Page 1

BLUE RIBBON COMMISSION ON AMERICA'S

NUCLEAR FUTURE

+ + + + +

DISPOSAL SUBCOMMITTEE

+ + + + + MEETING

+ + + + +

WEDNESDAY,

SEPTEMBER 1, 2010

+ + + + +

The Subcommittee convened at 8:30 a.m. in Ballrooms D and E of the Washington Marriott at 1221 22nd Street, Northwest, Washington, DC, Chuck Hagel and Jonathan Lash, Co-Chairs, presiding.

MEMBERS PRESENT:

CHUCK HAGEL, Chair JONATHAN LASH, Chair VICKY A. BAILEY SUSAN EISENHOWER ALLISON MacFARLANE RICHARD A. MESERVE PER PETERSON

ALSO PRESENT:

TIM FRAZIER, Designated Federal Official THOMAS COTTON, Consultant to the Commission TIMOTHY McCARTIN, US Nuclear Regulatory Commission JONATHAN EDWARDS, US Environmental Protection Agency MARK PETERS, Argonne National Laboratory ROBERT BUDNITZ, Lawrence Berkeley National Laboratory WARNER NORTH, NorthWorks, Incorporated WILLIAM MURPHY, California State University DANIEL SCHULTHEISZ, US Environmental Protection Agency ROBERT NEILL, New Mexico Environmental Evaluation Group MICHAEL VOEGELE, Independent Consultant STEVE FRISHMAN, Consultant to State of Nevada Agency for Nuclear Projects HANK JENKINS-SMITH, University of Oklahoma ROGER KASPERSON, Clark University PUBLIC COMMENTERS:

JUDY TREICHEL

MARY OLSON

Page 3 C-O-N-T-E-N-T-S Opening Meeting 5 Welcome, Opening Remarks 5 Regulatory History of the Nuclear Waste Policy Act Dr. Thomas Cotton 8 The Current Status and Plans Regarding Regulations for Deep Geological Repositories Timothy McCartin 49 Jonathan Edwards 74 Panel 1: What are the essential elements of technically credible, workable, and publicly acceptable regulations for disposal (in geologic repositories) 100 Dr. Mark Peters 102 Dr. Robert Budnitz 113 Dr. Warner North 126 134 Dr. William Murphy Dan Schultheisz 142 Timothy McCartin 156 Discussion 162 Panel 2: What are the essential elements for a technically credible and publicly acceptable institutional system and process for regulating the safety of disposal? Robert Neill 246 Dr. Michael Voegele 259 Steve Frishman 272 Dr. Hank Jenkins-Smith 282 293 Dr. Roger Kasperson Round Table Discussion 303

Page 4

C-O-N-T-E-N-T-S (Cont'd)

Public Comments

Judy Treichel 386

Mary Olson 390

Adjournment

		Page	5
1	P-R-O-C-E-E-D-I-N-G-S		
2	8:32 a.m.		
3	MR. FRAZIER: All right. If I		
4	could have everybody's attention, we're going		
5	to get started.		
6	My name is Tim Frazier. I'm the		
7	Designated Federal Officer for the Blue Ribbon		
8	Commission on America's Nuclear Future, which		
9	makes me the Designated Federal Officer for		
10	the Subcommittees.		
11	So, welcome to the Disposal		
12	Subcommittee meeting.		
13	And I'm going to immediately turn		
14	it over to Mr. Lash.		
15	CHAIR LASH: Thank you very much,		
16	Tim.		
17	Good morning. And welcome to all		
18	of you on behalf of the Co-Chairman, Senator		
19	Hagel, and myself.		
20	I want to welcome members of the		
21	public who have joined us here this morning,		
22	and the Commissioners, and in particular the		

		Page	б
1	group of witnesses who are joining us today.		
2	It's an extraordinary collection of experience		
3	and wisdom and we are deeply grateful to all		
4	of you for your willingness to participate.		
5	These kinds of commissions are		
6	only possible because Commissioners are		
7	willing to donate their time and because		
8	witnesses are willing to spend the time trying		
9	to help us to sort through complex and		
10	difficult issues.		
11	Our focus in today's meeting is on		
12	two questions about regulation. First of all,		
13	what are the essential elements of a		
14	technically credible, workable and publicly		
15	acceptable regulation for disposal in geologic		
16	repositories. And secondly, what are the		
17	essential elements for a technically credible		
18	and publicly acceptable institutional system		
19	and process for regulating the safety of		
20	disposal. We really couldn't ask for a better		
21	set of witnesses, probably collectively 8 or		
22	900 years of experience, in addressing those		

Page 7

1 questions.

2	And we've asked a member of the
3	Commission staff to begin the presentations
4	today, Dr. Tom Cotton, with giving us a
5	history and some background on these issues.
6	We've suggested to Tom he take a little longer
7	than we will ask the rest of you to present to
8	give us this background in order to save
9	everyone else from having to do it, and
10	because we have the opportunity to ask
11	questions of Tom since he's a member of the
12	Commission.
13	For the witnesses, I'd observe
14	that in past hearings we have found that the
15	question and answer is actually the most
16	useful part of the sessions. And so we urge
17	you to use your five minutes of presentation
18	to provoke us and to get a discussion started
19	and then you'll find us a very active group in
20	terms of asking questions and following up.
21	So, before we start with Tom's
22	presentation I'd like to ask the members of

		Page	8
1	the Commission whether any of you have any		
2	opening comments or thoughts as we thought		
3	out?		
4	Allison, no?		
5	Okay. So we will go through Tom's		
6	presentation and then the first panel before		
7	our break.		
8	Tom, do you want to join us?		
9	DR. COTTON: Okay. This is a		
10	daunting task, in any event. And when I look		
11	out at the audience and I know who else is		
12	going to be presenting today, it's doubly		
13	daunting. Because a lot of these people were		
14	deeply involved in all of the things that I'm		
15	going to be talking about. In fact, one of		
16	them just reminded me or said he's interested		
17	to see whether my history is the same as his		
18	history. So, I'm very confident though that		
19	you have plenty of expertise here who will fix		
20	anything that I say. So with that, let me		
21	start.		
22	What I want to do is go quickly		

through the regulatory authorities that are 1 2 involved, look at the timeline of things that happened, spend a little time on the initial 3 4 regulatory structure that was developed, look 5 at a major reversal that occurred in '87 which 6 led to legislation in '92 that set us out on 7 the path of two separate sets of regulations, 8 one for WIPP and everything else and then one 9 for Yucca Mountain. And then look at those 10 two paths and see what happened on them. So, generally, I'm going to look 11 12 at the authorities under the Nuclear Waste 13 Policy Act, but actually the authorities 14 existed before the Act was passed. Under the Act, EPA sets the 15 16 generally applicable standards for protecting the environment from releases from 17 18 repositories. It also has hazardous waste 19 regulatory authority, which does apply to 20 WIPP, and applies I guess in theory also to 21 geologic repositories, other geologic 22 repositories.

		Page	10
1	NRC sets the requirements for		
2	licensing that are consistent with the EPA		
3	regulations and the DOE sets siting		
4	guidelines.		
5	Now the next viewgraph is a bit of		
6	a shock. I tried to put everything on the one		
7	slide to show happened; and, yes, pretty bad.		
8	But that's the message. I mean, basically the		
9	message is this was a pretty messy process.		
10	So, let me make a couple of points.		
11	First was it's a very long		
12	process. It started actually out in 1977 when		
13	EPA started having public workshops on the		
14	principles for regulating repositories and NRC		
15	started working on it at that time, too. And		
16	it went all the way out to right now because		
17	there are pending lawsuits against the current		
18	EPA standards.		
19	And some other things that		
20	happened:		
21	One is it was characterized by		
22	multiple rulemakings by three agencies going		

Г

		Page	11
1	on pretty much in parallel or slightly out of		
2	sequence, like here, or let's say here.		
3	It was characterized by major		
4	legislative interventions. At 1982 the		
5	Nuclear Waste Policy Act. 1987 with the		
6	Nuclear Waste Amendments Act which selected		
7	Yucca Mountain leading to legislation in 1992		
8	which set us out on the two paths: One was a		
9	standard specifically for Yucca Mountain and		
10	one for WIPP and everything else.		
11	It was also characterized by a		
12	number of court decisions which set things on		
13	their heels, and basically was a start over on		
14	some issues. One was 1987 when the original		
15	EPA standard was remanded, and another in 2004		
16	when the Yucca Mountain standard was remanded.		
17	And as pointed out, there's pending lawsuits		
18	out here on the current standards.		
19	What this did, all these		
20	interventions, was leave the developers of		
21	repositories without standards, without		
22	definitive standards for extended periods of		

		Page	12
1	time.		
2	For example, from 1987 through '83		
3	for WIPP and from 1987 all the way out to 2001		
4	for Yucca Mountain to get the first		
5	regulation, and that only lasted three years		
6	and then they're back to waiting for another		
7	four years. So, it's been a fairly complex		
8	and messy process.		
9	So, let me spend a little time		
10	looking at the EPA regulations, because		
11	actually that's, as it stands now, is the one		
12	that would apply, I think, to any repository		
13	other than Yucca Mountain, and it's different		
14	in significant ways from the Yucca Mountain		
15	standard.		
16	The first place, it is for		
17	repositories for high level waste and spent		
18	fuel, and transuranic waste, which is what's		
19	going to WIPP. It has three components:		
20	A containment requirement to		
21	protect populations;		
22	Protection requirements for		

		Page	13
1	individuals and ground water, and;		
2	Then some assurance requirements		
3	that provide added confidence in the disposal,		
4	and;		
5	It defines a controlled area		
6	around a repository and says, look, the		
7	repository engineered area and part of the		
8	geosphere around the repository and you don't		
9	expect the standards to apply inside that		
10	repository system.		
11	The containment requirements. And		
12	this is really the heart of it. This is the		
13	primary measure of performance in Part 191.		
14	It protects populations, not		
15	individuals, and it does it by limiting the		
16	amount of specified radionuclides that can		
17	escape from the repository in a 10,000 year-		
18	period. And they are quantities that were		
19	calculated to produce on the order of 1,000		
20	premature deaths in 10,000 years. And EPA		
21	looked at that, they did analyzes of		
22	comparable uranium ore bodies and found that		

Page 14 those were essentially in the same range, and 1 2 that this was an acceptable level. So it's 3 a technology-based standard. They looked at what repositories could do and said this is 4 5 very good, and that's why we'll set the limits 6 this way. And they emphasized that it was not 7 to be interpreted as setting a level of 8 acceptable risk that could not be exceeded. 9 So, they said they looked at what repositories could do based on analyses of 10 generic repositories, they said that looks 11 very acceptable and we'll set the standards 12 13 that way. 14 It is a complex standard in that 15 it regulates the probabilities of exceeding 16 the limits instead of just regulating limits. 17 In other words, the applicant has to show that 18 there's no greater than one chance in ten of 19 exceeding the limits and no greater than one 20 chance in a thousand of exceeding ten times 21 the limits. And this is to be demonstrated 22 using performance assessments, basically

		Page
1	models of the repository system that take into	
2	account all the significant processes and	
3	events that could effect the repository and it	
4	includes human intrusion as one of the events.	
5	So that human intrusion was to be treated	
6	probabilistically; you make estimates of how	
7	much would occur, that gets rolled into the	
8	performance assessment.	
9	And concerns were raised at the	
10	time, and Bob Budnitz can tell you about it,	
11	about the feasibility of implementing that	
12	particular kind of standard in a NRC licensing	
13	processing. It wasn't that they couldn't do	
14	the calculations. The concern was can you	
15	defend it in a litigated licensing proceeding.	
16	The 10,000 year-period was picked	
17	because on the one hand, it would be long	
18	enough to allow you to compare sites and media	
19	without being, basically, masked by the	
20	engineered barriers. They looked at	
21	significantly longer periods and concluded	
22	that the uncertainties and the predictions	

		Page
1	were just too great to be useful out to those	
2	periods. But they did endorse DOE's inclusion	
3	of 100,000 years as a point at which to do	
4	evaluations for comparing sites. Not for	
5	regulating them, but for doing comparisons.	
6	They adopted a standard of proof	
7	they refer to as reasonable expectation, which	
8	recognizes that you can't have unequivocal	
9	proof of compliance of something like this for	
10	those long time periods.	
11	They established protection	
12	requirements. One of them is an individual	
13	protection requirement to, basically, limit	
14	the dose to any individual near the	
15	repository. And that's 24 millirem.	
16	And then they established some	
17	quantitative requirements with respect to	
18	protecting groundwater, and it might be a	
19	drinking water resource near the repository.	
20	The compliance requirements were	
21	less stringent. It was only to apply for the	
22	first 1,000 years and assume that the	

		Page	17
1	repository was not disturbed and didn't have	rage	± /
2	to use a detailed performance assessment.		
3	The assurance requirements are		
4	designed to compensate for the uncertainties		
5	in these long-term mathematical projections.		
6	There are requirements for:		
7	Multiple-barrier systems. They		
8	could not rely on perpetual institutional		
9	control to prevent releases;		
10	Preferred to be located in places		
11	where there weren't resources that would		
12	attract drilling for exploratory drilling,		
13	and;		
14	Should not preclude removal of the		
15	wastes within a reasonable time after		
16	emplacement. Now this, basically this		
17	retrievability requirement, is for safety		
18	reasons. It's not to preserve access to the		
19	spent fuel for recovery for reprocessing,		
20	which is an issue, the concept. It's purely		
21	a safety issue.		
22	And basically this was not to be		

		Page 18
1	applicable to NRC-licensed repositories. NRC	
2	was to come up with its own requirements like	
3	this. So, let's look at what NRC did.	
4	The Nuclear Waste Policy Act	
5	specified a couple of aspects of the NRC	
6	standard:	
7	(1) Was that it had to provide	
8	for multiple-barriers, and;	
9	(2) It laid out three stages of	
10	licensing construction, operation and	
11	decommissioning.	
12	Now, what's happened on reactor	
13	licensing since then is that he construction	
14	and licensing two steps has been merged into	
15	one, but it's still this way for the	
16	repository.	
17	The key thing I want to focus on	
18	that are mentioned in the NRC standard is the	
19	individual barrier requirements. These are	
20	requirements that NRC included that had to be	
21	met in addition to compliance with EPA	
22	standard.	

		Page	19
1	They required almost complete		
2	containment in the waste packages themselves		
3	for a period of 300 to a 1,000 years.		
4	They required a minimum release		
5	rate from the engineered barrier system after		
6	1,000 and specified a groundwater travel time		
7	minimum of a 1,000 years from the repository		
8	to the accessible environment to allow		
9	radionuclides to decay.		
10	It also allowed for other values		
11	that could be approved by the NRC.		
12	The purpose was to compensate for		
13	the uncertainties that were inherent in these		
14	long-term calculations. And NRC had some		
15	concerns at that point the state-of-the-art on		
16	this kind of analysis.		
17	There were a couple of other		
18	provisions in the NRC just worth mentioning in		
19	passing:		
20	They had criteria related to		
21	specific aspects of the site that might be		
22	favorable or unfavorable to disposal, but they		

		Pa
1	weren't go/no-go criteria. They were just	
2	things to be analyzed in the course of the	
3	licensing processing.	
4	They adopted reasonable assurance	
5	as the standard of proof; that's the standard	
6	NRC term in licensing proceedings. But they	
7	made it clear that the purpose was the same as	
8	reasonable expectation as to recognize you	
9	can't have complete proof in the normal sense	
10	of the term for these long time periods.	
11	They included a retrievability	
12	requirement, again for safety reasons not to	
13	retain access to spent fuel.	
14	Now, let's briefly talk about the	
15	siting guidelines that DOE came up. This was	
16	a set of guidelines that was to govern a	
17	process that was to start with comparisons of	
18	multiple sites and wind up with selecting a	
19	single site.	
20	I won't go into the details. I	
21	want to talk about the key issue that came up,	
22	and I think it's going to come up again if we	

Г

Neal R. Gross & Co., Inc. 202-234-4433

Page 20

		Page
1	get into the siting criteria again, is use of	
2	"qualitative" versus "quantitative"	
3	disqualifying conditions about sites. And	
4	what I mean is something like a site cannot be	
5	located closer than ten miles for a fault	
6	that's been active in the last million years,	
7	something like that. The specified quantities	
8	of certain aspects of the site.	
9	The argument in favor of that, or	
10	a big one, is that you need something very	
11	specific and clear to avoid subjectivity and	
12	to give confidence this is a fair and open	
13	process. The counter argument is that you can	
14	wind up ruling out the site that would be	
15	perfectly good, that you could do a perfectly	
16	acceptable repository at.	
17	In the event the guidelines that	
18	were adopted emphasized the qualitative	
19	conditions for screening, but at the end of	
20	the day the final site selection was based on	
21	actual performance assessment based on the	
22	data from site characterization to tell	

		E
1	whether it would meet the regulatory	
2	requirements.	
3	Now, not surprisingly, there was	
4	the lawsuits. And what was then in 1987 a	
5	court vacated the disposal parts because of	
6	some issues related to the protection	
7	requirements rather than the fundamental	
8	containment requirement. They upheld the	
9	10,000 year performance period as reasonable.	
10	They upheld the reasonable expectation	
11	standard of proof against charges that it was	
12	just too subjective. And the court said,	
13	"Look, it would irrational to require things	
14	that science can't do." And they also upheld	
15	the idea that you can have a zone around the	
16	repository in which you don't meet the	
17	standards.	
18	So, that put the cat among the	
19	canaries, as it were and they were back with	
20	all the issues back on the table being table	
21	with a lot of things going on, a lot of people	
22	getting their oars into the water on it.	

Neal R. Gross & Co., Inc. 202-234-4433

Page 22

		Page	23
1	Some of the key issues were old		
2	familiar ones:		
3	(1) Would that quantitative		
4	probabilistic standard work? Was 10,000 years		
5	just too long or too short, or just right;		
6	Were the release limits too		
7	stringent, and the particular issue I'm going		
8	to talk about in a minute was with respect to		
9	carbon-14 at an unsaturated zone site, read		
10	Yucca Mountain;		
11	There were questions about the		
12	NRC's quantitative individual barrier		
13	requirements and whether it was necessary,		
14	whether it would impose unnecessary costs;		
15	There were questions about		
16	probabilistic treatment of human intrusion,		
17	which I mentioned. That there was going to be		
18	an all new performance assessment. Well, what		
19	they were learning from WIPP performance		
20	assessments was that it was looking like the		
21	assumptions that were made about how many bore		
22	holes, and I think even how big they were, in		

		Page	24
1	exploratory drilling over a 10,000 year period		
2	were going to drive the compliance		
3	determination. And that seemed like a little		
4	odd.		
5	And then finally, there were		
6	concerns about what the public perceptions		
7	might be of changing the standard in		
8	midstream.		
9	One thing I want to call your		
10	attention you. I think you have gotten		
11	summaries of it, was this report from the		
12	National Academies, Tom Isaacs was involved in		
13	it, called "Rethinking High Level Radioactive		
14	Waste Management." And I just want to call		
15	out a couple of the points they made. They		
16	weighed in on some of these issues.		
17	They were concerned about over-		
18	emphasis on the use of these quantitative		
19	calculations to make detailed long-term		
20	performance predictions. They thought that		
21	could lead to some problems.		
22	They were concerned about		

1	establishing these very detailed regulations
2	early in the process before you had all the
3	data about the sites that you were going to be
4	investigating, and they thought that you could
5	wind up with standards you couldn't meet.
6	And they recommended a flexible
7	approach that focused on the ultimate
8	performance goal and then would allow some
9	adaptation as you moved around.
10	Now what happened was by 1992
11	there was some impatience in Congress. They
12	wanted to move on Yucca Mountain, they wanted
13	movement on WIPP and both were held up by the
14	lack of standards. So, we wound up with two
15	pieces of legislation, which I'll talk about,
16	one of which set us off with Yucca Mountain
17	and the other set us off on a path with WIPP
18	and everything else. And so I'll talk about
19	the WIPP and everything else path first with
20	the WIPP Land Withdrawal Act. And it
21	basically told EPA to go back and fix the
22	parts that had been remanded by the court,

I

Neal R. Gross & Co., Inc. 202-234-4433

Page 25

		Page	26
1	come back in a year with a standard, and that		
2	standard would not apply to Yucca Mountain.		
3	Well, they didn't say "Yucca Mountain." but		
4	the word meant Yucca Mountain.		
5	They made EPA the agency to		
6	determine compliance. Prior to that it had		
7	been DOE because this was a defense DOE site.		
8	They required compliance		
9	recertification every five years. This wasn't		
10	going to be a one shot and then it's done		
11	decision.		
12	And they exempted WIPP from some		
13	of the hazardous waste disposal requirements,		
14	but left them subject to the mixed waste		
15	requirements that were implemented by the		
16	state, which by the way gave the state a		
17	regulatory authority over WIPP that they		
18	didn't otherwise have, which I think was		
19	important to the state.		
20	So what happened to WIPP? Well,		
21	it worked basically. They got the rule out in		
22	a year. They changed the dose limit to 15		

		Page	27
1	millirem, which one of the issues, and they		
2	bumped the compliance period on the two		
3	protection standards up to 10,000 years to		
4	match the other 10,000 year standard. Came		
5	out with an implementing rule. And basically,		
6	they certified WIPP in '98. WIPP got a RCRA		
7	certification from the state. It was		
8	recertified in 2006. And I think DOE has		
9	submitted the next recertification already, I		
10	think. So that process is working fine.		
11	Now let's look at the Yucca		
12	Mountain path. Not nearly so smooth.		
13	The Energy Policy Act told EPA t		
14	come up with a site-specific standard for		
15	Yucca Mountain that had a health-based		
16	standard based on dose to individuals. And it		
17	was to be based on consistent with		
18	recommendations from the National Academy.		
19	Now, I have to say this is really emotional		
20	territory I think for a lot of people and I		
21	need to explain what happened here.		
22	This goes back to the point about		

I

the standard being too stringent for an 1 2 unsaturated zone site. The EPA standards, the 3 release quantities were calculated looking at 4 generic repositories in the saturated zone. 5 Carbon-14 comes out, I think, as carbon 6 dioxide and goes in, will dissolve into the 7 water. And their analysis was based on that 8 and they came up with a limit. In an 9 unsaturated zone site which they did not analyze for the standard in determining what 10 11 was feasible with a repository, it goes into the atmosphere. Because there's no water to 12 13 stop it, it comes out as gas, it just goes up 14 in the atmosphere, distributes itself around 15 the whole world but in a quantity that 16 violated the quantity that EPA determined. At the same time, the doses that 17 18 it produces, the individual doses, would be very, very small because its distributed 19 20 throughout the whole atmosphere, and very far 21 below any, for example the 15 millirem 22 protection limit. But it dosed a lot of

> Neal R. Gross & Co., Inc. 202-234-4433

Page 28

1	people. It was referred to at the time, I
2	think, as "micro-doses to mega-people" was
3	kind of the issue. And it didn't mean that
4	you couldn't do a repository in an unsaturated
5	zone, but it meant that it was going to take
6	a very long waste package just to contain just
7	the carbon-14 while it decayed. It's a 5,000
8	year half-life. And at the time in the
9	debates DOE estimated it was going to cost, I
10	think, \$5 billion, something like that for a
11	waste package just to keep the carbon-14 and
12	meet that standard.
13	And that was talked about a lot on
14	the floor of the Senate in the debates. The
15	congressional judgment was that wasn't a good
16	idea. The told EPA to just come with a
17	standard that was based on dose, and based on
18	analyses of what was reasonable levels of
19	health protection. And then they asked the
20	Academy to weigh in on the subject.
21	So on one hand there was a
22	technical argument that you could say well

Page 30 this was the kind of technical adjustment that 1 2 the Academy was thinking about of needing to fix something that was a standard that was too 3 4 rigid and it was set before you had all the 5 data. On the other hand, it's absolutely 6 clear that people who were concerned about the 7 Yucca Mountain choice would basically see this 8 as simply cutting the regulations to fit the Changing the rules and supporting the 9 site: predetermined decision. 10 11 So, the law put three questions to the Academy: 12 Does a dose standard make 13 (1)14 sense? The other two were related to that 15 16 concern about human intrusion and what its 17 impact would have. So they asked: 18 Can you assume that if you (1)19 have post-closure oversight of the repository, 20 you can prevent it and can you supportable 21 predictions of what human intrusion would be? 22 But at the same time the Act, and people don't

		Pag
1	really note this a lot, it mandated perpetual	
2	oversight of the Yucca Mountain site and it	
3	directed NRC to assume that that will work	
4	except depending on what the Academy said.	
5	So, in 1985 the Academy came out	
6	with its report. They said, yes, a dose-based	
7	standard will work provided, and we're right	
8	back to this mini-dose problem, you will	
9	accept that the risks from these very low	
10	doses are negligible.	
11	On the other two questions they	
12	said no. No, you can't assume in the 10,000	
13	period you could block human intrusion. And	
14	no, you can't predict how much intrusion	
15	there's going to be. So then they made the	
16	recommendations and finding.	
17	The big one was this one: They	
18	said you should regulate at the time of peak	
19	dose, which at that time was understood to be	
20	well past 100,000 years at Yucca Mountain.	
21	They said there was no scientific reason to	
22	stop the performance assessment at 10,000	

Neal R. Gross & Co., Inc. 202-234-4433

Page 31

1	years. The only reason to stop it would be
2	out to the limits of geologic stability of the
3	site, which they thought was about a million
4	years. They said regulate based on a risk
5	standard rather than dose, they recommended
б	analyzing human intrusion not by trying to
7	predict how much there would be, but just by
8	specifying a scenario for intrusion and then
9	analyzing it and seeing if the results were
10	acceptable. And then they said the individual
11	barrier requirements really were not necessary
12	and could be counterproductive.
13	So, EPA came out with a final rule
14	through a standard rulemaking process. A
15	final rule in 2001. Adopted 15 millirem
16	annual dose. They included the groundwater
17	standard from the previous rule. They put in
18	a specification that compliance could be
19	measured as far as 18 kilometers from the
20	repository versus, I think it had been 5
21	kilometers usually. It's one of those cases,
22	it was based on analysis of the specific

Page 33 characteristics of the Yucca Mountain site. 1 2 So in that sense, it is a site-specific 3 requirement. On the other hand, it is clearly 4 seen by critics as just gerrymandering the 5 compliance system to approve the site. But 6 that's the real risk of a flexible site-7 specific approach. 8 It retained the 10,000 year period 9 despite the Academy's recommendation. They 10 still felt that these long-term projections were not a useful basis for a regulatory 11 12 They told DOE to go ahead and do a decision. peak dose projection, but it into the EIS so 13 14 people who basically would there would see it, 15 but it's not a regulatory test. They 16 reaffirmed reasonable exception and they 17 adopted the idea of a stylized approach to human intrusion. 18 19 NRC decided not to change their 20 earlier regulation Part 60, the generic one, 21 and they came out with a special one for Yucca 22 Mountain. They dropped their quantitative

barriers requirements, as the Academy had 1 2 observed, but they pointed out that the methodology of performance assessment had 3 4 evolved so well since they originally put them 5 in, that they no longer felt the need for 6 those quantitative requirements to give 7 confidence. They still did require that there 8 be a demonstration that multiple barriers are 9 contributing to isolation, but there's no standard for each one of them. They included 10 the retrievability requirement, again. 11 Adopted EPA's reasonable expectation standard 12 13 of proof for post-closure to avoid the 14 confusion. And they gave guidance about how that would be implemented in the license. 15 16 DOE did the same thing that NRC 17 did. Was they left the existing guidelines in 18 place and came up with a special one for Yucca Mountain suitability. Got rid of all the 19 20 comparative parts of the regulation. And they 21 focused the determination on the analysis of 22 the total system performance, not analysis of

		P
1	individual site characteristics. And that was	
2	actually used for the recommendation in 2002.	
3	Naturally, once the recommendation	
4	was done and affirmed by the Congress, there	
5	were multiple lawsuits against a lot of the	
6	provisions in the regulation which were	
7	described there. The key one is the court	
8	rejected all of them except one, and that was	
9	the contention that the 10,000 standard was	
10	not consistent with the Academy's	
11	recommendation that they regulate to the time	
12	of peak dose. And they said the Energy Policy	
13	Act said you had to be consistent with the	
14	Academy recommendation. And the court looked	
15	at it and said "You're right." And basically	
16	vacated that portion of EPA's and NRC's	
17	standard and said "Go back and either fix it	
18	or get Congress to change the requirement that	
19	you have to be consistent with the Academy's	
20	recommendation."	
21	So, they fixed it. Basically they	
22	proposed a revision in 2005. Came out with a	

I

		Page	36
1	final in 2008. I will skip over the fun time		
2	that was had in going from the proposal to the		
3	final.		
4	They basically changed the		
5	regulatory time frame. But the way they did		
6	it was a two tier approach. They kept the 15		
7	millirem for 10,000 years and then added a 100		
8	millirem level for the period from 10,000		
9	after the time of peak dose.		
10	NRC then adopted that,		
11	incorporated it into its standards. They		
12	added some specifications with regard to how		
13	to treat climate change. And I point this out		
14	because what happens when you go to a million		
15	year standard is now you got to take into		
16	account glaciation, really major changes in		
17	climate. And it seemed inappropriate to		
18	expect the applicant to have to make the		
19	predictions of exactly what that would be. So		
20	the regulator specified that.		
21	And they also said that the		
22	technical basis for the performance projection		
		Page	
----	--	------	
1	out to the million years, for 10,000 was		
2	sufficient for the one out to a million years.		
3	So they didn't have to go do a whole new		
4	technical basis.		
5	So, what happened? We're done.		
б	That is what the license application shows		
7	compliance with. The process is moving along,		
8	but it's still pending the withdraw. And as		
9	I said, there are lawsuits pending. So if it		
10	does proceed, we'll be back in court on		
11	provisions of those regulations.		
12	So, where are we? It turned out,		
13	this was an unprecedented job for the		
14	regulators. I have a lot of sympathy for them.		
15	The process was really bumpy, complex,		
16	convoluted, left the repository designers		
17	without clear standards for a long period of		
18	time, and we've evolved two different sets of		
19	regulations. One is just unique to Yucca		
20	Mountain, and that is the path where most of		
21	the regulatory thinking and development has		
22	happened, it's on the one that is now unique		

		Dage
1	to Yucca Mountain. And we have one that's in	ruge
2	use at WIPP, and potentially applicable to the	
3	other repositories.	
4	And the bottom line is I think any	
5	new repository siting process may require	
б	further evolution and we should draw on the	
7	lessons from these two experiences. And the	
8	lessons, both with regard to the substance of	
9	the regulation but maybe equally importantly	
10	to the process we use them next time to come	
11	with whatever we're going to use.	
12	Done.	
13	CHAIR LASH: Thank you, Tom. That	
14	was amazingly fast and comprehensive.	
15	And for those of us who haven't	
16	lived this process through the last 30 years,	
17	very informative. And I appreciate it.	
18	DR. COTTON: And now we will find	
19	out how long I have. I have some questions	
20	CHAIR LASH: We actually have a	
21	few minutes for questions.	
22	DR. COTTON: Oh, good.	

		Page	39
1	CHAIR LASH: Members with a		
2	question? Allison?		
3	MEMBER MacFARLANE: Tom, that was		
4	great.		
5	I just want to hear a little bit		
6	more of your wisdom here and what do you think		
7	are some of the most important lessons taken		
8	from their experience, and how would you apply		
9	them going forward to a whole new system?		
10	DR. COTTON: Exactly. That's for		
11	the other folks.		
12	As I went through this and looked		
13	at it and then put together that horrible		
14	viewgraph, I think it's the process problem we		
15	really have to think about. They had multiple		
16	things going on in parallel. There was even		
17	an effort, I remember in that '87 to '92		
18	period when somebody from the TRB had		
19	recommended to the Advisory Committee on		
20	Nuclear Waste that we consider a negotiated		
21	rulemaking to corral all of these arguments,		
22	get people to try to come up with one		

Г

		Page
1	integrated set of agreements about what to do.	
2	And I think trying to avoid a repetition of	
3	that kind of process would be a really good	
4	thing to do.	
5	MEMBER PETERSON: Tom, the 1995	
6	National Academy study also included	
7	essentially a statement that EPA could adopt	
8	a standard that would be consistent with its	
9	approach to regulating other hazardous	
10	materials, which really chemicals. And that,	
11	of course, raises a whole big set of issues	
12	because the way we regulate chemicals does not	
13	really take into account long-term potential	
14	hazard. So how do we deal with societal	
15	question of the fact that we regulate nuclear	
16	waste in a very specific way, yet if you don't	
17	do something similar for chemicals, then you	
18	could have chemicals swamping the long-term	
19	hazards for people?	
20	DR. COTTON: I don't think I'll	
21	touch that one with a ten foot pole. But I	
22	will observe, I do remember a symposium at MIT	

where they brought together the people dealing 1 2 with hazardous waste regulation and management and the people dealing with nuclear waste. 3 4 And the nuclear waste people were talking 5 about how do you provide markers to indicate 6 to future civilizations 10,000 years from now 7 that there's a repository, and they were going 8 through all of this. And after that, a fellow 9 who was working on hazardous waste stood up and said "This is astonishing to me." 10 I mean 11 this just seemed crazy to them because they're 12 thinking about 60 years, you know really 13 short-term. Graphically there's a 14 dramatically different approach, but how you 15 bridge that gap I don't know. It would be a 16 good thing for the discussion later. But I 17 don't have an answer. 18 CHAIR LASH: I have a quick 19 follow-up question to Per's. There's 20 something I don't understand there. And then 21 a longer question. 22 The follow-up question: A lot of

		Page	42
1	the hazardous wastes that are regulated in a		
2	way entirely different, don't actually have		
3	half-lives.		
4	DR. COTTON: Correct.		
5	CHAIR LASH: So what is the		
б	justification for taking a short-term		
7	approach? If they don't have a half-life,		
8	then they never mature, especially heavy		
9	metals, those things remain toxic in		
10	perpetuity. But we regulate them very		
11	differently.		
12	DR. COTTON: We're just used to		
13	them.		
14	Actually, the one place, and the		
15	EPA can talk about this, I think in the land		
16	disposal limitations that if you inject or		
17	dispose of certain toxic materials, you have		
18	to show that there's no migration from the		
19	disposal site. And that's there's no		
20	migration and they've adopted, I think, 10,000		
21	years sort of as the limit. But that was kind		
22	of ratcheted back from the high level waste		

10,000 year period. 1 2 CHAIR LASH: Tom, I have a very 3 naive question. You were very clear that part 4 of the difficulty here was the two-track 5 process. There was a general regulatory 6 process and then there was the effort to 7 create a set of regulations that fit Yucca 8 Mountain. And without any imputation of bad 9 faith, you were very clear that people were doing the best that they could with the 10 situation they had. 11 12 If our recommendations move back 13 toward a saturated site, does that mean that 14 this 20 years of work for Yucca Mountain is irrelevant? 15 16 DR. COTTON: No. I think there's 17 a lot of the thinking was not just Yucca 18 Mountain-specific. There were aspects of it 19 that were very specific to the unique site, 20 like the 18 kilometer boundary. There were 21 things that having to do with the unsaturated 22 site. But I think a lot of the regulatory

1	thinking would be applicable they'll need to	Page	44
2	think through.		
3	For example, NRC's evolution of		
4	thinking about barriers and they've got		
5	through a risk-informed approach to		
6	regulation. And they never went back and		
7	fixed Part 60 after they got focused on Yucca		
8	Mountain. So there's a lot of things that		
9	need to be brought in from that experience.		
10	CHAIR LASH: Senator, do you have		
11	anything?		
12	MEMBER BAILEY: Tom, thank you so		
13	much for that very clear and comprehensive		
14	presentation.		
15	On the side of being a little bit		
16	naive, I want to talk about three areas		
17	really. And you can probably do them very		
18	quickly.		
19	On the issue of retrievability		
20	DR. COTTON: Right.		
21	MEMBER BAILEY: versus I know		
22	Per sent us something versus reversibility.		

		Page	45
1	And I'm not sure necessarily the differences		
2	there.		
3	The issue as it relates to		
4	tectonic activity or fault lines where the		
5	sites are located: Who exactly does that		
6	analysis?		
7	And in looking at DOE and the		
8	number of sites, I noticed in your article		
9	that you wrote for a book that we had an		
10	opportunity to look at before this, talked		
11	about that initially there were a number of		
12	sites looked at and it pared down to maybe two		
13	sites, possible.		
14	DR. COTTON: It was three.		
15	MEMBER BAILEY: Or three. Okay.		
16	You know that better than I.		
17	And the fact that we did not		
18	continue to look at a second site, I'd like to		
19	talk a little bit about that.		
20	And then also looking at EPA, NRC,		
21	DOE how do you prevent it from being purely		
22	political? You talk about that in your		

Page 46 article. And -1 2 DR. COTTON: Carefully. 3 MEMBER BAILEY: Okay. 4 DR. COTTON: I talked about it 5 very carefully. 6 MEMBER BAILEY: I'm talking 7 advantage of you, thought. 8 DR. COTTON: Okay. 9 MEMBER BAILEY: Okay. Go ahead. 10 DR. COTTON: Well let me say, 11 okay, retrievability, there are a couple of 12 concepts. There's retrievability for safety 13 reasons. It doesn't have to be easy and EPA 14 said it doesn't have to be done easily, it 15 just has to be done. And they said basically 16 any mined repository could meet that standard. 17 There's, you can use another word, 18 recoverability which is the ability to get at 19 -- or ready retrievability, which is the 20 ability to get it out easily. And that's what 21 you talk about if you want to put in spent 22 fuel and then get it back out again because

		Page	47
1	you want to use it. And that's more		
2	demanding, particularly like in a salt site.		
3	The salt creeps in, it's harder to maintain		
4	that kind of retrievability.		
5	And then I think maybe the		
6	reversibility concept there is more one of how		
7	the whole program has an ability to stop and		
8	go back and undo a decision. It's not so such		
9	much a repository, but it's how the program.		
10	With respect to the tectonic		
11	thing. I was just using that as an example.		
12	But right now the way things would be set up		
13	is that that's the sort of thing that will be		
14	addressed in siting in general guidelines for		
15	siting of repositories. Okay.		
16	On the second site, you know the		
17	decision in 1986 that stopped basically work		
18	on the second repository. There were supposed		
19	to be two repositories originally and two		
20	processes going on in parallel. And then that		
21	was halted in '86 because the Department had		
22	concluded that at least the rational was		

		Page
1	that they didn't need the second repository so	
2	soon. And then that scrambled the politics of	
3	the agreement in the Nuclear Waste Policy Act	
4	and that led to the '87 amendments.	
5	The EPA/NRC/DOE thing, that's	
б	where I come back to the process and I throw	
7	it back to the people who were involved to	
8	talk about how there might be a way to get a	
9	credible process and is not perceived as being	
10	torqued by political considerations.	
11	CHAIR LASH: Any further	
12	questions?	
13	Tom, again, thank you very much.	
14	Very, very helpful.	
15	Our next speaker is Timothy	
16	McCartin of the Nuclear Regulatory Commission.	
17	Tim serves as the Senior Advisor for	
18	Performance Assessment in the Division of High	
19	Level Waste Repository. He'll speak to us	
20	about the NRC approach toward regulations for	
21	a deep geologic repository.	
22	And thank you. I think Tom has	

		Page
1	set it up beautifully for you. We'd like you	
2	to be fairly brief. You can tell, you'll be	
3	deluged with questions as soon as you finish.	
4	MR. McCARTIN: Okay. And just a	
5	procedure question: When you said five	
б	minutes, I originally was told ten. I will	
7	try to scale back to five if you'd like me to.	
8	CHAIR LASH: No, no. I misspoke.	
9	MR. McCARTIN: Okay.	
10	Tom, I think you made off with the	
11	clicker.	
12	CHAIR LASH: It's just typical of	
13	the process that we always change the rules	
14	after people start.	
15	MR. McCARTIN: And on behalf of	
16	the NRC, I'd like to express our appreciation	
17	for giving us the opportunity to give our	
18	perspective on the regulations. Today I'll	
19	talk to the two pertinent regulations we have	
20	with respect to geologic disposal: 10 CFR	
21	Part 60 which is our regulation for all sites	
22	other than Yucca Mountain, and 10 CFR Part 63	

		Page	50
1	which is our regulation for Yucca Mountain.		
2	Having said that, I need to		
3	provide at least a small disclaimer. That we		
4	are currently in the process of reviewing		
5	DOE's license application for Yucca Mountain.		
6	I will talk to Part 63, but none of my		
7	comments should be interpreted as any		
8	indication of a decision, a view with respect		
9	to the acceptability of DOE's license		
10	application for Yucca Mountain.		
11	And with that, I think Tom		
12	actually did go through the roles. I think		
13	just very briefly, EPA sets the standards for		
14	the releases off the site. The Department of		
15	Energy is responsible for designing,		
16	constructing and operating the repository if		
17	they are granted a construction authorization.		
18	And ultimately the burden of proof is on the		
19	Department of Energy to show that they comply		
20	with NRC's regulations.		
21	NRC is an independent regulatory		
22	agency. We do not report to the President,		

		Page	51
1	such as EPA and DOE. We take that		
2	independence very fiercely within the staff.		
3	Our job is to a safety review: That's it.		
4	And that's what we are in the process of		
5	doing.		
6	We set the regulations.		
7	We make our license decisions		
8	based on the application: That whatever		
9	applicant applies to the NRC, we use their		
10	information.		
11	We do ask what we call RAIs,		
12	Requests for Additional Information of		
13	applicants when they submit applications. But		
14	we base it on what the applicant provides to		
15	us.		
16	And just as important, if a		
17	license is granted, there's inspection and		
18	oversight that the NRC continues to provide		
19	that oversight to the licensed facility.		
20	Let's go first to NRC's generic		
21	regulations. And I'll just touch on a few of		
22	the key points with respects to the Part 60		

1	regulations, many of which are also in Part
2	63.
3	First, as Tom mentioned, this
4	phased approach. There's one license
5	application but there are multiple decisions
6	along the way at the appropriate time. Three
7	of those decisions are: At a construction
8	authorization phase; an operation stage which
9	is the license to receive radioactive material
10	at the repository, and; finally a closure
11	stage. Throughout that process it's continual
12	learning.
13	Now we do not substitute. At the
14	construction authorization phase we have to
15	have sufficient information to know that the
16	repository will be safe. But there is a
17	recognition that information will continue to
18	come in during construction, you will learn
19	more things. As repository drifts are
20	excavated, you learn more things. And that
21	information in our regulations there's ways to
22	factor in that information at: One prior to

		Page
1	the license to receive and possess, and at the	
2	time of closure.	
3	Part 60 does have the multiple	
4	barrier requirement, those quantitative	
5	limits, which in the late '70s when they were	
6	first developed I will say NRC had never	
7	conducted a performance assessment for	
8	geologic disposal. There was uncertainty, so	
9	they came up with three particular values. I	
10	think the easiest way to look at it:	
11	There was a waste package lifetime	
12	to ensure that the waste was contained during	
13	that period when the waste was the hottest and	
14	estimating the releases would be the most	
15	uncertain;	
16	Then once packages failed, the	
17	release rates should be sufficiently low, that	
18	was the release rate part of it, and;	
19	Then ultimately the groundwater	
20	travel time that for whatever releases, they	
21	should take a long time to get where there	
22	might be contact with humans.	

Г

		Page 54
1	That was the basis between those	
2	three subsystem criteria. Over time the	
3	Commission, there was never acceptance of	
4	those. It was difficult to implement and	
5	there were discussions going on. However, as	
6	I'll talk about for 63, when we went to revise	
7	Part 63 we did opt to leave Part 60 in place.	
8	That was done for efficiency purposes. We	
9	acknowledged in 1999 when we published the	
10	initial proposal for Part 63 that the	
11	Commission always understood they would given	
12	enough time to revise Part 60 if it needed to	
13	be used in the future. And so it was put off	
14	to the side, but there was a recognition that	
15	some of these warts, if you will, were left	
16	there.	
17	With respect to the phased	
18	approach, let's for the same of argument say	
19	that's a 100 years from this time of	
20	construction to the time of closure. That's	
21	a fairly long time. The regulations require	
22	what's called a performance confirmation	

	P
1	program. The Department of Energy would be
2	needed to conduct a continue to challenge the
3	basis for which the safety decision was made
4	and continue to look at those properties,
5	parameters, characteristics and challenge them
б	over that 100 year period. All that
7	information would be factored into the final
8	decision to close the facility. That's where
9	the retrievability requirement comes in with
10	respect to the NRC perspective.
11	If there wasn't a retrievability
12	requirement, let's say over this 100 years at
13	the time of closure you finish your
14	performance confirmation program and you
15	really don't have confidence in safety any
16	longer. If you couldn't remove the material,
17	it would be kind of a worthless decision:
18	It's not safe, but we can't get it out. And
19	so hence, these two requirements: Performance
20	conformation program and retrievability
21	somewhat go hand-in-hand. So at the final
22	decision the Commission would make to close

I

		Page	56
1	the facility, it's a meaningful decision in		
2	that you could retrieve the waste if you no		
3	longer have confidence in the safety.		
4	There is the program for oversight		
5	after permanent closure. It isn't relied on		
6	to provide safety, but there are requirements		
7	for continued oversight of the facility. That		
8	would be done by the Department of Energy. At		
9	the end of the day there comes a point where		
10	NRC after closure would turn over regulation		
11	of oversight of the repository to the		
12	Department of Energy so there'd be just one		
13	Government agency responsible for safety at		
14	that time.		
15	The post-closure period, as was		
16	mentioned, is 10,000 years and EPA's post-		
17	closure standards are incorporated into Part		
18	60. However, the standards are not the		
19	current standards at 191 today. As I said,		
20	we've left in it place. We would have to		
21	incorporate the current standards that are at		
22	191. They're not there today in NRC's		

Page 57

regulations.

1

2	In terms of our regulations for
3	Yucca Mountain, as was mentioned, it's a
4	different kind of way of estimating and
5	looking at compliance with an overall safety
6	measure, the dose limit. It relies on a
7	performance assessment.
8	As I said, the Part 60 regulations
9	were developed really in the late '70s. This
10	was first proposed in the late '90s. So there
11	was almost 20 years of performance assessment
12	experience that had been gained at that time,
13	and consistent with the NAS recommendations
14	and EPA standards there's requirements for the
15	performance assessment to be conducted to show
16	compliance with the dose limit. Some of that:
17	The characteristics of the
18	biosphere, that was the NAS recommendation
19	that they said it was not fair to have the
20	applicant try to come up with this biosphere,
21	it would be more appropriate for the
22	regulatory to come up with some of these

		Page	58
1	characteristics that define how the		
2	calculation would be done. And it's those		
3	attributes of the system that are difficult to		
4	defend, if you will, in a adjudicatory		
5	hearing. It's more appropriate for a		
6	regulation such as where people live, what		
7	their diet is, et cetera; trying to estimate		
8	that for hundreds of years, let alone		
9	thousands and millions of years it's better		
10	done in the regulations.		
11	Multiple barriers. We did remove		
12	the quantitative subsystem requirements. We		
13	did not remove a requirement for multiple		
14	barriers. It's done within the context of the		
15	performance assessment. The performance		
16	assessment clearly is relying on different		
17	attributes of the system, be it a waste		
18	package, waste form, flow of water, transport		
19	of radionuclides, solubility of radionuclides.		
20	There's a lot of attributes in the performance		
21	assessment, the characteristics of those		
22	barriers are what's required in the		

		Page	59
1	regulations. DOE has to explain them and		
2	defend them consistent with how they've		
3	estimated the 15 millirem dose in the		
4	performance assessment.		
5	Okay. I will go very quick.		
6	EPA's post-closure standards.		
7	There's the dose limit for individual		
8	protection consistent with the Academy		
9	recommendations. There's also a stylized		
10	calculation for evaluating human intrusion,		
11	and the separate limits for the protection of		
12	groundwater.		
13	The compliance period is through		
14	the period of geologic stability, which is a		
15	million years.		
16	Finally, what would we do tomorrow		
17	if, indeed, we are no longer working with the		
18	Yucca Mountain site? Considerations would be		
19	for:		
20	Revising Part 60, which was put on		
21	the shelf back in 1999 with the recognition we		
22	would be given the time to revise it;		

Page 60 I think, as was mentioned, the 1 2 Commission has adopted risk-informed 3 performance-based approaches to regulation. In 4 that sense, I think the quantitative subsystem 5 requirements would be removed. We would use 6 the performance assessment similar to Part 63; 7 We certainly have to conform the 8 current Part 60 to the current 191 that EPA 9 has that we do not have that current to date, recognizing of course that there would be 10 11 three standards. Integrated release, the 12 individual protection limit and the 13 groundwater requirements that all represent 14 different levels of risk. And these would be the kinds of 15 16 things we have to look at when we revise Part 60 in the future. 17 18 Thank you. I'll be happy to 19 answer any questions. 20 CHAIR LASH: Thank you very much. 21 We appreciate that. 22 Ouestions from Commissioners?

