of a disposal system
 - Geochemistry in the near-field
 - Degradation rate of engineered materials
 - Hydrologic flow and mechanical processes

Reduced heat generation expected to facilitate licensing


Heat Sources in LWR Used Fuel

Note: 1) The fission products (Cs and Sr daughters) dominate for the first 60 y2) Thereafter, the dominant heat source is the actinides

Fuel Cycle Options to Reduce Heat Load

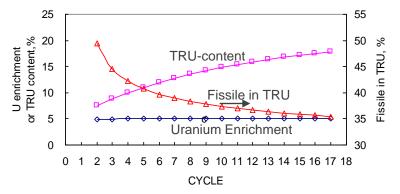

- For the used-fuel storage period, *fission products* dominate the heat emission
 - Heat emission decays with a ~ 30 year half-life
- For long-term disposal, the actinides will dominate the heat emission
- Fuel cycle options that consume (fission) key heat emitting actinides (Am and Pu):
 - Convert the actinides to fission products, in direct proportion to energy generation
 - Greatly reduce the long-term (>100 y) and integrated heat load
 - Facilitate disposal system design, licensing, and operation
- Achievable through
 - Enhancement of actinide fission probability
 - Efficient recycle of discharged actinides
 - Durable waste forms

Probability of fission per absorbed neutron

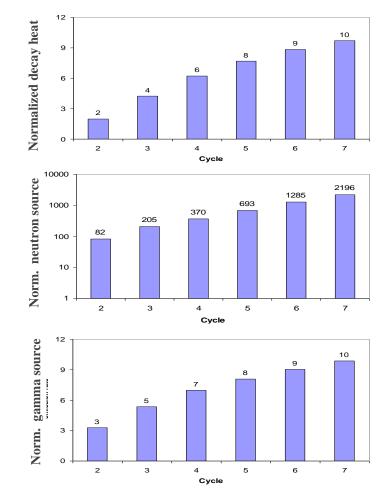
Impact of Advanced Fuel Cycles

- Fast Reactors and recycle have the potential to reduce the cost and improve the performance of waste disposal systems
 - Primarily through reduced heat generation from waste
 - Waste forms may be engineered to enhance disposal system performance
- Recycle has additional benefits, beyond waste management
 - Improved uranium utilization
 - Reduced reliance on uranium enrichment
- Challenges for fast-reactor recycle include
 - Cost reduction
 - Safety and reliability assurance
 - Efficient implementation of safeguards

- In any case, a full used-fuel management infrastructure is required
 - Storage of used nuclear fuel
 - Transport to either processing or disposal locations
 - Final disposal of high-level waste in a repository

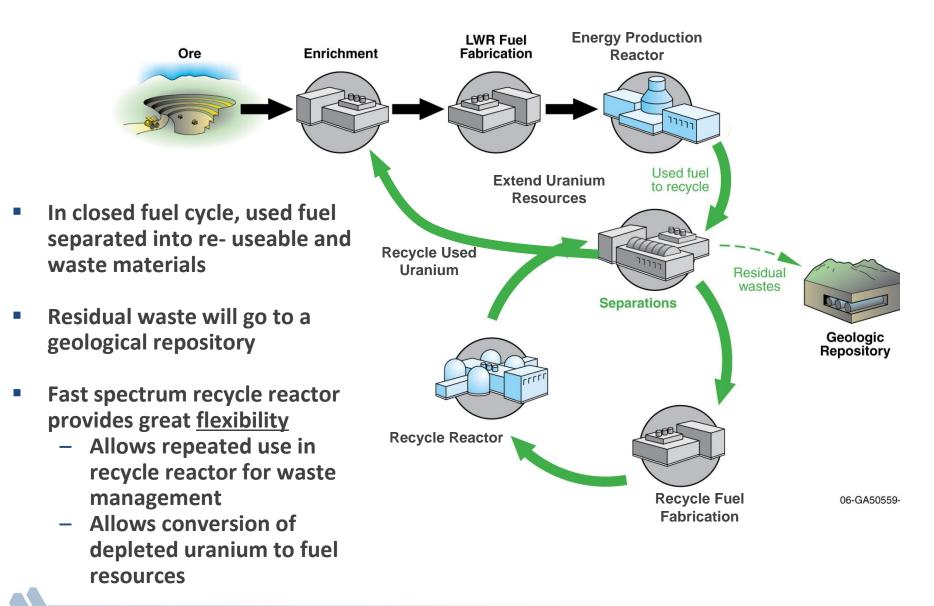

Extra Slides

TRU Multi-recycling in LWRs (CORAIL Fuel Assembly Concept)


- From purely a physics perspective, LWR multirecycle can be achieved
 - TRU/U ratio increases with recycle stage
 - Enriched uranium "support" needed

However

- High MA content greatly complicates fuel handling, so number of recycle stages is limited in practice
- Fuel performance and safety not established



Evolution of Fuel Composition with TRU Recycle Stage

Fuel Handling Indices at Fabrication Stage Compared to CORAIL-Pu Cycle 7

Reactor Technology Choices for Recycle