		Page
1	Per?	
2	MEMBER PETERSON: I'd like to get,	
3	I think the really important question that	
4	would be one of the areas where a transition	
5	to risk-informed approach might be made, which	
б	is on the question of retrievability	
7	requirements. And, of course, the point	
8	behind retrievability is to reduce risks or	
9	that you might decide you need to reverse what	
10	you've done, or to mitigate. And the big	
11	concern I have it's just like with safety	
12	systems for reactors. You can add a safety	
13	system that causes the accident, which is sort	
14	of a perverse thing to have done. You didn't	
15	reduce risk, you actually increased risk by	
16	mandating that you had to have a safety system	
17	that then can actually initiate an accident.	
18	The issue with retrievability	
19	requirements is that if you don't implement	
20	them properly, you could actually be forced to	
21	reverse thing because you picked a site or you	
22	engineered the system in a way that it doesn't	

Page 62 perform well because you did it so that you 1 2 could reverse it, right? So what I'd like to know is the 3 current standards. First, in terms of 4 5 retrievability, humans can mine virtually 6 anything out of anyplace. So it's really a 7 spectrum of difficulty. How does the current 8 standards, how do they set sort of what is 9 retrievable versus not retrievable, given that 10 it's actually just going to be really a spectrum of difficulties to be able to do 11 12 that? 13 Right. And NRC's MR. McCARTIN: 14 current regulations do not provide a lot of 15 detail with respect to that. The discussion 16 we've had over the years about retrievable is 17 that: 18 (1)From NRC's perspective, it's one done for safety, that you now have lost 19 20 confidence in the ability of the repository to 21 perform its safety function. And it would be 22 an unusual situation. And the regulations are

		Page	63
1	not intended to make retrievability easy, but		
2	you don't want the capability rendered		
3	impossible or impractical.		
4	You're right. What makes it not		
5	retrievable? And I think that the primary		
6	thing would be the condition of the waste		
7	package, I think would be a large part of		
8	understanding is it truly retrievable. But,		
9	you know, there aren't any rigid requirements.		
10	MEMBER PETERSON: Right. So then		
11	the second piece of the overall risk is this		
12	question of how do you make the decision. And		
13	so it seems to me that your performance		
14	confirmation, does that defer until you've		
15	emplaced everything into the repository? Or,		
16	wouldn't it make more sense to have		
17	intermediate steps where you learn from		
18	experience so that you have off-ramps because		
19	it's much less expensive to reverse if you do		
20	it early, then if you emplace large amounts of		
21	material? Again, we're thinking about this		
22	being a better approach as to try to minimize		

		Page	64
1	risks of high costs to reverse.		
2	MR. McCARTIN: Yes. Well, that		
3	would be more the Department's choice of how		
4	they wanted to develop the repository.		
5	In terms of NRC's perspective,		
6	it's what we're interested in that the		
7	performance confirmation program exists.		
8	Because recognizing, let's say approximately		
9	100 years from the start of construction until		
10	a decision for closure, that's a very long		
11	time period. And the prudent thing to do is		
12	continue to conduct experiments, observations,		
13	tests that challenge the basis you had for the		
14	safety decision. It's not replacing it or		
15	deferring the safety decision. You have to		
16	have enough confidence. But continue to		
17	challenge those bases.		
18	You know, there's no question that		
19	you would expect a project that long, after 20		
20	years of excavating drifts and emplacing		
21	waste, they're going to revise some things,		
22	they're going to do things differently,		

		Page
1	they're going to suggest changes.	
2	MEMBER PETERSON: Yes.	
3	MR. McCARTIN: That's all part of	
4	the NRC process. The Department is free to	
5	submit amendments, suggest changes, et cetera.	
6	So I don't know if that's getting	
7	quite to your concern. But from our	
8	perspective it just is it safe? And if	
9	economically it makes more sense for the	
10	Department to conduct, say, a ten year pilot	
11	program before they go into full, that's the	
12	Department's decision. Our focus is safety.	
13	CHAIR LASH: Vicky?	
14	MEMBER BAILEY: Tim, thank you.	
15	I see that you're also on the	
16	panel next.	
17	MR. McCARTIN: Correct.	
18	MEMBER BAILEY: And I also was	
19	looking to see if there was another NRC	
20	representative this afternoon. So this	
21	question may not be specific to what you do,	
22	according to your title, but at what point is	

e 65

		Page 66
1	there public involvement in your process?	
2	MR. McCARTIN: Well, certainly	
3	through our hearing process.	
4	MEMBER BAILEY: And can you	
5	explain that? Can you kind of detail that for	
6	me a little bit? What's the process for that?	
7	MR. McCARTIN: Well the first step	
8	in the process is, certainly, our regulations.	
9	And we go out for public comment and people	
10	are allowed to comment on the regulations and	
11	there is public involvement in deciding on the	
12	regulations.	
13	MEMBER BAILEY: Is there notice of	
14	that? Is there a time period for that?	
15	MR. McCARTIN: Sure.	
16	MEMBER BAILEY: Is the notice only	
17	in a specific area? How is this done?	
18	Because I know the lawyers get it, I know	
19	that. But how does the public get it?	
20	MR. McCARTIN: Well, in terms of	
21	Part 63 where we noticed in the Federal	
22	Register notice and we went out to Nevada and	

		Page	67
1	had public meetings in Nevada to seek public		
2	comment and explain the regulation, what it		
3	meant. We've had meetings in Nevada with the		
4	local units of governments, the affected		
5	Indian tribes with respect to their		
6	participation.		
7	The hearing process for NRC is a		
8	formal adjudicatory process. And you have to		
9	be allowed in as a party, so you'll have to		
10	show that there's an affect on your, there's		
11	a potential for harm to be in the party you		
12	have to have, and you need to have an accepted		
13	contention: You have to submit a contention		
14	and be accepted.		
15	MEMBER BAILEY: What's a		
16	contention?		
17	MR. McCARTIN: A contention is		
18	something, people would look at the DOE		
19	license application and say that they		
20	disagreed with a part of that application and		
21	they believe it isn't accurate.		
22	MEMBER BAILEY: So I'm a citizen's		

1	group. How do I involve myself in this
2	process?
3	MR. McCARTIN: Well, you
4	MEMBER BAILEY: I'm not a lawyer.
5	MR. McCARTIN: Right. You can
б	submit a contention to the hearing and to be
7	a party in the hearing. Now some groups are
8	automatically in. Obviously, the State of
9	Nevada, they're considered a party to the
10	hearing and others. But there are other
11	groups that submit contentions or they can
12	team up with other groups and submit
13	contentions. But you do have to submit a
14	contention if you want to be a party to the
15	hearing.
16	MEMBER BAILEY: Okay. In full
17	disclosure, I'm a former State Commissioner
18	and former FERC Commissioner so I know their
19	process. I'm actually giving you an
20	opportunity just to state for the record.
21	Because this is something that we will be
22	considering as we look at how to make

		Page	69
1	decisions on certain of these questions. So		
2	that's why I'm asking you specifically.		
3	MR. McCARTIN: Sure. And		
4	certainly the NRC has a website for the		
5	Division of High-Level Waste Repository		
6	Safety, which is doing this, that a member of		
7	the public can go on there, see what's being		
8	done, provide comments to the staff. There		
9	are other forums. I was referring more if you		
10	want to be a formal party to the hearing where		
11	you have the ability to call witnesses and		
12	cross-examine witnesses. But it is a fairly		
13	formal adjudicatory hearing.		
14	MEMBER BAILEY: So formal		
15	sometimes can be intimidating, but do you feel		
16	that it is transparent?		
17	MR. McCARTIN: Well, anyone can		
18	attend the hearings and observe. There are		
19	transcripts. They are sometimes simulcast or		
20	put on the web for people to view.		
21	Transparent sometimes depends. I		
22	think some of the contentions are very		

1 technical in nature and require a certain 2 degree of understanding of that issue that 3 depending on one's background may or may not 4 be considered transparent. 5 MEMBER BAILEY: Okay. Thank you, 6 Tim. 7 CHAIR LASH: Allison? 8 MEMBER MacFARLANE: Okay. I will 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.			Page	70
2 degree of understanding of that issue that 3 depending on one's background may or may not 4 be considered transparent. 5 MEMBER BAILEY: Okay. Thank you, 6 Tim. 7 CHAIR LASH: Allison? 8 MEMBER MacFARLANE: Okay. I will 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	1	technical in nature and require a certain		
3 depending on one's background may or may not 4 be considered transparent. 5 MEMBER BAILEY: Okay. Thank you, 6 Tim. 7 CHAIR LASH: Allison? 8 MEMBER MacFARLANE: Okay. I will 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	2	degree of understanding of that issue that		
4 be considered transparent. 5 MEMBER BAILEY: Okay. Thank you, 6 Tim. 7 CHAIR LASH: Allison? 8 MEMBER MacFARLANE: Okay. I will 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	3	depending on one's background may or may not		
5 MEMBER BAILEY: Okay. Thank you, 6 Tim. 7 CHAIR LASH: Allison? 8 MEMBER MacFARLANE: Okay. I will 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	4	be considered transparent.		
 Tim. CHAIR LASH: Allison? MEMBER MacFARLANE: Okay. I will skip my retrievability question and move right on to performance assessment. So, you said that between the late '70s and the '90s there was great advances in performance assessment experience. MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	5	MEMBER BAILEY: Okay. Thank you,		
 CHAIR LASH: Allison? MEMBER MacFARLANE: Okay. I will skip my retrievability question and move right on to performance assessment. So, you said that between the late '70s and the '90s there was great advances in performance assessment experience. MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	6	Tim.		
 MEMBER MacFARLANE: Okay. I will skip my retrievability question and move right on to performance assessment. So, you said that between the late '70s and the '90s there was great advances in performance assessment experience. MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	7	CHAIR LASH: Allison?		
 9 skip my retrievability question and move right 10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh. 	8	MEMBER MacFARLANE: Okay. I will		
10 on to performance assessment. 11 So, you said that between the late 12 '70s and the '90s there was great advances in 13 performance assessment experience. 14 MR. McCARTIN: Yes. 15 MEMBER MacFARLANE: And that's why 16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	9	skip my retrievability question and move right		
11So, you said that between the late12'70s and the '90s there was great advances in13performance assessment experience.14MR. McCARTIN: Yes.15MEMBER MacFARLANE: And that's why16performance assessment was required to17evaluate the repository. This performance18assessment experience, what was it on? Was it19on complex earth systems, which is what you're20evaluating in the repository?21MR. McCARTIN: Yes.22MEMBER MacFARLANE: It was? Oh.	10	on to performance assessment.		
 '70s and the '90s there was great advances in performance assessment experience. MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	11	So, you said that between the late		
 performance assessment experience. MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	12	'70s and the '90s there was great advances in		
 MR. McCARTIN: Yes. MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	13	performance assessment experience.		
 MEMBER MacFARLANE: And that's why performance assessment was required to evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	14	MR. McCARTIN: Yes.		
16 performance assessment was required to 17 evaluate the repository. This performance 18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	15	MEMBER MacFARLANE: And that's why		
 evaluate the repository. This performance assessment experience, what was it on? Was it on complex earth systems, which is what you're evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	16	performance assessment was required to		
18 assessment experience, what was it on? Was it 19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.	17	evaluate the repository. This performance		
<pre>19 on complex earth systems, which is what you're 20 evaluating in the repository? 21 MR. McCARTIN: Yes. 22 MEMBER MacFARLANE: It was? Oh.</pre>	18	assessment experience, what was it on? Was it		
 evaluating in the repository? MR. McCARTIN: Yes. MEMBER MacFARLANE: It was? Oh. 	19	on complex earth systems, which is what you're		
21MR. McCARTIN: Yes.22MEMBER MacFARLANE: It was? Oh.	20	evaluating in the repository?		
22 MEMBER MacFARLANE: It was? Oh.	21	MR. McCARTIN: Yes.		
	22	MEMBER MacFARLANE: It was? Oh.		

		Page
1	MR. McCARTIN: Well, now it	
2	depends on what you mean by complex. Now I	
3	will say I start	
4	MEMBER MacFARLANE: Almost any	
5	earthy system is complex.	
6	MR. McCARTIN: Okay. I joined the	
7	NRC in 1981 to begin part of that process of	
8	developing the first computer codes for the	
9	development. We started with the SWIFT code	
10	that the USGS developed for single-leak	
11	injection. And there were certain flow codes	
12	we've done. There was work at the University	
13	of Arizona in unsaturated and saturated flow.	
14	There was a number of programs that have	
15	developed and we continue to use that	
16	capability in international benchmarking	
17	exercises; INTRAVAL was the last one for	
18	validating transport codes for waste	
19	management applications.	
20	There's been a number of reports	
21	over the last 20 years that	
22	MEMBER MacFARLANE: So you believe	

		Page	72
1	you can validate these assessments?		
2	MR. McCARTIN: The word "validate"		
3	was used, but it's validate for the purpose.		
4	And we are not in the business of saying we		
5	are predicting the future. But we believe we		
6	have		
7	MEMBER MacFARLANE: But that you		
8	are in the business of predicting the future		
9	because you're supposed to be coming up with		
10	a specific number to meet		
11	MR. McCARTIN: We are not		
12	predicting the future. We are judging the		
13	safety of a repository: There is a		
14	difference. And what we're saying is we have		
15	the tools and techniques to evaluate the		
16	processes between waste package lifetime,		
17	degradation of the fuel, solubilities,		
18	transport of the radionuclides to be confident		
19	with reasonable expectation. We will never		
20	have complete assurance, but reasonable		
21	expectation that we believe this system is		
22	safe.		
		Page	73
----	--	------	----
1	Will it act exactly the way that,		
2	say, someone is estimating it? You know, the		
3	odds of that are low. We hope it actually		
4	behaves much better.		
5	CHAIR LASH: Senator?		
6	CHAIR HAGEL: Thank you, Tim.		
7	From your perspective is there		
8	anything that you would add to or particularly		
9	emphasize from Tom's cogent presentation and		
10	chronology this morning?		
11	MR. McCARTIN: I guess in summary,		
12	the only thing at least from my perspective,		
13	is that most of the regulations and standards		
14	are in place. That I look at, you know		
15	certainly from an NRC perspective, the phased		
16	licensing approach, retrievability,		
17	performance confirmation. There's a lot of		
18	things in place.		
19	What the most appropriate		
20	performance measure, which is one part of it		
21	has been the more debatable subject, and		
22	that's the one that I think will be you		

Γ

		Page
1	know, between the performance measure and the	
2	time period, those are the two things that	
3	continue to get, say, debate as compared to	
4	most of the pieces are fairly stable.	
5	CHAIR HAGEL: Thank you.	
6	CHAIR LASH: Thank you very much.	
7	We appreciate it. And appreciate the	
8	comprehensive nature of the presentation.	
9	Our next witness, and the last	
10	witness before the break, is Jonathan Edwards,	
11	the Director of the Radiation Protection	
12	Division at EPA.	
13	I do want to say one thing before	
14	you start. I neglected to mention at the	
15	beginning of our proceedings, this like all of	
16	the meetings of the Committee and the	
17	Subcommittees is being webcast. And also,	
18	members of the public who want to participate	
19	in our public comment session at the end of	
20	the day should sign up.	
21	Tim, where's the sign-up list.	
22	MR. FRAZIER: The sign-up list is	

	Page 7	75
1	right out front. See Nicole out there and you	
2	can sign up.	
3	CHAIR LASH: Thank you.	
4	Mr. Edwards, thank you.	
5	MR. EDWARDS: Good morning,	
6	Chairman and members of the Commission.	
7	My name is Jonathan Edwards. I am	
8	the Director of the Radiation Protection	
9	Division at the Environment Protection Agency.	
10	On behalf of the EPA and	
11	Administrator Lisa Jackson, I would like to	
12	thank the Subcommittee for the opportunity to	
13	provide information on the Agency's program	
14	for establishing radiation protection	
15	standards.	
16	Previous meetings of the	
17	Subcommittee and the full Commission have	
18	demonstrated there is significant interest in	
19	this topic. We hope that our experience will	
20	serve to inform the Commission's	
21	recommendations as they relate to the disposal	
22	of spent nuclear fuel and high level waste.	

Page 76

1	However, as a regulatory agency tasked with
2	specific responsibilities in this area, EPA
3	does not believe that it is appropriate to
4	offer formal recommendations regarding the
5	form and content of future regulatory
6	standards. What I mean by this is that,
7	obviously, EPA as a regulatory agency and
8	values its independence and credibility, looks
9	at our role in this process as a very
10	clinical, detached, professional setting of
11	the standards and evaluation much like a sport
12	referee or umpire would maintain for vested
13	interest in the success or failure of a team
14	or the outcome of a game.
15	So I would like to say is you
16	should not take any statements that I'm making
17	today or that my colleagues make today as
18	advocating for or against Yucca Mountain or
19	any other site.
20	All right. I would like to begin
21	by describing EPA's overall authorities for
22	establishing radiation protection standards.

1	Reorganization Plan No. 3 of 1970	Page	//
2	which created the Environmental Protection		
3	Agency transferred certain functions of the		
4	Atomic Energy Commission under the Atomic		
5	Energy Act, and most notably the function of		
6	establishing generally applicable standards		
7	for protection of the general environment.		
8	That's Section 2(a)(6). It's important to		
9	understand two aspects of this broad		
10	authority.		
11	First, the general environment is		
12	considered to lie "outside the boundaries of		
13	locations under the control of persons		
14	possessing and using radioactive material."		
15	Second, this authority does not		
16	extend to the implementation or enforcement of		
17	the standards which typically falls to the		
18	U.S. Nuclear Regulatory Commission or the		
19	Department of Energy. These agencies are		
20	responsible for licensing or otherwise		
21	approving the use of radioactive material, as		
22	well as for overseeing the operational aspects		

		Ρ
1	of any facility under their respective	
2	jurisdictions.	
3	EPA has issued standards using	
4	this general authority beginning with	
5	standards applicable to the uranium fuel cycle	
6	in 40 CFR Part 190, which was issued in 1977.	
7	40 CFR Part 190 covers activities related to	
8	electrical power generation from the milling	
9	of uranium or through the extended long-term	
10	storage and reprocessing of used fuel. It	
11	does not cover transportation or disposal	
12	activities.	
13	EPA has also issued standards	
14	pursuant to congressional directions such as	
15	those required under the Uranium Mills	
16	Tailings Radiation Control Act, that was 1978,	
17	and we refer to that as UMTRCA, a fun acronym.	
18	It always gets a laugh at briefings with our	
19	senior management.	
20	I would now like to discuss	
21	generally the chronology of EPA standard	
22	setting efforts.	

Page 79 Regarding spent nuclear fuel, the 1 2 Nuclear Waste Policy Act of 1982 directed EPA 3 to "promulgate generally applicable standards" 4 for protection of the general environment from 5 off site releases from radioactive material in 6 repositories." That's Section 121. This 7 particular provision directed EPA to use 8 authority granted under other provisions of 9 the law and did not confer new authority to the Administrator. 10 11 It is also important to understand 12 that under the division of responsibilities laid out under this Act, EPA has no role in 13 14 characterizing or selecting the site, or in 15 approving the facility to operate. 16 EPA issued generally applicable 17 standards for the management and disposal of 18 spent nuclear fuel, high level waste and transuranic radioactive waste in 1985 as 40 19 20 CFR Part 191, as you've heard Tom talk about 21 this morning. These standards were challenged 22 before the Court of Appeals for the First

1	Circuit which remanded portions to EPA for
2	further consideration in 1987. And you'll see
3	what the court's findings were there. I won't
4	go over them in detail since Tom touched upon
5	those already.
б	In 1992 Congress passed two
7	additional statutes that changed our
8	obligations regarding these standards. The
9	WIPP Land Withdrawal Act revised standards to
10	address the portions of 40 CFR 191 that were
11	remanded by the First Circuit and then applied
12	them to the Waste Isolation Pilot Plant. EPA
13	issued revised standards in 1993.
14	The Land Withdrawal Act also
15	designated EPA to implement and enforce these
16	standards for the WIPP, which is unique in
17	giving the Agency responsibilities beyond
18	standard setting. EPA issued certification
19	criteria in 1996 and approved the facility for
20	operation in 1998. WIPP and the Department of
21	Energy was able to begin operation of the
22	facility in 1999. As required by the Land

Page 80

		Page 81
1	Withdrawal Act, the Department of Energy must	
2	apply for recertification every five years.	
3	EPA issued that first recertification decision	
4	in 2006 and is currently reviewing the second	
5	recertification application.	
6	Finally, the Land Withdrawal Act	
7	specifically stated that 40 CFR 191 would not	
8	apply to the proposed repository at Yucca	
9	Mountain.	
10	The Energy Policy Act of 1992	
11	directed EPA to establish public health and	
12	safety standards applicable to the Yucca	
13	Mountain repository. I'd like to point out	
14	the difference in statutory language used in	
15	the Energy Policy Act as compared to the	
16	Nuclear Waste Policy Act.	
17	As you know, the language in the	
18	enabling legislation has a significant	
19	influence on the actions of regulatory	
20	agencies, so it may be useful to see the	
21	differences here as the Commission develops it	
22	recommendations.	

		Pag
1	As noted earlier, the Nuclear	
2	Waste Policy Act directed EPA to establish	
3	standards for protection of the general	
4	environment from off site releases, which	
5	provides fairly broad discretion to the	
6	Agency. By contrast, the Energy Policy Act	
7	specifies that EPA standards for Yucca	
8	Mountain are to be "public health and safety	
9	standards for protection of the public," thus	
10	EPA's standards for Yucca Mountain were	
11	required to specifically protect public health	
12	and safety.	
13	In addition, the Energy Policy Act	
14	specifically requires that EPA standards	
15	prescribe the maximum annually effective dose	
16	equivalent to individual members of the	
17	public. The Energy Policy Act is thus, much	
18	more prescriptive regarding exactly how EPA	
19	standards are to protect public health and	
20	safety.	
21	Equally important, the Energy	
22	Policy Act required EPA to contract with the	

Page 82

		Page	83
1	National Academy of Sciences for a study and		
2	to issue standards that were "based upon and		
3	consistent with the findings and		
4	recommendation of the NAS." I highlight this		
5	provision because raised one of the more		
6	difficult questions facing both regulators and		
7	implementers of geological disposal, which is		
8	the regulatory compliance period.		
9	The Commission heard testimony at		
10	the May meeting regarding the lengthy history		
11	of the NAS in evaluating issues related to		
12	geologic disposal. The National Academy of		
13	Sciences issued its report in 1995, and EPA		
14	followed with proposed standards in 1999. And		
15	then final standards in the year 2001.		
16	EPA standards were challenged on		
17	several counts before the Court of Appeals for		
18	the District of Columbia Court. And in 2004		
19	the Court rules in EPA's favor on all counts		
20	except one. The Court found that the		
21	compliance period established by EPA was not		
22	based upon and consistent with the		

Page 84 of hat a

recommendation of the National Academy of 1 2 Sciences panel. The NAS recommended that a 3 compliance standard applicable to individual 4 dose apply at the time of peak risk; whenever 5 that occurs within the limits imposed by longterm suitability of the geologic environment. 6 7 NAS concluded that the long-term 8 suitability of the Yucca Mountain site would 9 be on the order of one million years and, thus it would be feasible to project future 10 11 exposures for compliance purposes for that period of time. NAS did, however, indicate 12 that EPA may have valid policy reasons for not 13 14 strictly adopting the NAS recommendation. 15 EPA's concerns regarding the 16 increased uncertainty in projecting exposures 17 for periods as long as one million years led 18 it to establish a 10,000 year compliance period, the same as 40 CFR 191. However, EPA 19 20 also required that DOE perform projections to 21 the time of peak dose and place them in the 22 Environmental Impact Statement to ensure that

		Page	85
1	the full record was available to the NRC and		
2	the public. EPA viewed this approach as		
3	consistent with the intent of the NAS		
4	recommendation that long-term projections not		
5	be neglected as well as with its statements on		
б	its policy considerations.		
7	The D.C. Court disagreed with this		
8	and concluded that EPA's approach was not		
9	consistent with the NAS technical		
10	recommendation regardless of its policy		
11	justification. The Court vacated the 10,000		
12	year compliance period and remanded the rule		
13	to EPA for further consideration. EPA		
14	determined that its policy concerns regarding		
15	uncertainty in future projections could be		
16	adequately addressed by retaining the existing		
17	compliance limit for the first 10,000 years		
18	and then applying a different compliance limit		
19	for the period beyond that and up to one		
20	millions years with some additional conforming		
21	changes to accommodate this extended time		
22	period.		

		Page	86
1	EPA proposed such an approach in		
2	2005 and issued its final amended standards in		
3	2008. These standards have been challenged		
4	and the case is currently stayed pending		
5	resolution of DOE's petition to withdraw the		
6	license application now undergoing the NRC		
7	process.		
8	So in conclusion, with the		
9	decision to no longer pursue Yucca Mountain as		
10	the site of the repository, EPA is aware that		
11	legislation will be necessary to adopt a new		
12	course. At present, 40 CFR Part 191 would		
13	apply to any future repository developed under		
14	the general framework of the Nuclear Waste		
15	Policy Act. EPA has no intention of revising		
16	this regulation prior to issuance of		
17	recommendations from the Blue Ribbon		
18	Commission.		
19	This concludes my statement. I'd		
20	be happy to answer any questions that you may		
21	have. Thank you.		
22	CHAIR LASH: Thanks very much.		

		Page	87
1	Vicky, maybe we'll start at this		
2	end this time. No questions? Okay.		
3	Allison? Per?		
4	MEMBER PETERSON: Thank you. This		
5	is very helpful information.		
6	One issue that we face with		
7	geologic disposal of radioactive materials is		
8	the fact that some of these materials may also		
9	have chemically hazardous components		
10	associated with them too. And in the U.S. our		
11	approach to regulating the disposal of		
12	chemically hazardous materials is		
13	substantially different from that for		
14	radioactive materials. And in general, you		
15	can correct me if I'm mischaracterizing		
16	things, but we permit shallow land disposal of		
17	chemically hazardous materials at hazard		
18	levels that if they were radioactive, we would		
19	require them to be replaced into a geologic		
20	disposal. The issue is that therefore, things		
21	that we require around chemically hazardous		
22	materials can complicate significantly		

disposal into a geologic repository, perhaps 1 2 without adding any value because a geologic repository will provide far better isolation 3 than shallow land disposal can. 4 5 And so how do we treat this issue 6 that once you go into geologic disposal, the 7 chemical hazards associated with waste really 8 should be handled in a way that is consistent 9 with the fact you're getting far better longterm isolation because it's going in with the 10 radioactive waste into geologic disposal? 11 How 12 do we rework this? 13 MR. EDWARDS: That's a great 14 question. 15 Obviously, the strict hazardous 16 waste disposal regulatory scheme is covered 17 under the Resource Conservation and Recovery 18 Act, RCRA Act. And the sub-title C part of 19 RCRA deals with the requirements, the designs 20 for these hazardous waste materials for the 21 chemical disposal. 22 And you're right, they're not the

> Neal R. Gross & Co., Inc. 202-234-4433

Page 88

1	deep geological sites that we see examined and
2	looked at for radiological high level waste
3	and spent nuclear fuel. But they do have
4	fairly strict non-migratory requirements
5	around those particular landfills. And
6	modeling that does take them out for several
7	periods, certainly for the first thousand
8	years and out to even 10,000 years. But sort
9	of the reconciliation between the way we deal
10	with risk assessment and risk management and
11	regulation of chemicals and radiological
12	elements is an area that the agency's been
13	interested in for a while. In fact, about ten
14	years ago we contracted a study with the
15	Environmental Law Institute to take a specific
16	look at this. And it was important in the
17	sense of each of the different risk assessors
18	and risk managers understanding better the
19	processes.
20	I can't say that there's an easy
21	answer, though, for the question you've posed.
22	What I'd say is EPA would continue to seek

Page 90

input from scientists, technical experts on 1 2 this particular issue. It certainly would 3 involve environmental groups and the public and whatnot in this kind of debate. But at 4 5 this point there's no easy answer for that 6 particular question. 7 CHAIR LASH: I have two policy 8 level questions for you. It seems highly 9 likely that the Commission's recommendations 10 will require that Congress go back and reopen 11 the Nuclear Waste Policy Act. In light of 12 that, and in light of the 30 years experience 13 that the Agency now has in trying to develop 14 a set of regulations, do you have thoughts 15 about guidance that you would like to have 16 from Congress that would make this process 17 easier? MR. EDWARDS: Well, certainly it's 18 19 obvious with most folks that some difficulties 20 over the last few decades deal with wrestling 21 with this very complex and technical issue, 22 and the need to weigh and balance a lot of

		Page	91
1	different scientific expertise that's offered		
2	and recommendations. And, of course,		
3	accommodate the interests of the public and		
4	environmental groups, state and local		
5	jurisdictions, the tribes and all that. So,		
6	it's obviously a very difficult process to go		
7	through.		
8	I think against drawing back from		
9	Yucca Mountain and speaking generally, success		
10	could be seen in basically four different		
11	approaches, I think.		
12	First, the fact that you would go		
13	into it with existing environmental standards		
14	in place very early up in the process. We do		
15	have the advantage now of looking at 40 CFR		
16	191 as the standing applicable regulation		
17	which has proven to be an effective regulation		
18	since the Waste Isolation Pilot Plant is run		
19	under that, there's a facility at the Nevada		
20	Test Site that is under that regulation. And		
21	so it's proven to be a workable, successful		
22	regulation.		

Page 92 So I think knowing up front what 1 2 the environmental standards are so that the 3 site investigators, the site characterizers, the site selection, the system design all the 4 5 way up and through construction operation, 6 closure and post-closure are informed very 7 early on on what environmental standards 8 they'll be held to and what will be required. 9 The second item I'd say is the 10 importance in the process of a public 11 involvement; the opportunity very, very early on and frequently during the process for state 12 and local jurisdictions, for the effected 13 14 citizens, for national interests to be heard 15 in a public process. 16 Third, ideally it'd be a nice 17 situation to have multiple sites, or several 18 sites that you could look at and go through and do the technical evaluation and look at 19 20 the merits of each particular site, and then 21 the country could make its decisions based on 22 looking at several of those different sites.

		Page	93
1	And then lastly, I would say that		
2	and I know the Commission probably already		
3	appreciates this, but I would highlight that		
4	within the legislative language the more		
5	binding the roles of the different functions		
6	in that language, and there could be		
7	attentions behind that, because it's binding		
8	on the back end or when the Agency or agencies		
9	go out through the Administrative Procedures		
10	Act soliciting comment and input during the		
11	regulations. So people should not interpret		
12	this as showing a lack of appreciate, for		
13	example, for the National Academy of Sciences		
14	or other advisory groups. But just		
15	understanding that the more specific you get		
16	with the rules up front in the legislation		
17	about what has to be complied it when you get		
18	down to the procedures that we go through as		
19	far as public notification, soliciting		
20	comment, weighing and balancing the particular		
21	comments the Agency becomes more restricted in		
22	our ability to respond to those things through		

the Administrative Policy Act. 1 2 So again, this is not to question Congress' intentions when they write those 3 4 particular laws, but I'd like to just 5 highlight that as a particular thing to 6 consider. 7 CHAIR LASH: One other policy 8 question, then. You may not want to get into 9 this. But listening to Tom's presentation 10 about the complexity of the process and to some of Per's and Allison's questions, it 11 12 strikes me that the division of responsibility between EPA and NRC, which is basically at the 13 14 boundary of the site, is unusual. It wouldn't 15 apply in the Clean Air Act. In the Clean Air 16 Act you would promulgate regulations that 17 affected the operation of the facility that 18 created the risk, not just the risk at the 19 boundary. And that creates some of the 20 complexity we've seen. 21 Not speaking for your 22 Administrator, not speaking for the Agency but

		P
1	recognizing we have to think about that and	
2	how to resolve that complexity, do you have	
3	any guidelines for us as we approach those	
4	issues?	
5	MR. EDWARDS: Well, as you know	
6	the long which set up the Waste Isolation	
7	Pilot Plant designated to EPA the authority to	
8	determine the compliance criteria and go	
9	through the certification process and	
10	recertification process. It was not easy, but	
11	EPA was able to work closely with DOE and	
12	resolve items as we go along, as well as	
13	collecting public input and scientific input,	
14	and travel input along the way. So that's	
15	gone well.	
16	And you look at the timing in the	
17	'90s, too. We were able to move fairly	
18	efficiently into the final resolution of 191	
19	into the 194 role, which is the compliance	
20	criteria and then into approval from just the	
21	Land Withdrawal Act and Energy Policy Act of	
22	'92 into approval of DOE's site in 1998 and	

Page 95

		Page
1	then operation in 1999. So we've learned a	
2	lot from that, and it went well. But that's	
3	not to say that we don't have a lot of respect	
4	for our NRC colleagues, and they have a large	
5	staff that has a lot of experience and	
6	expertise in this area. And we've worked well	
7	with them over the years and with the Yucca	
8	Mountain rule, too.	
9	So, we would follow, obviously,	
10	whatever the enabling legislation is in this	
11	area. So you've got sort of two examples you	
12	can look at: The WIPP, Waste Isolation Pilot	
13	Plant and the roles that were there and the	
14	Yucca Mountain scheme.	
15	But again, one last point I would	
16	say is that in being the regulator in the	
17	sense of compliance criteria, development and	
18	certification and recertification that also	
19	has given us insight and informed us in our	
20	abilities to write regulations, too. So that	
21	has been sort of a positive feedback loop.	
22	But, again, we would follow the	

		Page
1	intent of Congress and the legislation.	
2	CHAIR LASH: Per, do you want to	
3	follow-up?	
4	MEMBER PETERSON: A quick follow	
5	on. Could you characterize I mean, you	
б	actually mentioned this. But there's now been	
7	experience from the licensing, construction,	
8	operation of WIPP. How valuable is that? And	
9	then there's also conjecture sometimes about	
10	changing the mission for WIPP and such. But	
11	it seems to me that it provides also	
12	opportunity to gain experience with closing a	
13	repository, which is also a technically	
14	complex thing to do.	
15	So maybe to describe a little bit	
16	what have we learned from WIPP and does that	
17	put us in a better place to develop standards	
18	and to move forward with developing new	
19	disposal facilities?	
20	MR. EDWARDS: Yes, I think the	
21	WIPP would be a very good case study for folks	
22	to consider and look at. Obviously, it's been	

operating now for 11 years. After going 1 2 through the very difficult site selection and characterization process, and the site design 3 4 and development, and then moving into 5 construction and operation it's been operating 6 for 11 years. And it's operating with a 7 fairly safe track record. That's not to say 8 that EPA is here advocating for the WIPP, but certainly the process has gone well. 9 I would say that some of the 10 11 advantages that WIPP process had for EPA is 12 that, again, since 191 was out there and we 13 were going through the updated remanded 14 portions, fairly early on the WIPP was able to understand what kind of environmental 15 standards it would have to meet. And then 16 17 also learned the criticality of getting in 18 very early and talking with the local groups and, obviously, the state government and 19 20 affected tribes. 21 One of the advantages I think the 22 WIPP site had is generally they had local

Page 99 support for the facility. And that the state 1 2 government was not necessarily advocating for 3 it, but was somewhat neutral in the process. So that was an additional factor in our 4 5 experiences at the WIPP. 6 But I think I'd wrap up by saying 7 that it's taught us the absolute necessity of 8 being very, very close in and talking to the 9 regulated party, DOE, very frequently to understand every step along the way. 10 You 11 know, the parameters they're looking when they 12 add, and the different approaches they use in 13 their performance assessments; all the 14 different factors they submitted in their certification and recertification package. 15 16 And that's not to say that we, as the 17 expression is, go tribal with them. But we 18 have a lot of very, very productive conversations very frequently. 19 20 In fact, just off the top of my 21 head, we meet with the DOE management, senior 22 level management around the WIPP at least

Page 100 three to four times a year, sometimes even 1 2 more frequently, to talk through these issues. These are the activities that EPA does around 3 4 the WIPP, are posted on the web, there's 5 opportunities to meet with us when we go out 6 to Nevada, we set up stakeholder meetings most 7 of the trips that we go out there. So, again, 8 there's these practices that contribute to the 9 success of what we're doing. 10 CHAIR LASH: Thank you very much. 11 We appreciate your joining us here this 12 morning. 13 We are going to take a coffee 14 break. It's scheduled to end at 10:15. We're 15 running a little behind, but let's start again 16 at 10:20. 17 (Whereupon, at 10:07 a.m. the 18 above-entitled matter went off the record and 19 resumed at 10:22 a.m.) 20 MR. FRAZIER: All right. We 21 should go ahead and get started. 22 CHAIR HAGEL: Thank you.

Page 101 Welcome to our panelists this 1 2 morning. This panel that I will introduce 3 4 will provide a range of perspectives regarding 5 the regulations for deep geological 6 repositories. 7 With us we have Dr. Mark Peters. 8 Dr. Peters, thank you. Who is Deputy Director 9 for Programs at the Argonne National 10 Laboratory. Dr. Robert Budnitz, Staff 11 12 Scientist at the Lawrence Berkeley National 13 Laboratory. Doctor, thank you. 14 Dr. Warner North, President and 15 Principal, NorthWorks, Inc; Consulting Professor, Stanford University. 16 17 Dr. William Murphy, Professor at 18 the Department of Geological and Environmental 19 Sciences at the California State University. 20 Thank you. 21 Daniel Schultheisz of the Office 22 of Radiation and Indoor Air, Radiation

Page 102

Protection Division at the EPA. 1 2 And our last panelist who is our 3 old friend and familiar as of an hour ago to this room, Tim McCartin from the NRC who will 4 5 participate in the discussion after each of 6 you have an opportunity to make presentations. 7 Thank you again, each of you. 8 Dr. Peters, I'll ask you to begin. 9 DR. PETERS: Thank you, Senator. 10 It's a pleasure to be here. 11 So, I've put together some slides. 12 I guess the luxury of being first, probably 13 good and bad both. I'm going to actually go 14 through each question and just provide a quick 15 perspective on each one. Like you say, 16 hopefully it'll -- some of it's going to be a 17 little bit repetitive because what I heard 18 this morning, I actually agree with some of 19 what I heard this morning. 20 So, first of all, let's start with 21 sort of an introduction. And this follows on 22 the discussion you started having with Tom

Page 103

1 during his presentation.

2	There's the existing generic set,
3	the 10 CFR 60 and 191 regs that are general or
4	generic. And then you also have the site-
5	specific effort. I do totally agree with
6	Tom. There is things in the site-specific
7	regulations that are of broader applicability
8	that can be brought into the general set when
9	we go forward and update the regs. I'm of the
10	opinion you've absolutely got to go update the
11	regulatory basis to allow us to move forward
12	in whatever direction we go.
13	I'd also say, recognizing this is
14	a Disposal Subcommittee and I know you have a
15	much broader charter, the disposal piece is a
16	very important part of the fuel cycle, but
17	there's a lot of other parts of the fuel
18	cycle. And I know you're talking about the
19	regulatory basis for all pieces. I could
20	imagine, actually, an integrated regulatory
21	basis. That may be a very difficult thing to
22	do in policy space, but technically I think it

		Page
1	would allow us to have much more flexibility	
2	to make decisions going down to the road.	
3	To the specific questions, first	
4	on time frame. Again, we heard this a bit	
5	from the speakers this mornings.	
6	There's evaluating behavior of	
7	future humans on the time scale of one million	
8	years. To me, it's just not possible.	
9	I also don't think when you get	
10	out to a million year time frames to have	
11	quantitative demonstrations of compliance are	
12	also not defensible, in my view, technically.	
13	All the uncertainties, among other things, the	
14	uncertainties become so large it's very	
15	difficult to support a rational decision	
16	making process.	
17	I do think quantitative	
18	demonstration of compliance is important. I	
19	think few to several thousands of years	
20	notice I say few to several thousands. You	
21	can argue is it a thousand, is 5,000 is it	
22	10,000. We heard this morning about why	

Page 105 10,000 made sense in terms of discriminating 1 2 between sites, et cetera, et cetera. I'11 also remind you that internationally there's 3 4 strong precedent for that 10,000 year limit, 5 not only in the U.S. basis but also in other 6 countries' regulatory basis, and also in what 7 the IAEA and the NEA do. So, there is a sound 8 basis out there for that number. I think we 9 can debate about whether it would be a little shorter. But in terms of going out to a 10 11 million years, I'm trained as an earth 12 scientist and so we're not about predicting 13 the future, we're about understanding the 14 past. But I do think that you can think about in a qualitative -- I'll call it a qualitative 15 16 sense about the stability of a site, what the 17 evidence from the site tells you about how it 18 might perform over time; how it's performed in 19 the past and how it might perform forward in 20 a qualitative matter. So as opposed to having 21 a quantitative dose standard out to a million 22 years, I would go for much more of an argument

	Page 106
1	that the regulatory requires the license to go
2	through a qualitative demonstration of why the
3	site still makes sense.
4	That could be somewhat subjective,
5	and so the regulations will have to be
6	carefully worded. But I do think that that is
7	incumbent upon the licensee to do that.
8	That, to me, isn't as strong in
9	the current regulatory basis as it needs to
10	be.
11	In terms of how you demonstrate
12	compliance, I'm not an expert in performance
13	assessment. I'm actually an experimentalist.
14	I did field testing and lab testing, but I've
15	spent a lot of time thinking about the science
16	of performance assessment. And do find the
17	approach that's taken with features, events
18	and processes it's a sound process. And I
19	think it's an important part of what we need
20	to do to demonstrate compliance. It needs to
21	be underpinned by experiments and process
22	models. But I would also, and the second

Page 107 bullet sort of gets to what I was alluding to 1 2 previously, there's other way of supporting 3 the safety case that aren't just a 4 quantitative performance assessment. So we 5 need to bring those other multiple lines of 6 evidence in, much more into the regulatory 7 framework than we do today. 8 Like we already talked about, as 9 we evolved from the generic set to the sitespecific set, that's where we limit it to a 10 more risk-informed performance-based 11 approached. And I think that's sound. 12 13 Without subsystem performance 14 criteria, Tim talked about that, I think that's something that needs to be brought into 15 16 the general set going forward. And finally, continuing to 17 18 describe both the multi-barrier concept, 19 defense-in-depth concept needs to absolutely 20 to be preserved. We don't want to get into 21 the situation where we're licensing 22 engineering around a bad site, that's for sure

Page 108

going forward.

1

2	What about retrievability? We		
3	already heard that it encompasses safety,		
4	particularly from the regulator's perspective		
5	and also resource recovery. I don't see		
6	retrievability just going way. I don't see us		
7	just throwing it away. I think Per actually		
8	was headed in the right direction. I think it		
9	needs to be a flexibility framework. We can't		
10	be in a situation where we're actually picking		
11	a site because it's retrievable but it doesn't		
12	maintain long-term waste isolation like we		
13	need. And this is, I think as Tim said, the		
14	requirements right now are fairly general. In		
15	order to get a flexible approach to		
16	retrievability it will require more detailed		
17	thought and the regulations have to be very		
18	carefully thought through. But I think it		
19	could be fit into staging also as you go		
20	forward.		
21	What about international		
22	experience? I've already alluded to this.		
		Page	109
----	--	------	-----
1	There's extensive experience. You've got the		
2	IAEA, the NEA and then you've got county-		
3	specific efforts. You've probably seen		
4	tabulations of all that's gone on in		
5	regulatory in terms of establishing regulatory		
6	frameworks for high level waste disposal and		
7	spent fuel disposal. So I think we should		
8	rely on that going forward. I think we have,		
9	but I think we can even rely on it more, and		
10	that's in many areas of staging, or adaptive		
11	management, demonstration of compliance. PA		
12	is an accepted approach to part of the way we		
13	demonstrate compliance international. Level		
14	of protection, which I'm not going to talk too		
15	much right now anyway. And then also time		
16	frames.		
17	What about staging? So the		
18	statutory structure of the NWPA framework as		
19	well as the regulations have some forms of		
20	staging in it visvis two-stage licensing.		
21	Just for example, at Yucca Mountain		
22	construction authorization followed by license		

		Page	110
1	to receive and possess, ultimately followed by		
2	a license to close. So there's pieces there,		
3	although I would argue that that's not really		
4	embracing adaptive management in the way you		
5	hear people like Tom Isaacs talk about, or the		
б	Academy talk about it in 2003. So I think		
7	it's important as we go back to these generic		
8	regulations to ensure that we actually		
9	absolutely incorporate learn-as-you-go and		
10	staging adaptive management in the way that		
11	it's really meant. And that would include how		
12	you interact with the regulator through that		
13	process. Not the public, of course, but also		
14	the regulator.		
15	What about other geologic		
16	repositories, other concepts, and how do you		
17	do it? Do you need, I'll call it, concept-		
18	specific regulations as opposed to site-		
19	specific regulations?		
20	An example that was given was bore		
21	holes, and that's probably a good one. That's		
22	kind of a good one to talk through. I would		

Page 111 argue, and it's not so different than the 1 2 site-specific argument. I would much rather see us try to 3 4 develop a flexible set of regulations that 5 would allow us to think about a range of media 6 and concepts. That allows us to compare 7 between alternatives. Also keep that public 8 confidence. I think if you go down starting 9 setting concept-specific regulations like you did with site-specific, I think you start to 10 perhaps lose that public confidence that we 11 12 really need going forward in kind of a staging approach. And then it also optimizes, I 13 14 think, the way you go about screening, selecting and ultimately licensing a site. 15 We heard this, I think, a bit in 16 17 the Q&As this morning. We really need to 18 setup this framework before we embark on the 19 program. You don't want to get into a 20 situation like we already went through where 21 you're back -- it's all my words -- we're back 22 fitting regulations as the process plays out.

		Data	110
1	So you'd like as much as you could to have	Page	112
2	that up-front.		
3	What about other regulatory		
4	issues? I'm not going to touch the dual reg		
5	with RCRA, at least in my comments. We can		
6	talk about that during the Q&As.		
7	I did want to plant the seed about		
8	waste classification. And this is, actually,		
9	important fuel cycle more broadly. The		
10	current waste classification system as its		
11	articulated in the regs and the statutory		
12	framework is source-based rather than risk-		
13	based. And there's a lot of activity going on		
14	right now at the NRC, both in the high level		
15	waste space, low level waste space. DOE's		
16	looking at their own regulations. The IAEA		
17	has a very nice safety guide out there that		
18	articulates the need for a risk-based approach		
19	to waste classification. So I would actually		
20	argue that that should be on the table as part		
21	of this. And I'm a strong advocate for a		
22	risk-based approach to classification because		

		Page	113
1	I think once we go down the path of down		
2	selecting to a fuel cycle, this will really		
3	allow us to develop an optimized system for		
4	how we actually dispose of the waste streams		
5	that come out of whatever fuel cycle we embark		
6	on.		
7	I believe that's it for me.		
8	CHAIR HAGEL: Dr. Peters, thank		
9	you.		
10	Dr. Budnitz?		
11	DR. BUDNITZ: Why do you run?		
12	Because I only have ten minutes.		
13	My name is Bob Budnitz. I'm an		
14	employee of the University of California's		
15	Lawrence Berkeley National Laboratory. It's a		
16	DOE lab, and hence I work for DOE, except I		
17	don't. I'm here on my own time. DOE isn't		
18	paying me today. University of California		
19	isn't paying me today. So what I'm about to		
20	say doesn't represent at all, necessarily, any		
21	position except Bob Budnitz's.		
22	Secondly, you should know that		

	Page 114
1	what I basically do for a living is reactor
2	stuff. I've been in the waste business for 30
3	years, but it's a small fraction. I'm a
4	reactor guy. Almost all the research I'm
5	doing at the Lawrence Berkeley Laboratory
6	today is funded through DOE, but by NRC. I
7	need to tell you that because when I say
8	something nice about NRC, you have to know
9	they're my sponsor. I'm unabashed, but I need
10	to tell you that.
11	Now in ten minutes I can only say
12	Mark did great; he said 13 things. I'm only
13	going to say three things, maybe two.
14	The first has to do with
15	analyzability. I am firmly convinced today
16	that for the purposes of demonstrating
17	compliance with a sensible regulation that
18	deep repositories of the kind that are
19	discussed all around the world can be analyzed
20	for those purposes. And I know that Allison
21	MacFarlane and I disagree about that. I want
22	to tell you Bob Budnitz's opinion that Allison

Deere	110	-
Page	113)

is in a minority in that view. I'm saying
 that straight to her, and I told her in the
 break I would.

4 The vast majority of people who 5 have worked in this business for a long time 6 believe that we can predict the future. Heck, 7 I can't predict day after tomorrow, but we have certain scientific methods. It is the 8 9 opinion of the vast majority, which I share, 10 for the purpose of demonstrating compliance with a sensible standard, and no standard for 11 a period time I'm going to talk about in a 12 13 minute, that analyzability is here. We can do 14 it. We do it. This is internationally 15 understood. Overseas people are doing it. 16 And that is, in fact, my view and I know 17 Allison disagrees. And I'm telling you what 18 I think the community thinks about that, and 19 there are other members of the community can 20 talk about what they think. 21 Now, the problem is how far in the 22 future. I am firmly convinced that it is easy

		Ρ
1	to do a 1,000 years. Heck, anybody that	
2	doesn't have a canister that lasted a 1,000	
3	years shouldn't be allowed. By the way, that	
4	would allow you to put it under Central Park	
5	or under Golden Gate Park, which we don't	
6	want. But in fact, a 1,000 years is easy. Do	
7	it with a canister.	
8	Ten thousand years using the	
9	interaction between the engineered system and	
10	the, of course, the environmental conditions.	
11	I believe that eminently doable against a	
12	sensible regulation. And if you ask me what	
13	I think about the period of performance, I	
14	think and have thought for 30 years since the	
15	Science Advisory Board of EPA that I was on	
16	recommended this, that a 1,000 years is fine	
17	in terms of how long we need to protect our	
18	progeny against this stuff considering that	
19	we're putting stuff in San Francisco Bay now	
20	that's going to get out in a 100 years, or	
21	500. But I understand 10,000, I'm not going	
22	to argue with that because, in fact: 10,000	

Neal R. Gross & Co., Inc. 202-234-4433

Page 116

	Page 117
1	enables you to discriminate a good from a bad
2	site; 10,000 isn't hard to do; 10,000 isn't
3	expensive to do, we can do that analysis.
4	However, a million years? Ridiculous.
5	Preposterous. Let me describe.
6	In way less than a million years,
7	if the past is a predicate for the future, the
8	whole northern U.S. is going to be under
9	hundreds of feet of ice. There will be no New
10	England where I was raised. There's no
11	Chicago. And this regulation would say you
12	can't put something someplace because it's a
13	few millirem above some standard half a
14	million years from now and you have to invest
15	extra money to make that true. Crazy. That's
16	crazy as a matter of public policy to me.
17	And we're not spending even \$10,
18	never minding enough, to plan for that. And
19	as Allison said to me in the break, how about
20	Florida being under water in 200 years? Who
21	is planning for that? And yet this regulation
22	we have now you can finish that sentence.

1I just think it's preposterous.2The analyses is doable with3conditions. I mean, uncertainties get big.4There's a whole lot. But it just doesn't make5any sense as a public policy.6Next point and I just think7that's way beyond.8Next point, and I don't have a lot9of time here so I'm cut and go straight to the10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the			Page	118
2The analyses is doable with3conditions. I mean, uncertainties get big.4There's a whole lot. But it just doesn't make5any sense as a public policy.6Next point and I just think7that's way beyond.8Next point, and I don't have a lot9of time here so I'm cut and go straight to the10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	1	I just think it's preposterous.		
 conditions. I mean, uncertainties get big. There's a whole lot. But it just doesn't make any sense as a public policy. Next point and I just think that's way beyond. Next point, and I don't have a lot of time here so I'm cut and go straight to the point. In my view, the idea that we have three agencies, federal agencies, setting the regulatory scheme for this is nuts: EPA, generally applicable standards; NRC to write the regulations against which a repository has to meet; DOE setting the site standards, Part 960 or 963, whatever. I don't understand where it came from. I lived it, but I don't understand the public policy purpose for having three agencies. It doesn't make any public policy sense. One agency should be charged with setting the regulations and with enforcing the 	2	The analyses is doable with		
 There's a whole lot. But it just doesn't make any sense as a public policy. Next point and I just think that's way beyond. Next point, and I don't have a lot of time here so I'm cut and go straight to the point. In my view, the idea that we have three agencies, federal agencies, setting the regulatory scheme for this is nuts: EPA, generally applicable standards; NRC to write the regulations against which a repository has to meet; DOE setting the site standards, Part 960 or 963, whatever. I don't understand where it came from. I lived it, but I don't understand the public policy purpose for having three agencies. It doesn't make any public policy sense. One agency should be charged with setting the regulations and with enforcing the 	3	conditions. I mean, uncertainties get big.		
5any sense as a public policy.6Next point and I just think7that's way beyond.8Next point, and I don't have a lot9of time here so I'm cut and go straight to the10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	4	There's a whole lot. But it just doesn't make		
 Next point and I just think that's way beyond. Next point, and I don't have a lot of time here so I'm cut and go straight to the point. In my view, the idea that we have three agencies, federal agencies, setting the regulatory scheme for this is nuts: EPA, generally applicable standards; NRC to write the regulations against which a repository has to meet; DOE setting the site standards, Part 960 or 963, whatever. I don't understand where it came from. I lived it, but I don't understand the public policy purpose for having three agencies. It doesn't make any public policy sense. One agency should be charged with setting the regulations and with enforcing the 	5	any sense as a public policy.		
7 that's way beyond. 8 Next point, and I don't have a lot 9 of time here so I'm cut and go straight to the 10 point. In my view, the idea that we have 11 three agencies, federal agencies, setting the 12 regulatory scheme for this is nuts: EPA, 13 generally applicable standards; NRC to write 14 the regulations against which a repository has 15 to meet; DOE setting the site standards, Part 16 960 or 963, whatever. I don't understand 17 where it came from. I lived it, but I don't 18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	6	Next point and I just think		
8Next point, and I don't have a lot9of time here so I'm cut and go straight to the10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	7	that's way beyond.		
9of time here so I'm cut and go straight to the10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	8	Next point, and I don't have a lot		
10point. In my view, the idea that we have11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	9	of time here so I'm cut and go straight to the		
11three agencies, federal agencies, setting the12regulatory scheme for this is nuts: EPA,13generally applicable standards; NRC to write14the regulations against which a repository has15to meet; DOE setting the site standards, Part16960 or 963, whatever. I don't understand17where it came from. I lived it, but I don't18understand the public policy purpose for19having three agencies. It doesn't make any20public policy sense.21One agency should be charged with22setting the regulations and with enforcing the	10	point. In my view, the idea that we have		
12 regulatory scheme for this is nuts: EPA, 13 generally applicable standards; NRC to write 14 the regulations against which a repository has 15 to meet; DOE setting the site standards, Part 16 960 or 963, whatever. I don't understand 17 where it came from. I lived it, but I don't 18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	11	three agencies, federal agencies, setting the		
13 generally applicable standards; NRC to write 14 the regulations against which a repository has 15 to meet; DOE setting the site standards, Part 16 960 or 963, whatever. I don't understand 17 where it came from. I lived it, but I don't 18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	12	regulatory scheme for this is nuts: EPA,		
 the regulations against which a repository has to meet; DOE setting the site standards, Part 960 or 963, whatever. I don't understand where it came from. I lived it, but I don't understand the public policy purpose for having three agencies. It doesn't make any public policy sense. One agency should be charged with setting the regulations and with enforcing the 	13	generally applicable standards; NRC to write		
15 to meet; DOE setting the site standards, Part 960 or 963, whatever. I don't understand where it came from. I lived it, but I don't understand the public policy purpose for having three agencies. It doesn't make any public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	14	the regulations against which a repository has		
16 960 or 963, whatever. I don't understand 17 where it came from. I lived it, but I don't 18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	15	to meet; DOE setting the site standards, Part		
17 where it came from. I lived it, but I don't 18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	16	960 or 963, whatever. I don't understand		
18 understand the public policy purpose for 19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	17	where it came from. I lived it, but I don't		
19 having three agencies. It doesn't make any 20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	18	understand the public policy purpose for		
20 public policy sense. 21 One agency should be charged with 22 setting the regulations and with enforcing the	19	having three agencies. It doesn't make any		
21One agency should be charged with22setting the regulations and with enforcing the	20	public policy sense.		
22 setting the regulations and with enforcing the	21	One agency should be charged with		
	22	setting the regulations and with enforcing the		

		Page	119
1	way we do with most everything else.		
2	By the way, in some schemes we		
3	have states, but I don't think the states		
4	should play in regulation here. We have		
5	federal preemption for a reason.		
6	It ought to be one agency. And I		
7	don't mind telling you that my favorite is the		
8	NRC. First, the NRC with its Commission		
9	system has an independence from the political		
10	process that is not true at EPA where the		
11	Administrator reports to the White House. It's		
12	not true of DOE where the Secretary is a		
13	Cabinet member, they come and go without		
14	terms.		
15	The EPA and the NRC have technical		
16	competence, as does DOE. After all, everybody		
17	working there are feds. They're presumably on		
18	her majesty's service, and I trust their		
19	capability and their motivation, and their		
20	good intentions but in fact, having three		
21	agencies is crazy.		
22	Now let me tell you something		

Page 120 about the NRC. Not just in the waste area, 1 2 but all the way through. For decades they have demonstrated a technical competence and 3 4 an independence, and a non-politicized 5 approach which is very precious. And if you 6 want to try to -- you recommend, or the 7 Congress decides to put that someplace, the 8 country would be fortunate if wherever it's 9 put could establish that combination over the 10 years. We've already got it. Have a new 11 agency or a new place? It would be really 12 hard to establish the independence and the technical competence, and the follow-through 13 14 and all the things the NRC has demonstrated 15 over the years. 16 By the way, some people don't like 17 them because they make decisions they don't 18 like. People that hope no reactors should 19 ever run don't like them because they get up 20 and put their clothes on and they run. But 21 their reputation is stellar, in my view. Of 22 course, I've told you they're supporting me so

	Page 121
1	I don't mind saying that. But I think that if
2	you think hard about what the public policy
3	purposes of having any other agency monkeying
4	around in this business, you'll recommend that
5	that be eliminated.
6	One last point, because I only
7	have another minute.
8	Way back, I was the Director of
9	the NRC's Office of Research at a time when we
10	had \$200 million, which today would be \$500.
11	Of course, the budget is now 20 percent of
12	that because of things that have happened.
13	That was in 1980. And I've been involved with
14	them ever since, off and on, and they support
15	some of my research. And it is my belief that
16	the technical competence of the NRC's Office
17	of Research supplemented by the technical
18	competence in the regulatory offices like NMSS
19	that Tim is in and the reactor people, is such
20	a strong resource that the tragedy is they
21	haven't been supported as well by the Congress
22	as they should be. And part of that is

	Page
1	because, if you don't mind my saying, because
2	they're rate recovery business put the NRC's
3	budget in a rate base and the reactor people
4	went and said "Lower their research budget,"
5	which was half of the budget, "so our fees
6	would go down." You don't mind me saying,
7	it's candid, it's what happened.
8	So the NRC's Office of Research
9	went down from here, to here, to here, to
10	here, to here. And if you look at the
11	research that Brian Sheron, who was here
12	yesterday, I suppose, can support, the amount
13	of research just counting noses and with
14	inflation, is less than 20 percent of the
15	amount I could support 30 years ago when I was
16	its Director. The other 80 percent is gone.
17	What a loss.
18	It's not very much money, a couple
19	hundred million. It's a huge increase in the
20	confidence of the Government, and therefore
21	our society, to understand these issues.
22	Okay? I say that with all due respect. I

Page 123

1 told you they support me.

2	Now, a couple of other things I
3	want to say. I've been involved from the
4	beginning. When I was the Director of
5	Research and the Deputy before that when Part
6	60 was under consideration in 1979 and '80, I
7	was the Director of Research at the top of the
8	Agency; there are only three statutory
9	offices, I had one of them, when we were
10	debating what Part 60 should have in it. And
11	a couple of years later when EPA came out with
12	a draft 191, there was a Science Advisory
13	Board Subcommittee that I was on which advised
14	the Administrator of EPA about that. They
15	didn't follow our recommendations. I was on
16	that Academy Committee. I was on a review
17	committee for a decade with Tom Cotton and Tom
18	Pigford and others looking at WIPP. I've been
19	involved in this thing off and on for, I don't
20	know, 30 years with all sorts I've advised
21	EPA about their 197 standard. Even though I'm
22	a reactor guy, I've been involved for a long,

	Page
1	long time. And I want to tell you, good hard
2	working people working very, very diligently
3	with the best interests of the public in mind
4	have in many instances been stifled by the
5	clumsiness of this cockeyed scheme that
6	Congress put in place. Okay?
7	By the way, it was historical. In
8	the EPA enabling legislation they inherited
9	the old FRC, Federal Radiation Council
10	guidelines about generally applicable. So they
11	got it. Meanwhile, it had been in the AEC,
12	but they took it to them. And then when it
13	came to AEC splitting, they never got it back
14	to NRC. It's nuts. It's history.
15	DOE's siting thing, Part 63 later
16	changed. Came from the time when there were
17	going to be nine sites and they had to compare
18	them. But, you know, that should have been
19	all the way a regulatory, not the developer's
20	scheme. It just doesn't make any sense. And
21	yet we wrestled with it. And most of the
22	clumsy intellectual work that came out was a

Page 125 direct result of the fact that politics and 1 2 industry, and the like -- can't go against 3 that, but I'm just telling you. Have lead to 4 this stifling of what good hard working people have been trying to do to come up with 5 6 sensible regulations. 7 Okay. I'm done. 8 CHAIR HAGEL: Dr. Budnitz, thank 9 you for your mushy commentary. We appreciate 10 your --11 DR. BUDNITZ: We're even. 12 CHAIR HAGEL: I know that Allison 13 will probably have something to say later on. 14 DR. BUDNITZ: She and I have known each other for a long while. 15 16 CHAIR HAGEL: You have fulfilled 17 every expectation we had already about our 18 panel. So, thank you. 19 DR. BUDNITZ: Am I done? 20 CHAIR HAGEL: Well, I don't think 21 You're probably not. But right now so. 22 you're done.

Page 126 DR. BUDNITZ: I'm fine. Thanks. 1 2 CHAIR HAGEL: But we'll get back 3 to you. Yes. Yes. Thank you. Thank you. 4 Dr. North, you may assume the 5 podium, or sit there, or dance, or whatever 6 you'd like. Welcome. 7 DR. NORTH: I think I will sit 8 here and I will not dance, and I will not 9 sing. I thank the Commission for 10 11 inviting me to appear here. I appear here as 12 an individual. And what I will say, I say on 13 behalf of myself rather than any organization 14 with which I am now or in the past have been associated. 15 16 I have put up the six questions 17 that were posed. I'm going to speak generally 18 about these, especially the first two in ten 19 minutes. Given the complexity of the 20 regulatory situation and its history that you 21 have heard, I cannot possibly go into detail. 22 But I would like to make some points about

Page 127 major themes, and I will do that within my ten 1 2 minutes. I had the honor in 1999 with an 3 international conference leading to the 2001 4 5 National Academy report "Disposition of High 6 Level Waste and Spent Nuclear Fuel." We 7 started with an international conference 8 involving about 200 people, I think a dozen of 9 which are participating in this meeting today. We had 17 countries represented. And then a 10 11 group of us chartered by the Academy, 12 representing seven countries, put together 12 13 this report. 14 I'd like us to reflect what does 15 the cover picture represent? I suspect maybe 16 one of you on the Commission might have a good 17 quess. It's a picture to illustrate geology 18 and a major point in the geology. 19 In the front piece of the report 20 there is a quote that goes with the cover art, 21 and as Chairman one of the few things that a 22 chair can do unilaterally within the National

Page 128 Academy system is choose the cover art and 1 2 explain what it represents. So, the movie the "Gladiator" had 3 4 just been playing and I looked up some history 5 of Marcus Aurelius, and here is the quote. "Time is a sort of river of passing events, as 6 7 strong as its current." 8 Well, does modern science and our 9 understanding of geology endure much of what we understand has been developed in the last 10 11 50 to 100 years, or does it get swept away? Now this was said 2000 years ago. 12 When we look at this landscape 13 14 created by glaciers, the last of which was 15 about 11,000 years ago, I think it gives us a 16 sense of geological time versus human time. 17 At our 1999 workshop I thought one "What can you trust: 18 of the best lines was: 19 rocks or people?" In geology we've learned to 20 understand what happens with rocks and water 21 moving through them as events occur over time 22 scales of the order of a million years.

Page 129

Predicting how people will behave, even on a time scale of a year or a decade, certainly for a century or a millennium, is extremely hard and we have very little basis on which to make such predictions.
Now let me turn to performance

7 assessment, which is the area of my expertise. 8 I'm trained in risk and decision analysis. 9 In this report there is very extension discussion of what is performance 10 assessment and how does it relate, not just to 11 12 the situation in the United States, but all 13 the various countries that are trying to 14 develop repositories as a long-term solution 15 for high level waste. The report concluded 16 that geological disposal is the only long-term 17 solution and we very carefully used the term 18 "disposition" to mean active management before a repository was sealed. 19 20 Now there are many themes in

21 modeling and performance assessment, and this
22 will get into the Budnitz/Commission

	Page
1	MacFarlane debate, et cetera. In my limited
2	time I will give you one quote written in the
3	first report of the Nuclear Waste Technical
4	Review Board when I was an initial member of
5	this organization, and we wrote our first
6	report to the Secretary of Energy and the
7	Congress on performance assessment.
8	I will note a few themes which
9	I've highlighted here. First of all, you
10	can't just do it by data collection. It
11	involves models and expert judgment. It is an
12	extremely process to try to make an assessment
13	of what I will call the safety case for a
14	repository.
15	We criticized the Department of
16	Energy in this statement because we didn't see
17	enough about peer review. Our organization
18	was, I believe, set up at the instigation of
19	your fellow Commissioner Phil Sharp when he
20	was serving in Congress. And I feel
21	reflecting on my own experience with it for
22	several years and its history ever since,

	Page 131
1	which my colleague can discuss next, that this
2	institution was a very valuable addition to
3	the overall process.
4	So, we need peer review. And we
5	need to be able to deal with the
6	controversies, how the public sees the
7	acceptability of a nuclear waste repository or
8	a storage site.
9	There is a great deal that has
10	been written on social trust and credibility.
11	You will hear some of this in the second panel
12	today. I've listed a few things which I think
13	would be extremely useful background for you
14	if you haven't read them, including Chapter 5
15	of this report.
16	I will now go to the six
17	questions. In my judgment, with respect to
18	Yucca Mountain in particular and to a much
19	lesser extent on other sites, I believe the
20	present regulations are adequate and is a
21	decision criterion for the application for a
22	construction license. I believe that the

		Page	132
1	Nuclear Regulatory Commission is extremely		
2	sophisticated. And I think you've heard from		
3	my colleague, Dr. Budnitz, on that. I support		
4	that. The state of this art has gone far		
5	enough that I think a reasonable decision can		
6	be made on that license application. I hope		
7	that decision process goes to a conclusion		
8	because I think to the extent it identifies		
9	problems, it would be a very useful learning		
10	exercise even if Yucca Mountain does not go		
11	forward.		
12	Point Number Two: I believe that		
13	relying on regulations and compliance with the		
14	regulation is inadequate for having the		
15	enduring consensus among the public and the		
16	political leadership that we'll need over a		
17	time scale of the order of many decades to a		
18	century for the process of selecting a site,		
19	getting a construction license and placing		
20	waste, and then the final decision to seal the		
21	repository and stop active management.		
22	Now with respect to other points,		

		Page	133
1	I favor flexibility very strongly, and		
2	therefore I favor retrievability. And I favor		
3	a phased approach to developing a repository		
4	with adaptive management and many decision		
5	points. Details are laid out in this report,		
б	and many other documents.		
7	I will conclude my ten minute		
8	presentation, I think I'm still on time, with		
9	this quote from the 2001 report. "Measured		
10	against the frequency of changes in government		
11	leadership in democratic societies, the time		
12	necessary for implementing the high level		
13	waste policy is extremely long. For a policy		
14	to remain place over this period, it must have		
15	broad and enduring public support."		
16	Think about regulating our airline		
17	industry to achieve the kind of exemplary		
18	safety record that they have achieved. That's		
19	been done with extreme diligence to learning		
20	and adapting, and re-engineering both the		
21	human side and technical side. I would submit		
22	we need a similar process. Extreme diligence		

Page 134 in getting good science and engineering, 1 2 transparency involving the interested and affected parties in the decision process, and 3 in understanding the basis for decisions. 4 And doing this is an evolving way with the science 5 6 over the long time period involved. 7 Thank you very much. 8 CHAIR HAGEL: Dr. North, Thank 9 you. 10 Dr. Murphy? 11 DR. MURPHY: Thank you. 12 I've probably given thousands of 13 lectures, and I've never read one. But given 14 the circumstances today, I'm going to read It's unique in that regard. 15 this. I appreciate this invitation and 16 17 the opportunity to share my ideas with the Commission. 18 19 I'm a geochemist and a Professor 20 geological and environmental sciences at 21 California State University, Chico. I've 22 worked on problems of geologic disposal of

		Page
1	high level nuclear waste for about 25 years.	
2	And I advocate permanent geologic disposal as	
3	a feasible and proper solution to the problem	
4	of high level nuclear waste.	
5	I'm currently a member of the U.S.	
6	Waste Technical Review Board, which is	
7	supporting my participation here. I'm very	
8	grateful for that support. And I'm very	
9	pleased to be on that Board. It's been very	
10	rewarding for me. But I want to make it clear	
11	that the opinions I express here are entirely	
12	my own and don't necessarily represent any	
13	agency.	
14	I'm also a technical	
15	administrative judge on the Atomic Safety and	
16	Licensing Board Panel of the U.S. Nuclear	
17	Regulatory Commission. But in that role I've	
18	been separated from anything having to do with	
19	high level waste because of my long	
20	involvement in high level waste. And	
21	certainly I don't represent them here.	
22	Given my limited time, I'll turn	

Page 135

		_
	P	'a
1	immediately to provide some personal comments	
2	related to the questions that you posed.	
3	The first comments are on time.	
4	The time frame for permanent geologic disposal	
5	and its regulation has to be considered	
6	objectively in relation to the half-lives of	
7	the radio nuclides. And I'll take two, for	
8	example, that are particularly notorious with	
9	regard to their geochemical transport	
10	characteristics: Iodine-129 with a half-life	
11	of 16 million years and neptunium in the five-	
12	valent state, neptunium-237 with a half-life	
13	of 2 million years. These are objective times	
14	that have to be considered.	
15	Geologic systems are relatively	
16	well understood on time scale on million year	
17	time scale. And a million year time frame is	
18	realistic, in my view, for technical	
19	evaluations of geologic stability and for	
20	evaluations of geologic isolation of nuclear	
21	waste.	
22	On the other hand, a million years	

Page 136

		Page	137
1	is a completely unrealistic human time scale.		
2	Our species has only existed for, perhaps,		
3	100,000 years. So, it's unrealistic, and		
4	nevertheless I think it's amazing not		
5	necessarily incredible, but amazing and		
б	certainly unprecedented that ultimately the		
7	principal isolation mechanism for the proposed		
8	Yucca Mountain repository was the engineered		
9	Alloy 22 container. That's amazing.		
10	I've been interested in studies of		
11	natural analogue systems; natural systems that		
12	are analogous to repository systems, mostly		
13	for Yucca Mountain. But I think the Cigar		
14	Lake uranium deposit in particular, which is		
15	in Saskatchewan is especially interesting to		
16	illustrate my geologic perspective.		
17	This uranium deposit is described		
18	as the world's richest uranium deposit. The		
19	primary mineralization is uraninite, which has		
20	the crystal structure and chemical composition		
21	essentially of spent fuel. It's very similar		
22	to spent fuel.		

		Page	138
1	And the deposition of that mineral		
2	occurred 1.3 billion years ago. It's		
3	presently about 430 meters below the ground		
4	surface. And according to the literature, I'm		
5	not an expert at Cigar Lake particularly, but		
6	according to the literature there is no		
7	surface geochemical or radiometric		
8	manifestation of this richest uranium deposit		
9	at the earth's surface, 400 meters. It's an		
10	area that's very far north. It's been		
11	glaciated repeatedly. And this kind of		
12	observation makes me as a geologist		
13	comfortable with the idea of a billion years		
14	of geologic isolation, which is obviously far		
15	more than regulatory concerns need to take		
16	into account.		
17	So on the issue of compliance, I		
18	thin compliance relates to public confidence:		
19	Confidence in safety. Compliance needs to be		
20	based on confidence.		
21	From a technical perspective,		
22	confidence in performance or safety of a		

Γ

Page 139 geologic disposal of waste can be achieved 1 2 through multiple lines of technical evaluation 3 that tend to converge on the same conclusion. 4 That's a scientific process. There's lots of 5 lines of reasoning: Site characterization, 6 for instance geological stability, engineering 7 design and assessment, laboratory and fuel 8 scale assessment, theoretical modeling, 9 performance assessment modeling including 10 performance assessments and natural analogue 11 studies. When the composite of these multiple lines of reasoning come to comparable 12 conclusions, then my confidence is increased. 13 14 My confidence is increased when multiple lines of evaluation tend to make the site look safer 15 16 as understanding increases with time. 17 I lose confidence in the system if 18 the trend seems to be that the more we know about the system, the worse it looks. 19 20 My sense of confidence is also 21 diminished as political or economic interest 22 supersede technical and health interests,

		Page	140
1	which is a pattern that seems to be impossible		
2	to avoid in the nuclear waste management		
3	field.		
4	Retrievability must be considered		
5	in my mind in the context of the individual		
6	geologic or engineered system. Retrievability		
7	may be relatively impractical for certain		
8	system like deep bore hole disposal or sub-		
9	seabed disposal which might otherwise prove to		
10	be very technically credible systems for		
11	geologic disposals of nuclear waste.		
12	In recognition of inevitable		
13	social instability of the time scale of the		
14	hazard of high level waste, retrievability is		
15	a potentially hazard feature of a repository.		
16	In my mind, a good geologic repository should		
17	disappear, literally. It should become		
18	invisible to society for the benefit of future		
19	societies.		
20	The concept of retrievability for		
21	the purpose of maintaining access to a		
22	potential resource has to be considered		

		Page	141
1	completely separately from the notion of		
2	retrievability for the purpose of judging the		
3	safety of the system.		
4	In the present state of high level		
5	waste management in the U.S. I thin that		
6	geologic site selection needs reconsideration.		
7	I think there are many potentially excellent		
8	sites. And the often asked question: What's		
9	the best site is really an inappropriate		
10	question. We don't need the best site. We only		
11	need one that's good enough and to have		
12	confidence that it's good enough.		
13	With regard to regulations		
14	concerning siting, there were requirements		
15	developed by EPA and NRC and DOE. For example,		
16	EPA required comparative performance		
17	assessments for long times to be part of the		
18	site selection process. NRC required a		
19	balancing of favorable and potentially adverse		
20	conditions in evaluating the sites. And the		
21	DOE listed disqualifying features. But all of		
22	this went by the wayside in 1987 in the		

Page 142 Amendments Act which derailed the site 1 2 selection process. 3 All these siting regulations were abandoned in the aftermath of the Nuclear 4 5 Waste Policy Amendments Act of '87. And 6 there's a lot of international quidance, I 7 think for instance from IAEA on siting 8 quidelines. 9 And that's the end of my comments. 10 Thank you very much. 11 CHAIR HAGEL: Dr. Murphy, thank 12 you, sir. Thank you for 13 MR. SCHULTHEISZ: 14 the promotion, Senator. 15 I have to state categorically 16 before I begin that I have no opinions of my 17 I'm representing the Environmental own. 18 Protection Agency. So anything that I say 19 can't be attributed to me directly. 20 I'm only going to focus on a 21 couple of the question, those that were most important for the EPA as we considered 22

Page 143

developing the standards and particularly the
 Yucca Mountain standards over the past few
 years.

4 So, first, just in general why are 5 regulations are necessary? Why are we having 6 this discussion? And the primary purpose of 7 geologic disposal, as has been mentioned a 8 couple of times here, I think is to contain the waste and isolate the radio nuclides from 9 the biosphere for long periods of times. 10 The regulations provide the framework for 11 12 developing a robust disposal system, one that 13 can respond in a variety of situations, 14 potential scenarios. 15 So as we regulators as EPA's job, 16 we see that our purpose is to devise a 17 reasonable test of the disposal system to see

how to evaluate the containment and isolation
capability of the site, and the engineered
barriers that are integrated into the site
characteristics. So the standards that we
develop basically provide performance

		Page	144
1	objectives against which to evaluate the		
2	site's isolation and containment capabilities.		
3	We're really not about predicting		
4	environmental impacts or future health		
5	effects. It's really everything is geared		
6	towards an evaluation of whether the site has		
7	met this test for the period of time and under		
8	the conditions that we've prescribed.		
9	So in general, there are several		
10	different types of standards that have been		
11	used here in the U.S. and international.		
12	Projections of risk or dose to a designated		
13	receptor is probably the most common. It is		
14	the most explainable, and people understand it		
15	better and can relate it to other standards.		
16	So it is one that is frequently used.		
17	The movement of radio nuclides		
18	into the accessible environment from the		
19	repository over a period of time is another		
20	one that we've used in the containment		
21	requirements discussed this morning by Tom		
22	Cotton.		
Page 145 Concentration of radio nuclides in 1 2 an environmental media is yet a third way of looking at the containment and the isolation 3 4 ability of the repository such as our 5 groundwater protection standards. 6 One of the difficulties is that 7 these latter two types of standards aren't 8 directly related to impacts to humans, 9 estimations of public health effects or public health goals. And so they are sometimes harder 10 11 to explain as to how they determine safety. 12 So the question of how long 13 standards should be applied is obviously one 14 that has generated the most strongly held opinions and expressions of disbelief that 15 16 you've heard today. But in general there's growing acceptance that periods up to one 17 18 million years have to be looked at in some 19 There's really no consensus as to how to way. 20 do that, whether it's apply quantitative 21 standards, look at it more qualitatively. In 22 the Yucca Mountain rulemaking in 2001 we took

		Page	146
1	the approach of a quantitative standard up to		
2	10,000 years and beyond that the projections		
3	had to be done and placed in the record, but		
4	there was no compliance standard applicable to		
5	that. And the D.C. Circuit Court of Appeals		
6	did not agree with that approach, that it met		
7	the statutory requirements that we were		
8	operating under.		
9	The problem with that is that		
10	there are, as you've heard, significant		
11	uncertainties in projection dose and risk over		
12	periods of time approaching a million years.		
13	So this becomes increasingly problematic in		
14	terms of what the standard means, what the		
15	projections mean and how they relate to the		
16	capabilities of the site.		
17	There have been some suggestions		
18	that indicators relying solely on the geologic		
19	capabilities may be more predictable, and		
20	therefore more useful in showing compliance		
21	such as containment requirements, which is one		
22	of the reasons why we established those in		

		Page	147
1	1985 as the primary protection requirement.		
2	And in 1982 it was, in fact, the only		
3	requirement that we proposed. We did not		
4	propose individual dose standard at that time.		
5	We thought that the geologic projections would		
6	be more defensible and less uncertain then		
7	trying to deal with what happens when the		
8	radio nuclides reach the biosphere.		
9	So as far as EPA standards are		
10	concerned, we have two end points that we		
11	could look at:		
12	The 10,000 year standards in the		
13	Part 191 generally applicable rulemaking. Was		
14	upheld by the First Circuit in 1987. It was		
15	challenged and was upheld. On the other hand;		
16	The one million year standard that		
17	we established in 2008 for Yucca Mountain in		
18	Part 197 is a site-specific based on site-		
19	specific direction from Congress and a site-		
20	specific recommendation from the NAS. And as		
21	such, it really has no legal applicability to		
22	any other site.		

	Page 1	.48
1	And a key question here is the	
2	question of intergenerational equity. What is	
3	our obligation to future generations? How	
4	long does that apply? What necessary to carry	
5	out that obligation?	
6	In general, those obligations are	
7	to minimize the burden on future generations	
8	and to minimize the impact on future	
9	generations to the extent that we can. But the	
10	extent that we can applies not only in terms	
11	of time, but also in resources that we have to	
12	invest to try to reach some standard of	
13	protection for people in the very far future.	
14	And so the question really is: What is it in	
15	our power to achieve over these time frames	
16	that we're discussing? There is no question	
17	we have these obligations, but what really can	
18	we achieve?	
19	In terms of demonstrating	
20	compliance, performance assessment generating	
21	results that are compared to quantitative	
22	standards in terms of risk or dose. They can	

Г

		Page	149
1	generate the numbers. We can compare the		
2	numbers. That's fine. But, a regulatory		
3	judgment, as I thin we've heard several times		
4	before, can't simply rely on the comparison of		
5	a generated number to a standard and say		
6	pass/fail, up/down, hit or miss. It's much		
7	more complicated then that. Foresight may be		
8	able to engineer compliance for 10,000 years		
9	through applications of all sorts of enhanced		
10	materials.		
11	At the same time, if you're		
12	looking at a million year time period, in the		
13	year 900,000 if you've exceeded this standard		
14	by a few millirem, is that unsafe and how do		
15	you reach the judgment that that's really		
16	unsafe?		
17	We cannot prove that these		
18	projections are correct. So what EPA has done,		
19	as you heard this morning, we require a		
20	reasonable expectation that the standards will		
21	be met based on the full record before the		
22	implementing agency, which in the case of		

Page 150

1 Yucca Mountain is the NRC.

2	So, in terms of performance
3	assessment that's really the tip of the
4	iceberg in terms of everything that has to be
5	considered in reaching a regulatory judgment
б	about the capabilities of the site and
7	disposal system including site
8	characteristics, history and stability, the
9	conceptual site model, field and laboratory
10	studies involving the chemistry, geochemistry,
11	materials that you are using in the engineered
12	barriers, natural analogues studies, was
13	mentioned here, the mathematical models how
14	complex they are, how they get simplified to
15	try to implement to a regulatory requirement;
16	a reasonable expectation that covers all of
17	these and many more things.
18	And as I say, in the far future
19	the meaning of the projections in terms of
20	dose and risk is increasingly questionable.
21	You're running into large scale geologic
22	climatic variation that you need to try to

		Page	151
1	account for. And so we have this one		
2	simplifying assumption, which is that human		
3	behavior in the future will be the same as it		
4	is today. The level of the technology will be		
5	the same. The level of medical knowledge will		
6	be the same.		
7	One thing we can say about this is		
8	it is almost certainly wrong: We can pretty		
9	much say that's the truth, but we can't say		
10	what will be right.		
11	So, the NAS in their advice to us		
12	said there's no scientific basis for		
13	distinguishing one future from another, so use		
14	today's society as a basis for looking at the		
15	standard.		
16	So in this case, dose and risk		
17	provides a benchmark. It's not a prediction.		
18	It's not really a calculation of health		
19	effects, even though that's the metric, that's		
20	the language we have to talk in some ways. It		
21	really cannot be viewed in that same light.		
22	So, looking internationally what		

1			
		Page	152
1	can we learn from others? There are a handful		
2	of countries that have standards that they		
3	have issued. Nobody has implemented them.		
4	The Yucca Mountain license application is		
5	still the only one that has been submitted.		
6	The Swedish regulatory authority		
7	anticipates that we'll get an application		
8	either by the end of this year or early next		
9	year. And they are the closest to being		
10	implementing of any of the sites.		
11	So here there's a variety, these		
12	are just general metrics that are used by		
13	these countries, a variety of dose risk, time		
14	frames, several thousand years up to a million		
15	years.		
16	10,000 years in the case of France		
17	with calculations considered thereafter.		
18	Germany uses lifetime risk for a		
19	million years or annual dose depending on how		
20	you want to do it.		
21	The U.K. is very up-front.		
22	They've established a risk guidance level.		

		Page	153
1	They say that it's really not appropriate to		
2	establish a standard or a constraint. We'll		
3	use a guidance level and we'll decide whether		
4	that's good enough. And they actually used		
5	the words "good enough" without really		
б	describing it.		
7	So all of these other countries,		
8	they emphasized the increased uncertainty and		
9	the use of supplemental or qualitative		
10	information.		
11	Over very long times there's an		
12	implied if not an explicit flexibility in how		
13	the standard is interpreted over very long		
14	times.		
15	They address unlikely or		
16	disruptive scenarios in a separate analysis;		
17	sometimes there's no standard applied.		
18	They apply a critical group, some		
19	sort of approach. A high end group of people		
20	who hare highly exposed but not the most		
21	exposed person. It's a little unclear as to		
22	whether Germany is using that or not, but they		

	Pa
1	do talk about individuals associated with the
2	repository.
3	And the standards that EPA has
4	issued, both in Part 191 and Part 187, take
5	conceptually similar approaches to this.
6	And just as a last slide, the
7	references here. Really the best way to
8	understand how EPA has done this over the
9	years and the extent of our thinking in trying
10	to respond to these issues is in the
11	regulatory record. The Federal Register
12	notices for the proposed and final rules and
13	then the detailed responses to comments that
14	we submitted on both Yucca Mountain rule
15	makings go into it. But a lot of detail about
16	the international standards, about the
17	thinking, our thinking about applying the
18	standard as a quantitative limit for 10,000 or
19	a million years. So I would encourage the
20	Subcommittee to look at those and see how EPA
21	has really drawn out its reasoning over the
22	past almost 30 years now.

Neal R. Gross & Co., Inc. 202-234-4433

Page 154

Page	155
	± 0 0

		Pa
1	And that concludes my	
2	presentation.	
3	CHAIR LASH: (Off microphone	
4	question.)	
5	MR. SCHULTHEISZ: Yes. There's a	
6	section in the 2008 response to comments that	
7	goes into some details on the international	
8	standards.	
9	Now I'll point out that several of	
10	these were issued within the last year. The	
11	U.K., Germany and Switzerland all issue their	
12	standards in 2009. The Swiss standards were	
13	an update of the previous standards, and	
14	didn't change all that much. But there are	
15	some that we did not address because they came	
16	out after our standards.	
17	CHAIR LASH: Thank you very much,	
18	Mr. Schultheisz.	
19	So. we've particularly structured	
20	this because we wanted to have the opportunity	
21	to direct questions to all of you, and also to	
22	hear your interaction with one another.	

Page 156 Mr. McCartin, we'd assumed that 1 2 your statement earlier would be your 3 Did you want to -statement. I had a few remarks 4 MR. McCARTIN: 5 I was going to make. 6 CHAIR LASH: Okay. 7 MR. McCARTIN: But I don't have slides. 8 9 CHAIR LASH: Let's give you a few minutes to make a few remarks. But we want to 10 11 have a chance to get interaction between you 12 and us. 13 Okay. Briefly, I MR. McCARTIN: 14 guess there's three quick topics I'd like to talk to, and well let me narrow it to two: 15 16 Performance assessment and public 17 acceptability of regulations. 18 And I'll say with performance assessment, as I said before, I started in NRC 19 20 in 1981 as the beginning of implementation of 21 a performance assessment capability at NRC. 22 In that capacity I was made the technical lead

		Page	157
1	for developing the Yucca Mountain regulations.		
2	And the key to the regulatory improvements, as		
3	I will call that, in increasing the efficiency		
4	and effectiveness of NRC's regulations of		
5	geologic disposal, what you saw was the use of		
6	performance assessment to focus on those items		
7	most important to safety.		
8	The previous regulations, Part 60		
9	had a number of prescriptive requirements.		
10	Did that make it safe? Well, they were		
11	requirements. You had to meet those. And		
12	there was always debate. And at the time they		
13	were promulgated, it was felt that that was		
14	the best that could be done. However, with the		
15	emergence of performance assessment you saw		
16	Part 63 move, based on the NAS		
17	recommendations, let's look at the performance		
18	assessment as an overall compliance measure.		
19	As Dan was suggesting, this is not		
20	oh, does it meet 15 millirem and we're done?		
21	No. It is far more than that.		
22	What appropriately in my mind from		

		Data	1 - 0
1	an efficiency and effectiveness standpoint,	Page	120
2	what that performance assessment does is you		
3	now develop an understanding of how the		
4	repository will behave. DOE has to identify		
5	the barriers important to waste isolation.		
6	Well, what are the things you're counting on?		
7	This performance assessment is a way to		
8	encapsulate those things that are important to		
9	performance.		
10	Previously, as I saw over the last		
11	almost 30 years now at NRC, if you went to a		
12	geochemist, the problem was a geochemical		
13	problem. If you went to a hydrologist, it is		
14	a hydrology problem. If you went to a		
15	materials person, it was a materials problem.		
16	What the performance assessment		
17	does is integrate all this thinking to the		
18	end-product of dose. Well, what really are we		
19	relying on? What's significant? And so the		
20	performance assessment provides that		
21	integration.		
22	Absolutely critical to the		

Page 159

1 performance assessment is the discussions, the 2 support from all the other scientists and all 3 the other disciplines do you agree. From a 4 geochemistry standpoint you look at all the 5 factors, all the complexities; it's really the 6 pH that's driving this.

7 You can narrow things down. The 8 repository has no moving parts. If you are at 9 a good site, there should be a limited number 10 of things that you're relying on and you have 11 high confidence in to get you to safety. I 12 believe that that's what the changes that resulted in Part 63 was take the benefit of 13 14 let's focus on those things are most important 15 to performance. The performance assessment is 16 a way to encapsulate this. But trust me, 17 there's all kinds of supporting information. 18 If you say something, there's a 19 simplified model in the performance 20 There can be laboratory assessment. 21 experiments, field experiments, all kinds of 22 research that has gone on to support why

Page 1 1 that's supportable. That information then 2 gets taken to our hearing where it needs to be 3 defended. And that's where people can cross- 4 examine. 5 And that to me is how for 6 regulations in the future I believe the 7 performance assessment in Part 63 represents 8 a significant efficiency and effectiveness in 9 ensuring public health and safety over the 10 other regulations. 11 In terms of public acceptability 12 we have struggles how to best work with this. 13 And there is no easy answer. 14 There is one suggestion I have 15 heard that one could go out to the community, 16 wherever it is, of the effected people. 17 Explain the performance assessment, the kinds 18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	1			
1that's supportable. That information then2gets taken to our hearing where it needs to be3defended. And that's where people can cross-4examine.5And that to me is how for6regulations in the future I believe the7performance assessment in Part 63 represents8a significant efficiency and effectiveness in9ensuring public health and safety over the10other regulations.11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.			Page	160
2 gets taken to our hearing where it needs to be 3 defended. And that's where people can cross- 4 examine. 5 And that to me is how for 6 regulations in the future I believe the 7 performance assessment in Part 63 represents 8 a significant efficiency and effectiveness in 9 ensuring public health and safety over the 10 other regulations. 11 In terms of public acceptability 12 we have struggles how to best work with this. 13 And there is no easy answer. 14 There is one suggestion I have 15 heard that one could go out to the community, 16 wherever it is, of the effected people. 17 Explain the performance assessment, the kinds 18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	1	that's supportable. That information then		
3defended. And that's where people can cross-4examine.5And that to me is how for6regulations in the future I believe the7performance assessment in Part 63 represents8a significant efficiency and effectiveness in9ensuring public health and safety over the10other regulations.11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	2	gets taken to our hearing where it needs to be		
4examine.5And that to me is how for6regulations in the future I believe the7performance assessment in Part 63 represents8a significant efficiency and effectiveness in9ensuring public health and safety over the10other regulations.11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	3	defended. And that's where people can cross-		
5And that to me is how for6regulations in the future I believe the7performance assessment in Part 63 represents8a significant efficiency and effectiveness in9ensuring public health and safety over the10other regulations.11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	4	examine.		
 regulations in the future I believe the performance assessment in Part 63 represents a significant efficiency and effectiveness in ensuring public health and safety over the other regulations. In terms of public acceptability we have struggles how to best work with this. And there is no easy answer. There is one suggestion I have heard that one could go out to the community, wherever it is, of the effected people. Explain the performance assessment, the kinds of scenarios, the kinds of features we're looking at in this site and talk through that in as transparent a way as we can and get suggestions from the effected. 	5	And that to me is how for		
7 performance assessment in Part 63 represents a significant efficiency and effectiveness in ensuring public health and safety over the other regulations. 10 other regulations. 11 In terms of public acceptability 12 we have struggles how to best work with this. 13 And there is no easy answer. 14 There is one suggestion I have 15 heard that one could go out to the community, 16 wherever it is, of the effected people. 17 Explain the performance assessment, the kinds 18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	6	regulations in the future I believe the		
 a significant efficiency and effectiveness in ensuring public health and safety over the other regulations. In terms of public acceptability we have struggles how to best work with this. And there is no easy answer. There is one suggestion I have heard that one could go out to the community, wherever it is, of the effected people. Explain the performance assessment, the kinds of scenarios, the kinds of features we're looking at in this site and talk through that in as transparent a way as we can and get suggestions from the effected. 	7	performance assessment in Part 63 represents		
 9 ensuring public health and safety over the other regulations. 11 In terms of public acceptability 12 we have struggles how to best work with this. 13 And there is no easy answer. 14 There is one suggestion I have 15 heard that one could go out to the community, 16 wherever it is, of the effected people. 17 Explain the performance assessment, the kinds 18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected. 	8	a significant efficiency and effectiveness in		
10other regulations.11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	9	ensuring public health and safety over the		
11In terms of public acceptability12we have struggles how to best work with this.13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	10	other regulations.		
 we have struggles how to best work with this. And there is no easy answer. There is one suggestion I have heard that one could go out to the community, wherever it is, of the effected people. Explain the performance assessment, the kinds of scenarios, the kinds of features we're looking at in this site and talk through that in as transparent a way as we can and get suggestions from the effected. 	11	In terms of public acceptability		
13And there is no easy answer.14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	12	we have struggles how to best work with this.		
14There is one suggestion I have15heard that one could go out to the community,16wherever it is, of the effected people.17Explain the performance assessment, the kinds18of scenarios, the kinds of features we're19looking at in this site and talk through that20in as transparent a way as we can and get21suggestions from the effected.	13	And there is no easy answer.		
 heard that one could go out to the community, wherever it is, of the effected people. Explain the performance assessment, the kinds of scenarios, the kinds of features we're looking at in this site and talk through that in as transparent a way as we can and get suggestions from the effected. 	14	There is one suggestion I have		
16 wherever it is, of the effected people. 17 Explain the performance assessment, the kinds 18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	15	heard that one could go out to the community,		
Explain the performance assessment, the kinds of scenarios, the kinds of features we're looking at in this site and talk through that in as transparent a way as we can and get suggestions from the effected.	16	wherever it is, of the effected people.		
18 of scenarios, the kinds of features we're 19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	17	Explain the performance assessment, the kinds		
19 looking at in this site and talk through that 20 in as transparent a way as we can and get 21 suggestions from the effected.	18	of scenarios, the kinds of features we're		
20 in as transparent a way as we can and get 21 suggestions from the effected.	19	looking at in this site and talk through that		
21 suggestions from the effected.	20	in as transparent a way as we can and get		
	21	suggestions from the effected.		
22 Well, did you consider this? Did	22	Well, did you consider this? Did		

		Page	161
1	you consider that? And factor those		
2	suggestions into the performance assessment is		
3	a way of possibly getting some acceptable from		
4	the people that are most effected. And that's		
5	something I know Janet Cocher at NRC has led		
6	the public outreach. We're constantly looking		
7	at ways to provide more acceptance. That is		
8	very, very important to us, but it is a very		
9	difficult thing with the complexity of this.		
10	And I guess the last thing is,		
11	NRC's independence. And since 1981 I don't		
12	know how many performance assessment		
13	calculations I've done; hundreds, thousands.		
14	But I can say unequivocally that I have never,		
15	ever been asked to change a number, to make a		
16	number easy on DOE, or to alter the results.		
17	The emphasis is always on is this defendable.		
18	CHAIR LASH: I think you're		
19	answering a question that wasn't actually		
20	asked.		
21	MR. McCARTIN: Okay.		
22	CHAIR LASH: I suspect the		

Page 162

performance assessment issue, being deeply
 perspicacious, is going to come up again in
 the next few minutes.

4 Let me make a couple of requests 5 of the panel and also to my colleagues. We do 6 want to get interaction among you. I also want 7 to make sure my fellow Commissioners get 8 chances to answer questions. So let's try not 9 to have all six of you respond to every single question, but if you have something urgent, 10 11 you've just heard another member of the panel 12 say something and you have a one minute intervention, just let me know that but stick 13 14 to the quick response so we can keep things 15 moving. 16 And to my colleagues, it's clear that we will have some discussion about the 17 18 role and value of performance assessment, but 19 let's make sure we get to the whole set of 20 questions, not just that one. 21 Allison, do you want to start off

22

Neal R. Gross & Co., Inc. 202-234-4433

since the issue's kind of on the table in

		Page	163
1	front of us?		
2	MEMBER MacFARLANE: Sure. Thanks		
3	very much.		
4	I thank you all for your		
5	presentations. I enjoyed them.		
6	Seeing how Bob singled me out, let		
7	me make a short statement here. I am not a		
8	minority of one. There are many other earth		
9	scientists, especially but not solely, who		
10	have written critiques, very good critiques of		
11	performance assessment. So, you should be		
12	aware of that.		
13	And performance assessment, of		
14	course, we keep focusing on it here because		
15	this is how the U.S. has been deciding whether		
16	a site, the Yucca Mountain site in particular,		
17	is meeting the standards that were		
18	established. So that's why we keep coming		
19	back to it. So it's important.		
20	And although the last two speakers		
21	may disagree with this, I think in the U.S.		
22	it's become at least in terms of the public		

Page 164

perception, and in the way that especially the Department of Energy has talked about their project, it's been the sole way that this situation is being evaluated. And I do think that that's a problem.

6 I want to remind the panel, just 7 for the record, that performance assessments 8 were developed to evaluate nuclear power 9 plants totally engineered systems that were expected to last a period of decades. 10 And 11 they are now being applied to complex earth systems that will last, and these predictions 12 are being drawn out, for hundreds of thousands 13 14 to millions of years. These are apples and 15 Okay? That's one of the problems. oranges. 16 To do a performance assessment I 17 am constantly told by you guys that you need 18 o know all the features, events and processes

20 the Department of Energy has claimed that it 21 does know all these features, events and 22 processes, and this is where I have a problem.

that will occur over the time evaluated.

19

Neal R. Gross & Co., Inc. 202-234-4433 And

Because I know specifically that they do not 1 2 have a lot of information. 3 Like they say kinetic and 4 thermodynamic information on the mineral 5 phases that are relevant information on the 6 future impacts of climate change over even the 7 next few hundred years, for instance. And I 8 could go on and on, and on. All right. But 9 I won't. 10 So, you know and in place of lack of information what's being asked for is 11 12 expert judgment. Okay? Expert judgment is qualitative, but you're pretending that it's 13 14 quantitative. Okay? And then there's a conflation of qualitative and quantitative 15 judgment. And I find that I've seen some of 16 17 you who really support performance assessment 18 say that the results of these mock performance 19 assessment models are data. You're conflating 20 model results with data. Models are models. 21 They are not reality. 22 And, in fact, Mr. McCartin just

> Neal R. Gross & Co., Inc. 202-234-4433

Page 165

	Page 166
1	said "with performance assessment now we have
2	an understanding of how the repository will
3	behave." Okay? Those are your words. That
4	means you think that the performance
5	assessment has given you absolute truth. It
6	has not. It is a model, and a bad one, an
7	opaque model. You can't make it transparent
8	to the public because none of you can fully
9	understand it on your own, all the parts of
10	it.
11	So, this was not supposed to be a
12	lecture. But anyway, Bob made it that way.
13	But I do have questions, and so
14	maybe some of, not all of you I suppose, might
15	want to respond to that. But I tend to think
16	that Bill Murphy made a good point when he
17	said "we're better off using multiple lines of
18	evidence."
19	But let me ask a couple of
20	specific well, actually respond to that and
21	maybe we'll ask specific questions later. Go
22	ahead.

		Page	167
1	DR. BUDNITZ: Well, I kind of		
2	think we're going to agree on almost		
3	everything except the judgment about how the		
4	decision is framed, and therefore answered.		
5	Of course a performance assessment		
6	is not a prediction. Of course a performance		
7	assessment is not a realistic description. Of		
8	course a performance assessment has major		
9	uncertainties. But the key to performance		
10	assessment is that it enables a focused		
11	sensitivity analysis to be done about the		
12	things that matter and the things that don't		
13	matter.		
14	As an example, and Rod Ewing and I		
15	have been friends and colleagues for 30 years		
16	and he's a mineral phase guy of the		
17	international stature, we don't understand the		
18	mineral phases that would occur inside the		
19	canister at Yucca Mountain were the water to		
20	get in there and the uranium change. Okay?		
21	We don't.		
22	\land A lot of work needed to be done.		

Page 168 I actually was in the Yucca Mountain project 1 2 trying to support some of that for a couple 3 years until the Administration changed and it 4 got killed. But we still don't understand 5 that. 6 It turns out the results for the 7 purposes of making a decision don't depend on 8 that very much. In fact, they hardly depend 9 on it. The reason they don't depend on it has to do with science. 10 11 And the point here is you don't 12 have to understand everything to be able to make a decision if it doesn't depend on it, or 13 14 depends on it only a little 15 Second point: Reactors are an engineered system. I've spent my whole life 16 17 doing reactor analysis, which is what I really 18 We license reactors, we run them. do. We 19 have confidence that the analysis makes them 20 safe enough because we understand them. But 21 in fact, no one today can do a thoroughly 22 correct thermal hydraulic analysis of a

Page 169 pressurized water reactor or a boiling water 1 2 reactor in normal operation, never minding 3 during transients. And yet we run them and 4 we have confidence. Why? Because we've done 5 enough analysis to know that the things we 6 need to know we know, the things that we're 7 still uncertain about don't matter enough to 8 affect things. Even for an engineered system. 9 Same thing with aircraft. Neither the Government nor Boeing, nor Airbus 10 11 understands the true accurate description of those aircraft that I, by the way, am going 12 13 home on tonight. Why do we have confidence? 14 Because we can bound it. 15 MEMBER MacFARLANE: Bob, can I 16 just interrupt you 17 Of course. DR. BUDNITZ: 18 MEMBER MacFARLANE: And say the 19 reason that you have confidence is not just 20 not that you can bound it, it's that you can 21 You can run the experiment. do it. 22 Ah, now I'm saying DR. BUDNITZ:

		Page	170
1	not so.		
2	MEMBER MacFARLANE: And you can		
3	see whether it performs as you		
4	DR. BUDNITZ: Not so.		
5	MEMBER MacFARLANE: Let me finish.		
6	As you predict or not. You will		
7	not be able to do that with a repository.		
8	DR. BUDNITZ: But we can't do that		
9	for a reactor either. We've not had a		
10	meltdown, and yet we understand them enough.		
11	MEMBER MacFARLANE: Yes, you have.		
12	You've had multiple meltdowns.		
13	DR. BUDNITZ: No, no, no. It's not		
14	true. The scenarios that worry us let me		
15	just go on because this a crucial point.		
16	The TSPA is not the decision		
17	criteria. It informs the decision. The		
18	regulations that EPA wrote in 1991 that they		
19	reiterated again, the regulations that NRC		
20	wrote in Part 60 that they reiterated again,		
21	of all the policies of every country, go read		
22	them, say the analysis informs a decision by		

Page 171

1 people who sit, think and stare. And that 2 seems to me to be an essential element of 3 public policy.

4 And my judgment is, and you can 5 differ and we can differ honorably, that the 6 analysis we do is adequate to inform that 7 decision in the context of the regulations 8 that were written. And if you don't think so, 9 fine. But I don't think they're accurate. Ι don't think that they're predictions. 10 But I 11 think they're adequate for that purpose. 12 If you don't agree, fine. But that's the decision or the judgment that I 13 14 have made and that I think is very strongly 15 held, not by -- of course you're not alone. 16 Not by everybody, but by a vast majority. 17 And then just to cite one example. 18 The Academy put together a committee of a 19 dozen or 15 people. We all said that in the

20 report: 15 to zero. Maybe it was 13, I don't

21 remember the number.

22

MEMBER MacFARLANE: Well, if you

Page 172 don't invite a critic, you know you're going 1 2 to --DR. BUDNITZ: I'm not going to 3 4 argue that. 5 MEMBER MacFARLANE: -- get 6 agreement. 7 DR. BUDNITZ: I'm not going to 8 argue that. 9 MEMBER MacFARLANE: And we don't 10 have any critics any here, unfortunately, 11 presenting to us. 12 I do have a question associated 13 with this. I'm sorry, I forgot to put this to 14 you. 15 Those of you who do support 16 performance assessments seem to be really 17 adhering to the idea that we desperately need 18 a quantitative way to evaluate this, and I 19 don't know why. 20 DR. BUDNITZ: I don't either. 21 Boy, I don't either. It informs judgment. 22 CHAIR LASH: Can I interrupt this

Page 173

dialogue? I know that Dr. North wanted to make a comment. I'll urge him not to set off the entire debate, because I suspect there are other issues that other Commissioners want to raise.

6 I'm going to note that DR. NORTH: 7 what is called performance assessment in this 8 context, in many other context is called risk 9 analysis or risk assessment. And the question 10 comes down to: Is something we are about to 11 do acceptably safe? That might be drilling in 12 the Gulf of Mexico or it might be landing a spacecraft on another planet where we 13 14 contaminate it with life from this planet. And I actually worked that problem as leader 15 16 of a group for the NASA for Project Viking, a landing that occurred in 1976. And I'll call 17 18 it performance assessment, and I'll tell a 30 19 second version of the story because I think 20 it's illustrative of how we get insight about 21 complex systems.

22

Our Vikings spacecraft had about

Page 174 20,000 live microbes on it. The issue was 1 2 would one of them, at least, be able to find an environment on Mars where it could 3 4 reproduce. My colleagues and I did over a 5 period of nearly a year a quantitative 6 analysis of this working with the many 7 specialties involved. 8 We got a quantitative answer: Six 9 chances in a million to compare to NASA's regulatory standard of one chance in 10,000. 10 11 But we were able to essentially throw the 12 analysis away because the insight was that the number was low because the ultraviolet flux 13 14 through Mars' thin atmosphere was such that a particle that would be able to float from the 15 16 location of the spacecraft to some other location would have to be so small as to be 17 18 not shielded by the ultraviolet light. 19 So in the wake of our analysis, to 20 my knowledge, the National Academy of Sciences 21 and others who have looked at this advising 22 NASA have not considered there was a need for

		Page	175
1	further analysis. We figured out a way of		
2	looking at the problem, combining		
3	understanding from different fields of science		
4	where the question acceptably safe was viewed		
5	as not needing a quantitative analysis. Yet,		
6	when we were brought in nobody had the		
7	insights that our analysis produced.		
8	So, I will assert that the proper		
9	role of performance assessment is to generate		
10	an insight on what is important for safety.		
11	I have concerns myself about getting too far		
12	into the numerology. But as somebody who		
13	works in this field, numbers allow precise		
14	calculations and we learn from that.		
15	Therefore, I would assert we should use the		
16	numbers but we should not take the results too		
17	seriously. View this as a way of exploring,		
18	not a way of calculating precise numbers.		
19	And to support this, I would		
20	reference the Lewis report on Reactor Safety		
21	written, in large part, by my colleague to the		
22	left which makes this point in considerable		

			_
		Page	1
1	detail in the reactor context. 1978.		
2	CHAIR LASH: Other -0		
3	MEMBER PETERSON: Actually, let me		
4	offer just a couple of observations and		
5	possibly instigate a question on this specific		
6	area. And then I'd like to move to the topic		
7	of retrievability, which I think is also		
8	important for us to dig into.		
9	I'm going to ask in just a moment		
10	is Yucca Mountain particularly complicated to		
11	analyze, perhaps, compared to some other		
12	potential geologic site which could contribute		
13	to our problems? The analogy being that we're		
14	currently also concerned that carbon omissions		
15	into the atmosphere could perturb climate. We		
16	have modeling efforts, we have a variety of		
17	qualitative arguments. It's a very specific		
18	problem that we're stuck with trying to		
19	predict and it's essentially a similar set of		
20	issues that we face in terms of trying to		
21	inform public policy about what to do about		
22	carbon dioxide. And if you think about it,		

76

	Page 177
1	you're running into a lot of thing, and a part
2	is because it's a really hard system to
3	analyze.
4	So, would we be better off with
5	reducing I mean if you followed some
6	deterministic criteria, maybe this is not such
7	a contiguous issue if you're dealing with a
8	system that is more analyzable than Yucca
9	Mountain. So I'd like to just get some
10	opinions about is it likely that other
11	geologic media and sites that we might
12	consider could be more easily analyzed than
13	Yucca Mountain has been?
14	CHAIR LASH: Dr. Peters, would you
15	like to start?
16	DR. PETERS: Yes, I'll take a
17	crack at it. Yes and no.
18	Actually, you know my experience
19	is with Yucca Mountain, that's where I grew up
20	in this field so I've got a perspective on
21	Yucca Mountain. I don't know as much about
22	other media in terms of the details of getting

		Page	178
1	in the testing. But I would say it introduced		
2	a set of complexity and uncertainties that are		
3	more than you would see in other media is my		
4	answer.		
5	I'm just thinking off the top of		
6	my head. But you added an unsaturated zone,		
7	and when we really dug into the unsaturated		
8	zone it got very complex, and when you think		
9	about what's going on inside that drift,		
10	things got very complex.		
11	I'm not saying that the		
12	application that was submitted won't		
13	necessarily hold water, because I was a part		
14	of developing it. But if it's a very complex		
15	site, and whereas if you go to salt for		
16	example, you look as Per's not even		
17	listening.		
18	So as you got to salt, it's got a		
19	much simpler safety case, I would argue. If		
20	you got a saturated zone site, you don't have		
21	the UZ to play in as much, other than just		
22	recharge; perhaps it's a simpler safety case.		

	Page 179
1	So, there's probably some truth,
2	Per, to where you're headed.
3	MEMBER PETERSON: Also we do know
4	from natural analogues that there are places
5	where materials like uranium tend to want to
6	stay stable for long periods of time. And
7	it's not in an oxidizing, unsaturated media,
8	if I'm correct.
9	But, Warner, if you could
10	DR. NORTH: Well, I will share my
11	experience. In 1985 I was a consultant to the
12	Board of Radioactive Waste Management when
13	they reviewed DOE's multi-attribute analysis
14	of five candidate sites with Tom Isaacs as the
15	leader of the DOE effort.
16	I think between now and then we've
17	learned that performance assessment which
18	seemed relatively straightforward when you
19	were doing it without not too much information
20	gets a lot more complicated when you have a
21	site that's proposed for licensing.
22	I've also had the advantages as an

		Page	180
1	initial member of the Nuclear Waste Technical		
2	Review Board of traveling to Europe and to		
3	Japan to look at their programs. I must say		
4	the system proposed for use in Sweden and		
5	Finland of using granite crystalline rock and		
6	using a container which is very resistant to		
7	corrosion in the geochemical conditions in		
8	that rock would seem to be a simpler system.		
9	But then you get into issues such as the next		
10	ice age in Sweden, will be shear such that the		
11	weight of the ice causes a fracture that cuts		
12	your container in half.		
13	So, I think until you get into it		
14	it's hard to tell.		
15	CHAIR LASH: Did you have some		
16	other questions, Per? MEMBER PETERSON: Yes, I		
17	had a set of questions that I'd like to shift		
18	over that relate to retrievability. And what		
19	I'd like to do is to note that we're going to		
20	have some sort of requirements around		
21	retrievability for a repository. The question		
22	that I'd like to entertain is can we be more		
Page 181 specific about why from a societal perspective 1 2 we want retrievability? And then to engineer 3 the system to meet the societal goal as 4 opposed to having a more prescriptive and 5 deterministic requirement it should be 6 retrievability that may not efficiently 7 actually serve the society goal. 8 To think what societal goals might 9 look like, an analogous problem that we're now dealing with is the cleanup of high level 10 waste in tanks at Hanford and Savannah River. 11 So what happened, of course, is that at 12 Hanford we had the early generation of high 13 14 level waste, carbon steel underground tanks were constructed and built, which is better 15 than what the Russians did, of course. 16 But in order to have some level of chemical 17 18 compatibility the waste was neutralized 19 greatly increasing the volume in generating 20 slug and such, put into the tanks. You still 21 had corrosion. And as a consequence, the 22 cleanup has been protracted and difficult.

1			
		Page	182
1	Now a question would be: Well		
2	that made sense to do a little bit because if		
3	you did just for the few years, at least the		
4	overall effort to reverse that would be		
5	tractable. In fact, we're already pretty much		
6	reversed that at West Valley, which was a		
7	small amount. But why did we keep going down		
8	that path instead of switching to acidic waste		
9	and stainless steel tanks, in which case we'd		
10	already be done cleaning up tank waste,		
11	largely?		
12	Is this correct sort of view? And		
13	then that gets to the question of: What's our		
14	societal goal with respect to reversal?		
15	I think we want to keep the		
16	mortgage that we might build up reasonable so		
17	that if you do determine you need to reverse,		
18	you have a reasonable amount of effort to do		
19	that?		
20	I mean, Warner, I think maybe		
21	you've thought about these topics, and others.		
22	CHAIR LASH: Per, I take it your		

Page 183

	E
1	question is not so much a technical question
2	about what should have been done there, but
3	the political question about why we couldn't
4	change course when we had sufficient
5	knowledge?
6	MEMBER PETERSON: Right. I guess
7	I need to be more specific in trying to phrase
8	the question from here.
9	The question is: Is the societal
10	goal that we're trying to achieve is to not
11	create a big reversal effort or to minimize
12	the risk that future society would be faced
13	with a huge effort to try to reverse something
14	as opposed as just making sure that it would
15	be reversible if you wanted to, but not
16	thinking about the cost and difficulty of
17	doing that?
18	DR. NORTH: I will take a short at
19	this. I was a study looking at the largest
20	risks from the weapons complex some years ago.
21	And subsequent to that I served as an advisor
22	to the head of Fluor Hanford for a couple of

		Page	184
1	years on some of the activities there to		
2	remove some of the most dangerous materials.		
3	I didn't work on the tanks, per se.		
4	There is a book called "On the		
5	Homefront" which documents the history of		
6	Hanford and the releases that have occurred,		
7	and I will call it the lack of performance		
8	assessment in due diligence as that site was		
9	operated during periods of the Cold War. I		
10	won't try to explain the behavior of the		
11	people that made the decisions. It is my		
12	judgment that the problem with the high level		
13	waste in the tanks could have been foreseen,		
14	and might have been foreseen, but that		
15	knowledge was not used and acted upon. They		
16	went ahead with it.		
17	So, all this is by way of saying I		
18	think we need transparency. I think we need		
19	performance assessment or risk analysis, or		
20	something like it to try to anticipate what		
21	may fail and why, and do a best effort on that		
22	and communicate it to those who might be		

1	effected.
2	Now with respect to
3	retrievability, it seems to me there is the
4	issue for future societies that uranium and
5	plutonium might be valuable for energy use.
6	And then there is the issue of if we dispose
7	of waste in some way, and I'll think of some
8	deep borehole technology, and then we find out
9	there is a path from where we put it down that
10	deep hole such that the radioactivity might be
11	released into the accessible environment, then
12	we've got a problem similar to those tanks at
13	Hanford. And we ought to try to avoid that.
14	MEMBER PETERSON: So then, in
15	terms of thinking this from the perspective of
16	risk, though, let's say that the probability
17	that a borehole might leak is going to be
18	substantially less than the probability that
19	Yucca Mountain might leak.
20	DR. NORTH: But I want to see
21	where did that probability calculation come
22	from. What expert judgment, what use of

		Page	186
1	models, what physical principles, et cetera.		
2	If it's just a number, I've learned to be very		
3	skeptical of those.		
4	MEMBER PETERSON: Okay. Well then		
5	I'd just ask for expert opinion as to the		
6	probability that Yucca Mountain might leak		
7	versus a deep borehole might leak from people		
8	who looked at the two technologies. And just		
9	a qualitative comparison.		
10	DR. NORTH: Again, let's think		
11	about it in terms of what's the level of the		
12	investigation. It is a number off-the-top-of-		
13	your-head; I think the probability is one in		
14	a 100 or is this after very serious review of		
15	all the applicable science and doing the		
16	calculations?		
17	On our Mars example, for example,		
18	we went into a lot of detail about the Martian		
19	atmosphere and about the way UV sterilizes		
20	microorganisms and which kind, and how do you		
21	know, and so forth to put this case together.		
22	It was not a set of off-the-top-of-the-head		

		Page	187
1	judgments. And it stood up to review by		
2	people like Joshua Lederberg and Carl Sagan,		
3	who were pretty smart about the biological		
4	aspects.		
5	MEMBER PETERSON: I agree.		
6	Actually, you need to make decisions based on		
7	substantial analysis. But my question would be		
8	should one try to minimize the risk that you'd		
9	be faced with reversal in a way that looks at		
10	both the probability that you might in the		
11	future learn that the system is not going to		
12	perform well? And can you evaluate that risk?		
13	And then also through how you		
14	phase the emplacement of waste, say, try to		
15	learn during an initial phase and have an off		
16	ramp as opposed to just continuing to do the		
17	same thing like we did at Savannah River and		
18	Hanford, even when you began to probably		
19	realize that you were generating a big		
20	mortgage by continuing down that path?		
21	CHAIR LASH: I think that Dr.		
22	Peters wanted also to respond.		

	Page 1	.88
1	DR. PETERS: You kept going and	
2	now I've got another thought.	
3	CHAIR LASH: Okay. Well, cover	
4	both.	
5	DR. PETERS: Well, I want to go	
6	back to boreholes. You know this, but your	
7	questions about boreholes, it all depends on	
8	what you're putting down there, first of all.	
9	You know that.	
10	MEMBER PETERSON: Yes.	
11	DR. PETERS: Is it cesium-	
12	strontium capsules or is it spent fuel? You	
13	know, those are two dramatically different	
14	things.	
15	And also, as you well know, the	
16	uncertainties associated with a field of	
17	boreholes if you're thinking about trying to	
18	understand geologically what's on down there	
19	if you've got a field of boreholes that you're	
20	trying to waste down, think about being able	
21	to understand geology between those boreholes,	
22	the uncertainties that are associated with	

		Page
1	that.	
2	So it's not a panacea like I hear	
3	some talk about: Well, let's just put it all	
4	down deep boreholes. I think we need to	
5	hesitate from going that direction. I don't	
6	think it's what I hear from; that's the first	
7	point.	
8	MEMBER PETERSON: Okay. I	
9	apologize. To operationalize this then, for	
10	example if one in your waste classification	
11	criteria were to categorize material by the	
12	likelihood that you might want to retrieve	
13	them and start with the stuff that you believe	
14	you're unlikely you want to retrieve, you	
15	would reduce risk of being faced with a big	
16	reversal bill, right?	
17	DR. PETERS: Yes, sir. So I think	
18	you're on the right track. So I think when	
19	you think about retrievability in the context	
20	of staging and adaptive management	
21	MEMBER PETERSON: Yes.	
22	DR. PETERS: I think you	

189

Page 190 separate safety and resource recovery first of 1 2 all, because they're at different phases in 3 the decision process. 4 MEMBER PETERSON: And to 5 operationalize that you would say well why 6 don't we focus initial disposal on, say, 7 cesium-strontium followed by high level waste, 8 then with a serious decision point there, 9 potential disposal of spent fuel, right? 10 DR. PETERS: That's a scenario, 11 yes. 12 That would maybe MEMBER PETERSON: 13 allow you to go to sites that have lower or 14 more expensive retrievability? You can retrieve at infinite expense, infinitely 15 difficult material? 16 17 CHAIR LASH: Per, can we move on? 18 I know Vicky has some questions. Allison has 19 another round of questions. I have an easy 20 and naive one. 21 Vicky? 22 Mine will probably MEMBER BAILEY:

		Page	191
1	be easy. Just a quick question.		
2	The capacity of boreholes, is that		
3	the same as we might see in permanent other		
4	geological? Can I have an answer to that?		
5	What's the capacity difference here that we're		
6	talking about?		
7	DR. PETERS: I don't have the		
8	numbers off the top of my head. There's		
9	reports on it. But in general, you drill a		
10	lot of boreholes, you can put a lot of stuff		
11	down it. But in terms of putting a lot of		
12	spent fuel down a borehole, like if we were to		
13	go that direction		
14	MEMBER BAILEY: Right.		
15	DR. PETERS: that to me is a		
16	bit more hard to imagine. You really need		
17	something mined, a mined repository, in my		
18	mind.		
19	MEMBER BAILEY: Okay.		
20	DR. PETERS: This is a personal		
21	opinion.		
22	MEMBER BAILEY: Yes.		

		Page	192
1	DR. PETERS: I see boreholes for		
2	specialized waste streams, I'll call it.		
3	MEMBER BAILEY: Okay. Any other		
4	comments on that? Go ahead, Dr. Murphy?		
5	DR. MURPHY: I've seen reports		
6	recently that our conventional estimates of		
7	high level or high activity wastes would		
8	require about a 1,000 boreholes.		
9	MEMBER MacFARLANE: Yes. That's		
10	for the existing stockpile of spent fuel.		
11	MEMBER BAILEY: Not for future,		
12	but current capacity. I'm sorry, I should		
13	have been more specific. Okay. All right.		
14	Actually, I want to go to Dr.		
15	Peters. Your responses on the regulatory		
16	changes and also on other regulatory issues,		
17	and Dr. Budnitz obviously mentioned from the		
18	standpoint of his views, he argued for a		
19	singled regulator. And I guess I want to ask		
20	Dr. Peters, is that where you were going with		
21	your thoughts on more appropriate interactions		
22	with the regulator? And how important during		

		Page	193
1	this staged process what can we do to do		
2	public acceptability?		
3	DR. PETERS: I actually didn't		
4	even go there on the two regulators versus		
5	one. If I'm implied it. Thank you, there's		
6	three. So you've got DOE, NRC and EPA. And I		
7	didn't even want to imply that I was going		
8	after that one. Bob went after it, for sure.		
9	MEMBER BAILEY: So I'm giving you		
10	a chance to.		
11	DR. PETERS: Yes, I'm going to go		
12	after it now.		
13	I personally think that we could		
14	do a much better job of simplifying it. So I		
15	would argue for a not so different than the		
16	WIPP model where you have one agency focused		
17	on developing the regs and the compliance, et		
18	cetera. So, I like that model.		
19	I'm not going to pick a winner,		
20	like Bob did.		
21	MEMBER BAILEY: Okay.		
22	DR. PETERS: I'll let the Congress		

decide who the winner is on that. 1 2 MEMBER BAILEY: Okay. Bob? DR. BUDNITZ: I just want to chime 3 4 in that. There is a very important pubic 5 policy purpose for multiple clumsy process. The Founding Fathers did it with how we enact 6 7 laws, and that's an extremely valuable thing. 8 They made it clumsy in order to assure against 9 quick one decision, off you go. And that has served the Republic well over more than two 10 11 centuries. 12 And I thin the federal system with its state and federal roles is another example 13 14 of that, quite separate from the way we enact federal laws. 15 16 In this case these are all federal agencies. And I said I don't understand the 17 18 pubic policy purpose for multiple federal. If 19 someone can tell me. Except the purpose of 20 making it clumsy, and I understand it. But 21 except for that, trying to make it slow and 22 clumsy and so on and if you're opposed to

Page 195 anything going on, you love clumsy processes; 1 2 you can sue 75 different times on different things. But if they're all feds working as 3 4 federal employees do to try to advance what 5 Congress told them is their mission and to try 6 to advance the sensible public policy, I don't 7 understand it. I mean, it's as simple as 8 that. Okay. 9 MEMBER BAILEY: And back to Dr. 10 Peters, on your risk-based versus source-based 11 approach can you talk to me a little bit more about why you favor one over the other? 12 Well, I think it's 13 DR. PETERS: 14 similar to kind of the way we go with riskbased regulation overall. 15 16 But let's back up. So if you look 17 at the regulatory and statutory framework now, 18 what I mean by source-based is anything that 19 was derived from reprocessing as being high 20 level waste, quite frankly just to simple. 21 There's details in there that people in this 22 room could talk to better than I, but that in

	Page
1	and of itself is a restrictive classification
2	in that some of the waste streams that come
3	from reprocessing aren't, in fact, high level
4	waste there.
5	So if you truly look at it from a
6	risk perspective, then some of the waste
7	stream could be handled as low level waste,
8	for example, which could or could not be
9	handled in a different disposal environment.
10	But I think we're basically looking if you
11	retrieve this source, you're not really
12	looking at the risks and the health effects.
13	So it's really an old way of looking at what
14	now we're already going to risk-informed
15	performance-based regulations overall anyway.
16	So to me, the waste classification system
17	eventually needs to catch up; that's my
18	perspective.
19	MEMBER BAILEY: Any other comments
20	on it? All right. Thank you.
21	CHAIR LASH: So I'm going to ask
22	one questions. I hope several of you will

196

Г

		Page	197
1	respond. It follows up on Vicky's questions a		
2	moment ago. And then I'll come back and start		
3	with the second round with Allison and Per.		
4	I found it very helpful, Dr		
5	Budnitz, your explicit conclusion:		
б	(a) That we need to unify the		
7	regulatory process. It doesn't make sense to		
8	have multiple agencies for public policy		
9	reasons;		
10	(b) Recommend that a specific		
11	agency, and;		
12	þ In the course of recommending a		
13	specific agency, you essentially articulated		
14	some criteria. You recommend NRC because it		
15	is independent, has the expertise, and		
16	essentially has a culture of considering these		
17	issues that you thought was useful.		
18	DR. BUDNITZ: And a process.		
19	CHAIR LASH: Yes. And I'd like to		
20	divide that into several pieces, and make sure		
21	I get input from others on the panel as well		
22	on this.		

		Page	198
1	Would you recommend that the		
2	process be unified regardless of the choice of		
3	agencies?		
4	DR. BUDNITZ: Yes.		
5	CHAIR LASH: And secondly, do you		
6	think that those criteria could be it's		
7	essentially balancing the criteria. And I had		
8	the sense that you thought independence was		
9	most important. And then after you've		
10	answered that, I'd like to hear from any		
11	others.		
12	DR. BUDNITZ: In that sense I		
13	think I can correct myself.		
14	CHAIR LASH: Okay.		
15	DR. BUDNITZ: I think the most		
16	important is that the Nuclear Regulatory		
17	Commission has demonstrated a long record of		
18	very high technical competence and they've		
19	shown it in how they've gone about both		
20	establishing the regulations for Yucca		
21	Mountain and the interaction over a decade		
22	with the applicant, the DOE and its		

Page 199 contractors, and how they've gone about this 1 2 review. 3 If you look carefully at how EPA went about certifying WIPP, you will find no 4 5 impugning of their motivations, of course. 6 That process was far less detailed, intense, 7 technical and drawn-out. 8 Now I'm not arguing. WIPP's a great site. I was on the applicant's side for 9 that, namely Sandia employed me and some 10 others for a decade to help them review the 11 12 technical basis for what they put in. So in 13 that process, I was actually on the side of 14 the applicant. 15 But when I watched the regulator 16 do what they did, and they did a good job, but 17 they didn't muster the resources that I would 18 have hoped. They didn't ask as many or many 19 rounds, or as much detail, okay? Again, I'm 20 not impugning. 21 But the thing that really troubled 22 me was, and I'll say this as directly as I

1			
		Page	200
1	can, the single most important thing EPA does		
2	is air pollution. There' was an office, it		
3	was called Air and Radiation Programs.		
4	CHAIR LASH: And Noise. Air		
5	noise.		
6	DR. BUDNITZ: Oh, excuse me. And		
7	air was 99.999. And if you were running that		
8	office, radiation was down here somewhere.		
9	I'm not saying they didn't do a good job. But		
10	Nuclear Regulatory Commission had I'm		
11	talking about the WIPP process without		
12	impugning any of the motivations and the fine		
13	work of the staff, they didn't the resources,		
14	they didn't ask for them, they didn't get them		
15	so they didn't do it. What they did was, you		
16	know WIPP turned out to be a wonderful site.		
17	It turned out the analysis was very robust, so		
18	it went through. And I'm happy about that.		
19	But if I asked that to happen in		
20	the Office of Air and Radiation at EPA today,		
21	air is still going to be more important.		
22	And so I find that structurally an		

		Page	201
1	issue. That has not to do with the		
2	competence, but with the resources that they		
3	brought or they could bring, or that political		
4	processes would allow them to bring. Okay?		
5	CHAIR LASH: So, having gotten an		
6	even more clear response from Budnitz, I		
7	wonder whether anybody else has any other		
8	views, particularly on other criteria that		
9	might be important?		
10	MR. McCARTIN: Well, it terms of		
11	the two regulators or one, if you will, I		
12	think the roles of EPA and NRC are defined		
13	well. While we don't always agree, we have		
14	over the years with the Yucca Mountain		
15	regulations we've had a lot of interactions.		
16	I think it's resulted in better standards and		
17	regulations.		
18	I don't know if it's that clunky.		
19	I think there are a lot of reasons why things		
20	have taken so long for Yucca Mountain. They		
21	aren't necessarily problems with EPA and NRC.		
22	The one thing I guess I would		

		Page
1	caution is that there are other requirements	
2	that NRC is responsible for in Part 60 or 63	
3	that I think are somewhat unique to NRC's	
4	licensing approach. And we have safeguards	
5	materials, things of that nature, security	
6	that if it was just the post-closure standard	
7	it would be one thing, but with spent fuel and	
8	other items that will be there, there are some	
9	unique aspects that I think NRC at this time	
10	is the right agency for that particular	
11	material.	
12	But, you know, I'd be interested	
13	what Dan wants to say. But I've felt the	
14	interactions have helped the process.	
15	CHAIR LASH: Thank you.	
16	Mr. Schultheisz?	
17	MR. SCHULTHEISZ: Yes. I would	
18	have to agree with Jim about the interactions	
19	in the Yucca Mountain process. And we	
20	actually left some certain decisions in the	
21	2008 for the beyond 10,000 year standards to	
22	NRC to determine; the long-term climate	

202

Page 203 characteristics. And so there's a lot of 1 2 interaction there, there's a lot of expertise that NRC has. 3 And I will not disagree that their 4 5 program is much better resourced than the 6 radiation program at the EPA, and probably 7 will always remain so. You know, that's part 8 of their fundamental mission is dealing with 9 all aspects of the nuclear fuel cycle, and that is just other than the standard setting 10 11 part of it, that is not really an EPA mission 12 critical function. 13 And so I can't disagree that we 14 had a much smaller team involved in certifying and now recertifying the WIPP probably than 15 NRC would have been able to bring to bear. We 16 17 did not do independent performance assessments. NRC did. 18 We did not do a lot of other independent research, as NRC did. 19 20 Of course, you could argue that 21 Yucca Mountain, the spent fuel high level 22 waste program is going to demand far more

Page 204 resources than the DOE defense TRU program 1 2 would in any case, and that may be a legitimate issue. 3 But I do agree with Tim that the 4 5 agencies have become I think much smoother at 6 working together over the past decade or so. 7 CHAIR LASH: Anybody else? Dr. 8 North? 9 DR. NORTH: I would urge the 10 Disposal Subcommittee to think more broadly as you are going to do this afternoon with the 11 12 institutional panel. 13 There is the task of setting 14 regulation, and then there is the task of evaluating a license application such as NRC 15 16 is now doing. I would urge those tasks to be 17 separated. And I would urge consideration of 18 19 outside review groups, including committees of 20 the National Academy of Sciences who 21 repeatedly review WIPP, Bob Neill I hope will 22 talk about his group and their activities in

|--|

1 WIPP this afternoon. It isn't just a matter 2 of a federal regulatory agency. It's a debate 3 to try to get out what is the best science and 4 are we making decisions properly given what we 5 know about the science. 6 So having information and 7 skepticism come in from a variety of other

8 parties seems to me something that is very 9 much needed to be encouraged rather than there 10 is a project manager, which might be a federal 11 agency like DOE, and then there is a 12 regulatory authority which might be EPA, NRC 13 or some combination. I think it should be 14 more broad then that.

15 CHAIR LASH: As a lawyer coming to 16 this kind of problem, I think I would expect 17 that there would be a proposer, a disposer and 18 a rulemaker and that those are very separate 19 functions and should be kept separate. Ι 20 understand that that's somewhat of an 21 oversimplification in this context. 22 Dr. Budnitz and then we'll move on

Page 206

1 to Allison.

2	DR. BUDNITZ: I just want to
3	disagree with Warner. But I want to start out
4	by saying that Warner and I studied freshman
5	physics together. I was a sophomore and he
6	was a freshman in 1959 or '58, so we kind of
7	know each other for a couple of years.
8	I respectfully want to disagree
9	with Warner about something. You know, I'm a
10	reactor guy, in the reactor the Nuclear
11	Regulatory Commission is constantly modifying
12	the regulations as cases and details come up
13	in the context of some broader, but then they
14	modify details, either guidance or regulation,
15	because the thing they wrote nine years ago or
16	even two years, or 14 years ago doesn't fit
17	the case. And they have to do that. And so
18	they have varies processes for either modest
19	changing the guidance or sometimes changing
20	the regulations all the way to the Federal
21	Register and the Administrative Procedures
22	Act, or sometimes it's at a lower level.

Page 207

1	Now if you got to go to another
2	agency to do that, that's clumsy and I don't
3	understand the public policy purpose of that.
4	In fact, it actually gets in the way because
5	one of the things you want to do if an issue
б	arises is to make sure the regulator in a
7	prompt and useful way provides the right
8	guidance or regulation, as it may be, to the
9	applicant who is trying to adjust what they
10	found to the case and still maintain safety
11	and security and environmental protection.
12	And I'm really worried about the
13	implementation phase, and I've been worried
14	about this for the longest time.
15	Imagine Yucca Mountain was going
16	ahead and they're nine years into it, and
17	they're emplacing and they find something.
18	Going back to another agency, boy, is that
19	clumsy. I just don't see it as satisfying the
20	purpose. Okay?
21	And that's down in the details,
22	not just setting standards which I could

		Page	208
1	understand a little, although even that I		
2	don't.		
3	CHAIR LASH: Allison, you've been		
4	waiting patiently.		
5	MEMBER MacFARLANE: Okay. Great.		
6	So although Bob and I violently disagree on		
7	something, we violently agree on others.		
8	DR. BUDNITZ: You bet.		
9	MEMBER MacFARLANE: That's right.		
10	And because you have lots and lots		
11	of experience here and I respect all of that,		
12	I would like to hear from you on a couple of		
13	questions and also maybe Bill Murphy and		
14	Warner as well. And this question isn't one		
15	that you were asked, but because you're		
16	sitting there I want you to answer it.		
17	What agency or entity do you think		
18	should manage the characterization site		
19	selection, that kind of thing, of this whole		
20	process?		
21	And then I want to ask you all		
22	about waste classification and whether you are		

Page 209 satisfied with it or not, and how you would 1 2 change it? 3 So, Bob, yes. 4 DR. BUDNITZ: You're asking me? 5 Well, as far as I'm concerned, the 6 logic is the applicant does everything needed 7 to support the application for permission 8 using and following the guidance set down by 9 the regulator as to what is necessary. 10 MEMBER MacFARLANE: Yes. So who 11 should that applicant be if it were up to you? 12 DR. BUDNITZ: Well if it was up to 13 me, well first of all the applicant today is 14 a federal agency. 15 MEMBER MacFARLANE: Right. 16 DR. BUDNITZ: If I was rewriting 17 the regulation? 18 MEMBER MacFARLANE: Yes. 19 I think that --DR. BUDNITZ: 20 MEMBER MacFARLANE: You mean the 21 If you were rewriting the law. law. 22 DR. BUDNITZ: Excuse me. Yes. If

	Page 210
1	I was rewriting the law, I'm not sure and
2	I haven't thought a lot about this because I'm
3	actually trying to be engineer. About whether
4	the model of an independent agency like TVA
5	makes more sense then letting it be in the
6	Cabinet, a part of a Cabinet office. I
7	haven't thought that through. I understand
8	the arguments pro and con, but I haven't
9	thought through them and I just don't want to
10	go there. But I understand there's pros and
11	cons there.
12	MEMBER MacFARLANE: Okay.
13	DR. BUDNITZ: To me, though, the
14	essential thing is that the applicant, whoever
15	it is, must be responsible for developing the
16	whole case fitting within the guidelines laid
17	down by the regulator as to what the case is.
18	MEMBER MacFARLANE: Do you not see
19	that to be the case right now?
20	DR. BUDNITZ: Oh, it's the case
21	now. It's the case now. You bet.
22	MEMBER MacFARLANE: Right.

1		
	Page 23	11
1	DR. BUDNITZ: And it, if you don't	
2	mind my saying, worked at WIPP and it worked	
3	at Yucca Mountain to that stage, yes.	
4	MEMBER MacFARLANE: Okay. And	
5	waste classification?	
6	DR. BUDNITZ: The idiocy of the	
7	current system, and that's a strong word but	
8	I'm going to use it, is that certain wastes	
9	that look identical, this one and this one,	
10	are regulated differently just because of	
11	their source.	
12	MEMBER MacFARLANE: Yes.	
13	DR. BUDNITZ: That's a historical	
14	artifact that goes back to the '50s. Excuse	
15	me. Goes back to the original Atomic Energy	
16	Act, which was in the '40s. And has been	
17	maintained because of its historical inability	
18	to just it's just inertia, and it doesn't	
19	make sense.	
20	MEMBER MacFARLANE: Yes.	
21	DR. BUDNITZ: For example, as	
22	perhaps you know, we have some wastes that are	

		Page	212
1	regulated highly and another identical waste		
2	isn't regulated at all by anybody. Why?		
3	Because one's an NARM and one's NORM, and ones		
4	raffinate I mean, where'd that come from?		
5	It came from history. That don't make any		
6	sense.		
7	If you don't know what NARM and		
8	NORM are, I'll give you a lecture later.		
9	MEMBER MacFARLANE: Okay.		
10	DR. BUDNITZ: Okay. But the idea		
11	that we should regulate waste streams based on		
12	their characteristics has impeccable logic.		
13	And the idea of regulating by the source of		
14	their material doesn't make sense to me.		
15	How's that?		
16	MEMBER MacFARLANE: Okay. Warner,		
17	go ahead.		
18	DR. NORTH: I'd commend to you the		
19	chapter reviewing international programs in		
20	this report and the recent report by Dan		
21	Metlay for Nuclear Waste Technical Review		
22	Board on the international programs. It seems		

Page 213 to me that there are a number of models being 1 2 used outside the United States that have some 3 real virtues to them. I was particularly 4 interested in and impressed with SKB as the 5 applicant in Sweden and SKI as the regulatory oversight agency. 6 7 It seems to me that you want an 8 applicant that is both very highly motivated, 9 has access to the best science and the best 10 engineering, and also has a very strong motivation to reach out into the communities 11 where a repository or storage site might be 12 located and develop a relationship with those 13 14 communities. 15 It seems to me SKB has done that 16 job very well. I don't know a lot about it, but I would urge you to investigate. 17 18 MEMBER MacFARLANE: And the waste 19 classification? 20 DR. NORTH: This is with respect 21 to the Swedish repository program. 22 MEMBER MacFARLANE: Right. I know.

		5	014
1	I know. But what do you think about the	Page	214
2	current waste classification system? And if		
3	you don't like it, how should it be changed?		
4	DR. NORTH: I think I'm going to		
5	leave that for other people.		
6	MEMBER MacFARLANE: Okay. Bill?		
7	DR. MURPHY: First of all, I can't		
8	comment on waste classification. It's not		
9	something I've studied or have expert judgment		
10	about.		
11	One question I think you posed was		
12	who should do site characterization.		
13	MEMBER MacFARLANE: Yes.		
14	DR. MURPHY: And I think that's an		
15	excellent question.		
16	I think that it gives me an		
17	opportunity to say something I wanted to say		
18	earlier in response to the question whether or		
19	not Yucca Mountain was more complicated than		
20	other potential sites.		
21	I've worked on several sites, and		
22	I've studied many others, and they're all		

		Page	215
1	complicated. That's the nature of the system.		
2	Many of the fundamental		
3	assumptions about the WIPP site, which was		
4	purported to be simple before they built it,		
5	were completely wrong: The permeability, the		
6	creep rate, the amount of water that's there.		
7	MEMBER MacFARLANE: Yes.		
8	DR. MURPHY: Very fundamental		
9	things about the WIPP site that were believed		
10	before they did site characterization turned		
11	out to be wrong.		
12	Many of the things that are		
13	thought about Yucca Mountain before site		
14	characterization turned out to be wrong. And		
15	people still sometimes say it's a dry site.		
16	That's absurd. It's ten percent water above		
17	the water table. And I think a problem that		
18	we faced in the case of Yucca Mountain was		
19	that the site was selected before it was well		
20	characterized. Site characterization is		
21	essential and it's hard. It's complicated.		
22	The systems are inherently complicated. It		

		_	01.6
1	doesn't mean that they're impossible.	Page	216
2	We've learned a great deal about		
3	Yucca Mountain. The entire science of		
4	groundwater flow in fractured unsaturated rock		
5	has changed because of Yucca Mountain. So		
6	it's not that there isn't expertise adequate		
7	to address the hard problems, but it needs to		
8	be done and preferably before decisions are		
9	made.		
10	MEMBER MacFARLANE: Yes. And who		
11	should do that?		
12	DR. MURPHY: I don't know who		
13	should do it. But I know in the case of Yucca		
14	Mountain there was really excellent work done		
15	by the people at Los Alamos on site		
16	characterization. There was really excellent		
17	work done by the USGS on site		
18	characterization. There were excellent work		
19	sponsored by the NRC Research Office for a		
20	while. And so there were a lot of players.		
21	Livermore did some work on site		
22	characterizations. So the National Labs were,		
	F	age	217
----	--	-----	-----
1	I think, principally the agencies where the		
2	expertise was.		
3	CHAIR LASH: Per, do you have		
4	additional questions?		
5	MEMBER PETERSON: Yes. The first		
6	thing I'd like to do is to go back just		
7	shortly to retrievability and look at the two		
8	different reasons why one might want to		
9	retrieve. Because one is that you want to get		
10	the material back out because you've		
11	determined that it might have some value. And		
12	then the other is that you determined that		
13	there's something about the performance of the		
14	system is not going to be acceptable and you		
15	want to try to fix that.		
16	For the first, I guess, Mark, you		
17	expressed a lot of discomfort with putting		
18	spent fuel into boreholes. Is that because you		
19	would believe that you could get into the		
20	performance problem or into a resource		
21	recovery problem?		
22	DR. PETERS: Well, it was partly		

		Page	218
1	because it was both. It was partly resource		
2	recovery problem, but also because it's the		
3	shear number of boreholes and the		
4	complications of getting spent fuel down a		
5	borehole. There's other operational, but		
6	there's the shear volume. To me if you're		
7	going to dispose of spent fuel, there's		
8	perfectly good media. You could go out and		
9	build a nice mined repository that		
10	operationally is much easier to deal with.		
11	That's just kind of intuition on it. But		
12	resource recovery is a part of it, correct,		
13	likewise.		
14	MEMBER PETERSON: Okay. On the		
15	case of the performance problems, the other		
16	alternative if you discover them is to		
17	mitigate, right? So to what extent can we		
18	have some judgment about how much we should		
19	rely on the possibility to mitigate potential		
20	problems versus retrieve, going back again to		
21	the fact that it's possible that by selecting		
22	a site and engineering to enhance		

		Page	219
1	retrievability you might in the end actually		
2	get worse performance and therefore, end up		
3	more likely to retrieve it because of what		
4	you've done?		
5	Tim?		
6	MR. McCARTIN: Certainly the		
7	intent of NRC regulations is not to make the		
8	site less safe. And so we would look very		
9	dimly on retrievability designs that look like		
10	they were making it less safe. So we would		
11	certainly not try to do something like that		
12	and not have a licensee feel they had to do		
13	that.		
14	In terms of mitigation, our		
15	regulations have the provisions that it's		
16	expected that different conditions will be		
17	encountered. When DOE encounters that, they		
18	have to analyze it and see what they might do.		
19	You know, if it changes the safety		
20	significantly, they need to come back to the		
21	NRC and we need to evaluate that and see what		
22	the next step is.		

Page 220 Clearly, any decision to retrieve 1 2 safety purposes will carry with it a fair amount, I would assume, public debate and 3 4 discussion and, hopefully, be transparent 5 what's done, whether there's other conditions 6 that can be relied on so it doesn't need to be 7 retrieved or it needs to be retrieved. The 8 intent, at least from a safety standpoint, is 9 not to make the site less safe. The same thing has been said with 10 11 performance confirmation testing. What are you going to do to confirm? Well, there's a 12 13 lot of things you might want to do. You 14 wouldn't do things that make it less safe. Warner, and then 15 MEMBER PETERSON: 16 one other question. DR. NORTH: 17 I'd like to tell a 18 story about the early days of the Nuclear 19 Waste Technical Review Board with respect to 20 retrievability. 21 The original plan for spent fuel 22 at Yucca Mountain was to emplace it vertically

Page 221

down a shaft and put it in boreholes. My
Chairman, Don U. Deere looked at this in his
first months as the Chair of the Nuclear Waste
Technical Review Board and thought this was a
crazy idea.
You could come in from the side

7 with essentially a horizontal tunnel where you 8 could take these very heavy waste containers 9 and you could move them around much more 10 easily, and you will avoid a great many problems in terms of the safety issues of 11 putting a very heavy thing down a shaft and 12 13 getting it emplaced properly. 14 So, I would urge that we think

15 about this not just as a regulatory issue, but 16 as a good management and operations and safety 17 issue of how the operator is able to emplace 18 and then maybe move around or even retrieve 19 the waste materials and how that can be done 20 in a way that doesn't lead to a lot of worker 21 exposure to radiation or the potential for old 22 fashioned industrial accident, et cetera.

		Page	222
1	CHAIR LASH: Did you have another		
2	question, Per?		
3	MEMBER PETERSON: Actually, no.		
4	CHAIR LASH: Vicky, any more?		
5	Oh, did you want to add something,		
6	Dr. Budnitz?		
7	DR. BUDNITZ: Yes. I had a comment		
8	about Per's.		
9	At Yucca Mountain when the final		
10	analysis that was submitted was done, the		
11	risks of those doses to the receptor on the		
12	surface were really quite low. But one of the		
13	dominant risks turned out to be from		
14	earthquakes. Even though of these very low		
15	doses, a lot of it was from earthquakes, large		
16	earthquakes out in the future that were not		
17	sure to happen in any given year, but were		
18	sure to happen over millennia sooner or later.		
19	And that analysis was one in which I was		
20	particularly participating during the few		
21	years I was at Livermore, because what I do in		
22	reactors is a lot of that stuff: Seismic.		

Page 223

	1
1	And we ended up with a good deal
2	of uncertainty about how it would actually
3	behave. But the bounding analysis we did,
4	which was I think very robust, convinced us
5	that that particular repository was actually
6	very nicely chosen and designed against that
7	phenomena.
8	We now believe that earthquakes
9	way larger than the earth can probably sustain
10	will, nevertheless, not compromise the overall
11	performance. So if someone says "What about
12	earthquakes," because there are earthquakes in
13	that area. You can't say there aren't. Of
14	course there are. Those earthquakes that we
15	understand might happen over the millennia, or
16	even hundreds of millennia, turnout in the
17	analysis not to compromise the overall
18	criteria. And that's wonderful.
19	Now, that isn't necessarily
20	something anybody knew going in. I'm talking
21	about back in the '80s, nobody knew that. In
22	fact, we didn't figure it out until the middle

		Page	224
1	2000s, which is really a comeuppance when you	2	
2	think that had it come out otherwise, we would		
3	have been very, very unhappy.		
4	If the earthquakes by themselves		
5	would have compromised what was otherwise		
6	absent earthquakes a good site design		
7	combination, there probably would have had to		
8	been an awful lot of work to figure out what		
9	to do. It probably might have been done, but		
10	it was very hard.		
11	Now that tells you something, and		
12	you got to be humble about this. One of the		
13	problems we have is that retrievability is		
14	there in case our children or their children		
15	learn something, science or engineering, that		
16	we didn't know or have a different perspective		
17	on it which forces them to say you know, they		
18	were doing the best they could our		
19	grandparents, but we don't think that's good		
20	enough. To me, that's the fundamental thing.		
21	This resource recovery thing, I		
22	understand that, but it just doesn't wash with		

	Page 225
1	me. We're talking about safety here. And it
2	seems to me that with that in mind, again the
3	Yucca Mountain site is particularly suited for
4	that in a way that salt is not.
5	By the way, salt you can recover
6	it, okay, but boy is it hard compared to a
7	mined thing that's there for a couple hundred
8	years and you don't have to do anything. You
9	can go back in.
10	And I don't know how to balance
11	that. Let me describe. This is a crucial
12	point. We have as a fundamental principle in
13	our society that we've enunciated throughout
14	this process around the world the issue about
15	equity across generations.
16	On the one hand, the generation
17	that made the waste ought to pay for its
18	disposal. All right. On the other hand, we
19	want our grandchildren to be able you can
20	finish the sentence. On the one hand we want
21	them to pay. On the other hand, will our
22	grandchildren have to pay a lot because of an

		Page	226
1	error we inadvertently made? That's a		
2	judgment which is only to be confronted in the		
3	event that some mistake is found and which		
4	will tear your hair out all the way along.		
5	So it comes down in the end it's a		
б	policy call that somebody has to make. And		
7	who is the place that makes it? In our		
8	regulations today it's the five Commissioners		
9	at NRC who make that call.		
10	And by the way, if it was EPA, it		
11	would be the Administrator. Okay?		
12	Now, that's not only appropriate,		
13	it's the way we do things here. All right.		
14	And I like that way because it seems to me		
15	that these intergenerational equity things are		
16	something you can't write into a regulation,		
17	and you can't even give much guidance except		
18	the words. But they do come down to a		
19	judgment, depending on the site, the waste and		
20	the design, which I don't see how to foresee		
21	even except just a trust that the decision		
22	maker will do it right.		

Page 227 CHAIR LASH: I have one last 1 2 question that actually flows from that. It's about the boundary between expertise and 3 4 social values. And it comes up with respect 5 to the question of length of time in which you 6 assess risk. And I find your arguments about 7 a million years quite persuasive, but I think 8 we will face this question in other areas than 9 just whether it's a thousand, ten thousand or 10 a million years. And I was very struck by the testimony we heard from Elizabeth Dowdeswell 11 who managed the Canadian process. And as I 12 13 understood what she was saying, they 14 essentially turned the whole analysis upside 15 down. Rather than having a group of experts 16 come with a proposal and the public respond 17 it, they had the public say what are the 18 values that are most important and then went 19 back to the experts and said how could you 20 achieve a result that adheres to these values. 21 And this is a difficult issue. How 22 do we take advantage of the enormous expert

Page 228

1	capacity that we see here that you have at
2	NRC, and at the same time recognize where
3	there are areas where really it's the public
4	values that have to come first and that will
5	shape whether the outcome is legitimate and
6	maintainable.
7	So, I just welcome comments from
8	any of you on what the right boundary is and
9	what kind of process we can design to
10	accommodate it.
11	DR. NORTH: Tom Isaacs and Lee
12	Merkhofer, who consulted for the Canadians,
13	and I had a class about a year and a half ago
14	where we compared the Canadian process with
15	our knowledge of the process in the United
16	States.
17	I think there's a lot to be said
18	for having a bottom process involving the
19	public to get them to understand the nature of
20	the problem before we go out prescribing
21	technical solutions. My thoughts on the
22	matter reflect two National Academy studies

		Page	229
1	that I've been a part of. One in 1996 called		
2	"Understanding Risk," and another in 2008		
3	called "Public Participation In Environment		
4	Assessment and Decision Making." These are		
5	both referenced in my one page statement. And		
6	I would be delighted to talk at length about		
7	them, but I'm restraining myself right now.		
8	CHAIR LASH: I've relied on them		
9	both.		
10	Any other comments?		
11	DR. PETERS: I guess one plea. I		
12	agree with you, but to me whatever comes out		
13	the end of this process, hopefully, new policy		
14	I would like the policy to prescribe that		
15	process as opposed to just saying "Tell the		
16	Government to go do it," if I may.		
17	CHAIR LASH: Right.		
18	DR. PETERS: Because I can		
19	imagine, you can imagine. And, you know you		
20	may say that's micromanagement, but actually		
21	I think that's a very, very complicated		
22	question and I think that there needs to be		

		Page	230
1	some level of guidance provided to the		
2	Government about how exactly to engage the		
3	public in the right way.		
4	DR. BUDNITZ: But, just to defend		
5	what's what, the Administrative Procedure Act,		
6	APA, was followed by EPA when they adopted the		
7	first 191. And I want to tell you, the EPA		
8	went through 25 or 30 drafts of that thing		
9	between, you know A and Z. And I may be the		
10	only person on the planet that's got all of		
11	them in a box in the basement. I was pretty		
12	much involved at that time. And there was		
13	constant interaction with the public of the		
14	time, 1980/'81/'82.		
15	Tom Cotton is nodding, because he		
16	was part of it at OTA at the time, and others		
17	in the room. To get this feedback about the		
18	10,000 years and the level of protection, and		
19	you remember this thing about how many deaths		
20	there were going to be over the ten millennia.		
21	It wasn't as if that process failed in the		
22	sense that anybody, and lots did, could chime		

		Dage	221
1	in, and they did. It wouldn't be accurate to	ruge	277
2	say that that process of adopting 191 in 1981		
3	was done absent public interaction.		
4	Then, of course, NRC did Part 64,		
5	same process.		
6	Now, if you didn't chime in, well		
7	okay you got a chance later because as Tom		
8	Cotton showed, there were nine different times		
9	when everything was being revisited so you had		
10	plenty of chance to get in there. I don't		
11	think that the APA, properly implemented, is		
12	a flawed process for enabling public		
13	participation.		
14	And by the way, of course the		
15	public also includes the people who sued, the		
16	people who had standing in hearings. Sometimes		
17	the standing was denied because they couldn't		
18	show it. There's a whole lot of things, you		
19	know legal and technical.		
20	It seems to me we had a process		
21	that worked in principle. Why didn't it work		
22	in practice? It broke down when one site was		

	Page
1	picked. That's where it broke down. Okay.
2	One site was picked, absent the full
3	information.
4	CHAIR LASH: That is Congress
5	broke the rules?
6	DR. BUDNITZ: Wait, wait. No.
7	Congress makes the rules.
8	CHAIR LASH: I understand. But
9	the social understanding was of a different
10	process.
11	DR. BUDNITZ: There was a compact
12	which Congress embedded in the EPA. Everybody
13	understand this? And which didn't happen for
14	a reason in 1987 that we can revisit.
15	By the way, the second repository
16	program OCRD that was going to find a
17	repository in hard rock in the east was also
18	eliminated in '86. It's all part of that same
19	sort of political thing. There was a compact
20	in which there was going to be a second
21	repository east of the Rockies, and some of
22	you remember that. I was actually part of that

Page 233

1 process, too. It was awful.

2	And so if you're going to try to
3	put a process in place that's different then
4	that, it will like this process always be
5	subject to override, just as if you don't mind
6	my saying, just as the cancellation of the
7	Yucca Mountain thing, if you don't mind my
8	saying, was in Budnitz' view extra legal.
9	Now, you know, okay, it' extra
10	legal. I mean, by the way, Budnitz' stuff
11	isn't extra legal, but the policies are extra
12	legal. But it happened. Okay? I'm grown up,
13	right? You can't do anything about that,
14	Jonathan Lash, as best I can tell except just
15	hope that we'll work together.
16	MEMBER PETERSON: Jonathan, can I
17	have one more question?
18	CHAIR LASH: Per?
19	MEMBER PETERSON: I have one
20	additional question. To make an informed
21	decision about whether a site is sufficiently
22	suitable that if you pursue it, you have a

reasonably good expectation that you can be 1 2 successful to meet regulatory criteria and license and construct a site, one needs to 3 4 collect some information that likely depends 5 on the specific characteristics of the 6 geologic media and stuff. Is there someplace 7 one can go to get some idea of what specific 8 information do you really need to have 9 collected to be able to make an adequately informed decision? Because I don't want to 10 11 get a specific technical answer, but at least is there someplace to go to get that 12 information? Is it just boreholes? 13 Do you 14 actually have to mine out into the material or at what level do you have enough information? 15 16 DR. NORTH: I can't address how 17 much information is adequate. But I would say 18 that an organization that had that problem 19 should definitely go around the world and 20 visit all the other nuclear waste repository 21 programs. Because a great deal of geological 22 exploration and inputs into performance

> Neal R. Gross & Co., Inc. 202-234-4433

Page 234

Page 235 assessment have been done in many national 1 2 programs across a wide range of types of site. 3 MEMBER PETERSON: But is there 4 someplace I can go to find out what things 5 would you need to do to get to the point of 6 being able to make a informed decision? 7 DR. BUDNITZ: Yes. 8 DR. NORTH: Yes. 9 MEMBER PETERSON: If the answer is 10 yes, that's good. Yes. The second 11 DR. BUDNITZ: 12 repository program, OCRD, the Office of Crystalline Repository Development, which was 13 14 looking at all these sites in the east from 1981 or '82 until it was canceled in '86, and 15 I was in the thick of that, and Bill maybe ran 16 it at Battelle Columbus, had a carefully 17 18 thought out and public process determination 19 of just those things. And it's all in the 20 It was very carefully -- they had record. 21 huge public meetings; 500 people showed up in 22 Atlanta for three days. And all of those

		Page	236
1	things.		
2	Remember, they had 27 different		
3	sites in all different media all over the		
4	east; the east, Midwest, southeast and so on.		
5	And they had public input from people in a		
б	zillion states; 20 of them and their agencies.		
7	And it was all carefully thought		
8	out. It's still in the record. I've got		
9	copies of it. And it remains a very valid		
10	logic for site investigation and criteria.		
11	CHAIR LASH: And go to the		
12	European. Go to a couple of the European		
13	programs, I would argue to.		
14	MEMBER PETERSON: And then the		
15	next element is how much time is it likely to		
16	take once you say I want to get information		
17	about a specific place that there's reason to		
18	believe might be reasonably good? How long		
19	does it take to collect the information needed		
20	to make that informed decision? Is it one		
21	year, is it five, is it 50?		
22	CHAIR LASH: Tim and then, Mark,		

	Page	237
1	you were hesitating around a response. And	
2	then we'll wrap up.	
3	MR. McCARTIN: Yes. I mean at the	
4	initial stage, I think first of all you need	
5	to know what you're going to dispose of.	
6	Because the nature of your source term will	
7	have a dramatic effect on what you need and	
8	what you're interested in in the natural	
9	system.	
10	Ultimately, I think everyone looks	
11	at where does the water go. I think you have	
12	to understand where the water goes. You've	
13	got waste, you've got water and then the types	
14	of disruptive events that might effect things;	
15	that's your initial look. And then you start	
16	doing some of the site investigations.	
17	I think back to Hanford, Hanford	
18	the only thing you could say that there was a	
19	work going on. The more information that was	
20	collected consistent with what Bill Murphy was	
21	saying, you got more uncertainties.	
22	If I have a single borehole, I	

		Page	238
1	have a very simple model that is true. You		
2	start collecting more. But I think ultimately		
3	the water is what removes the waste and takes		
4	it somewhere where you might not want it.		
5	MEMBER BAILEY: Tim		
6	DR. PETERS: I usually take the		
7	bait on stuff like this. There's too many		
8	qualifications: It's not one and it's 50,		
9	it's ten.		
10	MEMBER PETERSON: If it is tens,		
11	then we've got a big policy problem. I think,		
12	you know just the willingness to try to do		
13	this over again		
14	DR. PETERS: I understand. I		
15	understand.		
16	MEMBER PETERSON: becomes		
17	unappetizing if it's going to take a really		
18	long time.		
19	DR. PETERS: Well, if you think we		
20	can go out there and do this in two to five		
21	years, I think that's not my perspective is		
22	that's hard to imagine for all the reasons		

Page 239 we've been talking. When you go out and 1 2 actually start studying something, you learn how complex it really is. And so we need to do 3 this right this time. And so you've got to 4 5 take the time to do it right. And so we do 6 have a policy challenge because you have to 7 give us the time and the cover. 8 I use "you" collectively. We need 9 the time to do it right. 10 CHAIR LASH: Vicky had a follow-11 up. 12 MEMBER BAILEY: Yes, just real 13 quick. 14 Tim, and others, I keep hearing 15 about it depends on the type of waste. Civilian waste, defense waster, military. 16 17 Tell me what are you saying when you say "it 18 depends on the type of waste." 19 MR. McCARTIN: Well, certainly 20 well the half-life and the quantities and 21 types of things. I mean, if you have a lot of 22 plutonium, you're interested in certain

		Page	240
1	things. If you have removed the plutonium and		
2	you're interested in other nuclides, you may		
3	have different concerns at a particular site.		
4	MEMBER BAILEY: So that will make		
5	a difference whether it's a mined repository		
б	or boreholes? Are we talking used fuel, spent		
7	fuel? We talking military?		
8	You know, we're here to look at		
9	all of it. If I'm into reprocessing, am I		
10	going to		
11	MR. McCARTIN: Right. But the		
12	acceptability of a particular site can depend		
13	on the type of waste that you're going to		
14	dispose of. That's all I was trying to say.		
15	MEMBER BAILEY: Would you see		
16	multiple sites if we had two or three and we		
17	said, well at one site we're doing one thing		
18	and at another site we're doing something		
19	else? Help me understand what you're saying.		
20	MR. McCARTIN: Yes. Well		
21	MEMBER BAILEY: If I'm to get it		
22	right, is that what Dr. Peters says?		

	P	age	241
1	MR. McCARTIN: Well, as he was		
2	suggesting with the strontium and cesium for		
3	deep boreholes, it's pretty good for that.		
4	Maybe it requires more characterization, more		
5	understanding for input of plutonium down that		
6	borehole. And I think that's all the		
7	MEMBER BAILEY: Is there an issue		
8	as it relates to water surface levels, other		
9	issues that I have to think about depending on		
10	the type of waste?		
11	I don't mean to pinpoint Tim.		
12	DR. NORTH: What may give you one		
13	issue with respect to Yucca Mountain if you		
14	emplace spent fuel, which has not been cooled		
15	for a long period of time, you are injecting		
16	a lot of heat into the rock formations next to		
17	where the place has been placed. That heat		
18	may drive off water. And the water goes away		
19	in the rock and with the heat it may dissolve		
20	some chemicals in the rock that change the		
21	corrosiveness of the water.		
22	So, it isn't just about		

Page 242

understanding the repository, it's understanding the repository as a system which has, for example, heat going into it that is not anything that that type of nature would have experienced.

6 In Yucca Mountain this became a 7 design variable: How hot do you want to get 8 the rock? And there were discussions about we 9 want to go well above the boiling point of water or we want to spread the waste out more 10 so that you wouldn't have that level of 11 12 heating occur in the rock in the early years. 13 And then as part of the 14 performance assessment you have to say what are the consequences of various levels of 15 16 heat? Do you get corrosive water that might come down on the canister and cause the 17 canister to erode faster than would have 18 19 happened under natural situations? In other 20 words, you don't have a natural system, you 21 have a system which has been changed. 22 CHAIR LASH: I would like to thank

		Page	243
1	you all. This has really been a fabulous		
2	exchange, enormously useful for us. Thank you		
3	very much for your patience with some of our		
4	questions, which are things that you probably		
5	dealt with when you were undergraduates 40		
6	years ago. But in any case, it's been a very		
7	session.		
8	Fifty, yes.		
9	We will reconvene in one hour. So		
10	ten minutes later than scheduled. And I'll see		
11	you all in an hour.		
12	(Whereupon, at 12:38 p.m. the		
13	above-entitled matter went off the record and		
14	resumed at 1:39 p.m.)		
15			
16			
17			
18			
19			
20			
21			
22			

Page 244 A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N 1 2 1:39 p.m. 3 Okay, if I could get MR. FRAZIER: 4 your attention, we are going to resume the 5 meeting and start the afternoon session. So 6 without further ado, I will turn it over to 7 Senator Hagel. CHAIR HAGEL: 8 Thank you, Tim. Good 9 afternoon and we again thank our distinguished 10 panelists. We, this afternoon, will turn to 11 12 other aspects of the regulatory institutional 13 system that will be needed to make the system 14 effective and publicly acceptable. We will 15 ask our next panel to advise us on these 16 issues. 17 With us for this panel this afternoon we have Robert Neill, Director 18 19 Emeritus of the New Mexico Environmental 20 Evaluation Group. Welcome. 21 Dr. Michael Voegele. Is that 22 correct? Voegele. As I said, Dr. Michael

		Page	245
1	Voegele, independent consultant and former		
2	chief scientist for the Yucca Mountain project		
3	and we appreciate you being here.		
4	Steve Frishman, Technical		
5	Consultant to the State of Nevada Agency for		
6	Nuclear Projects. Steve, good to see you		
7	again. Thank you.		
8	Dr. Hank Jenkins-Smith, Professor		
9	and Associate Director at the Center for		
10	Applied Social Research at the University of		
11	Oklahoma. Nice to have you. Thank you. I		
12	just spoke to your president about two hours		
13	ago, Senator Boren, and he wishes you well and		
14	says don't embarrass him.		
15	(Laughter.)		
16	CHAIR HAGEL: No, he didn't say		
17	that. He spoke very glowingly of you and how		
18	fortunate we are to have you. So, thank you.		
19	And Dr. Roger Kasperson, research		
20	professor and distinguished scientist, Clark		
21	University, thank you as well.		
22	Let's being with Mr. Neill. Thank		

		Page
1	you.	
2	MR. NEILL: Thank you, Mr.	
3	Chairman.	
4	CHAIR HAGEL: And you all know the	
5	rules and ten minutes, and so on. Okay.	
6	MR. NEILL: Thank you. In 1978,	
7	New Mexico had a number of concerns about the	
8	proposed transuranic waste facility by DOE but	
9	lacked the resources to address them. DOE	
10	offered to fund an independent technical	
11	evaluation and the state accepted. I set the	
12	group up. I was the director for 22 years,	
13	retiring a year after WIPP opened in the year	
14	2000.	
15	Now the punch line is that it is	
16	absolutely vital that a state have an ability	
17	to do a detailed technical evaluation of a	
18	proposed repository. Well what are some of	
19	the essential elements for a state review?	
20	Well one, obviously is	
21	objectivity. You don't want people on the	
22	staff that are either violently pro nor anti	

		Page
1	on it. It is sort of obvious.	
2	Independent. It is essential that	
3	the work not be subject to political approval.	
4	And as a matter of fact, when a governor of	
5	New Mexico intervened on EEG and didn't like	
6	some of the answers we were coming up with and	
7	felt perhaps we were being a little too hard	
8	on DOE, both Senator Domenici and Senator	
9	Bingaman intervened to assign the group from	
10	state government to New Mexico Tech. And I	
11	will always be eternally appreciative to both	
12	those gentlemen for their efforts to ensure	
13	the credibility of the work that was being	
14	done.	
15	Also, you need to have people that	
16	are really confident, senior knowledgeable	
17	staff. Virtually everyone I hired had a	
18	graduate degree of some type in different	
19	disciplines. Also multi-disciplinary is	
20	obvious but it is important to note that the	
21	key issue here is the potential radiation	
22	exposure to people from one of these	

		Page	248
1	facilities. Therefore, it is essential that		
2	the leadership be vested in radiological		
3	health or radiation protection, or health		
4	physics, whatever you want to call it.		
5	We decided from the very beginning		
6	that we wouldn't just write a nasty letter to		
7	DOE or so but we would publish our reports.		
8	And over the course of the time we published		
9	80 reports, put out 500 copies on the street		
10	and this was really good. So if we were		
11	raising an issue, DOE couldn't just blow it		
12	off or ignore it and people would say well how		
13	about that, DOE, is this reasonable or is this		
14	unreasonable?		
15	Presentations at public and		
16	professional meetings are essential and also		
17	it is necessary to keep the legislature and		
18	the congress fully informed. I probably		
19	testified 50 times before the state		
20	legislature and the congress over the course		
21	of my work there.		
22	We also had formal field trips		

		Page
1	where we had people of diverse views present	
2	their views and we wrote them up in a detailed	
3	report, which was published. We encouraged	
4	the staff to have key roles in the	
5	professional societies. As a result of this,	
6	I was fortunate in being asked to be a member	
7	of a number of committees at the National	
8	Academy of Sciences, DOE, EPA, and also OTA,	
9	when we had that and the Aspen Institute.	
10	Long story short, we determined	
11	that DOE had met the EPA standards and	
12	recommended disposal. And part of the success	
13	of WIPP at the risk of sounding immoderate is	
14	public confidence from the EEG evaluation of	
15	the impact on public health.	
16	Two things that are, in general,	
17	lacking at times in here was candor and	
18	humility in saying what the uncertainties in	
19	protections of potential disruptions over	
20	10,000 years, whether they are manmade or	
21	naturally occurring destructions. And the	
22	example I would use is that all our mothers	

		Page	250
1	are very, very proud of the work that we have		
2	done and, you know, I really trust this		
3	totally but when you start telling your own		
4	mother what people are going to be eating		
5	10,000 years from now or what the potential		
6	root of exposure of these materials coming		
7	back to the biosphere, you know, your own		
8	mother may have some questions as to the		
9	validity of those assumptions.		
10	Now what is WIPP, again? It is a		
11	nineteen billion dollars repository and the		
12	critical radionuclide is plutonium-239 for		
13	WIPP. It is the long-lived, 24,000-year one.		
14	And a reminder that the contact handle		
15	transuranic waste is respirable. There are no		
16	limits on the respirability. It is soluble.		
17	It is not fused in an insoluble matrix. And		
18	it is contained in the 55 gallon carbon steel		
19	vented drum. The isolation is essentially		
20	based on the containment in the salt beds.		
21	The absence of engineered barriers		
22	are when we proposed the legislation it was		

Γ

		Page	251
1	required that engineered barriers be included.		
2	The amendment was modified before it was		
3	passed to say that engineered barriers shall		
4	be used if necessary to show compliance with		
5	the standards. And since they were able to do		
6	the calculations without the engineered		
7	barriers, none were included, although we have		
8	a magnesium oxide but that is not one		
9	important.		
10	Two important things on this slide		
11	is that the public acceptance is far greater		
12	for activities involving the defense of our		
13	country. This is known intuitively, whether		
14	you call it patriotism or what have you but		
15	there is a greater receptivity and acceptance		
16	of those types of activities.		
17	And I might mention you ought to		
18	point out that on high-level waste, ten		
19	percent of the inventory is defense-related.		
20	Secondly, on the hazards of the		
21	radwaste, the states do not regulate either		
22	high-level waste nor transuranic waste. DOE		

	Page 252		
1	does. The responsibility was given to them by		
2	the Congress but the states do regulate the		
3	non-radiological components.		
4	Now in the case of WIPP, the		
5	question was raised this morning, they are		
6	trivial exposures from the non-rad components.		
7	And the agreement that the state has with DOE		
8	is that nothing in this agreement shall relate		
9	to the radiological constituents in the waste.		
10	Now, on lessons unlearned on waste		
11	disposal, it is essential that we plan,		
12	evaluate, and plan some more to avoid this		
13	changed-our-mind syndrome. There are a dozen		
14	examples in the paper published earlier this		
15	year.		
16	One other thing which is important		
17	is consistency in disposing of materials. DOE		
18	was able to dispose of the transuranic waste		
19	in shallow land burial prior to 1970 and did		
20	so. And that was legally correct. Since		
21	then, we now have new standards requiring deep		
22	geologic disposal and the material that, for		
		Page	253
----	--	------	-----
1	example, at Los Alamos, is under three feet or		
2	six feet of dirt. This is acceptable because		
3	it is legally correct.		
4	There is a paper published in the		
5	UNM Law School Journal earlier last month by		
6	my daughter and myself, as a matter of fact,		
7	urging DOE to dig up these materials and put		
8	them in WIPP for consistencies sake.		
9	A 1957 NAS report was cited		
10	frequently here last meeting but it didn't		
11	mention the fact that they said, hey, you		
12	ought to resolve the major technical concerns		
13	before you authorize construction. Those		
14	words of wisdom sort of went down the tube.		
15	And don't use the screening technique of		
16	identifying the criteria that is desirable for		
17	a site, where you have five, and then you		
18	narrow it to three, and then one. We don't		
19	use that in choosing a spouse where we list		
20	the criteria that we want in a repository is		
21	equally a serious decision for it.		
22	At national meetings, there are		

		Page	254
1	any number of papers that are presented but we		
2	always talk about the transparency and		
3	openness. You never see papers presented		
4	saying how we really messed up. We spent		
5	these funds unwisely. They really didn't get		
6	On the low-level waste sites, six of the		
7	first ten had to be closed because they		
8	leaked. Oak Ridge had the open pits where the		
9	rainfall was less than the evaporation. Now		
10	it is true most years. Some years it wasn't		
11	and we had a real mess on our hands.		
12	So, on the regulatory standards it		
13	is essential that one resolves jurisdictional		
14	disputes between the agencies promptly. You		
15	cannot evaluate any performance without a		
16	yardstick to do so. I think it is		
17	unconscionable that the two regulatory		
18	agencies, NRC and EPA spent over two years at		
19	loggerheads arguing about what their		
20	respective roles were. And I would recommend		
21	that the Commission take steps to try to		
22	adjudicate those kinds of things promptly.		

		Page	255
1	Probabilistic analyses are		
2	essential and the public understands that		
3	fully. You don't need deterministic ones.		
4	Lastly, predicting a dose from the		
5	materials becoming back to the biosphere,		
6	resuspended and inhaled as is ingestion from		
7	diet over one million years, that is a		
8	meaningless exercise and those standards must		
9	be revisited.		
10	By the way, most of the NRC and		
11	EPA standards are salvageable. There is no		
12	reason to go back and reinvent the wheel from		
13	scratch.		
14	And before we had EPA standards,		
15	Sandia did the calculations on WIPP of		
16	calculating max doses at 1.6 million years.		
17	So I just throw that in to be fair on it, even		
18	though I am opposed to the one million year		
19	criteria.		
20	Asking Congress to solve technical		
21	regulatory problems should go out the window.		
22	If DOE wanted to bring waste to WIPP for		

		Page	256
1	experiments, you have got Congress to approve	-	
2	that and they said take that a step further.		
3	Not only do the experiments, you have got to		
4	do them before you bring waste for disposal.		
5	The experiments were without merit and had to		
6	be cancelled. The law then had to be changed.		
7	Also, the EPA required 10,000 year analyses.		
8	Congress then asked NAS to take a shot at it		
9	and came up with a million years.		
10	And I think the moral of the story		
11	here is don't ask Congress to do the work that		
12	we want to do.		
13	Now, it is important to provide a		
14	perspective on this which is sometimes		
15	lacking. This illustrates the total U.S.		
16	population exposure; that in two decades, the		
17	medical radiation exposure to our population		
18	went up by a factor of 7.3. As a matter of		
19	fact, the nuclear exposure went down by a		
20	factor of 0.2 but one is 9,000 times greater		
21	than the other. I mean, it is as though we		
22	have a bookkeeping system where we account for		

	Page 257
1	the pennies and don't bother to count the \$100
2	bills. This is a report by the NCRP last
3	year; 160. It is a very reputable group. And
4	the reason why the public is seemingly
5	accepting of this is that the public believes
6	that the benefits of the early detection
7	outweigh any risks of the radiation exposure.
8	Mind now that medical is 50 percent of the
9	total population exposure that we have. It is
10	an enormous number and I would submit that it
11	is terribly important that the Commission urge
12	all the principles to not only do risk
13	analyses which are vital but do benefit
14	analyses as well. What are the benefits of
15	some of the high-level waste, whether it is
16	energy independence, whether it is solving
17	problems with some of the defense high-level
18	waste and things of that type?
19	So this is extremely important and
20	we need to put them all into perspective. You
21	know, that thousands of people die each year
22	from starvation in Africa. Food irradiation

	Page 258
1	can increase the shelf life by months. There
2	is no electricity. The food spoils. People
3	have to shop every day. And this is an
4	example of the beneficial aspects of ionizing
5	radiation.
б	CHAIR HAGEL: Mr. Neill, could you
7	wind up?
8	MR. NEILL: Yes, sir.
9	CHAIR HAGEL: And then we will get
10	all of your panelists there ten minutes and
11	then we will get the questions. Thank you.
12	MR. NEILL: Yes, sir. Twelve
13	seconds.
14	Ten million has been spent to date
15	and we have collected twenty-two billion from
16	ratepayers. Yucca was expected to cost
17	ninety-seven billion. The new one will be
18	greater than that. And the future funding is
19	going to be far more difficult to obtain and
20	I would recommend that the Commission consider
21	trying to get those funds collected and that
22	they be put in a separate account, rather than

Page 259 the general treasury. 1 2 Thank you. 3 CHAIR HAGEL: Mr. Neill, thank you 4 very much. Dr. Voegele? 5 MR. VOEGELE: As the person who 6 doesn't really belong on this panel, I will 7 try not to dig myself into too deep of a hole. 8 The questions that you asked are rather broad 9 and it would take far more than ten minutes to do them justice. 10 I have chosen to take a small bite 11 12 of the apple and I am reacting in particular to the statement about avoiding extended out-13 14 of-sequence confusing process of regulatory development. 15 16 I am going to examine selected 17 aspects of the regulations that are traceable 18 to policy that I will try to identify that 19 really complicated the disposal program or 20 caused concerns related to what is normally 21 caused as changing the regulations to fit the 22 site.

Page 260 I want to point out that the themselves do not lead to the

2 regulations themselves do not lead to the abandonment of Yucca Mountain. 3 Those regulations are difficult but they are 4 5 understandable. They are clumsy and 6 proscriptive but the Department of Energy was 7 able to prepare and docket a license 8 application. So I am going to present some 9 observations about why I believe the regulations and to evolve and maybe a lesson 10 learned that is a little different from you 11 12 were expecting. There is perspective in my 13 points that I think you have to expect that is 14 going to happen in the future as well. 15 As to the social part of this, I 16 personally don't think the public involvement 17 in the program was meaningful -- The Yucca 18 Mountain program was meaningful. I do think 19 it was meaningful in the WIPP program and that 20 is why I don't think anybody was satisfied by 21 it. And it is very easy to try to write that 22 off as part of the difference between working

1

Page 261 within a peer democracy and a constitutional 1 2 democracy but I prefer to look at it as an issue that we were dealing with some very well 3 4 intentioned goals that were just poorly 5 implemented in terms of involving the public. 6 So we will go from here. The 7 policy basis I want to talk about involve the 8 interagency review group in 1979, which is a 9 source of the position the country adopted to solve the waste disposal problem within the 10 current generation's lifetime. And I want to 11 make it very clear that I agree with that goal 12 13 but I don't necessarily agree with the way it 14 was implemented. I don't think that you had 15 to solve something. You had to make something 16 happen within 30 years and lock the door and 17 walk away and never think about it again. Ι 18 believe it is perfectly legitimate to talk 19 about finding a way to solve that problem and 20 maybe passing onto the future generations an 21 opportunity to become involved, if it is 22 There we go with the public necessary.

Page 262

1 involvement.

2	I want to mention a couple of
3	things about the Nuclear Waste Policy Act as
4	a precursor to these comments. It did cause
5	us to have three federal agencies involved and
б	that led to some complexity that I am going to
7	talk about in a minute. One thing I want to
8	point out here as an example of public
9	involvement is the Nuclear Waste Policy Act
10	required the Department of Energy to create
11	environmental assessments for looking at
12	selecting the sites to go forward for
13	characterization. And in developing the
14	citing guidelines for the environmental
15	assessments, the Department of Energy believed
16	they were involving the public but they ended
17	up with a set of regulations that could not be
18	printed within the amount of space that a real
19	environmental assessment would allocate to
20	addressing those types of concerns. So it is
21	a situation where the Department was trying to
22	address the congressional perspective of

		Page	263
1	involving the public but created something		
2	that he public couldn't deal with in the way		
3	the public was used to dealing with it.		
4	I want to talk a bit about the		
5	National Research Council's report in 1990.		
6	You heard about that this morning and I am		
7	going to focus on a couple of different		
8	aspects of that and I am going to talk about		
9	why the National Academy's Board of		
10	Radioactive Waste Management believed we were		
11	on a path to failure with the complexity of		
12	the regulatory structure we had at that time.		
13	A little bit on the regulations.		
14	You heard a lot from Dr. Cotton this morning		
15	and I just want to highlight a couple of		
16	things he said and add a few extra		
17	perspectives.		
18	40 C.F.R. 191 originally was a		
19	release standard and its own science advisory		
20	board had suggested to the Environmental		
21	Protection Agency that that was not the proper		
22	way to do this and the environmental		

Page 264 protection agency responded and suggested that 1 2 if we went with the dose-based standard, it would encourage looking for sites which would 3 4 actually disperse the waste and the EPA didn't 5 want that. And please feel free to forward to 6 2008 when we actually have that type of 7 standard today, but nonetheless, that was an 8 issue in screening. 9 Another issue that the EPA was 10 dealing with was rather than having a full risk-based regulation, they based a regulation 11 on what they believe was technically 12 achievable. In fact, there is a quote and I 13 14 don't have it with me that something to the effect that if we did not believe that 15 16 repositories were capable of performing so 17 well, we might have made a different 18 standards. 19 Finally, I will emphasize what Dr. 20 Budnitz talked about. The Science Board 21 disagreed with them and one particular thing 22 they disagreed with was not only the level of

Page	265

1 the standard but the probability that was used 2 for the screening criteria and that is still 3 haunting us today.

4 The Nuclear Regulatory Commission, 5 in developing their Rule 10 C.F.R. Part 60 6 dealt with subsystem performance objectives. 7 Mr. McCartin talked about that this morning 8 and that was a way to address uncertainty. A 9 point that I want to really emphasize and this is building on the solving it within a single 10 generation's lifetime, is the reasonable 11 12 assurance finding that the finding that the Nuclear Regulatory Commission makes to say 13 that we believe that this can be done safely 14 is done before construction begins. And that 15 is also true of 10 C.F.R. Part 63. 16 That is 17 not conducive to setting up a program that we will talk about a little bit later on that 18 19 gives people an opportunity to learn from 20 experience such as was done with WIPP during 21 the recertification processes. 22 I wanted to mention that the

		Page	266
1	Nuclear Regulatory Commissions have never had		
2	sole reliance on the natural barrier system.		
3	And you will often hear people criticizing		
4	those regulations and that is not true. There		
5	has never been sole reliance on the natural		
6	barrier system. And the point that I want to		
7	leave you with specifically, and this sets you		
8	up for some of my next viewgraphs, in 1985,		
9	the Nuclear Regulatory Commission amended 10		
10	C.F.R. Part 60 to allow disposal of the		
11	unsaturated zone. That gives you a real		
12	glimpse into what those regulations were at		
13	that time; not just we are going to add		
14	something. This is to allow disposal in the		
15	unsaturated zone.		
16	So you are looking at Yucca		
17	Mountain being an unsaturated zone site. We		
18	did not even in the NRC's mind have a		
19	regulation that allowed disposal in the		
20	unsaturated zone.		
21	Moving on to the Department of		
22	Energy citing guidelines. My principle		

		Page	267
1	comment there, again, they were not required		
2	to be promulgated as a rule and DOE went		
3	through a rule making process and created		
4	something that was so large, it ended up with		
5	a 6,000-page environmental assessment,		
6	including the comment responses, as opposed to		
7	150 pages as an average member of the public		
8	might have expected for such a document.		
9	Nuclear Regulatory concurrence was		
10	required. Commission concurrence was required		
11	on those citing guidelines. And again, I am		
12	going to come back to that in just a minute,		
13	why that is crucial.		
14	The Nuclear Waste Policy Act		
15	itself had some guidance to the Department of		
16	Energy about screening. And this is where the		
17	disqualifying condition concept came from 10		
18	C.F.R. 960 and those led to expectations as		
19	well on the part of people. And I am going to		
20	try to conclude with a perspective on the		
21	difficulty in dealing with a simple to		
22	understand regulation that can be strictly		

Page 268 enforced, as opposed to one which really deals 1 2 with risks to mankind. We mentioned this earlier this 3 4 morning. The Environmental Protection Agency 5 remand in 1987 was procedural. It was not technical and the Energy Policy Act of 1992 6 7 was meant to be a remedy for that. 8 Now the Nuclear Waste Policy Act 9 amendment created some regulatory issues as 10 well. One of them is the Department of Energy had not amended its citing guidelines when the 11 12 NRC amended its rule to allow disposal in the 13 unsaturated zone because it wanted to compare 14 all sites equally. It did not want two different sets of criteria for comparing one 15 site for another. That left DOE after the 16 17 Waste Policy Act was amended with a single 18 site that did not match the siting guidelines. 19 You can begin to understand whey 20 we had to change the rules to fit the site. 21 DOE put themselves in a pretty bad position. 22 This is not quite so important. The

Page 269

Environmental Protection Agency began with a 1 2 saturated zone focus and I think Tom talked about that this morning with a carbon-14 3 4 issue, the gaseous versus solid. But again, 5 EPA did not have specific criteria to address 6 unsaturated disposal issues. 7 And this was said this morning as 8 well and I will just reiterate it because I believe it as well. There was a lot of public 9 frustration following what was seen as 10

11 reneging on a commitment that was made to pass 12 the Nuclear Waste Policy Act. Those of you 13 who many people have had the privilege of 14 hearing me speak about the Yucca Mountain site 15 and one thing I have never said is Yucca 16 Mountain was selected fairly.

Now I want to talk about the Board on Radioactive Waste Management statements on how they affected U.S. policy. And I am sure you are all familiar with the statement that said the program is unique in its rigid schedule, its insistence on defining technical

		Page	270
1	requirements in advance for every part of the		
2	multi-barrier system. The part that sometimes		
3	gets lost, we are up to yellow already, you		
4	started me earlier, is that the encouraging		
5	expectation of absolute certainty about the		
6	safety of the repository program is a		
7	scientific trap that can't be done for 10,000		
8	years.		
9	And I will close with the bottom		
10	point there. A policy that promises to		
11	anticipate every conceivable problem or		
12	assumes that science will shortly provide all		
13	the answers is bound to fail.		
14	So lessons learned. Changing the		
15	rules to fit the site was necessary,		
16	technically but I don't think you could have		
17	found a worse thing to do institutionally. We		
18	just had to change those regulations because		
19	they didn't fit the site and yet everybody		
20	believed that that was bad.		
21	More than lip service is needed to		
22	involve the public. The public wants rules		

		Page	271
1	that are simple and strict. Nevada's argument		
2	that it had to give up the veto to be able to		
3	negotiate with the Department of Energy, that		
4	is vital. I have said this in shorthand,		
5	hundreds of concerns that the NRC staff did		
6	not consider acceptable, I meant that to mean		
7	that in a different environment, many of those		
8	things might have been able to have been		
9	worked out before they became contentions.		
10	So very, very quickly I will try		
11	to wrap this up. The path forward has to have		
12	trust, has to deal with the uncertainty, has		
13	to deal with time. There must be real public		
14	involvement with this. The responsibilities		
15	must be real. I believe the state needs a		
16	role of responsibility and I believe there		
17	needs to be a compensation package.		
18	So my last viewgraph is for my		
19	last 30 seconds. Twenty-one years after the		
20	remand, we basically ended up with the		
21	international consensus regulatory position of		
22	how you should be doing that, although their		

		Page	272
1	screen probability is still too low. I		
2	believe there were important lessons to be		
3	learned from WIPP. The public involvement and		
4	the re-certification approach I think is key.		
5	It is something I think we would like to see		
6	in a new program. And I think we need to		
7	remember the large first-of-a-kind engineering		
8	projects will benefit from proceeding in		
9	stages.		
10	Thank you.		
11	CHAIR HAGEL: Dr. Voegele, thank		
12	you.		
13	Mr. Frishman.		
14	MR. FRISHMAN: Thank you. I first		
15	have to say that while I am a technical		
16	consultant to the State of Nevada, what you		
17	hear from me today is from me after 30 years		
18	of experience, having gone through the		
19	regulatory process, as well as the entire		
20	Nuclear Waste Policy Act process, even from		
21	before it was written. And I have spent the		
22	entire time working from the perspective of		

	Page	273
--	------	-----

1	the state first of Texas and then of Nevada.
2	So I have seen this from a very different
3	direction from almost everybody else you have
4	been hearing from.
5	I want to go directly to your

6 question about how can needed regulations be 7 developed in a coordinated, consistent and 8 timely manner? And instead of going through 9 the litany of all things good, I decided that 10 it might be more interesting to just intuitively see what kind of a process could 11 12 possibly look. And I started out thinking 13 well, do we try to invent something that is 14 absolutely novel? Do we try to work with systems that are there already that can be 15 16 modified and maybe overcome some of the 17 difficulties, such as long periods of time 18 that it took both EPA and NRC to get 19 regulations straight but on different paths. 20 But some of that having to do with major 21 debates within their own agencies and some of 22 it having to do with debates between the

	P
1	agencies. So how do you address something
2	like that?
3	I also went through, I think, all
4	of the processes from both of those agencies
5	and from DOE in developing their regulations
6	and guidelines and they all had different
7	personalities. They all treated people
8	differently. They all said how proud they
9	were of their dealing with the public and as
10	Mike has observed as well, they were talking
11	at the public. They weren't getting
12	involvement and they weren't, in terms of
13	anything effective that the public could
14	actually do. You know, it is come and listen,
15	we will tell you. And I remember even one
16	instance where, and I will get back to this
17	point in a minute, where NRC and EPA staff
18	people actually sat on the same stage in
19	Denver and they wanted to talk to the
20	representatives from the various effected
21	states. But the talk turned out to be a
22	demand session on the part of those two agency

Neal R. Gross & Co., Inc. 202-234-4433

Page 274

Page 275 staffs were tell us what you don't like about 1 2 our regulations. And this was before the 3 regulations were even final and that was a rather bruising day for everybody and we gave 4 5 back some bruises that were well-deserved. 6 So trying to put together a scheme 7 and try to preserve what may be good and see 8 if we can side-step what may not be so good, 9 it occurred to me that there is a combination of things that might actually suggest it could 10 be successful, starting with putting together 11 an expert panel of EPA expertise staff, NRC 12 13 staff, and experts from the public, and 14 diverse experts from the public, people from 15 the fields that know about radiation, people 16 from the fields who know about environment, 17 and on and on with that list. Diversity is 18 the important point. 19 Have this panel put together a 20 nationwide inquiry, maybe starting out 21 following the pattern that EPA has seemed to 22 move into when it is proposing regulations,

		Page	276
1	and that is pose some sort of large-scale		
2	questions but make it very clear that these		
3	are only example questions. People can talk		
4	about whatever they need to talk about in		
5	terms of what they thing regulations should		
6	be.		
7	And while that crystalline rock		
8	program over 20 years ago convened large		
9	groups of people and listened to people, or		
10	tried to listen to people, or said they		
11	listened to people, in this one I think it		
12	really needs to be a discussion where the		
13	public is able to say what concerns them about		
14	the safety of high-level waste disposal in the		
15	context of today's circumstances.		
16	We certainly shouldn't ignore the		
17	path but I think people think differently now		
18	from what they did 20 years ago about		
19	radioactive waste, in some cases regression		
20	and in some cases progress. I don't want to		
21	judge either right now.		
22	But I think a national inquiry,		

Page 277 what got me thinking about that was the 1 2 apparent benefits that came from the one in Canada on a broader scale but this would be 3 primarily dealing with regulation. And this 4 5 panel then produces a report that literally 6 doesn't make, necessarily even make recommendations. It just records what they 7 8 heard and organizes it. 9 And one of the things that has 10 always been a rub is that too many people in 11 the meetings that we are used to are told that what they are saying is out of scope, which 12 13 means it is going to ignored for sure by the 14 people who are writing the regulations. Well, with a regulation such as 15 this, there should be a NEPA evaluation of the 16 17 regulations. So therefore, the scope should 18 be wide opened because the information gained 19 is not only to write the regulation but to 20 write the NEPA evaluation of the regulation. 21 So once the report is done and the 22 report should be probably issued in draft form

		Page	278
1	so people can see what the panel did here and		
2	how they organized it and if they feel they		
3	want to make recommendations, that is fine,		
4	but I don't think it is mandatory.		
5	Once that is written, then that		
6	becomes the guide for writing the regulation.		
7	And while I don't intend to say anything that		
8	sounds like I am agreeing with Bob Budnitz,		
9	but I think it should be a single regulation		
10	and I think it should be, even though I am not		
11	beholden to anybody, I think it should be		
12	written by the Nuclear Regulatory Commission		
13	and I think it should be written with the		
14	assistance and advice of EPA, the panel		
15	members who were there and heard it all.		
16	And also, at least with the		
17	oversight of the public members of that panel,		
18	so that they can see that the regulation is		
19	one or way or another faithful to what the		
20	panel heard.		
21	I think this will go a long way.		
22	And what got me sort of thinking of going in		

Page 279 this direction is that I first was a little 1 2 curious when you said that the theme of today was going to be regulation and I started 3 thinking, well, why would you start there. 4 5 And it occurred to me there is a really good 6 reason for starting there. And that said, if 7 there is no confidence in the regulation 8 itself, there is no confidence in anything 9 that falls from there. So unless the people believe that the regulations are in fact aimed 10 at their safety and I think they need to have 11 12 the assurance that it is generic, generic 13 meaning everyone is equally saved, then from 14 there, you may have the chance of devising a 15 program that could flow from at least a 16 feeling that people are being protected in 17 this really complex area. And so that would leave us with a 18 19 process that I think as I said sort of was 20 inspired in part by the Canadian process. Ιt 21 also, think, has a couple of other advantages. 22 It takes what I see as the good of both APA,

		Page
1	Administrative Procedures Act, review and	
2	comment rulemaking, and the good of a	
3	negotiated rulemaking because those	
4	discussions with the public and with a	
5	knowledgeable panel who can sort of try to	
6	pull out of the public what they think the	
7	public is really concerned about and really	
8	interested in, I think that sort of brings out	
9	or takes advantage of some of the good of	
10	negotiated rulemaking.	
11	At one point there was even a	
12	suggestion, everybody was so frustrated, there	
13	was a suggestion that there be a negotiated	
14	rulemaking for the high-level waste program.	
15	And we were all I still believe, correctly,	
16	scared to hell. It would have been a	
17	bulldozer job. We didn't have enough in	
18	common to negotiate anything.	
19	So but in this case, I think if	
20	the people believe that the panel is serious	
21	about we are trying to figure out what you	
22	want in the way of safety, that still will be	

Page 281

technically competent and still will satisfy the regulatory needs that we know we have, then move on from there.

4 I suggested the NRC primarily 5 because they have a structure in place and 6 they have a structure that while for the 7 hearing portion is really close to the public. 8 The public organizations and individuals don't 9 stand a chance in that system but organizations do who can afford it and states 10 11 do. So inviting states and local governments and tribes in early, so that they actually 12 13 feel that they have some ownership on the 14 regulation, will then maybe encourage them 15 later to play or to do whatever they can to be involved in a hearing if it comes to that 16 17 later. But I think we have to recognize that 18 it is out of the public's hands once it gets docketed, once an application is docketed. 19 20 And I don't know what more can be 21 done about that, other than the agency still 22 has to deal with an environmental impact

		Page	282
1	statement to go with a regulator's decision		
2	and the public should be encouraged to come		
3	back into that, rather than being forced to		
4	write contentions on a NEPA document which		
5	NEPA never intended to have happen.		
6	Thank you.		
7	CHAIR HAGEL: Mr. Frishman, thank		
8	you. Now to Senator Boren's favorite Oklahoma		
9	professor		
10	(Laughter.)		
11	CHAIR HAGEL: Dr. Jenkins-		
12	Smith.		
13	MR. JENKINS-SMITH: That is a		
14	scary proposition. It really is.		
15	My name is Hank Jenkins-Smith. I		
16	am a professor of public policy. I will be		
17	talking today about a synthesis of work that		
18	I have been doing for the last 25 years at		
19	Oklahoma, Texas A & M University and the		
20	University of New Mexico. This work was		
21	sponsored over a long period of time by all		
22	those universities, by Sandia National Lab, by		

		Page	283
1	National Science Foundation and other		
2	organizations. I will be synthesizing that		
3	today.		
4	Let me just start by saying that I		
5	believe that we start out with a structural		
б	credibility deficit that is really a		
7	combination of the way we have designed our		
8	policies concerned with used nuclear fuel and		
9	the way our institutions are structured. The		
10	history, particularly at Yucca Mountain but		
11	elsewhere, has been one of relative		
12	inflexibility with how we have defined those		
13	institutions. They have been built initially		
14	with a particular objective that trapped the		
15	policy debate in particular ways.		
16	The policy designs can be built		
17	that reflect public concerns in a way that can		
18	really increase the prospects for public		
19	support. There is no guarantees in this game		
20	but you can design the initial policy in a		
21	fashion that either pushes you down a road of		
22	greater contention or that provides the		

Page 284

	-
1	prospects for greater support.
2	And the last issue I want to get
3	to here is that the regulatory process
4	interacts with the level of controversy
5	associated with the policy over time. And
6	that changes the way that the technical
7	communities that are involved can engage in
8	this process, which creates a different type
9	of organizational challenge.
10	Used nuclear fuel management
11	raises a bunch of interesting kinds of
12	problems. We begin right now at a point where
13	there is substantial support for nuclear
14	energy, for increasing the share of U.S.
15	energy supply that comes from nuclear power
16	plants. What is intriguing about that is that
17	that change in perspective has come about
18	largely because of changes in the perceived
19	benefits of having independent supply within
20	the United States that assures a large base.
21	It is not because people have seen the risks
22	of things nuclear as diminishing over time.

		Page	285
1	So it is a benefit-cost		
2	calculation on the part of the public and we		
3	have tracked how that has evolved over time		
4	but it isn't because the risks seem to have		
5	gone away. The challenge for the management		
6	of used nuclear fuel and the potential for		
7	recycling or disposal is that when we focus on		
8	that piece of the policy process, we are		
9	really looking from the public standpoint at		
10	the costs and not the benefits. We have		
11	isolated a piece of what is seen as generally		
12	a beneficial direction for U.S. policy but for		
13	purposes of talking to the proposed host		
14	communities, we have isolated all the bad		
15	parts. And that frames the way the policy		
16	debate can happen in that community in an		
17	unfortunate fashion. It generates a lot more		
18	opposition than support.		
19	Let me preface this by saying		
20	there is the institutional aspect of this and		
21	I will get to the public support in just a		
22	moment. With federalism, the way it is		

		Page	286
1	designed in the United States and particularly		
2	with the supremacy clause in the Constitution,		
3	we have an interesting game theory problem		
4	when you are negotiating between federal		
5	agencies or federal entities and states. And		
6	that is, that the states, as a player in the		
7	negotiation, are always put in the position of		
8	knowing that the other party can change the		
9	rules because Congress can and there is a long		
10	track record that states can refer to showing		
11	that in fact the federal government, Congress		
12	can change the rules.		
13	And so it is difficult from the		
14	position if you were put in the position of		
15	being a representative of that state, say a		
16	governor or a state level official, and you		
17	are negotiating for the future well-being of		
18	your citizens, you are having to place an		
19	awful lot of trust in the hands of an entity		
20	that has a track record of changing the rules.		
21	I urge you all, if you haven't		
22	read it yet to look t the letter written in		

	Pag	ge	287
1	1982 by the governor of Wyoming in response to		
2	the attempt to negotiate a monitored		
3	retrievable storage site in the state and he		
4	vetoed the continuation of an evaluation		
5	process simply saying that governors can't		
6	assure the well-being of their future		
7	citizens. Now that is an institutional		
8	arrangement issue that has to do with the		
9	entities that are doing the negotiating.		
10	And governors, these are not		
11	governors that tend to be opposed to federal		
12	policies. We are talking Utah, Wyoming,		
13	Nevada. These are people who are put in a		
14	nearly untenable position from a standpoint of		
15	really simple rules about how negotiation		
16	happens. I anticipate that that problem won't		
17	go away, as long as we have that institutional		
18	design in place.		
19	Let's talk about policy design for		
20	the moment. I think of policy design as the		
21	broad parameters in which people begin to		
22	think about the benefits and the costs and the		

		Page	288
1	processes for handling a major public issue.		
2	Now policies themselves come in bundles of		
3	attributes. If we were thinking about the		
4	nuclear energy process generally and we		
5	included the whole cycle, we would have energy		
6	production with its implications for energy		
7	security, for jobs, for economic development,		
8	along with the waste cycle and everything else		
9	that is involved.		
10	You can see here that in these		
11	combinations of attributes, we are dealing		
12	with process issues, numbers of disposal		
13	sites, the regional distribution of those		
14	sites, criteria for selection, process issues		
15	such as who gets a say, how you frame the		
16	policy itself and what venues are employed for		
17	doing that. The facility design aspect which		
18	interacts with all of these things and is		
19	usually seen as an outcome of the former		
20	process has to do with questions of		
21	retrievability, depth, there are a variety of		
22	different strategies from Greenpeace's		
		Page	289
----	--	------	-----
1	advocacy of having an aboveground pyramid,		
2	sarcophagi to deep bore hole. So you can		
3	think in terms of many variations in design.		
4	But there are also extra storage		
5	kinds of attributes associated with the		
6	facility. Many of the European designs		
7	encompass a research facility associated with		
8	a prospective disposal facility, particularly		
9	if you are envisioning long time periods for		
10	investigation of a site, the potential for		
11	treating the materials as a resource,		
12	potential for future design and building of		
13	reprocessing facilities at a site, and other		
14	attributes of the policy.		
15	My point here is that if you think		
16	about what you are asking a host community to		
17	engage in or if you are thinking about asking		
18	a nation to engage in a discussion about		
19	siting these facilities, the things that can		
20	be involved are not restricted by some magical		
21	prior. Now, in the U.S. case, we have		
22	generally, as the Yucca Mountain process		

	Paqe	290
--	------	-----

indicates, we have talked about design chiefly as a disposal facility, as a place that we are going to take waste, designate it as such, permanently place it, observe it for a while and then close a facility.

6 That is a way of designing a 7 policy. Note what it is doing though is that 8 it is isolating specific aspects of the policy 9 and not focusing on others. Now, we have done a lot of experiments at the University of 10 Oklahoma on what it is that leads to 11 12 acceptance or not of respective repositories. One of the issues is retrievability and we 13 14 have focused on this qualitatively and quantitatively. And I am showing you here 15 16 when we ask people how they would prefer to 17 see a repository as a retrievable site or as 18 a non-retrievable site, you get a substantial 19 majority that would like to see 20 retrievability, in large part because they see 21 the future development of knowledge and 22 capacity as something that future generations

		Page	291
1	ought to be able to bring to bear on the		
2	problem and precluding that discourages them.		
3	In focus groups when you raise		
4	this kind of question with an average cross-		
5	section of lay citizens, you often get laughed		
6	at if you try to tell people that they ought		
7	to, we ought to just seal it for fear of		
8	future generations. So as a preconception,		
9	this is a very significant concern.		
10	When you look at bundling of		
11	attributes with a repository, we have looked		
12	at how people's preferences or support for a		
13	repository would change if you bundled it with		
14	a laboratory or if you bundled it with a		
15	reprocessing facility. And depending on where		
16	you start, you get some really interesting		
17	changes here.		
18	Focus on the oppose columns on the		
19	upper chart there. It is a research		
20	laboratory. If you are going to make a mine-		
21	like geologic repository of the sort that		
22	Yucca Mountain was envisioned to be, if you		

Page 292

pose the question broadly, you get a fraction 1 2 that oppose it, half of those who oppose the 3 policy initially say their support would 4 substantially increase in the event that it 5 was coupled with a laboratory. That is 6 similar numbers for deep bore hole. 7 Similar kinds of changes occur 8 when you ask about adding a repository to the 9 process. These are attributes of design that 10 have significant implications for public 11 support for a repository. You frame these 12 issues differently, you start out with less of 13 a deficit, in the policy debate that ensues, 14 people are able to talk about benefits of the 15 site, as opposed to just minimizing the costs 16 of the site. Structurally, that is a very different debate. 17 18 And I am going to stop here 19 because I am out of time but I can also raise 20 the other issues on technical credibility

21 later. So I will end.

22

CHAIR HAGEL: Doctor, thank you.

1 Mr. Kasperson.

2	MR. KASPERSON: I would be remiss
3	in citing this if I didn't register the
4	concern coming out in my community of social
5	scientists about the way the Commission has
6	been established and is carrying out its
7	functions. And I think that there is a fairly
8	deep concern about whether the requisite
9	expertise that the Commission vitally needs is
10	necessary.
11	In ten minutes I am going to try
12	to do something that I know is impossible.
13	There are probably 50 to 100 books that have
14	been written on the social science aspects of
15	nuclear waste disposal and probably a thousand
16	peer reviewed articles. And in ten minutes I
17	won't get to say very much about all of that
18	but I am going to try to make a few essential
19	points with encouragement for the Commission
20	to identify these as major issues that it is
21	facing in designing a new approach to
22	radioactive waste disposal and to really dig

Page 294 into those issues, however that is done. 1 2 That said, I think that it Okay. 3 is pretty well understood and it is not just the finding of social scientists but here, for 4 5 example, is a statement from the National Academy of Sciences, from its Board of 6 7 Radioactive Waste Management. Here is another 8 one that we recently published two weeks ago 9 or something in Science magazine indicating the kinds of concerns that are out there. 10 So I tried to make the case today that while you 11 gave us a set of questions that were focused 12 on regulation, we don't think that those are 13 14 really the basic problems that you are facing. 15 And the problems are issues that are 16 underlying the regulatory system and I will 17 try to say something about what I think they 18 are. 19 All right. So what are the 20 fundamental problems that we are talking 21 about? Well, we see four of them that we 22 think we are talking about a deep uncertainty

	Page 295
1	problem here. We have already heard about the
2	need for effective public involvement. By the
3	way, extremely difficult to do. And you are
4	not going to get answers here from me. It is
5	one of the areas that I think you really ought
6	to dig into deeply.
7	Fairness in both process and
8	results is going to be essential but very
9	difficult to achieve in the design of the new
10	system. And perhaps most pervasive and
11	already spoken to by several members on this
12	panel, this whole process that you are about
13	to generate and initiate must move forward
14	under conditions of high social distrust. And
15	I want to make the argument with you if you
16	think you are going to regain social trust,
17	think again because it is not going to be
18	possible within the time frame that it
19	necessary. And proceeding under conditions of
20	high social distrust as opposed to high social
21	trust is a whole different matter about the
22	design of the processes and how that may

Page 296

1 effectively be done.

2	So, deep uncertainty is a major
3	problem and it has a number of aspects. As we
4	know, the long time frames we have already
5	heard about the difficulties in making the
6	traditional proof of safety that we would do
7	in most environmental and risk regulations.
8	The Academy has concluded that the physical
9	and chemical phenomena that control the site
10	and the repository really make it very
11	difficult to predict what future events and
12	future risks will be.
13	And we know that we are going to
14	put down a system some place that is going to
15	interact with human systems. And basically,
16	major components of those human systems I will
17	argue are essentially unknowable. So they
18	contribute to the deep uncertainty that is
19	involved with the problem.
20	We also know it will be, as we
21	have already head from the panel a first-of-a-
22	kind facility, which will make the risks and

uncertainties highly site-specific. 1 2 And the implication of all of this is that the understanding of risk and 3 4 uncertainty will be, as we have heard, 5 evolutionary in nature and it will develop 6 with the progress of science and experience 7 and you are not going to have it by doing a 8 nice, neat, risk assessment at the beginning 9 of the process. It just doesn't work that 10 way. And so you are going to have to deal with a very different kind of problem than 11 12 problems that -- I have worked in the risk analysis field, I have for a long time, and I 13 14 would say it is an abuse of risk assessment to 15 try to throw risk assessment at this kind of 16 a problem. We can talk about that. 17 All right. How to achieve 18 effective public involvement and 19 collaboration? Tough question. You know, if 20 you talk to federal agencies here in 21 Washington, they will all tell you that of 22 course risk communication has to be two-way

		Page	298
1	and then try to find anybody who does it. And		
2	it hasn't worked very well in the risk		
3	communication efforts, I would argue,		
4	surrounding Yucca Mountain. And we are going		
5	to have to do some hard thinking about what		
6	real two-way risk communication, particularly		
7	including the listening function to people or		
8	what I put it is not the outreach but the in-		
9	reach function connected with risk		
10	communication. That is essential. It doesn't		
11	normally occur. Everybody acknowledges risk		
12	communication is two-way and it never happens		
13	and we are going to need to figure out, it is		
14	going to be a major imperative in this		
15	particular case.		
16	And so we need to, I am going to		
17	skip over some of this, but we need to get		
18	started very early. We have a series of		
19	guidelines about how you can undertake		
20	stakeholder participation and try to do a good		
21	job and it is very difficult. It involves		
22	baseline studies and public perception and		

		Page	299
1	things like that, a monitoring system of how		
2	concerns change over time with events and new		
3	information and so forth and so on.		
4	I am going to jump forward. I am		
5	not going to walk you through this. I just		
б	want to indicate that in the social sciences,		
7	we have tried to create some very complicated		
8	analytic frameworks, just as we have with the		
9	technical aspects of the program. And I would		
10	be worried if you haven't seen any of these		
11	because they are an essential part of where		
12	the information analysis comes from of some of		
13	the major problems that you have to deal with.		
14	Okay, let's go on. Fairness will		
15	be an absolutely essential element of this		
16	process, as several panel speakers have spoken		
17	to already. And those kinds of fairness we		
18	should keep in mind are just not the fairness		
19	of the ultimate regulation or how many sites		
20	or how the sites are selected but the whole		
21	process, the whole procedural aspect of how		
22	the regulatory system and how the disposal		

	P	age
1	process is developed. And is that process	
2	going to be fair? Is it going to be dominated	
3	by a few leads in Washington? How is it going	
4	to be done exactly?	
5	And judgments about the fairness	
6	of the process will begin at this point, that	
7	people will be looking at the entire process	
8	of the development of the disposal program.	
9	So we have to stop worrying about it now,	
10	today and that should continue on through the	
11	process.	
12	Okay, word about social trusts,	
13	since I am short on time. I would say over	
14	the past 25 years we have done about as bad a	
15	job as we could have done on the social trust	
16	question in this area. And we have succeeded	
17	in losing the trust of the principal	
18	stakeholders in publics who have to be	
19	involved in decision making in the management	
20	of waste.	
21	And we also know, and I will just	
22	show one little figure, here is some work from	

		Page	301
1	Paul Slovic in Oregon in which Paul is famous		
2	for his group sitting people down and doing		
3	paper and pencil exercises and he had them		
4	rate what a whole series of different trust		
5	building activities are located at the top of		
6	this, top half of this diagram, versus		
7	activities and events and so forth that may		
8	lose trust.		
9	The interesting thing about this,		
10	I mean it is very interesting to see what in		
11	the composition of these two, but notice that		
12	the lines on the top that the trust building		
13	things are all relatively short, brief lines		
14	and the lines on the bottom are really big		
15	lines, by comparison. And Paul is making sort		
16	of an experimental point out of psychology		
17	that the effects that we have on people, once		
18	trust is lost it is extremely difficult to		
19	regain it.		
20	And let me just finish then with		
21	one final So what does all this mean for		
22	regulatory systems? This I know the		

Page 302 Commission is very concerned about, which is 1 2 that we really need to have an explicit 3 recognition that we are dealing with a deep 4 uncertainty problem and that is a deep issue. 5 That is a profound issue and it means that we 6 are going to do something. We are going to 7 manage this problem in a very different way 8 than we have said about managing it in the 9 past. And there are implications for the burden of proof and who should bear it and who 10 bears the matter of removing uncertainties. 11 12 Is that the risk bearers, the host publics and 13 so forth or is it the managers of the system? 14 And fairness is going to be an absolutely crucial issue. 15 16 Thank you. 17 CHAIR HAGEL: Mr. Kasperson, thank 18 We particularly appreciate your you. resounding vote of confidence. 19 20 (Laughter.) 21 CHAIR HAGEL: To the five 22 panelists, we are grateful. Thank you. Now,

		_
	Page 303	3
1	your work is not yet complete. We would like	
2	to have a round of questions. So if you are	
3	agreeable, we will start with who has a	
4	question?	
5	Allison, we will start with you.	
б	MEMBER MAC FARLANE: Sure. I have	
7	lots of questions but I will just start with	
8	a couple for Dr. Kasperson. Thank you for	
9	coming. And clearly we have a lot to learn	
10	here and I know you guys have written a lot	
11	about this. So I am quite aware of that. And	
12	this is really the fundamental, you have	
13	touched on what I think are the fundamental	
14	issues associated with nuclear waste disposal.	
15	So a couple of questions, then.	
16	And maybe you will think this one is	
17	irrelevant but I am always fascinated and we	
18	sort of touched on this this morning but we as	
19	a society, as a culture, don't seem to have	
20	much of a problem with disposing of things	
21	like arsenic and lead, and heavy metals but we	
22	do have this enormous problem with stuff that	

Page 304 will disappear eventually. So that is one 1 2 question. Another is do you think that the 3 original Nuclear Waste Policy Act, before it 4 5 was amended, was considered fair by the 6 public? And then finally in terms of trust, 7 could an agency like the Department of Energy 8 regain trust in any kind of reasonable time 9 period? 10 Well, let me take MR. KASPERSON: 11 a shot at those three questions and maybe my 12 colleagues here would like to jump in on this 13 as well. 14 First of all, we do think that really a number of those other problems like 15 lead in the environment and so forth, which 16 17 has very long half lives and so forth, is a 18 very serious problem that doesn't get the same 19 attention. 20 We know from studies that have 21 been made that nuclear materials are highly 22 dreaded and it is sort of interesting to try

		Page	305
1	to figure out why when you put things		
2	underground people are extraordinarily		
3	concerned. Even when we were experimenting		
4	with state programs with low-level waste, we		
5	found out and we were talking about surface		
6	and near-surface facilities, people were very		
7	concerned about putting anything in the		
8	ground. So that is one issue.		
9	The second issue is nuclear		
10	materials and regular nuclides, themselves,		
11	that there seems to be a very strong set of		
12	fears, in particular, connected with those and		
13	that has turned up in lots of experimental		
14	results and so forth and there is lots of		
15	speculation about why that might be.		
16	A second point about, I am		
17	forgetting your second point, but social		
18	trust, I think, was the third.		
19	MEMBER MAC FARLANE: The third,		
20	Nuclear Waste Policy Act, the original wasn't		
21	fair.		
22	MR. KASPERSON: Yes, I guess my		

		Page	306
1	own deal is I don't think by and large the		
2	public knew enough about that Act to really		
3	make a decision of fairness but I think that		
4	the architects of that act went to a lot of		
5	trouble to try to develop an architecture of		
6	fairness in the number of repositories and		
7	where they would be located and those kinds of		
8	things.		
9	Some of that was lost in the		
10	amendments that subsequently occurred which		
11	destroyed. And then when we chose the site		
12	before we did the technical work, that was not		
13	a help either. So I think that the whole		
14	process of implementation of the Act lost a		
15	lot of the initial value of the architecture		
16	there.		
17	On the social trust question and		
18	maybe my colleagues will agree or disagree,		
19	but I think DOE has a really hard job to		
20	operate under. And what I would probably, if		
21	I were advising the Department of Energy, what		
22	I would say is act in a way that really		

		Page	307
1	deserves trust and merits trust and assume		
2	that it is not going to exist. And you are		
3	not going to be able to rebuild it in the time		
4	frame that you are going to need to make		
5	decisions.		
6	And so I think a decision process		
7	which assumes distrust, rather than trust, is		
8	a very different kind of process. And one		
9	guide is really realistic to what we are		
10	facing.		
11	MR. JENKINS-SMITH: If I could		
12	just weigh in just slightly on that question		
13	and I will go in reverse order, I think we		
14	need to be careful not to over generalize. I		
15	mean, the case of WIPP is really interesting.		
16	I am sure it is all Bob Neill's fault that the		
17	WIPP process worked out the way it did but in		
18	the late 1980s, the New Mexico public was two		
19	to one opposed to the waste isolation pilot		
20	plan and the public imagery that was		
21	associated with it at that point was very much		
22	tied to nuclear disasters. I do remember the		

		Page	308
1	bumper stickers that said Three Mile Island,		
2	Chernobyl, WIPP, and all of the discussion		
3	that went on there. But that policy process		
4	that spanned the latter half of the eighties,		
5	all the way up to 1999, when the truck started		
6	rolling, was a fascinating one. The		
7	University of Mexico sponsored a time series		
8	survey in which we measured twice a year what		
9	the New Mexico public thought of the risks and		
10	the support for that facility. And there was		
11	a gradual rise that was punctuated in a couple		
12	of cases.		
13	When EPA approved the facility,		
14	there was an uptick in public trust. When the		
15	trucks actually got there, there was a		
16	substantial uptick in trust. By the year		
17	2001, the substantial majority of the public		
18	supported the operation of that facility. And		
19	I say that not because I think that this		
20	demonstrates great trust. It simply says that		
21	there are more than one set of processes that		
22	can be employed that might get you to a		

	Page 3	309
1	successfully opened repository. There are	
2	many publics. I think we ought to be careful	
3	about how we use that term.	
4	MEMBER MAC FARLANE: Yes. No, I	
5	agree.	
6	Just briefly, then Steve can jump	
7	in. Do you think then based on your little	
8	history of what happened in New Mexico, do you	
9	think the opening of a repository in Sweden or	
10	Finland might have any impact on what happens	
11	here?	
12	MR. JENKINS-SMITH: Yes, I do. I	
13	think that the more successful examples there	
14	are I mean, keep in mind that what happens	
15	in the course of a policy debates is that	
16	there are a number of major considerations.	
17	Think of them as dimensions of concern by the	
18	public. One might be safety. One might be	
19	economic costs, something like that. The	
20	issues that are out there that are brought	
21	into the debate are going to be those that	
22	reflect on those dimensions of concern.	

Page 310 So to the extent that there are 1 2 successful sites out there, yes, that is going 3 to be part of the debate but only if the 4 debate is set up in such a way that there are 5 people who really want to bring all the issues 6 to bear. Again, if it is an issue that is 7 defined only about minimizing risk, then the 8 primary discussion is going to be what those 9 threats are. And it is going to be very, I 10 mean, when you talk about very small risks and what scientists understand are ten to the 11 12 minus six, the risk, there is a very lumpy bottom end to the public's notion of 13 14 likelihood and that is going to substantially 15 shape the kinds of issues that are brought to 16 bear. 17 So if you don't have reasons for 18 people to say positively you should do this, 19 well you can have a lot of evidence. It is 20 simply not going to resonate much in a public 21 debate. 22 I just want to get MR. FRISHMAN:

	Pag	ſe
1	to your question of whether the Nuclear Waste	
2	Policy Act was fair. We knew at the time of	
3	its writing which states were most likely	
4	going to have the potentially acceptable	
5	sites. And so most of the jockeying that went	
6	one was among and between those states versus	
7	all of the states that were afraid they might	
8	get it because the deals that have already	
9	been sort of cut would break down. So the	
10	intent was that it be fair. And the champion	
11	of that intent was Congressman Mo Udall and he	
12	beat up a lot of people in the course of	
13	trying to be fair.	
14	And in the end, I think the fact	
15	that the repository capacity we knew was going	
16	to be exceeded for the first repository and we	
17	had to have a second, that is an indication of	
18	the knowledge that it was unfair.	
19	CHAIR HAGEL: Per.	
20	MEMBER PETERSON: Actually, it is	
21	interesting, Steve, that you just raised this	
22	question of capacity because that was my first	

		Рa
1	question. I have got a couple of questions	
2	and actually I was hoping, Hank, that you	
3	might be able to help me with something.	
4	Statutory capacity limits seem to	
5	be a frequent feature of the laws that bring	
6	into effect disposal systems. And in the case	
7	of trying to drive the system so that you will	
8	have multiple disposal sites, I am curious	
9	about this because at least my thinking on it	
10	is that the major issues associated with	
11	repositories are inter-generational equity	
12	problems. And I don't understand the logic	
13	behind punishing people in multiple places a	
14	thousand years in the future to generate	
15	equity when it is our actions that have	
16	created the problem.	
17	On the other hand, you do have a	
18	whole bunch of reasons to try to reach	
19	interregional equity for the current	
20	generation but there are other ways to do	
21	that, such as minimizing transportation	
22	distances by geographically disbursing say	

Neal R. Gross & Co., Inc. 202-234-4433

Page 312

		Page	313
1	interim storage facilities, by transferring		
2	wealth from generators to those who have the		
3	responsibility for disposal and such.		
4	If one were to work on that, do		
5	you think that it is still politically		
6	necessary or socially necessary to have		
7	statutory limits on capacity for disposal		
8	facilities or should we just go technical?		
9	MR. JENKINS-SMITH: I think that		
10	is a question that would be really interesting		
11	to investigate but the history of these kinds		
12	of limits, actually in the WIPP case, it had		
13	to do with the type of waste that was to go		
14	into the site because there was a period of		
15	time when they were investigating putting		
16	high-level waste reactor waste in the		
17	repository and that led to a substantial		
18	political backlash and therefore the		
19	conditions that this only be transuranics.		
20	And that issue, the cap has		
21	largely been seen as a way of making sure that		
22	current generations are spreading the risk,		

	F	age
1	rather than as an intergenerational issue, I	
2	think. But it really bears on the question of	
3	whether the host community desires to	
4	undertake that activity.	
5	I would posit that if you had a	
6	host community in the United States that	
7	really wanted to host that facility that had	
8	cooperation from the state level, that there	
9	wouldn't be the pressure on limits that you	
10	see when you are setting it as an a priori	
11	issue. That what happens is that when we are	
12	looking prospectively at who is going to bear	
13	the burden, the limits become an issue.	
14	MEMBER PETERSON: I understand. I	
15	have another question that relates to what I	
16	thought was a very intriguing point that you	
17	made.	
18	You showed that there can be	
19	significant changes in the level of support	
20	for facilities for disposal and, I presume,	
21	for storage as well. If they are coupled with	
22	extra storage attributes such as research or	

		Page	315
1	reprocessing, what is striking is that it		
2	seems that the increase in support is quite		
3	similar between the two. But of course, those		
4	have very large different implications in		
5	terms of what you are doing with the fuel		
6	cycle, which also has very important		
7	independent set of policy dimensions that we		
8	have a different subcommittee that is working		
9	on.		
10	So one thought on that because you		
11	can construct policies that couple either		
12	reprocessing or research with these sorts of		
13	activities, one of the things that		
14	differentiates reprocessing is that very		
15	likely what is going to happen is that you		
16	will have a transfer of wealth from waste		
17	generators to these communities and that may		
18	contribute in some ways to acceptance because		
19	of the fact that it shows some interregional		
20	distribution of benefits and risk or transfers		
21	of benefits and risk.		
22	Would it be helpful if you go the		

Page 316 research route to pay for that research from 1 2 fees that would be charged to the waste 3 generators, as opposed to from taxpayer fees? Would that assist in further increasing the 4 5 feeling that there is some stronger basis of 6 equity because the people who are making the 7 problem are also paying for the work to create 8 a solution and transferring wealth. Would 9 that be something that also would be helpful 10 from the perspective of generating local and 11 state acceptance? 12 MR. JENKINS-SMITH: I suspect that 13 I have to say I don't have any it would. 14 experimental evidence on that issue. But the key underlying driver in this as we have 15 16 teased it out in focus groups and seen it in 17 the data is when people think that the 18 facility is not only a purveyor of risk but is 19 actively engaged in trying to see how minimize 20 those risks or better manage them in the 21 future, it really does a lot to offset the 22 dread that we know is attached to things

nuclear. 1 2 I suspect that if you attach that even further to the idea that those who are 3 4 benefiting from nuclear energy or paying their 5 mil and that mil is going to support that 6 research itself, that that connection would 7 probably help. I would have to actually 8 empirically investigate that to know the 9 answers definitely. 10 MEMBER PETERSON: Dr. Kasperson, 11 could you maybe comment on this question also? 12 Well, I think I MR. KASPERSON: 13 didn't emphasize it in my presentation but I 14 think there ought to be as much risk reduction and so forth as we can reasonably achieve and 15 16 we ought to try to make as fair a system as we 17 can make but there will probably be come residual risks and unfairness. I think that 18 19 should be compensated for. 20 And I guess my own view about the 21 compensation would be you could do it like the 22 French do it, which is to build schools and so

forth in the facility. 1 2 My own view about that is that it 3 ought to be sort of a negotiation in which the 4 host community gets a right to try to indicate 5 what its preferences would be for different 6 kinds of compensation but the compensation 7 level should probably be determined nationally 8 for the disposal facility. 9 MEMBER PETERSON: So then another 10 attribute of having that compensation include 11 either research or reprocessing, probably even more so for research is that it also implies 12 13 that you have a local base of people who are 14 scientifically and technically knowledgeable and credentialed who live in the community. 15 16 Well of course, New Mexico has two major national labs with this sort of expertise. 17 18 To what extent might that also 19 contribute to building or facilitating a 20 higher level of trust? Both Hank and Roger. 21 MR. KASPERSON: Well, one comment 22 that I would make is that first of all, there

		Page	319
1	frequently is a surprising level of expertise		
2	that may exist in the community, if you are		
3	not looking for large numbers of people. But		
4	the other option would be to provide resources		
5	so that the local community can higher its own		
6	technical experts, so we know how to carry on		
7	its negotiation.		
8	MEMBER PETERSON: Exactly. In		
9	fact, Roger Neill spoke to the value of doing		
10	that. Maybe so I don't take too much time, I		
11	would like to move to a different question for		
12	Michael.		
13	You noted that in the licensing		
14	process, the regulatory process, you are		
15	concerned about the fact that currently the		
16	determination of reasonable assurance occurs		
17	before construction is done. Correct?		
18	MR. VOEGELE: Correct.		
19	MEMBER PETERSON: So, I would be		
20	interested in the technology of deep bore		
21	holes. One of the reasons that it is		
22	interesting is because technically it has a		

		Page	320
1	very, very different set of characteristics		
2	from a conventional mined repository, the most		
3	fundamental being that they are like small		
4	modular reactors or something like that. In		
5	other words, you build one in a few years.		
б	You fill it. You close it. You get the		
7	experience of the entire lifecycle up through		
8	decommissioning in a short period of time.		
9	And you would do one initially as a		
10	demonstration before building additional ones.		
11	Thus, reasonable assurance determination could		
12	occur from having done the complete lifecycle		
13	of the disposal facility before you would		
14	expand and do additional work.		
15	So clearly, this means that bore		
16	holes are different and therefore may not fit		
17	with the current regulatory framework in this		
18	way. Could you comment on this specifically		
19	as well as other ways that they may not fit or		
20	things you might need to do, such that bore		
21	holes might become an option if that is what		
22	one might want to do.		

Page 321 CHAIR HAGEL: Excuse me. May I interrupt just a moment? I know one of our panelists has to leave on time to catch an international flight. So we are going to try And please go forward, Michael, and answer Per's question. Try to keep it --MR. VOEGELE: Very quickly. CHAIR HAGEL: -- summary version. Then I am going to take the prerogative of the chair and ask the co-chair for one last

11 12 question and then we will get you all on your 13 way and one of the distinguished members of 14 the panel will be off and running to wherever 15 you are going. Thank you.

to stay on track here.

1

2

3

4

5

6

7

8

9

10

16 MR. VOEGELE: The Nuclear Waste 17 Policy Act had actual provisions about how to 18 do the licensing in stages for a repository 19 That would not apply, at least system. 20 readily apply to a bore hole system. And the 21 only thing I know that is comparable to a bore 22 hole disposal system would be a no-migration

Page 322

1	variance petition under something like RCRA,
2	which I think I forgot who mentioned it this
3	morning. It may have been Tom, historically
4	has been done with the 10,000-year assumption
5	and it just kind of traces back to the
6	repository program anyway.
7	But what I suggested about and I
8	believe the National Academy has written more
9	than one report on stage development,
10	internationally people have adopted a safety
11	case process where there are step-wise
12	decisions reviewed with the public about how
13	to take the next step forward. I don't know
14	how to do that readily with a bore hole
15	program. I think you basically have to do as
16	much research as you can and make an
17	assumption before you start putting that
18	material down. If you are going to be down
19	one or two miles burying this material, it is
20	very difficult to understand what the analogue
21	to a performance confirmation program would
22	be.

		Page	323
1	I don't see the current		
2	regulations being readily adaptable to bore		
3	hole disposal and I don't see them being an		
4	easy solution to them, either.		
5	CHAIR HAGEL: Thank you. Thank		
б	you. Jonathan?		
7	CHAIR LASH: We have at least		
8	absorbed the point that you were making, Dr.		
9	Kasperson, that the problem here is first of		
10	all process more than technology. That		
11	doesn't mean that we understand what the		
12	solutions are.		
13	And I want to pick up on something		
14	that Professor Jenkins-Smith said and use it		
15	to pose a hypothetical to the two of you and		
16	try to dig a little bit into how you solve the		
17	problem.		
18	I believe you said when you asked		
19	people about the level of assurance of future		
20	human intervention from a deep geologic		
21	repository, how much assurance they would		
22	have, 60 percent left at the prospect that		

1			
	Page 324		
1	there could be some long-term assurance that		
2	people wouldn't subsequently invade that		
3	space.		
4	And frankly that reflects my own		
5	visceral reaction and yet we see rules being		
6	set up premised on the idea that we can		
7	somehow answer that question through the		
8	technological design of a site.		
9	And I think that in a normal		
10	public process in which a public entity is		
11	coming to the public and asks that question		
12	and gets laughed at, there are two responses.		
13	One is, we really have to work harder to		
14	education them that we are right. And the		
15	second is maybe we can tweak the rules to show		
16	that we are right.		
17	And I am interested in how you		
18	construct the process that can respond by		
19	saying, that is right and we will build a		
20	process premised on the understanding that we		
21	all know controlling something for 100,000		
22	years is preposterous and how do you build		
		Page	325
----	--	------	-----
1	that into the process so that the public		
2	values become the driving force, rather than		
3	the problem to be overcome.		
4	MR. JENKINS-SMITH: Well, I think		
5	that the way that one could do this would be		
6	by opening up what it is we think that the		
7	policy is designed to do. And one option is		
8	to think about fuel cycle facilities that have		
9	a number of functions that would include		
10	determining which kinds of materials could be		
11	disposed of and disposing of those in a		
12	fashion that would be, could be reversible.		
13	Actually, it is an interesting term, this		
14	whole reversibility debate.		
15	In Finland, in France, and more		
16	recently in the UK, this is a big issue. And		
17	in Finland, the whole question of public		
18	approval of their repository turned on the		
19	question of whether the repository would be		
20	designed in a way that you would retrieve the		
21	material. In France, the reversibility issue		
22	is a much bigger deal because they are talking		

about changing the direction of policy on the 1 2 basis of future learning. But the concern that is raised 3 4 isn't that we are trying to plan for a 10,000-5 year horizon. It is that we are assuming that 6 we will get there in an uninterrupted fashion. 7 And people look backward a hundred years and 8 they think about what the technological 9 capabilities and the level of concern that those generations had for how they were 10 11 handling materials for the present period of 12 time. And they even think about the type of 13 changes that have occurred in recent memory 14 with the technologies that they employ. And I think they see difference in 15 16 kind in capacity. I mean one interesting 17 thing is how far deep bore hole, as an option, 18 has come since the Yucca Mountain process 19 started, in terms of the sort of technological 20 assurance that we could do this kind of thing. 21 So options don't hold still and 22 people are aware of this. And I think that

> Neal R. Gross & Co., Inc. 202-234-4433

Page 326

		Page	327
1	that is one of the primary concerns that		
2	underlies a Yucca Mountain-style approach,		
3	which is permanent disposal, permanent		
4	ceiling, treating it as a waste, which is an		
5	interesting kind of categorical change and		
6	moving on.		
7	CHAIR LASH: Can I interrupt for		
8	one moment? You gave me a very articulate		
9	answer to a question that I didn't ask.		
10	MR. JENKINS-SMITH: That is what		
11	professors do.		
12	(Laughter.)		
13	CHAIR LASH: I thought that was		
14	what politicians did.		
15	(Laughter.)		
16	CHAIR LASH: You are articulating		
17	a plausible solution to the problem that we		
18	can't control the future sufficiently but I		
19	was asking, how do we design the process so		
20	that it responds to that public concern and		
21	says, that is legitimate, we will change our		
22	goals, our parameters, rather than you just		

	Page 328
1	don't understand because you don't have a
2	Ph.D.
3	MR. JENKINS-SMITH: The WIPP case
4	is a good example of this. And I am sure that
5	Bob Neill can tell you a whole lot more
6	detailed stories than I can.
7	But I was involved in the
8	transportation side or watching closely and
9	there were multiple instances in which
10	concerns that were raised did in fact lead to
11	programmatic change.
12	And in fact, I remember at one
13	point talking with the woman who was running
14	most of that program for the Department of
15	Energy. Her name was Judith Holm, who always
16	struck me as a stellar public employee. But
17	what she did was she started keeping a record
18	of the kind of changes that were being made.
19	And when she engaged the public in these
20	communities, she could explain many of the
21	types of changes that had in fact taken place.
22	The audience, chiefly for her,

		Page	329
1	were precisely the kind of people who		
2	communicate that well. She was working with		
3	the emergency responders in rural communities		
4	all along that transport route. And so when		
5	she would do the staged accidents that they		
6	were doing for learning purposes, she would be		
7	able to communicate this to much of the		
8	community or that subset of the community that		
9	everybody else in the local community turns to		
10	for reassurance about exactly this kind of		
11	problem.		
12	And I can't attribute causality		
13	but I do know that when we measure over a		
14	substantial period of time in New Mexico		
15	public fear about transport, that the fear		
16	drops as you get closer to the route, which is		
17	exactly the reverse of what the NIMBY-type		
18	literature leads you to expect. But there was		
19	some amazing success in that program.		
20	And I would urge you to talk to		
21	Judith Holm about some of the extraordinary		
22	work that she and her team did in that		

	Page 330
1	particular case because she figured out who to
2	talk to and did a really good job of
3	explaining how the program had in fact
4	changed.
5	CHAIR HAGEL: Gentlemen, we are
б	going to bring this to an end because, as I
7	said, one of you has to catch a plane and
8	maybe more of you but we are grateful for your
9	good work, your answers, and your
10	availability.
11	On a personal note, I am sorry
12	that we have besmirched the reputation of
13	professors by the co-chairman's recent comment
14	but nonetheless, we move forward.
15	We will take a short break. We
16	will be back in ten minutes. Thank you.
17	(Whereupon, the above-entitled
18	matter went off the record at 3:06 p.m. and
19	resumed at 3:24 p.m.)
20	CHAIR LASH: So, we're back and we
21	feel surrounded. I hope it feels comforting
22	to be surrounded by this many centuries of

		Page
1	expertise.	
2	(Laughter.)	
3	CHAIR LASH: Those of us who have	
4	come to the issue relatively recently don't	
5	carry the baggage of 30 years of its not	
б	having gotten done. Our purpose in asking you	
7	to participate in this round table is, in	
8	particular, to hear interaction among you.	
9	So we will certainly start with	
10	some questions from the panel members but we	
11	would be eager to have you not only jump in	
12	but to jump in to ask one another questions.	
13	You have all heard all of the discussion today	
14	and surely there have been times when you had	
15	to bite your tongue right through not to say	
16	something. So, we would like to give you that	
17	chance to jump in.	
18	Vicky, since you did not get to	
19	ask a question in the last session, do you	
20	want to start us off this afternoon?	
21	MEMBER BAILEY: Okay. Boy the	
22	pressure is on. Right? Actually, I will.	

Neal R. Gross & Co., Inc. 202-234-4433

331

Page 332 The two things that I was wanting 1 2 to hear more discussion on, the issue of I think in Dr. 3 sufficiency of regulation. Voegele's -- Is he still here? Someone left. 4 5 Okay. He talked about that. And you talked 6 about a new set of regulations. 7 Our earlier panel felt that the 8 regulations in place were sufficient. I would 9 like to hear a little bit more about that. 10 And then on the issue of voluntary host sites, 11 once again this is not a siting Commission but I am trying to understand the issues as it 12 relates to disposal, storage, repository 13 14 areas, how we should look at this, how we 15 should view this, what are the advantages. Is 16 it totally foolish for us to even think that? 17 I think once again, Dr. Voegele's 18 presentation, you talked about, you mentioned 19 voluntary host sites and that you didn't think 20 that they were a possibility and more than a 21 bribe. And maybe you can tell me what you 22 meant by bribe would be needed but your

Page 333 conclusion was that that would not be a 1 2 possibility. So I open that up to the entire 3 I think that is something we seriously panel. need to hear about if it is foolish to think 4 5 that because obviously, Nevada thought that 6 they were given very bad treatment, a very 7 negative taste in their mouth as to how this 8 process was done. They felt they were the 9 site of last resorts, I guess when they were 10 first starting this process. There were 11 several sites in line but they ended up being 12 the sole site. And that was just negative 13 from thereon out. So, Dr. Voegele. 14 MR. VOEGELE: I get to start. 15 Right? 16 MEMBER BAILEY: You get to start. 17 MR. VOEGELE: Let me just start 18 out by saying that I had, you can insert 19 whatever word you want, I will use privilege. 20 I am not ashamed of it. I worked on every 21 document the Department of Energy ever did to 22 address any of the regulatory requirements or

		Page	334
1	the legal requirements for this program over		
2	a period of almost 35 years. And I understand		
3	those silly regulations. So I am not as		
4	uncomfortable with them as somebody who would		
5	pick up those books and start reading it. I		
6	don't have a problem with the sufficiency of		
7	the regulatory structure, other than I believe		
8	it is too prescriptive and very difficult to		
9	understand. My bigger issues are in terms of		
10	the process in which those regulations are		
11	implemented and it is going to go right to the		
12	second part of this as well.		
13	I don't believe that the public		
14	was given a fair opportunity to participate in		
15	that process. I think those things which were		
16	given to them which were meant to be public		
17	involvement were not what they looked like		
18	they should have been on the surface. Is that		
19	a fair statement? I mean, do I need to be		
20	Hank Jenkins-Smith and go for a long time with		
21	that?		
22	It is just that Let me give you		

	Page
1	Here is my best example. Okay? Here is my
2	best example for you. We did an Environmental
3	Impact Statement for the Yucca Mountain site.
4	That Environmental Impact Statement was part
5	of the Nuclear Waste Policy Act and that was
6	the document that was going to identify how
7	one site was selected from three sites. Peel
8	back the onion skin one little bit and you
9	will understand that Congress, when it passed
10	the nuclear waste policy act, took a whole
11	bunch of things off the table that the public
12	would expect to deal with in Environmental
13	Impact Statements.
14	The need for a repository,
15	alternatives for a repository, they are
16	already off the table. And now you have
17	amended the Nuclear Waste Policy Act and you
18	have taken a document which was meant to
19	justify selection of one site from three and
20	you have already picked the one site. What is
21	left for the Environmental Impact Statement?
22	It is not a meaningful public Environmental

		Pa
1	Impact Statement. That is the kind of thing	
2	that I am talking about.	
3	Now when I talked about their not	
4	being a willing volunteer, it is in the exact	
5	same context. Why would a state that didn't	
6	have a responsible role in determining whether	
7	or not this was going to go forward. Let's	
8	say you had a state that was willing to step	
9	up and say I would like to participate in this	
10	process but in return for that, I don't want	
11	20 million dollars a year. I want a seat on	
12	a Nuclear Regulatory Commission. I want	
13	oversight responsibility. I want to my own	
14	site characterization program.	
15	Now, could all of those things	
16	have been done under the Nuclear Waste Policy	
17	Act? Perhaps but they weren't. And that is	
18	what I was talking about.	
19	And he didn't hit me in the ear so	
20	I guess I am not too far off.	
21	MEMBER BAILEY: All right.	
22	Point/counterpoint. Go ahead.	

Page 336

Page 337 1 CHAIR LASH: Hank, you wanted to 2 jump in? 3 MR. JENKINS-SMITH: Unless Steve 4 needs to get there first. 5 On the issue of compensation and 6 the voluntary nature of the process and I 7 think the jury is out on that right now but 8 compensation is a tricky issue that has to be 9 understood in an interesting way. 10 I think that when you talk to 11 people about whether they would accept a 12 repository, the things that are germane to 13 that issue are the parts of the problem that 14 don't normally get there. If they are going 15 to say to their children, yes, I support 16 having this thing come in here, they have to 17 have some sort of story they can tell about 18 why that repository is actually good, as well 19 as risky. 20 And in my work, the thing that 21 resonates most with people is if they can say, 22 yes, I signed on to that because I think that

		Page	338
1	this facility is going to engage in activities		
2	that make sure that the risks to future		
3	generations are smaller, that it is not		
4	monetary compensation that gets you to the		
5	point where you can start thinking acceptance.		
6	So it is those other dimensions of the policy		
7	issue that we were talking about earlier, I		
8	think, that are crucial for making something		
9	initially worth talking about.		
10	Once you get it to the point that		
11	it is worth talking about, then you can talk		
12	about compensation. If somebody starts out		
13	opposed, however, offering money tends to make		
14	them even more opposed because it is seen as		
15	blood money. In fact, it is seen as a		
16	confirmation that all of the awful things that		
17	they initially believed must really be bad or		
18	you wouldn't be offering them money to take		
19	it.		
20	MEMBER BAILEY: So why was WIPP		
21	different?		
22	MR. JENKINS-SMITH: WIPP was an		

Γ

interesting case from a number of 1 2 perspectives. One, it was initiated by the local community elites in southeastern New 3 4 Mexico. It never had a split or it never had 5 significant opposition at the state level 6 officials. In part, that was because the 7 materials that were being handled at that 8 facility came from within the state. So there 9 was material at Los Alamos that was going to go down there. The state had also a long 10 11 history of involvement in the nuclear weapons 12 complex. And for that reason, handling those 13 materials was seen as a legitimate kind of an 14 activity or continuation for the state. 15 But note that it was still highly 16 sensitive. As soon as we started talking about adding other kinds of wastes to that 17 18 repository, given that it was all about 19 handling and disposing of these materials, it 20 started to blow up. You would have much more 21 significant state-level opposition and you 22 would have had a much more difficult time

> Neal R. Gross & Co., Inc. 202-234-4433

Page 339

Page 340

1 garnering public approval, had there been 2 champions opposing the site in state office 3 and if you had elections that were fought on 4 the basis of who could be most successful at 5 opposing the facility.

6 And so one of the things that is 7 important to understand at this stage is the 8 way the policy is designed is going to frame 9 the path that the public discussion takes and that is going to condition a great deal of 10 11 public support. It doesn't guarantee it. You 12 know, but you can certainly undermine the 13 prospects greatly by designing a policy where 14 it is all about how we can make a bad thing least bad, which is what we do when we 15 minimize a risk. 16 17 MEMBER BAILEY: Steve? Well, I think you 18 MR. FRISHMAN: 19 can see that in Nevada's reactions over the

20 years, where the people of Nevada were

21

22

extremely accepting of the Nevada Test Site.

And it is because, as it was explained to me,

Page	341
Lage	<u> </u>

1	it is because they thought they were serving
2	the national interest and in a way that was
3	protecting them from something that they
4	wanted to be protected from.
5	In 1977, GAO suggested to the

6 Department that they start looking for sites 7 at atomic energy defense facilities because 8 they were relying on that. And I think the 9 department, or at least some decision makers 10 in government were genuinely surprised to find out that Nevada didn't want to get dumped on 11 12 because we saw absolutely nothing in it for 13 But the opposite was true for years and us. 14 years and it was a great misperception on the 15 part of the government to try to dump on us. Now, I think the state 16 MR. NEILL: 17 may very well volunteer for a proposed 18 repository in the same way that when an 19 economic situation may be grim, people do

20 volunteer to have the state prison located in 21 the -- As a matter of fact, in Santa Fe they 22 requested the state prison over the university

		Page
1	because it would have a more stable	
2	population.	
3	(Laughter.)	
4	MR. NEILL: The original mission	
5	of WIPP in the Draft Environmental Impact	
6	Statement included spent fuel and that was	
7	pulled by DOE because the House Armed Services	
8	Committee had said that if we include the	
9	high-level waste, that will include NRC	
10	jurisdiction and we don't want the NRC in the	
11	act. So that was taken out and WIPP was then	
12	confined only to the transuranic waste.	
13	Now a lot of the discussion I have	
14	heard today really relates to the biological	
15	risks. I don't know explicitly whether it is	
16	risk, dose, dose-based, risk-based, but it is	
17	essential to include all of the other factors	
18	of advantages as well as disadvantages. And	
19	there are some disadvantages.	
20	There is nothing to be ashamed of	
21	to say if this repository goes ahead, we are	
22	probably talking 120 billion dollars of which,	

Page 342

Page 343 what 25 percent would be spent locally, 50 1 2 within the state, 25 percent elsewhere. There 3 are jobs. There are other things involved. 4 I haven't heard any mention for the national 5 good, whether it is for patriotism to get rid 6 of some of the defense wastes and some of the 7 other factors. And we have to, I think it is 8 essential to do not just risk analyses of such 9 a proposition but to do the benefit analyses 10 as well, including all the, as Congress says, the social, economic, political, all these 11 factors together and addressing it. 12 13 CHAIR LASH: Other comments? 14 Yes and Steve may MR. McCARTIN: 15 want to comment on this. I mean, I think 16 public support for a repository, no matter 17 where it is, is always going to be a 18 challenging thing to understand what should you do. What is the right approach? And even 19 20 within the State of Nevada, there is Nye 21 County who in all the meetings we have been at 22 with Nye County, they neither support nor are

against the repository. They have remained 1 2 neutral and just say they want to see the 3 safety case put forward and make their judge 4 there. And so Nye County is the county that 5 Yucca Mountain actually resides in. It is interesting. I don't think you 6 7 can characterize one single view but it is 8 very complex. I will say that. And what it 9 would be interesting to have Nye County do, have them explain what led them to this 10 neutral position, which seems to be in 11 contrast to the state. 12 13 CHAIR LASH: Are there other 14 comments? 15 MR. NEILL: Just a very quick one. 16 Mike can tell you the Citizens Advisory Board for Nevada Test Site published inventory of 17 18 attitudes of the offsite population and you 19 end up with a bimodal distribution. There 20 were some people that are clearly opposed to 21 having a high-level waste facility there but 22 there also were people that supported the

Neal R. Gross & Co., Inc. 202-234-4433

Page 344

	Page 345
1	facility as well. So this issue of how do you
2	inventory or gauge public involvement, you can
3	use a few bumper stickers and things like that
4	but you really, it is a little bit more
5	complex, as one would say. There is a huge
6	spectrum of views.
7	MEMBER BAILEY: Let me go a little
8	bit further on this issue of public trust.
9	Dr. Kasperson?
10	CHAIR LASH: He's gone.
11	MEMBER BAILEY: Oh, he's gone.
12	CHAIR LASH: Oh, here he is.
13	MEMBER BAILEY: I thought that was
14	him. Sorry. See, I'm already seeing things.
15	The issue of public trust, which
16	you said will be very difficult, if we think
17	we are going to regain that, think again.
18	So, I would like to hear from
19	others. You know, one of the comments I made
20	at the first Commission meeting was that there
21	obviously isn't a crisis as it relates to the
22	scientific issues, the science and the

		Page	346
1	technology that we are looking at here, but		
2	there is, in my mind, a crisis of confidence		
3	and I have heard that repeatedly throughout		
4	our hearings, throughout our discussions.		
5	You know, if I manage to put in		
6	place a process for public involvement, you		
7	know, how prescriptive do you think that needs		
8	to be? Is it more restrictive, as I think I		
9	heard Director Edwards I think from EPA say		
10	something to the effect that that might be not		
11	a good thing for us to be too prescriptive?		
12	I guess the issue of public trust,		
13	I would like to hear comments on that. If I		
14	do things to make it seem like we really give		
15	credence to the fact that we want public		
16	involvement, we want to hear from them, but at		
17	the end of the day, someone has to balance the		
18	issues, whether it is Congress, whether it is		
19	the NRC, whether it is DOE, EPA, someone has		
20	to balance all the issues and somebody is not		
21	going to be happy. But what can I do to say		
22	that we are sincere as it relates to the issue		

of building public trust and confidence in the 1 2 process? The position that 3 MR. KASPERSON: 4 I have taken on that and when I occasionally 5 talk with people in government about this or 6 in corporation, I say, you know, I think you 7 ought to behave in ways and you ought to be 8 concerned with trying to develop social trust 9 and do the kinds of things that may help to win some of that support but you need to 10 understand that it is probably a long process. 11 12 And Paul Slovic in his work has 13 sort of argued that you can lose trust in a 14 single and then it may take 10 or 20 subsequent acts on the other side to rebuild 15 16 that lost trust. 17 And so my own view about that is 18 act in ways to deserve the trust and try to 19 rebuild it. Try to behave in really 20 responsible ways. It is complicated, by the 21 way, because there are different dimensions to 22 trust as we know. So, just to give an

> Neal R. Gross & Co., Inc. 202-234-4433

Page 347

	Page 348
1	example, if you have an emerging study and the
2	study is not there yet, do you hold it back
3	until you are really more sure of the result?
4	That helps to build competence, which is one
5	major dimension of trust. On the other hand,
6	you are not being forthcoming with it. So it
7	is pretty hard to win on both of those. I
8	mean, you interfere with one dimension and you
9	win on another dimension.
10	So I think the trust is, so my own
11	view is well, do the best you can and try to
12	rebuild trust in an effective way because it
13	probably is the most precious resource of all
14	the things that we are talking about that is
15	related to fairness and so forth.
16	But I think if you just realize
17	the realities that the trust has really been
18	lost and it is probably going to be very
19	difficult to rebuild and it is going to take
20	a long time. Then you build a management and
21	decision system that puts much more reliance
22	upon the other parties than it does the

		Page
1	experts can't do things here and assume that	
2	they are going to be trusted because they	
3	won't be. And people want to put more of the	
4	power in their own hands. So you need to	
5	design a different kind of process, I think,	
б	in regulation and decision making and so	
7	forth. So anything that doesn't have	
8	significant sharing of power with the people	
9	who are going to host a repository and so	
10	forth, I think is probably in for a tough	
11	ride.	
12	CHAIR LASH: Could I ask a follow-	
13	up question? Would the creation of a new	
14	independent Nuclear Waste Management Authority	
15	responsible for proposing and managing a site	
16	make any difference?	
17	MR. KASPERSON: Well, I think it	
18	would help, personally. I think DOE has a	
19	really tough road to sled here because of its	
20	history. And I mean, I remember when I first	
21	decided to look at these things in the 1970s,	
22	I think there was a proposal at that time that	

Page 350

1 the Commission be an independent commission 2 responsible for radioactive waste and a number 3 of countries have gone in that direction. And 4 I think that is one possibility that ought to 5 be looked at.

I have a related 6 MR. BUDNITZ: 7 angle that I think is very important for the 8 long haul. The nation needs a long-term 9 sustained, government funded research endeavor that engages scholars, scientists, engineers, 10 11 social scientists, a whole spectrum of people in research and creating new knowledge and 12 13 consolidating knowledge we have on all of the 14 subjects you have heard about today and you 15 probably have been hearing about for the last, 16 what, three or four months. The fact is, it doesn't exist. And it doesn't exist because 17 18 the mechanism for brining it about, which exists, was defeated by the political process. 19 20 It is easy to explain. 21 The Department of Energy, through 22 the waste fund and Yucca Mountain and so on,

Page	351
<u> </u>	

1	had such a thing. I ran it for two years,
2	until it was killed because of a political
3	exigency. And no one stood up and said we
4	need that over the long haul. That is one
5	example.
6	The Nuclear Regulatory Commission
7	had, for the longest time, a sustained effort
8	in the Office of Research and in NMSS, the
9	office that does the regulation, but it was
10	too narrow because the mission of that agency
11	is to do the research to expand the knowledge
12	to enable them to do regulation. Very
13	important but not prominent.
14	And no one wanted to go with a
15	ten-foot pole near the social sciences. In
16	2002, I proposed I was newly at DOE and I was
17	running what was to become the new science and
18	technology, the R&D program and I proposed the
19	science and technology effort, a component of
20	that in social sciences.
21	And Dan Madia is here and I
22	remember we had a bunch of discussion with a

		Page	352
1	bunch of social scientists. Perhaps Roger		
2	wasn't involved but others were. We came up		
3	with a program that wasn't going to be very		
4	expensive and it got killed.		
5	It got killed because people said		
6	if the Department, which is the proponent,		
7	does social science research, it is going to		
8	look like we are manipulating public opinion.		
9	Well, okay, but the courage to sit down, carry		
10	out, and sustain a science effort, an		
11	engineering effort, a social science effort,		
12	and some combination of people that know about		
13	regulation, so that a cadre of scholars with		
14	decades by 30 years later of experience and		
15	funding and interaction provides the expertise		
16	in 2040 that you see here in 2010. Some of us		
17	are here in 2010 because it started in the		
18	'80s with us but we are scientists and		
19	engineers. Luckily, a few social scientists		
20	were supported elsewhere, Roger being among		
21	them but way short of what is needed and		
22	without the sustaining commitment. And it		

Page 353 seems to me that quite separate from whatever 1 2 happens, because whatever happens is going to 3 take years. Right? Getting that started now, 4 I don't know who, NSF maybe? I don't know who 5 but some place that would provide the 6 community of interest that would grow and 7 become as expert as you will need in 2030. 8 You are not going to get it if you don't do it 9 and it ain't going on now. In fact, what 10 little there was collapsed with the collapse 11 you know about last year. Okay? 12 MR. JENKINS-SMITH: You know, 13 there is a downside to the social science 14 involvement, though, Robert. MR. BUDNITZ: Of course there is. 15 16 MR. JENKINS-SMITH: I think that 17 social scientists may be in part implicated in 18 this because so much of it was tangled up with 19 advocacy. 20 That's fair. MR. BUDNITZ: 21 MR. JENKINS-SMITH: And it is 22 difficult for agency managers who are making

		Page	354
1	many of those kinds of choices to talk about		
2	funding when the funding appeared to be going		
3	for advocacy purposes. And that is something		
4	that social scientists have to sort out.		
5	MR. BUDNITZ: So let me try to		
6	describe. When the science and technology		
7	effort within Yucca Mountain, RW was proposed		
8	by me in 2002, and at the highest level of the		
9	Department, right up to the Secretary's level,		
10	they said no. It looks like advocacy. I		
11	said, let's give a couple million to the NSF		
12	and let them decide, using their processes,		
13	which scholars should carry out which research		
14	and it will be grants, no control grants.		
15	Right? No, we are going I don't have to.		
16	It was just		
17	(Laughter.)		
18	MR. BUDNITZ: It seems to me that		
19	the Congress as a matter of policy, could, do		
20	you mind my saying should, make that one of		
21	the imperatives of the long ten and twenty		
22	year need that the nation needs. And we can		

		Page	355
1	fund it in a way that avoids these, shall I		
2	say, things you have said. I know how to do		
3	it.		
4	MR. FRISHMAN: Let me point out		
5	though that it is interesting to hear Bob's		
6	explanation of why the highest levels in DOE		
7	didn't want to do it. Meaning, get involved		
8	in supporting working the social sciences.		
9	The perception within the Department, I think		
10	correctly because we recognize it, too, is		
11	that we they didn't want to appear to be		
12	starting a ministry of propaganda.		
13	But in fact, we weren't assuming		
14	that. We figured if they tried to do that, we		
15	could deal with it. What we saw was that it		
16	was a direct effort to continue something that		
17	they had started years ago and that is, they		
18	refused to consider any aspect of stigma and		
19	perception of risk. And we saw this as a		
20	mechanism to shore that up.		
21	MR. BUDNITZ: But that was, of		
22	course, if you don't mind my saying, a piece		

Г

		Page	356
1	of the sort of research that we thought social		
2	science experts could		
3	MR. FRISHMAN: Well, that is what		
4	we wanted done and we saw that reaction from		
5	the Department as a means to make sure that		
б	they cemented in what we had been told for		
7	years and years and that is, we are not		
8	allowed to consider it and neither are you.		
9	MR. BUDNITZ: Steve, I am going to		
10	have to argue that case. I joined the		
11	Department for two years, 2004		
12	MR. FRISHMAN: No, I am trying to		
13	explain the difference in perception of		
14	MEMBER MAC FARLANE: Let me		
15	interrupt you guys.		
16	MR. BUDNITZ: And I saw that		
17	stigma right away. So we had to find a way		
18	around it and I suggest you guys find a way		
19	around it.		
20	MEMBER MAC FARLANE: Let me		
21	interrupt you guys just to say that I think		
22	that that is a good idea, Bob. And speaking		

Page 357 as a person who has tried to get funding from 1 2 the federal government for nuclear waste research and I know this is true on the 3 science side and on the social science side, 4 5 there is no where to go if you are an 6 independent researcher. There is no where to 7 go, which is pathetic. It means that they 8 don't. You know, you don't want the research 9 to be done. And the DOE, maybe it has done a 10 lot of research. Hardly any of it was published in the peer review literature. 11 12 And so, from a scientific 13 viewpoint, that is useless. It is not 14 adequate. 15 Can I ask a question? Okay, so 16 just to go back to a previous thread because 17 we have all these experts here. For a 18 disposal process to work, one thing, you know, 19 and I think we will think more about the whole 20 process for siting and a repository or 21 whatever it is going to be, you know, there 22 are many aspects to it but something that has

Page 358

1	been discussed today and I would like to hear
2	more about from you guys is how to, or the
3	best way that you think to include public
4	involvement. And in particular, are there
5	good examples out there where this has been
6	done? Examples from the U.S. Examples from
7	other countries.
8	And I understand, Roger, all your
9	concerns that this is really complicated and
10	everything. I am not looking for an easy
11	answer but I think we need to address this
12	issue and we don't have a lot of time. So, I
13	would appreciate any advice.
14	MR. BUDNITZ: I have one good
15	example, which I could cite from the
16	Department of Energy. In 1982, with the Act,
17	the country decided that there were going to
18	be, as it turned out, nine sites in the West,
19	the South, the Southeast, for the first
20	repository. And in order for equity, there
21	was to be a second repository in the Northeast
22	or the North or perhaps in the middle of the

Page 359

country and a second repository program was
begun in 1982 and went on for four or five
years and, in fact, was finally killed just
before the decision about Yucca Mountain, you
know, that just picked one.

6 The second repository program, 7 which I was deeply involved, Bill Madia at 8 Bettelle Columbus ran it and he had an 9 advisory committee that I chaired from start to finish of that, of various people, has a 10 record that you can get, and you should go 11 12 hear from Bill Madia or somebody that he will 13 tell you about, of a wonderful start at full 14 public involvement thought through carefully. 15 There were 22 sites. We had a bunch of public 16 meetings. People came. State officials came. 17 I said this earlier but there is more to say. 18 And they had consultation from various social scientists, as well as lawyers and the like. 19 20 And they were just at the stage of 21 getting to the hard stuff when the plug got 22 pulled. But the record that they accumulated

		Page	360
1	of thinking and there were reports and		
2	meetings, and lessons learned from them is all		
3	there for you to learn from. And I think it		
4	would be a terrible shame that you are going		
5	to possibly not take advantage of that because		
6	it is sitting there for you and it was all		
7	killed in 1986.		
8	CHAIR LASH: Roger, did you want		
9	to respond to that also?		
10	MR. KASPERSON: Well, I am sitting		
11	here thinking what would be a helpful response		
12	to try to make to that.		
13	I think one good starting point		
14	would be you know the National Academy of		
15	Sciences just came out with a report the end		
16	of last year, which has been in process, I		
17	think for about three years on public		
18	participation. Were you on that one?		
19	MR. NORTH: Yes, I was on that.		
20	It is dated 2008 and the name is Public		
21	Participation in Environmental Assessment and		
22	Decision Making. And I guess I would think I		
Page 361 want to say how much of a generic problem this 1 2 is through the federal government. We are 3 looking at this issue here now but I have been involved in reviews at the Department of 4 5 Homeland Security and the climate research 6 program and renewable energy and so forth. 7 And this is an issue in all of them. 8 I mean, all those reviews have 9 found major deficiencies in this area. And first of all, it seems to me that that Academy 10 report would be a good starting point from 11 12 which you might derive a set of criteria and so forth. But there is a cadre of people out 13 14 there, including people like Warner and others 15 who worked on that report, who have thought a 16 lot and are experts on the question of public 17 participation. And I would like to see a 18 group convened and given the task of designing and doing just what you are saying, designing 19 20 a national program, which I assume would 21 probably be a tiered program that needs to 22 begin immediately, if you will, and carry

through.

1

2	And I think that people in
3	corporations and in government agencies and so
4	forth will tell you time and time again that
5	what we do with public participation and
6	outreach and risk communication is you look at
7	your budget at the end of your process of
8	doing your report and if there is any scraps
9	left over, you run a little public
10	participation program.
11	A serious program would begin on
12	day one and be a critical part of the
13	development of that study and would make the
14	study better through the public participation.
15	But we don't do that anyway in the federal
16	government, that I am aware of. Maybe an
17	exception would be NOAA and its research
18	program as a place where I see most
19	interesting work going on in public
20	participation. But I do think that there is
21	a national capability. It is not a PR
22	problem. It is a problem for people who work

Page 363

seriously on the question of public 1 2 participation and stakeholder involvement. 3 And I think it needs to exist at multiple tiers because I think some of the critical 4 5 stakeholders are state officials and utilities 6 and so forth. There is a different kind of 7 process when you actually get into the citing 8 situation. So, you hold public participation. 9 You need a public participation program for You need one at the national level. 10 that. These things should all be peer reviewed. 11 There is a community of people out there. 12 And 13 I think you might actually -- and it needs to 14 be invested in. It needs to take time and it 15 needs to take money. And it needs to be just 16 as serious as all the technology and science stuff that we do and that will be first when 17 18 that happens. 19 CHAIR LASH: I see three of 20 panelists who want to add something and then 21 I know Per has a question. And we will 22 probably end with the thread that you set off.

	Page 364
1	Bob, I saw your hand up, and Warner, and then
2	Hank.
3	MR. NEILL: Thank you. The
4	Nuclear Waste Policy Act required DOE to do
5	the planning for a second repository. The
6	Department said, you know, it would be a lot
7	easier, I think, to get the inventory of the
8	first one increased, then to go through all
9	the machinations for a second repository. And
10	that was logical and we agreed. The only
11	trouble is when the first one went down the
12	tubes, there is no back up. So the moral is,
13	don't put all the eggs in one basket again,
14	whatever you do.
15	CHAIR LASH: Warner.
16	MR. NORTH: I am going to expand a
17	little bit on some of the things Roger said.
18	I would like to make the point that Roger was
19	involved early in the 1970s, I believe, in the
20	Swedish program, setting it up with the
21	considerations of social science and public
22	involvement. As a spectator, I thought that

		·	
		Page	365
1	was a really useful contribution in orienting		
2	their national program. France is a case		
3	study of how they started off with the		
4	technical people running it and ran into very		
5	serious problems, such that they had to		
б	reformulate the whole program.		
7	I would like to comment that the		
8	2008 report that I worked on, I might add over		
9	five years, we were disappointed in the amount		
10	of literature out there, especially where you		
11	could test public involvement in a program		
12	versus no public involvement.		
13	Now a lot of anecdotes and a lot		
14	of stories but very little, shall we say,		
15	controlled clinical research. There have been		
16	a number of areas where the federal government		
17	has started off to do a lot in this area but		
18	then given politics and people's concerns, it		
19	is not continued. Climate alteration is one		
20	of these. There was a big exercise in this		
21	area which was stopped and I think much		
22	valuable opportunity involving people at a		

		Page	366
1	local level on what does climate alteration		
2	mean to you and what might be done about it		
3	that this wasn't pursued by the government as		
4	it might have done.		
5	Now, I will add a little anecdote		
6	of my own. I was involved in a Superfund		
7	site. There were a whole bunch of these that		
8	EPA has had to deal with. I was brought in as		
9	a consultant to the responsible party, in this		
10	case VEPCO, Virginia Electric and Power, an		
11	electric utility. The first thing I suggested		
12	we do is have a meeting over lunch between the		
13	leaders of the environmental group and		
14	representatives of the utility. And we were		
15	able to start a dialogue on the basis of some		
16	apologies from the utility for past		
17	performance, get some local experts from the		
18	university to review the analysis, and in		
19	relatively short order, we were able to get a		
20	Superfund site turned into a public park with		
21	great enthusiasm on all sides.		
22	I thought the process was very		

		Page	367
1	straightforward. You get people to talk to		
2	each other, exchange information and you		
3	figure out that there is a way to do it very		
4	well. It costs a little bit more money. And		
5	if everybody is satisfied that you can proceed		
6	in this direction, you can turn a noxious		
7	facility into something that the local		
8	community takes great pride in.		
9	I have to say, this was never		
10	documented. It was used by EPA administrator		
11	Lee Thomas in testimony. I have talked to		
12	him and to a number of his staff trying to		
13	find that testimony. I was never successful.		
14	So, that is another point I want		
15	to add. I think if we look at our history, a		
16	lot of prisons have cited. A lot of		
17	environmental messes have been cleaned up,		
18	often with public involvement, sometimes done		
19	with skillful leadership and not documented in		
20	the social science literature.		
21	CHAIR LASH: Hank you had a		
22	comment? Just before you do, do you know a		

Γ

		Page	368
1	book called Leadership Without Easy Answers,		
2	Ron Heifetz book		
3	MR. JENKINS-SMITH: Yes.		
4	CHAIR LASH: in which he		
5	documented the Tacoma smelter case?		
6	MR. JENKINS-SMITH: Yes.		
7	CHAIR LASH: I would be interested		
8	in your reactions to that.		
9	MR. JENKINS-SMITH: It is a good		
10	case. I want to take a slightly different		
11	angle. We have been talking about public		
12	participation and involvement and that is a		
13	huge category. It involves many things and it		
14	has different objectives that are implicit		
15	within it that you have to take into account,		
16	before you start thinking about appropriate		
17	directions to go here.		
18	But public involvement has to		
19	differ substantially, depending on what it is		
20	that is being engaged. If you are engaging		
21	simply garnering public acceptance of		
22	something that is a net bad, it is a different		

	Pa	ıge
1	story than it is if there are benefits to be	
2	had. And I think that one of the things that	
3	is unfortunately not systematically	
4	researched, is the degree to which different	
5	mechanisms work differently when you have	
6	different policy designs at stake.	
7	But there is another aspect to	
8	this that I urge the commission to be somewhat	
9	attentive to and that is, the fact that when	
10	you are getting close to the question of	
11	representation when you are dealing with	
12	public involvement. There isn't one public.	
13	And as much of Roger's work points out in the	
14	social amplification of risk, one of the	
15	things that happens is that there are	
16	interested parties who are, for ideological or	
17	material interest reasons, deeply engaged in	
18	an issue like this and have big stakes in the	
19	outcome and will do everything they can to	
20	effect the course of policy events. And they	
21	may not at all represent the broader public.	
22	We tend to treat them as the public because	

Page 370 they are the ones who show up at the hearings. 1 2 They are the ones who intervene in the 3 processes. But that is not the public in the sense that we think of it when we are thinking 4 5 about politics and we are thinking about 6 representatives processes. 7 And there have been some very 8 serious efforts to try to engage a 9 representative public in these kinds of things that involve citizen juries where you actually 10 do random selection of members of the public 11 or some sort of representative stratification 12 and engage in discussions and there are 13 14 conferences that, on an annual basis have 15 attempted to do this. The problem is is that 16 you change the people who are engaged in those 17 processes so they no longer represent the 18 public from which they were drawn if you engage them too deeply. 19 20 So the dilemmas we face are 21 interesting. And I will end up with another 22 anecdote like Warner likes to do, that drives

Page 371 this home. 1 2 I once was involved, this was the 3 case of trying to arrive at public consensus about incineration of nerve agents at the 4 5 various depots that we have across the United 6 States, and there was a very active 7 infrastructure of interest groups that engaged 8 this issues at all the different sites and 9 that had been put on site-specific advisory boards and given all sorts of representational 10 involvement. And I came across a county 11 12 commissioner at one of these events and he was 13 spitting mad because he had to stand for 14 election and he had to go on the basis of his 15 record and get reelected to represent his 16 county. And then he gets to an issue that is 17 a major issue for his county and there are all 18 these people who purport to represent the 19 public, in his view, who don't, who had a seat 20 and he didn't. He was furious. 21 And this is what happens when you 22 overlay one kind of representational system in

		Page	372
1	the name of public involvement in an already		
2	structured system in which we have elections		
3	and people have to stand for them and all		
4	kinds of rules like that. Just be careful.		
5	Be careful. That is all I'm saying.		
6	CHAIR LASH: Per.		
7	MEMBER PETERSON: In addition to		
8	being a member of the Disposal Subcommittee,		
9	I also am a co-chair for the Reactor and Fuel		
10	Cycle Technology Subcommittee. And there are		
11	some linkages between disposal and fuel cycles		
12	that I would like to explore with just a		
13	couple of questions starting from the two		
14	slides, Hank, that you showed earlier on		
15	implications of design options, co-locating		
16	research laboratories or reprocessing		
17	facilities with repositories and then		
18	retrievable versus permanent disposal and		
19	opinions about those two things from the		
20	perspective of the parallel activities that		
21	might be under way with research on advanced		
22	reactor fuel cycle technologies and/or		

Page 373

reprocessing.

1

2	So the first question I would have
3	would be would one expect to see similar
4	response in terms of public support, if one
5	were to co-locate research laboratories or
6	reprocessing facilities with centralized
7	storage. I would assume that you would have
8	somewhat of a similar response but this
9	important because we have a variety of
10	different types of infrastructure that may be
11	needed for a system to work. And certainly we
12	know that storage is a big part of how you go
13	forward. So that would be one part of the
14	question.
15	The second is that I note that
16	when you find the 69 percent preference for
17	retrievable storage, that is with respect to
18	the storage of used nuclear fuel.
19	MR. JENKINS-SMITH: Correct.
20	MEMBER PETERSON: And my question
21	would be if one were to prioritize initially
22	taking defense high-level wastes from the

		Page	374
1	defense sites that currently have those		
2	materials for disposal and defer the question		
3	about disposal of spent fuel until you have		
4	had time to do additional work and research		
5	and stuff to make a more informed decision		
6	about whether it actually merits disposal or		
7	not, to what extent would that possibly change		
8	this current 69 percent desire to see the		
9	stuff be put in retrievable storage.		
10	In other words, is this being		
11	driven by people's perception that you are		
12	throwing away something that you shouldn't or		
13	is this because they think that throwing it		
14	away might be unsafe and you are going to have		
15	to reverse that process?		
16	MR. JENKINS-SMITH: It is both of		
17	them with respect to used nuclear fuel. Note		
18	that between the research and safety and new		
19	learning versus the resource, the learning for		
20	safety purposes is the bigger jolt and it has		
21	a bigger effect on increasing support for the		
22	repository.		

1	So I think it would have a	Page	375
2	substantial effect, particularly in a policy		
3	debate when you are talking about something		
4	that is indeed a waste, for which the prospect		
5	of treating it as a resource is remote, that		
6	it would, that that part of the justification		
7	for retrieval would be moot for most of the		
8	public.		
9	MEMBER PETERSON: Oh, actually,		
10	quick, it is also likely or not likely that		
11	you would see similar sorts of statistics with		
12	respect to coupling research or reprocessing		
13	activities with centralized storage facilities		
14	as well.		
15	MR. JENKINS-SMITH: Yes, it would		
16	be. It is a fairly, for most people, the idea		
17	of long-term storage and disposal are pretty		
18	close to one another but the reaction would be		
19	roughly the same.		
20	MEMBER PETERSON: Okay.		
21	CHAIR LASH: Vicky has one follow-		
22	up question.		

		Page	376
1	MEMBER BAILEY: Not on this		
2	subject. On a different subject but back to		
3	a question that I asked on regulation.		
4	Steve, I wanted to pursue a little		
5	bit further and maybe the other panelists can		
6	comment, you made some recommendations on a		
7	regulatory panel, as such, in your comments.		
8	And I don't think I gave you a chance to		
9	discuss that.		
10	But I would also like to hear some		
11	input from others because obviously we have		
12	heard, you know, there are those who think we		
13	just need one regulator and there are		
14	different views about the issue of how to		
15	develop regulation for a new repository		
16	process.		
17	MR. FRISHMAN: Well, I was looking		
18	at what we know to be deep and well-resourced		
19	expertise in both NRC and EPA on this subject.		
20	They certainly should be, after the years they		
21	have spent. So I was looking at taking		
22	advantage of that and also taking advantage of		

Г

Page 377 their knowledge in the actual writing of 1 2 regulation but then forcing them to do 3 something that they rarely if ever do, which 4 is work together as equals in developing 5 information and add to them the people who are 6 or some people from multi-disciplines who are 7 experts and considered public. 8 I have done a funny thing here 9 where I have said there is public and there is government but I hope you understand what I am 10 11 saying and find some of those people and take advantage of their expertise in terms of being 12 13 able to better grasp what their interest and 14 concerns are at their level of expertise but also would have the sensitivity to help bring 15 16 the interests and concerns of the not-so-elite 17 public to the table. And I think their main 18 job would be, this is why I mentioned the way 19 EPA often does proposed rules now where they 20 pose a set of questions. And they certainly 21 are not the only questions. AS I said, 22 everything is in scope but they can start that

discussion by having an informed list of 1 2 questions. 3 And in my one-pager, I put out a 4 few of the areas. And there are lots more. 5 Just about everything that was talked about 6 this morning is fair game. 7 But part of the purpose of the 8 expert public is to do everything you can to 9 bring out what it is the main general public is interested in, concerned in, and will 10 either lead to improved confidence or lower 11 12 confidence, depending on how well that group 13 works. 14 MEMBER BAILEY: Could I hear from 15 some of the other panelists? I know Bob, you 16 have talked about the NRC and Warner, you have talked about --17 18 I would just like to MR. NORTH: 19 know, Steve, that the process you have 20 proposed is quite consistent with what is 21 described in the 2008 report on how one might 22 want to proceed.

Page 379

Starting with a framing of the 1 2 problem involving people that are expert but 3 also involving people representing the public 4 and having iteration back and forth where the 5 expert scientists carry out analysis and 6 provide their insights to the public 7 representatives. The public representatives 8 react to that. And then as you go toward 9 conclusion you have some fundamental value 10 issues that may appear and that is a point for 11 wider discussion among the public. Or you may 12 find that there are some crucial technical That is an invitation for more 13 issues. 14 intense work by the experts and the analysts. 15 So the process needs to go back 16 and forth and iterate toward a conclusion. 17 CHAIR LASH: Tim, did you want to 18 Then we will wrap up. comment? 19 MR. McCARTIN: Yes. In terms of I 20 think EPA and ourselves, we have worked better 21 over the past few years together with respect 22 to Yucca Mountain. There are certain things

	I	Page
1	in the regulations that are EPA's jurisdiction	
2	and some that are NRC. And so it is	
3	difficult. I think we talk to each other but	
4	sometimes we will have different views but	
5	ultimately, there are some things that are	
6	EPA's call, some things that are NRC's. And	
7	the process is worked reasonable.	
8	Now, in terms of public input, we	
9	have tried. And I realize in terms of you	
10	always can be a better listener. We have had	
11	numerous public meetings. We have gotten a	
12	lot of input. I can promise you there are	
13	three or four of us at the NRC that have read	
14	more than once every single comment that we	
15	got with respect to the Yucca Mountain	
16	regulations. We have put forward statements	
17	of consideration when we finalized the	
18	regulation, responding, we felt faithfully to	
19	every single comment we received. We do tend	
20	to group things and so people might not see it	
21	but how many people read the Federal Register?	
22	I do sympathize with the public	

	P
1	that is out there. You know, I don't think I
2	have looked at the Federal Register on any
3	routine basis. Is there a way for us to
4	interact with some of the people we interact
5	with at those public meetings? We get their
б	input. Very simple input sometimes. Very
7	useful. But we never get back to them. We
8	write our Federal Register notice. And so I
9	think some people they are not going to see,
10	their name or their specific comment. It
11	might be lumped together with others. And
12	even if they read the Federal Register or they
13	might not notice it, it would be useful to
14	We have tried to go back to communities more
15	than once. And so they get the dialogue
16	going.
17	But there is, I think we
18	Starting in '99 was our first public meetings
19	in Nevada. Some people would say they weren't
20	very good. I am a glass half-full person and
21	so I think we learned a lot from those
22	meetings but we went out as technical people

Neal R. Gross & Co., Inc. 202-234-4433

Page 381

Page 382

1	to explain our regulations. It didn't work
2	with the people. We have done a lot of work
3	since then and I would like to think we have
4	done better but it is a challenge. If we
5	fail, it is we really don't get back to some
6	of the people that I think provide very
7	valuable input to us.
8	And I will say I have repeated
9	this story to the interns at NRC that very
10	first meeting and why I feel the first
11	meetings in Nevada with respect to our
12	standard were successful. There was one woman
13	in Caliente who stepped forward to the
14	microphone. And she remembered as a little
15	girl that she was out on the playground,
16	Caliente is downwind from the Nevada Test
17	Site, and saw little flakes come from the sky.
18	And they were told to go inside. They were
19	left with little burn marks on their arms.
20	They were downwind from the Test Site. One of
21	the shots ended up there. She looked us
22	straight in the eyed. She had two brothers

		Page	383
1	that had died of cancer already. She looked		
2	at us and said, we are counting on you to		
3	protect us.		
4	That kind of information from the		
5	public She could not clarify our job better		
6	than that. We talked to her after the		
7	meeting. But those are the kind of people		
8	that are out there and she didn't ask us to		
9	deny the application. She didn't ask us to		
10	approve it. We are counting on you to protect		
11	us.		
12	And so I think there things out		
13	there. There are the public out there. Those		
14	are the people we need to talk to in addition		
15	to the people, that same meeting someone		
16	called me a liar. We need to talk to that		
17	person and understand why are you calling me		
18	a liar. And over time, we built up and that		
19	person doesn't call me a liar anymore, I will		
20	say. But that personal getting back to		
21	people, I think that is how you gradually		
22	build up trust. And you are absolutely right.		

		Page	384
1	The people who are at the meetings, do they		
2	represent a good cross-section? I don't know		
3	but that is the starting point, getting those		
4	people that they feel they can talk to us and		
5	they will get an answer back from us. And I		
6	think they talk to their neighbors and		
7	gradually, hopefully, that is how trust in the		
8	process builds up.		
9	CHAIR LASH: Thank you, Tim, and		
10	to all twelve of you, we really appreciate		
11	your agreeing to spend an entire day with us		
12	and participate in both your panels and this		
13	round table.		
14	We are still at the sponge stage		
15	trying to absorb as much as we can but pretty		
16	soon we have to move on to sorting it out and		
17	beginning to frame a response. And we will		
18	look forward to ongoing interaction. I am		
19	wanting to take to heart what you just said,		
20	Tim. I mean, we have the same kind of		
21	responsibility to all of you who have taken so		
22	much time with us to respond and let you know		

		Page
1	how much you have influenced us and how we	
2	have decided to move forward in the way that	
3	we do.	
4	We have The members of the	
5	roundtable, thank you very much and you can	
6	step down.	
7	We have one more phase, which is	
8	public comment. Do we want to reorganize the	
9	room or stay organized as we are?	
10	MR. FRAZIER: What we can do is	
11	either move the podium back out	
12	CHAIR LASH: Okay.	
13	MR. FRAZIER: and take a few	
14	moments to do that or we can have the public	
15	sit over there where Tim is and we will make	
16	Tim move.	
17	CHAIR LASH: On Tim's lap?	
18	MR. FRAZIER: Judy would like to	
19	sit on your lap. Let the record reflect.	
20	CHAIR LASH: We have two people	
21	who have signed up to speak to us. We are	
22	looking forward to welcoming Judy Treichel	

		Page	386
1	back who has spoken to us before and Mary		
2	Olson.		
3	Judy why don't we just let people		
4	get out of the way and then we will invite you		
5	forward.		
6	You have been with us often so you		
7	know that we will invite you to speak for five		
8	minutes but we are glad you are here. And		
9	there is a lot of material for you to respond		
10	to today.		
11	MS. TREICHEL: Yes, there		
12	definitely is. First, and mine is always		
13	haphazard because I take notes as I go along.		
14	So it doesn't fit This isn't a prepared		
15	presentation. Judy Treichel, Nevada Nuclear		
16	Waste Task Force.		
17	In response to Tim and talking to		
18	the public all the time, it wasn't that big a		
19	deal because they were there because they were		
20	going to do Yucca Mountain. So, if you really		
21	liked Yucca Mountain, you felt like you had		
22	something to contribute but if you had any		

Page 387

reservations about Yucca Mountain, you were
just getting the joy of being able to sit in
front of a microphone.

4 And for Tim, I would say, you 5 know, he said he couldn't tell if they were 6 making any impression on people, that they 7 explained their regulations. Yes, they did. 8 Ad nauseam. We heard exactly what the 9 regulations were over and over. But if he had 10 wanted a gauge, what he would have done is 11 told us what changed because we talked. What. 12 difference did we make? And that is where we would have felt like we were having a two-way 13 14 conversation with NRC.

15 I would say that you have got to 16 get away from making this statement all the 17 time, "make it publicly acceptable." That 18 means you have already made it. And then the next step is making it publicly acceptable. 19 20 It is too late. You have got to start with 21 the public going in and as somebody said, 22 frame the conversation, decide where everybody

Paq	e	3	8	8
	_	-	_	_

starts by already agreeing. Is there nuclear
waste? Yes, we all agree there is nuclear
waste.

4 And then you can start up from 5 that point where you keep having people and 6 then when you start to get places where you 7 don't agree, you can kind of figure out how 8 you need to blend it. But with Yucca Mountain 9 there was so much already over and done with, that none of that ever happened. And I think 10 11 people have to be in on the making of the 12 regulations. It has to be bottoms up like 13 they are talking about in Canada. I don't 14 know if that will always work but it started 15 right.

And I am not sure that you get a 16 17 volunteer, even if you have multiple sites but 18 you should have multiple sites and you should 19 tell people what kind of thing you are looking 20 And if there are people who really want for. 21 to engage some place, I would never discourage 22 I was vehement about it not being anybody.

Page	389

1	Nevada. But because the public didn't want
2	it, the officials didn't want it, we had
3	already had testing, we had real experiences
4	like the lady with the stuff on the arms and
5	whatever. So it has to really begin at the
6	beginning.
7	And the public is definitely not
8	involved in the current licensing process.
9	You can't be. You have to have an attorney.
10	You have to have all sorts of expertise and a
11	lot of stuff that takes a lot of money.
12	The last thing I would say is
13	there have been questions all day about how do
14	you start developing trust. Where does trust
15	come from? Well, I will tell you where it
16	doesn't come from and it doesn't come from
17	what DOE is doing right now. They have
18	already started up. They are already
19	relooking at nuclear waste and they are doing
20	it with what I call secret meetings and
21	anonymous communication. You don't know who
22	you are talking to when you get an email that

		Page	390
1	just says nuclear energy. And when there are		
2	other agencies that are invited to participate		
3	and some agencies that ask if they can		
4	participate, and they all get together in the		
5	public or any member of the public like myself		
6	is absolutely refused, that is ridiculous.		
7	And that is how they are staring up now.		
8	So it is already wrong and it is		
9	already going in the wrong direction. So that		
10	is what I would say.		
11	CHAIR LASH: Thank you for being		
12	with us. Mary Olson?		
13	MS. OLSON: Mary Olson, Nuclear		
14	Information and Resource Service and I do		
15	represent the engaged public. We have a lot		
16	of engaged public and they are very interested		
17	in what this commission is up to. And I would		
18	say that they echo many of the concerns that		
19	Judy Treichel just raised.		
20	I want to tag the fact that that		
21	Nuclear Information Resource Service was a		
22	party in the challenge to the EPA's Yucca		

Page 391 Mountain standard. We were one of the groups 1 2 that brought that suit and w certainly had a front row set in the 1990s Nuclear Waste 3 4 Policy process, a very close working 5 relationship with both the administration and a lot of congress. 6 7 I want to tell you that sitting 8 here today, it finally became clear to me that 9 the Commission is repeating a mistake already. I understand this is a big complex issue, you 10 11 have a lot of people in a short time but by 12 breaking into topical subcommittees, you are 13 preventing the very thing that our community 14 does, which is when we do a risk-benefit 15 analysis, and believe me we do, we do it for 16 the whole system from the generation of the 17 waste, its cradle, to its grave. 18 And so I want to challenge the VRC 19 to consider starting with problem definition. 20 What is your goal? Our goal is isolation of 21 this waste from the biosphere. The irradiated 22 fuel from commercial nuclear power has 95

		Page
1	percent, more than 95 percent of the	
2	radiological burden that we are all worried	
3	out. So I said yesterday, if it wasn't	
4	radioactive we wouldn't be here. You know, it	
5	is the ionizing radiation that makes the	
6	issue. Right?	
7	So 95 percent of the problem, the	
8	goal needs to be isolating it from the	
9	biosphere. If that is not your goal, you need	
10	to be transparent about it, then you need to	
11	state what your goal is.	
12	Okay, so assuming we share that	
13	goal, we look at it this way. The stuff is	
14	somewhere now. It could be handled better.	
15	We would like to be spread out, hardened. We	
16	like it to be monitored. We like the local	
17	communities to be more involved.	
18	But it is being stored now on	
19	licensed sites. So given that fact, then you	
20	look at any steps further. And from our	
21	perspective, transportation is very risky. It	
22	is not secure, compared to the local site	

		Page	393
1	where it is now. It is not certain. The		
2	regulation transport allows up to two years		
3	and it is a single shipment, two years in		
4	transit. It passes through very dense		
5	populations if something were to happen and		
б	the routine radiation exposures are, by		
7	definition, higher than leaving it where it		
8	is. So you are increasing the risk just to		
9	move it. So you better be moving it for a		
10	good reason. And our goal is isolation from		
11	the environment. So if you are moving it to		
12	a site that is going to leak, that is not a		
13	repository that is a dump and we are going to		
14	oppose it.		
15	If you are moving it to reprocess		
16	it, quite frankly, that is not isolation from		
17	the environment either. We are going to		
18	oppose it.		
19	And you know, I am not saying we		
20	are the be all and end all. I am not saying		
21	we have all the power in the world. I am		
22	telling you our thinking process and why your		

		Page
1	committee isn't able to do that thinking	
2	process because you have cut it into pieces	
3	that don't reflect the whole system.	
4	So I hope at some point you are	
5	going to be gathering yourselves together and	
6	really doing that.	
7	So finally I just want to say that	
8	you know, we want to work with a positive	
9	future. And I have had the unique opportunity	
10	after 20 years in my job of stepping into an	
11	advocacy role. I did it with the Commission,	
12	the five commissioners at the Nuclear	
13	Regulatory Commission in June, advocating for	
14	hardened onsite storage. We will continue to	
15	advocate for that. I think you have very,	
16	very strong support over 200 groups signed on	
17	to the statement that is posted on your own	
18	website because we submitted it and I am	
19	constantly using your site to give you more	
20	hits when I refer other people to it.	
21	And you know, we are ready to join	
22	hands and say let's do this well. Let's do	

		Page	395
1	this well. And so then the next thing I want		
2	to say is that I think there is much more		
3	diversity in our community about the need for		
4	repository program. I think there is support		
5	for the discussion of a repository program.		
6	I am not going to say my organization is		
7	endorsing it. It is not. But if there is		
8	one, you have got to start with clear rules		
9	and then you have got to be willing to reject		
10	a site that doesn't meet those rules. And we		
11	have been dancing in the streets ever since		
12	Yucca Mountain was You know, there has		
13	never been a clear statement as to exactly why		
14	but from our perspective in 1998, we had the		
15	data to show that site was going to leak and		
16	not meet the site suitability guidelines in		
17	statute. And it caused us deep shame in our		
18	government that there was not the courage to		
19	acknowledge that and reject the site at that		
20	time.		
21	So you know, yes, absolutely Yucca		
22	Mountain should be off the table and		

I

Page 396 absolutely we should have a scientifically 1 2 credible process. So I am going to take it 3 one step further. It needs to not only be a 4 standard, it needs to a viable strategy. And 5 it really scares me to hear that five years is 6 too long for this process. It is probably 7 going to take five to ten years to even get a 8 viable strategy in hand. Then, you go looking 9 for the site. You go looking for a site before 10 11 you have a good standard and a viable 12 strategy, it ain't going to work. And there is, I think, interest in it working. 13 14 CHAIR LASH: Thank you. It was --You covered a lot and it was clear and 15 16 unequivocal. We appreciate it. Keep putting 17 stuff on our website and keep coming back to 18 talk to us. 19 MS. OLSON: I live in North 20 I will see you in South Carolina. Carolina. 21 Jonathan, may I --CHAIR HAGEL: 22 CHAIR LASH: Please.
		5	200
1	CHAIR HAGEL: make a comment?	Page	397
2	And I appreciate both Judy and Mary's thoughts		
3	but I really have no standing to contribute		
4	what I am about to say because I am not one of		
5	the two co-chairs, although you and I share		
6	co-chairmanship of this subcommittee.		
7	I think it is important to reflect		
8	a little bit on what Mary said because she		
9	brings out some important points. Now in the		
10	absence of our commission co-chairmen, I would		
11	offer this. Her terminology reflect on the		
12	whole system. It is important and it is		
13	accurate. And I want to assure her, at least		
14	from this Commissioner, that we are doing		
15	that. The three subcommittees essentially		
16	were put together, structured so that we could		
17	have some management and organizational		
18	structure over so many very important and		
19	complicated parts. That is why we have these		
20	hearings.		
21	I also want to note that many		
22	members, Per being one and I think Vicky		

		Page	398
1	another, Susan Eisenhower on this subcommittee		
2	another, serve on more than one subcommittee.		
3	Another point I want to make is		
4	that the subcommittees will start blending and		
5	start working together once we have some		
6	information that we all believe, all members		
7	of the commission, that is relevant and		
8	important and focused on the objective of the		
9	Commission, at least the tasks that we were		
10	given by the Secretary. So it is not without		
11	not only an awareness but an actual		
12	practicality we are doing these things. We		
13	are, in fact doing essentially everything I		
14	heard Mary talk about. And I think she is		
15	right, the points that she makes.		
16	So I would offer that with, of		
17	course, no standing, but that has never		
18	stopped me. But thank you.		
19	CHAIR LASH: Do any of the members		
20	of the panel want to make any closing comments		
21	for this afternoon? Vicky?		
22	(No response.)		

Page 399 1 CHAIR LASH: Well then I just want 2 to thank the panelists for being such engaged participants. We will begin a process 3 tomorrow of trying to decide how to actually 4 5 move forward to sort through some of what we 6 are hearing and also decide what further 7 information we want to gather, what kinds of 8 meetings do we want to have in the future. 9 To all of the interested public who have joined us at this meeting and past 10 meetings, we really appreciate your being with 11 12 us and hope to see you at our future meetings. 13 Keep the pressure on. 14 (Whereupon, at 4:34 p.m., the above-entitled matter went off the record.) 15 16 17 18 19 20 21 22

	1		1	1
Α	29:20 30:2,12	accumulated	actively 316:19	262:20 343:12
abandoned 142:4	31:4,5 34:1 35:14	359:22	activities 78:7,12	adequate 131:20
abandonment	40:6 59:8 83:1,12	accurate 67:21	100:3 184:1	171:6,11 216:6
260:3	84:1 93:13 110:6	169:11 171:9	204:22 251:12,16	234:17 357:14
abilities 96:20	123:16 127:5,11	231:1 397:13	301:5,7 315:13	adequately 85:16
ability 46:18,20	128:1 171:18	achievable 264:13	338:1 372:20	234:9
47:7 62:20 69:11	174:20 204:20	achieve 133:17	375:13	adheres 227:20
93:22 145:4	228:22 249:8	148:15,18 183:10	activity 45:4	adhering 172:17
246:16	294:6 296:8 322:8	227:20 295:9	112:13 192:7	Adjournment 4:17
able 62:11 80:21	360:14 361:10	297:17 317:15	314:4 339:14	adjudicate 254:22
95:11,17 98:14	Academy's 33:9	achieved 133:18	acts 347:15	adjudicatory 58:4
131:5 149:8	35:10,19 263:9	139:1	actual 21:21	67:8 69:13
168:12 170:7	accept 31:9 337:11	acidic 182:8	321:17 377:1	adjust 207:9
174:2,11,15	acceptability 50:9	acknowledge	398:11	adjustment 30:1
188:20 203:16	131:7 156:17	395:19	Ad 387:8	administration
221:17 225:19	160:11 193:2	acknowledged 54:9	adaptable 323:2	168:3 391:5
234:9 235:6 251:5	240:12	acknowledges	adaptation 25:9	administrative
252:18 260:7	acceptable 3:10,18	298:11	adapting 133:20	93:9 94:1 135:15
271:2,8 276:13	6:15,18 14:2,8,12	acronym 78:17	adaptive 109:10	206:21 230:5
291:1 292:14	21:16 32:10 161:3	act 3:5 9:13,14,15	110:4,10 133:4	280:1
307:3 312:3 329:7	217:14 244:14	11:5,6 18:4 25:20	189:20	administrator
366:15,19 377:13	253:2 271:6 311:4	27:13 30:22 35:13	add 61:12 73:8	75:11 79:10 94:22
387:2 394:1	387:17,19	48:3 73:1 77:5	99:12 222:5	119:11 123:14
aboveground 289:1	acceptably 173:11	78:16 79:2,13	263:16 266:13	226:11 367:10
above-entitled	175:4	80:9,14 81:1,6,10	363:20 365:8	ado 244:6
100:18 243:13	acceptance 54:3	81:15,16 82:2,6	366:5 367:15	adopt 40:7 86:11
330:17 399:15	145:17 161:7	82:13,17,22 86:15	377:5	adopted 16:6 20:4
absence 250:21	251:11,15 290:12	88:18,18 90:11	added 13:3 36:7,12	21:18 32:15 33:17
397:10	315:18 316:11	93:10 94:1,15,16	178:6	34:12 36:10 42:20
absent 224:6 231:3	338:5 368:21	95:21,21 142:1,5	adding 88:2 292:8	60:2 230:6 261:9
232:2	accepted 67:12,14	206:22 211:16	339:17	322:10
absolute 99:7 166:5	109:12 246:11	230:5 262:3,9	addition 18:21	adopting 84:14
270:5	accepting 257:5	267:14 268:6,8,17	82:13 131:2 372:7	231:2
absolutely 30:5	340:21	269:12 272:20	383:14	advance 195:4,6
103:10 107:19	access 17:18 20:13	280:1 304:4	additional 51:12	2/0:1
110:9 158:22	140:21 213:9	305:20 306:2,4,14	80:7 85:20 99:4	advanced 372:21
246:16 273:14	accessible 19:8	306:22 311:2	217:4 233:20	advances /0:12
299:15 302:14	144:18 185:11	321:17 335:5,10	320:10,14 3/4:4	advantage 46:7
341:12 383:22	accident 61:13,17	335:1/ 330:1/	address 80:10	91:15 227:22
390:6 395:21	221:22	342:11 347:18	155:15 155:15	280:9 300:3
396:1	accidents 329:5	558:10 504:4	210:7 254:10	5/0.22,22 5/7.12
absorb 384:15	85.21 01.2 229.10	actions 81,10	240:9 202:22	auvantages 98.11
absorbed 323:8	03.21 71.3 220.10 account 15.2 26.14	312.15	203.0 209:3 2/4:1	70.21 179.22 270.21 222.15
absurd 215:16	ACCOUNT 13.2 30.10	312.13 active 7.10 21.6	333.22 330.11 addressed 17.11	2/7.21 332.13
abuse 297:14	151.1 256.22	120.18 122.01	85.16	342.10 advarsa 1/1.10
Academies 24:12	258.22 268.15	371.6	addressing 6.22	advice 151.17
Academy 27:18	230.22 300.13	571.0	auui Ussiiig 0.22	
1	1		1	1

Г

278:14 358:13	120:11 121:3	200:2,3,4,7,20,21	amount 13:16	anecdote 366:5
advise 244:15	123:8 135:13	Airbus 169:10	122:12,15 182:7	370:22
advised 123:13,20	142:18 149:22	aircraft 169:9,12	182:18 215:6	anecdotes 365:13
advising 174:21	193:16 197:11,13	airline 133:16	220:3 262:18	angle 350:7 368:11
306:21	202:10 205:2,11	Alamos 216:15	365:9	annual 32:16
advisor 48:17	207:2,18 208:17	253:1 339:9	amounts 63:20	152:19 370:14
183:21	209:14 210:4	Allison 1:20 8:4	amplification	annually 82:15
advisory 39:19	213:6 245:5	39:2 70:7 87:3	369:14	anonymous 389:21
93:14 116:15	263:21 264:1	114:20,22 115:17	analogous 137:12	answer 7:15 41:17
123:12 263:19	268:4 269:1	117:19 125:12	181:9	60:19 86:20 89:21
344:16 359:9	274:22 281:21	162:21 190:18	analogue 137:11	90:5 160:13 162:8
371:9	304:7 351:10	197:3 206:1 208:3	139:10 322:20	174:8 178:4 191:4
advocacy 289:1	353:22	303:5	analogues 150:12	208:16 234:11
353:19 354:3,10	agency's 75:13	Allison's 94:11	179:4	235:9 321:7 324:7
394:11	89:12	allocate 262:19	analogy 176:13	327:9 358:11
advocate 112:21	agents 371:4	allow 15:18 19:8	analyses 14:10	384:5
135:2 394:15	ago 89:14 102:3	25:8 103:11 104:1	29:18 118:2 255:1	answered 167:4
advocating 76:18	122:15 128:12,15	111:5 113:3 116:4	256:7 257:13,14	198:10
98:8 99:2 394:13	138:2 183:20	175:13 190:13	343:8,9	answering 161:19
AEC 124:11,13	197:2 206:15,16	201:4 266:10,14	analysis 19:16 28:7	answers 247:6
affect 67:10 169:8	228:13 243:6	268:12	32:22 34:21,22	270:13 295:4
affirmed 35:4	245:13 276:8,18	allowed 19:10	45:6 117:3 129:8	317:9 330:9 368:1
afford 281:10	294:8 355:17	66:10 67:9 116:3	153:16 167:11	anti 246:22
afraid 311:7	agree 102:18 103:5	266:19 356:8	168:17,19,22	anticipate 184:20
Africa 257:22	146:6 159:3 167:2	allows 111:6 393:2	169:5 170:22	270:11 287:16
aftermath 142:4	171:12 187:5	Alloy 137:9	171:6 173:9 174:6	anticipates 152:7
afternoon 65:20	201:13 202:18	alluded 108:22	174:12,19 175:1,5	anybody 116:1
204:11 205:1	204:4 208:7	alluding 107:1	175:7 179:13	201:7 204:7 212:2
244:5,9,11,18	229:12 261:12,13	alter 161:16	184:19 187:7	223:20 230:22
331:20 398:21	306:18 309:5	alteration 365:19	200:17 222:10,19	260:20 278:11
age 180:10	388:2,7	366:1	223:3,17 227:14	298:1 388:22
agencies 10:22	agreeable 303:3	alternative 218:16	297:13 299:12	anymore 383:19
77:19 81:20 93:8	agreed 364:10	alternatives 111:7	366:18 379:5	anyplace 62:6
118:11,11,19	agreeing 278:8	335:15	391:15	anyway 109:15
119:21 194:17	384:11 388:1	amazing 137:4,5,9	analysts 379:14	166:12 196:15
197:8 198:3 204:5	agreement 48:3	329:19	analytic 299:8	322:6 362:15
217:1 236:6	172:6 252:7,8	amazingly 38:14	analyzability	APA 230:6 231:11
254:14,18 262:5	agreements 40:1	amended 86:2	114:15 115:13	279:22
273:21 274:1,4	Ah 169:22	266:9 268:11,12	analyzable 177:8	apologies 366:16
286:5 297:20	ahead 33:12 46:9	268:17 304:5	analyze 28:10	apologize 189:9
362:3 390:2,3	100:21 166:22	335:17	176:11 177:3	apparent 277:2
agency 2:5,10,13	184:16 192:4	amendment 251:2	219:18	Appeals 79:22
26:5 50:22 56:13	207:16 212:17	268:9	analyzed 20:2	83:17 146:5
75:9 76:1,7 77:3	336:22 342:21	amendments 11:6	114:19 177:12	appear 126:11,11
80:17 82:6 90:13	aimed 279:10	48:4 65:5 142:1,5	analyzes 13:21	355:11 379:10
93:8,21 94:22	ain't 353:9 396:12	306:10	analyzing 32:6,9	appeared 354:2
118:21 119:6	air 94:15,15 101:22	America's 1:1 5:8	and/or 372:22	apple 259:12

	206162072	06 11 100 1 100 7	242.20	170 17 104 0 10
apples 164:14	396:16 397:2	96:11 120:1 129:7	342:20	179:17 184:8,19
applicability 103:7	399:11	138:10 176:6	asked 7:2 29:19	229:4 235:1
147:21	appreciates 93:3	223:13 279:17	30:17 141:8	242:14 262:19
applicable 9:16	appreciation 49:16	300:16 361:9	161:15,20 165:11	267:5 297:8,14,15
18:1 38:2 44:1	appreciative	365:17,21	200:19 208:15	360:21
77:6 78:5 79:3,16	247:11	areas 44:16 61:4	249:6 256:8 259:8	assessments 14:22
81:12 84:3 91:16	approach 25:7 33:7	109:10 227:8	323:18 376:3	23:20 72:1 99:13
118:13 124:10	33:17 36:6 40:9	228:3 295:5	asking 7:20 69:2	139:10 141:17
146:4 147:13	41:14 42:7 44:5	332:14 365:16	209:4 255:20	164:7 172:16
186:15	48:20 52:4 54:18	378:4	289:16,17 327:19	203:18 262:11,15
applicant 14:17	61:5 63:22 73:16	Argonne 2:6 101:9	331:6	assessors 89:17
36:18 51:9,14	85:2,8 86:1 87:11	argue 104:21 110:3	asks 324:11	assign 247:9
57:20 198:22	95:3 106:17	111:1 112:20	aspect 285:20	assist 316:4
199:14 207:9	108:15 109:12	116:22 172:4,8	288:17 299:21	assistance 278:14
209:6,11,13	111:13 112:18,22	178:19 193:15	355:18 369:7	Associate 245:9
210:14 213:5,8	120:5 133:3 146:1	203:20 236:13	aspects 18:5 19:21	associated 87:10
applicants 51:13	146:6 153:19	296:17 298:3	21:8 43:18 77:9	88:7 126:15 154:1
applicant's 199:9	195:11 202:4	356:10	77:22 187:4 202:9	172:12 188:16,22
application 37:6	272:4 293:21	argued 192:18	203:9 244:12	284:5 289:5,7
50:5,10 51:8 52:5	327:2 343:19	347:13	258:4 259:17	303:14 307:21
67:19,20 81:5	approached 107:12	arguing 199:8	263:8 290:8	312:10
86:6 131:21 132:6	approaches 60:3	254:19	293:14 296:3	assume 16:22
152:4,7 178:12	91:11 99:12 154:5	argument 21:9,13	299:9 357:22	30:18 31:3,12
204:15 209:7	approaching	29:22 54:18	Aspen 249:9	126:4 220:3 307:1
260:8 281:19	146:12	105:22 111:2	assert 175:8,15	349:1 361:20
383:9	appropriate 52:6	271:1 295:15	assess 227:6	373:7
applications 51:13	57:21 58:5 73:19	arguments 39:21	assessment 15:8	assumed 156:1
71:19 149:9	76:3 153:1 192:21	176:17 210:8	17:2 21:21 23:18	assumes 270:12
applied 80:11	226:12 368:16	227:6	31:22 34:3 48:18	307:7
145:13 153:17	appropriately	arises 207:6	53:7 57:7,11,15	assuming 326:5
164:11 245:10	157:22	Arizona 71:13	58:15,16,21 59:4	355:13 392:12
applies 9:20 51:9	approval 95:20,22	Armed 342:7	60:6 70:10,13,16	assumption 151:2
148:10	247:3 325:18	arms 382:19 389:4	70:18 89:10	322:4,17
apply 9:19 12:12	340:1	arrangement 287:8	106:13,16 107:4	assumptions 23:21
13:9 16:21 26:2	approve 33:5 256:1	arrive 371:3	129:7,11,21 130:7	215:3 250:9
39:8 81:2,8 84:4	383:10	arsenic 303:21	130:12 139:7,8,9	assurance 13:2
86:13 94:15	approved 19:11	art 127:20 128:1	148:20 150:3	17:3 20:4 72:20
145:20 148:4	80:19 308:13	132:4	156:16,19,21	265:12 279:12
153:18 321:19,20	approving 77:21	article 45:8 46:1	157:6,15,18 158:2	319:16 320:11
applying 85:18	79:15	articles 293:16	158:7,16,20 159:1	323:19,21 324:1
154:17	approximately	articulate 327:8	159:15,20 160:7	326:20
appreciate 38:17	64:8	articulated 112:11	160:17 161:2,12	assure 194:8 287:6
60:21 74:7,7	architects 306:4	197:13	162:1,18 163:11	397:13
93:12 100:11	architecture 306:5	articulates 112:18	163:13 164:16	assures 284:20
125:9 134:16	306:15	articulating 327:16	165:17,19 166:1,5	astonishing 41:10
245:3 302:18	area 13:5,7 66:17	artifact 211:14	167:5,7,8,10	Atlanta 235:22
358:13 384:10	76:2 89:12 96:6	ashamed 333:20	173:7,9,18 175:9	atmosphere 28:12

28.14 20 174.14	avoida 255.1	268.21 270.20	250.20 264.11	hohovo 120.1 159.4
20.14,20 174.14	avoius 555.1	208.21 270.20	230.20 204.11	166.3 222.2 247.7
1/0.13 100.19	aware 60.10 105.12	203.14 300.14	509.7 hagaling 208.22	247.10
125.15 211.15	303.11 320.22	333.0 330.17 340.14 15 368.22	basement 230:11	347.19 hohovos 72.1
155.15 211.15 241.7	502.10 oworonoss 208.11	540.14,15 506.22 baggage 221.5	bases 64:17	behavior 104.6
341./	awareness 590.11	Daggage 551.5 DAILEV 1.19	basic 204.17	151.2 194.0
attach 317.2	286.10 228.16	DAILE 1 1.10 $AA \cdot 12 21 A5 \cdot 15$	basically 10.8	131.3 104.10 hoholdon 278.11
attacheu 510.22	280.19338.10	44.12,21 45.15	11.12 14.22 15.10	belief 121.15
attempt 207.2	A-F-I-E-K-IN-O	40.3,0,9 03.14,18	11.13 14.22 13.19	boliovo 67:21 71:22
attempted 570.15	244.1 a m 1.11 5.7	67.22 68.4 16	10.13 17.10,22	72.5 21 76.2
attention $5.4 24.10$	a.m 1.11 <i>3.2</i> 100.17 10	60.14 70.5 100.22	25.21 20.21 27.5	113.7 115.6
211-11011 J.4 24.10	100.17,19	101.14 10 22	35.21 36.4 46.15	115.7 115.0
244.4 J04.19	B	191.14,19,22	<i>A</i> 7·17 01·10 0 <i>A</i> ·13	131.10 22 132.12
attentive 360.0	b 197:10	192.3,11 193.9,21	47.17 91.10 94.13 11/1 1/3.22	150.12 160.6
attitudos 3/1/18	back 12:6 22:19.20	106.10 238.5	106.10 271.20	180.13 217.10
attorney 380.0	25:21 26:1 27:22	230·12 240·4 15	206.15 322.15	223.8 236.18
attract 17.12	31:8 35:17 37:10	237.12 240.4,13	basis 33.11 36.22	225.8 250.18
attribute 318.10	42:22 43:12 44:6	240.21 241.7	37.4 54.1 55.3	264.12 15 265.14
270.17	46:22 47:8 48:6.7	336.21 338.20	6/.13 103.11 10	204.12,15 205.14
327.12 attributed 1/12.10	49:7 59:21 90:10	340.17 345.7 11	103.21 105.5 6 8	209.9 271.13,10
attributes $58.3.17$	91:8 93:8 110:7	340.17 345.7,11	105.21 105.5,0,8	272.2 279.10
58.20 288.3 11	111:21.21.121:8	345.15 570.1	151.12 14 100.12	200.15,20 205.5
38.20 288.3,11 280.5 14 201.11	124.13 126.2	570.14 hait 228.7	151.12,14 199.12	322.0 323.10
209.3,14 291.11	163.19 188.6	balance 00.22	201.7 310.3 320.2	201.15 208.6
292.9 314.22 audioneo 8:11	195.9 16 197.2	225.10 246.17 20	340.4 300.13	591.15 590.0 holiovod 215:0
228.22	207.18 211.14 15	223.10 340.17,20	3/0.14 3/1.14	262.15 262.10
520.22 Aurolius 128.5	217.6 10 218.20	1/1.10 108.7	301.3 backat 364.13	202.13 203.10
Autenus 120.3	219.20 223.21	141.19 190.7 Bollrooms 1.12	Battello 225.17	270.20 330.17 boliovos 257.5
0.12 76.21	225.9 227.19	barriar 18.10 10.5	Boy 116:10	belong 250.6
9.15 /0.21 outhority 0.10	237.17 250.7	Darrier 10.19 19.3	Day 110.19 boor 202.16 201.1	bonchmore 151.17
26.17 77.10 15	255.5 12 267.12	25.12 52.11 55.4	202.10 210.6 16	bonchmarking
20.17 77.10,13	274.16 275:5	200.2,0 barriars 15:20 3/11	302.10 510.0,10	71.16
152.6 205.12	282:3 322:5	31.8 11.1 58.11	514.12 boorers 302.12	/1.10 honoficial 258.4
152.0 205.12 340·14	330:16.20.335:8	58.14 22 143.20	bears 302.12	285.12
authorization	348:2 357:16	150.14,22 145.20	beat 311.12	bonofit 1/10.18
50.17 52.8 1/	364.12.376:2	250.21 251.1 3 7	booutifully 40.1	150.12 257.13
100.77	379:4.15 381:7.14	250.21 251.1,5,7 base 51:14 122:3	becoming 255.5	139.13 237.13
109.22 authorizo 253.13	382:5 383:20	284.20 218.13	bods 250:20	272.0 545.9 bonofiting 317.4
automatically 68.8	384:5 385:11	204.20 310.13 based 14.10 21.20	bogan 187.18 260.1	bonofits 257.6 14
automatically 06.6	386.1 396.17	21.21 27.16 17	beginning 74.15	277.2 284.10
available 85.1	background 7.5 8	21.21 27.10,17	78.4 122.4 156.20	277.2 204.19
available 05.1	70:3 131:13	20.7 29.17,17	248.5 207.8	203.10 207.22
201.1	hacklash 313:18	32.4,22 51.8 85.2 83.22 02.21	240.5 297.0	292.14 515.20,21
avoid 21.11 21.12	backward 326.7	112.12 128.20	hegins 765.15	henefit_cost 285.1
A0.2 140.2 185.12	bad 10:7 43:8	1/7.18 1/0.20	hegun 350.7	Berkeley 7.6
221.10 252.12	102:13 107:22	157.16 187.6	hehalf 5.18 /0.15	101.12 112.15
avoiding 250.12	117:1 166:6	105.15 212.11	75.10 126.13	114.5
a volume 257.15		175.15 414.11	75.10 120.15	117.5
				l de la constante de

besmirched 330:12	biological 187:3	bookkeeping	156:13 309:6	353:15,20 354:5
best 43:10 124:3	342:14	256:22	bring 107:5 201:3,4	354:18 355:21
128:18 141:9,10	biosphere 57:18,20	books 293:13 334:5	203:16 255:22	356:9,16 358:14
154:7 157:14	143:10 147:8	bore 23:21 110:20	256:4 291:1 310:5	Budnitz's 113:21
160:12 184:21	250:7 255:5	140:8 289:2 292:6	312:5 330:6	114:22
205:3 213:9,9	391:21 392:9	319:20 320:15,20	377:15 378:9	Budnitz/Commis
224:18 233:14	bit 10:5 39:5 44:15	321:20,21 322:14	brings 280:8 397:9	129:22
335:1,2 348:11	45:19 66:6 97:15	323:2 326:17	brining 350:18	build 182:16 218:9
358:3	102:17 104:4	borehole 185:8,17	broad 77:9 82:5	317:22 320:5
bet 208:8 210:21	111:16 182:2	186:7 191:12	133:15 205:14	324:19,22 348:4
Bettelle 359:8	191:16 195:11	218:5 237:22	259:8 287:21	348:20 383:22
better 6:20 45:16	263:4,13 265:18	241:6	broader 103:7,15	building 265:10
58:9 63:22 73:4	323:16 332:9	boreholes 188:6,7	206:13 277:3	289:12 301:5,12
88:3,9 89:18	335:8 345:4,8	188:17,19,21	369:21	318:19 320:10
97:17 144:15	364:17 367:4	189:4 191:2,10	broadly 112:9	347:1
166:17 177:4	376:5 397:8	192:1,8 217:18	204:10 292:1	builds 384:8
181:15 193:14	bite 259:11 331:15	218:3 221:1	broke 231:22 232:1	built 181:15 215:4
195:22 201:16	blend 388:8	234:13 240:6	232:5	283:13,16 383:18
203:5 316:20	blending 398:4	241:3	brothers 382:22	bulldozer 280:17
362:14 377:13	block 31:13	Boren 245:13	brought 41:1 44:9	bullet 107:1
379:20 380:10	blood 338:15	Boren's 282:8	103:8 107:15	bumped 27:2
382:4 383:5	blow 248:11 339:20	bother 257:1	175:6 201:3	bumper 308:1
392:14 393:9	Blue 1:1 5:7 86:17	bottom 38:4 228:18	309:20 310:15	345:3
beyond 80:17	board 116:15	270:9 301:14	366:8 391:2	bumpy 37:15
85:19 118:7 146:2	123:13 130:4	310:13	bruises 275:5	bunch 284:11
202:21	135:6,9,16 179:12	bottoms 388:12	bruising 275:4	312:18 335:11
big 21:10 23:22	180:2 212:22	bound 169:14,20	budget 121:11	351:22 352:1
31:17 40:11 61:10	220:19 221:4	270:13	122:3,4,5 362:7	359:15 366:7
118:3 183:11	263:9,20 264:20	boundaries 77:12	Budnitz 2:6 3:13	bundled 291:13,14
187:19 189:15	269:17 294:6	boundary 43:20	15:10 101:11	bundles 288:2
238:11 301:14	344:16	94:14,19 227:3	113:10,11,13	bundling 291:10
325:16 365:20	boards 371:10	228:8	125:8,11,14,19	burden 50:18
369:18 373:12	Bob 15:10 113:13	bounding 223:3	126:1 132:3 167:1	148:7 302:10
386:18 391:10	113:21 114:22	box 230:11	169:17,22 170:4,8	314:13 392:2
bigger 325:22	163:6 166:12	boy 172:21 207:18	170:13 172:3,7,20	burial 252:19
334:9 374:20,21	169:15 193:8,20	225:6 331:21	192:17 194:3	burn 382:19
bill 166:16 189:16	194:2 204:21	break 8:7 74:10	197:5,18 198:4,12	burying 322:19
208:13 214:6	208:6 209:3 278:8	100:14 115:3	198:15 200:6	business 72:4,8
235:16 237:20	307:16 328:5	117:19 311:9	201:6 205:22	114:2 115:5 121:4
359:7.12	356:22 364:1	330:15	206:2 208:8 209:4	122:2
billion 29:10 138:2	378:15	breaking 391:12	209:12,16,19,22	
138:13 250:11	Bob's 355:5	Brian 122:11	210:13.20 211:1.6	C
258:15.17 342:22	bodies 13:22	bribe 332:21.22	211:13.21 212:10	C 88:18
bills 257:2	Boeing 169:10	bridge 41:15	222:6.7 230:4	Cabinet 119:13
bimodal 344:19	boiling 169:1 242:9	brief 49:2 301:13	232:6.11 233:8.10	210:6,6
binding 93:5.7	book 45:9 184:4	briefings 78:18	235:7.11 264:20	cadre 352:13
Bingaman 247:9	368:1.2	briefly 20:14 50:13	278:8 350:6	361:13

Г

calculated 13.10	146.16 19 150.6	312.6 313.12	376.20 377.20	239.10 242.22
28.3	326.0	312.0 313.12	301.20 377.20	239.10 242.22
colculating 175.18	canability 63.2	320.1 330.1 344.3	certainty 270.5	244.0 245.10
255.16	71.16 119.19	356.10 365.2	certification 27.7	259.3 272.11
calculation 58.2	143.19 156.21	366.10 368.5 10	80·18 95·9 96·18	282.7 11 292.22
59.10 151.18	362.21	371.3	99·15	302.17.21.311.19
185.21 285.2	canable 264.16	Cases 32.21 206.12	certified 27.6	321.1 9 11 323.5
calculations 15.14	capacity 156.22	276.19 20 308.12	certifying 199.4	323.7 327.7 13 16
19.14 74.19	191.2 5 192.12	cat 22.18	203·14	330.5 20 331.3
152.17 161.13	228.1 290.22	catch 196.17 321.3	cesium 188.11	337.1 3/3.13
175.14 186.16	220.1 270.22 311.15 22 312.4	330.7	2/1·2	344.13 345.10 12
251.6 255.15	313.7 326.16	categorical 327.5	cesium-strontium	3/19.12 360.8
Caliente 382·13 16	cansules 188.17	categorically	190.7	363.19 364.15
California 2.8	carbon 28.5 176.14	1/2·15	170.7 cetera 58:7 65:5	367.21 368.4 7
101.19 113.18	176.22 181.14	categorize 189.11	105.2 2 130.1	372.6 375.21
134.21	250.18	category 368.13	186.1 193.18	379.17 384.9
California's 113.1/	carbon-14 23.0	caugality 320.13	221.22	385.12 17 20
call 24.9 14 51.11	28.5 29.7 11	cause 242.17 262.4	CFR 49.20 22 78.6	390.11 396.14 21
$60.11\ 105.15$	260.3	caused 259.20 21	78.7 79.20 80.10	306.22 307.1
110.17 130.13	207.5 caroful 307.14	205.17	81.7 84.10 86.12	308.10 300.1
157.3 173.17	300.2 372.4 5	COUSOS 61.13	01.15 103.3	chaired 350.0
18/1.7 102.2 226.6	509.2 572.4,5	180.11	chair 1.16 17 5.15	Chairman 75.6
104.7 192.2 220.0 226.0 248.4	106.6 108.18	100.11 coution 202.1	28.13 20 30.1	127.21 221.2
251.1/ 380.6	120.17 100.3	coiling 327.4	11.18 A2.5 A3.2	246.3
231.14 380.0	235.17 20 236.7	computed 356.6	41.10 42.3 43.2	240.3 challenge 55:2 5
colled 24.13 54.22	250.17,20 250.7	Contor $2/5.0$	49.10 40.11 47.0	64.13 17 230.6
173.7 8 18/1./	Carl 187.2	Central 116.4	70.7 73.5 6 74.5 6	28/10 28515 3821/
200.3 220.1 3	Carolina 306:20 20	controlized 373.6	75.3 86.22 90.7	204.9 205.5 302.4
268.1 282.16	Carry 1/8.4 220.20	375.13	04.7 07.2 100.10	challonged 70.21
colling 383.17	210.6 221.5 252.0	575.15 conturios 10/1·11	100.22 100.10	83.16 86.3 147.15
Canada 277.3	319.0 331.3 332.9	330.22	100.22 115.8	challonging 3/3.18
288.12	370.5	550.22 contury 120.3	125.0,12,10,20	champion 311.10
500.15 Considian 227.12	579.5 corrying 202.6	122.18	120.2 127.22	champion 311.10
228.14270.20	case 86.4 07.21	152.10 cortain 21.8 /2.17	154.0 142.11	chance 14:18 20
Canadians 228.12	107.3 130.13	60.1 70.1 71.11	161.18 22 172.22	156.11 174.10
Canadians 220.12	1/0.22 151.16	77.3 115.8 1/0.7	101.10,22 172.22	103.10 231.7 10
canceled 225.15	149.22 131.10	202.20 211.8	180.15 182.22	$195.10\ 251.7,10$ $270.14\ 281.0$
cancellation 233.6	182.10 176.19,22	202.20 211.8	180.15 182.22	279.14 201.9
concelled 256.6	102.9 100.21	202.1	107.21 100.3	ss1.17 570.0
canceneu 230.0	194.10 204.2	373.1 cortainly 60.7 66.2	190.17 190.21	174.0
condid 122.7	200.17 207.10	66.8 60.4 72.15	197.19 196.3,14	1/4.9 abanga 22:10 25:18
condidate 170.14	210.10,17,19,20	00.0 07.4 /3.13 80.7 00.7 18 08.0	200.4 201.3	26.12 10.12
candor 2/0.17	210.21 213.10	07.7 70.2,10 70.9	202.15 204.7	50.15 49.15 155.14 161.15
canistar 116.7 7	210.15 210.15	127.2 133.21	203.13 200.3	155.14 101.15
167.10 242.17 10	224.14 245.0	137.0 131.8 219:0 210:11 220:10	217.3 221.3 222.1	103.0 107.20
107.19242.17,18	232.4 200.19	217.11 237.17	222.4 227.1 229.8	103.4 209.2
cap 515.20	207.21 294.11	2/0.10 331.9	227.17 252.4,0	241.20 208.20
capabilities 144:2	290.13 307.13	340.12 373.11	255.16 250:11,22	270.10 204:17

٦

	1		1	1
286:8,12 291:13	charged 118:21	citizen 370:10	closest 152:9	275:9 283:7
299:2 327:5,21	316:2	citizens 92:14	closing 97:12	352:12
328:11 370:16	charges 22:11	286:18 287:7	398:20	combinations
374:7	chart 291:19	291:5 344:16	closure 52:10 53:2	288:11
changed 26:22 36:4	charter 103:15	citizen's 67:22	54:20 55:13 56:5	combining 175:2
80:7 124:16 168:3	chartered 127:11	Civilian 239:16	56:10,17 64:10	come 18:2 20:22
214:3 216:5	chemical 88:7,21	civilizations 41:6	92:6	26:1 27:14 29:16
242:21 256:6	137:20 181:17	claimed 164:20	clothes 120:20	38:10 39:22 48:6
330:4 387:11	296:9	clarify 383:5	clumsiness 124:5	52:18 57:20,22
changed-our-mind	chemically 87:9,12	Clark 2:16 245:20	clumsy 124:22	113:5 119:13
252:13	87:17,21	class 228:13	194:5,8,20,22	125:5 139:12
changes 36:16 65:1	chemicals 40:10,12	classification 112:8	195:1 207:2,19	162:2 185:21
65:5 85:21 133:10	40:17,18 89:11	112:10,19,22	260:5	196:2 197:2 205:7
159:12 192:16	241:20	189:10 196:1,16	clunky 201:18	206:12 212:4
219:19 284:6,18	chemistry 150:10	208:22 211:5	Cocher 161:5	219:20 221:6
291:17 292:7	Chernobyl 308:2	213:19 214:2,8	cockeyed 124:5	224:2 226:18
314:19 326:13	Chicago 117:11	clause 286:2	code 71:9	227:16 228:4
328:18,21	Chico 134:21	Clean 94:15,15	codes 71:8,11,18	242:17 267:12
changing 24:7 30:9	chief 245:2	cleaned 367:17	coffee 100:13	274:14 282:2
97:10 206:19,19	chiefly 290:1	cleaning 182:10	cogent 73:9	284:17 288:2
259:21 270:14	328:22	cleanup 181:10,22	Cold 184:9	317:17 326:18
286:20 326:1	children 224:14,14	clear 20:7 21:11	collaboration	331:4 337:16
chapter 131:14	337:15	30:6 37:17 43:3,9	297:19	382:17 389:15,16
212:19	chime 194:3 230:22	44:13 135:10	collapse 353:10	389:16
characteristics	231:6	162:16 201:6	collapsed 353:10	comes 28:5,13 55:9
33:1 35:1 55:5	choice 30:7 64:3	261:12 276:2	colleague 131:1	56:9 173:10 226:5
57:17 58:1,21	198:2	391:8 395:8,13	132:3 175:21	227:4 229:12
136:10 143:21	choices 354:1	396:15	colleagues 76:17	281:16 284:15
150:8 203:1	choose 128:1	clearly 33:3 58:16	96:4 162:5,16	299:12
212:12 234:5	choosing 253:19	220:1 303:9	167:15 174:4	comeuppance
320:1	chose 306:11	320:15 344:20	304:12 306:18	224:1
characterization	chosen 223:6	clicker 49:11	collect 234:4	comfortable
21:22 98:3 139:5	259:11	climate 36:13,17	236:19	138:13
208:18 214:12	chronology 73:10	165:6 176:15	collected 234:9	comforting 330:21
215:10,14,20	78:21	202:22 361:5	237:20 258:15,21	coming 72:9
216:16,18 241:4	Chuck 1:13,16	365:19 366:1	collecting 95:13	163:18 205:15
262:13 336:14	Cigar 137:13 138:5	climatic 150:22	238:2	247:6 250:6 293:4
characterizations	Circuit 80:1,11	clinical 76:10	collection 6:2	303:9 324:11
216:22	146:5 147:14	365:15	130:10	396:17
characterize 97:5	circumstances	close 55:8,22 99:8	collectively 6:21	commend 212:18
344:7	134:14 276:15	110:2 270:9 281:7	239:8	comment 66:9,10
characterized	cite 171:17 358:15	290:5 320:6	Columbia 83:18	67:2 74:19 93:10
10:21 11:3,11	cited 253:9 367:16	369:10 375:18	Columbus 235:17	93:20 173:2 214:8
215:20	citing 262:14	391:4	359:8	222:7 267:1,6
characterizers 92:3	266:22 267:11	closed 254:7	columns 291:18	280:2 317:11
characterizing	268:11 293:3	closely 95:11 328:8	combination 120:9	318:21 320:18
79:14	363:7	closer 21:5 329:16	205:13 224:7	330:13 343:15

٦

				1
365:7 367:22	266:1	268:15	96:17 104:11,18	concern 15:14
376:6 379:18	Commission's	comparison 149:4	106:12,20 109:11	30:16 61:11 65:7
380:14,19 381:10	75:20 90:9	186:9 301:15	109:13 114:17	291:9 293:4,8
385:8 397:1	commitment	comparisons 16:5	115:10 132:13	309:17,22 326:3,9
commentary 125:9	269:11 352:22	20:17	138:17,18,19	327:20
COMMENTERS	committee 39:19	compatibility	146:4,20 148:20	concerned 24:17
2:18	74:16 123:16,17	181:18	149:8 157:18	24:22 30:6 147:10
comments 4:12 8:2	171:18 342:8	compensate 17:4	193:17 251:4	176:14 209:5
50:7 69:8 93:21	359:9 394:1	19:12	complicate 87:22	280:7 283:8 302:1
112:5 136:1,3	committees 204:19	compensated	complicated 149:7	305:3,7 319:15
142:9 154:13	249:7	317:19	176:10 179:20	347:8 378:10
155:6 192:4	common 144:13	compensation	214:19 215:1,21	concerning 141:14
196:19 228:7	280:18	271:17 317:21	215:22 229:21	concerns 15:9
229:10 262:4	communicate	318:6,6,10 337:5	259:19 299:7	19:15 24:6 84:15
343:13 344:14	184:22 329:2.7	337:8 338:4.12	347:20 358:9	85:14 138:15
345:19 346:13	communication	competence 119:16	397:19	175:11 240:3
376:7 398:20	297:22 298:3.6.10	120:3.13 121:16	complications	246:7 253:12
commercial 391:22	298:12 362:6	121:18 198:18	218:4	259:20 262:20
commission 1:1 2:3	389:21	201:2 348:4	complied 93:17	271:5 276:13
2:4 5:8 7:3.12 8:1	communities	competent 281:1	comply 50:19	283:17 294:10
48:16 54:3.11	213:11.14 284:7	complete 19:1 20:9	component 351:19	299:2 327:1
55:22 60:2 75:6	285:14 315:17	72:20 303:1	components 12:19	328:10 358:9
75:17 77:4 18	328:20 329:3	320:12	87:9 252:3.6	365:18 377:14.16
81:21 83:9 86:18	381:14 392:17	completely 137:1	296:16	390:18
93:2 119:8 126:10	community 115:18	141:1 215:5	composite 139:11	conclude 133:7
127:16 132:1	115:19 160:15	complex 6:9 12:7	composition	267:20
134:18 135:17	285:16 289:16	14:14 37:15 70:19	137:20 301:11	concluded 15:21
198:17 200:10	293:4 314:3.6	71:2.5 90:21	comprehensive	47:22 84:7 85:8
206:11 254:21	318:4.15 319:2.5	97:14 150:14	38:14 44:13 74:8	129:15 296:8
257:11 258:20	329:8.8.9 339:3	164:11 173:21	compromise	concludes 86:19
265:4.13 266:9	353:6 363:12	178:8.10.14	223:10.17	155:1
267:10 278:12	367:8 391:13	183:20 239:3	compromised	conclusion 86:8
293:5.9.19 302:1	395:3	279:17 339:12	224:5	132:7 139:3 197:5
332:11 336:12	compact 232:11.19	344:8 345:5	computer 71:8	333:1 379:9.16
345:20 350:1.1	comparable 13:22	391:10	con 210:8	conclusions 139:13
351:6 369:8	139:12 321:21	complexities 159:5	conceivable 270:11	concurrence 267:9
390:17 391:9	comparative 34:20	complexity 94:10	Concentration	267:10
394:11.13 397:10	141:16	94:20 95:2 126:19	145:1	condition 63:6
398:7.9	compare 15:18	161:9 178:2 262:6	concept 17:20 47:6	267:17 340:10
commissioner	111:6 124:17	263:11	107:18.19 110:17	conditions 21:3.19
68:17.18 130:19	149:1 174:9	compliance 16:9.20	140:20 267:17	116:10 118:3
371:12 397:14	268:13	18:21 24:2 26:6.8	concepts 46:12	141:20 144:8
commissioners	compared 74:3	27:2 32:18 33:5	110:16 111:6	180:7 219:16
5:22 6:6 60:22	81:15 148:21	37:7 57:5.16	concentual 150:9	220:5 295:14.19
162:7 173:4 226:8	176:11 225:6	59:13 83:8.21	conceptually 154:5	313:19
394:12	228:14 392:22	84:3.11.18 85:12	concept-specific	conducive 265:17
commissions 6:5	comparing 16:4	85:17.18 95:8.19	111:9	conduct 55:2 64:12
	1		1	1

Г

65.10	congressional	88.8 237.20 273.7	173.14	controvorsy 281.1
conducted 53.7	20.15 78.14	88.8 237.20 273.7 378.20	173.14 contont 76.5	Cont'd 4:10
57.15	29.13 70.14	consolidating	contention 35.0	convened 1.11
57.15 confor 70.0	Congressmen	350.13	67.13 13 16 17	276.8 361.18
conference 127.4 7	311.11	constant 230.13	68.6 14 283.22	conventional 192.6
conferences 370.14	conjecture 97.9	constantly 161.6	contentions 68.11	320.2
confidence 13.3	connected 208.0	164.17 206.11	68.13 69.22 271.9	520.2 converge 139.3
21.12 34.7 55.15	305.12	394·19	282·4	conversation
56.3 62.20 64.16	connection 317.6	constituents 252.9	context 58.14	387.14.22
111.8 11 122.20	cons 210.11	Constitution 286.2	140.5 171.7 173.8	conversations
138.18 19 20 22	consensus 132.15	constitutional	173.8 176.1	99·19
139:13.14.17.20	145:19 271:21	261:1	189:19 205:21	convinced 114.15
141:12 159:11	371:3	constraint 153:2	206:13 276:15	115.22.223.4
168:19 169:4.13	consequence	construct 234:3	336:5	convoluted 37:16
169:19 249:14	181:21	315:11 324:18	contiguous 177:7	cooled 241:14
279:7.8 302:19	consequences	constructed 181:15	continual 52:11	cooperation 314.8
346:2 347:1	242:15	constructing 50:16	continuation 287:4	coordinated 273:7
378:11.12	Conservation	construction 18:10	339:14	copies 236:9 248:9
confident 8:18	88:17	18:13 50:17 52:7	continue 45:18	corporation 347:6
72:18 247:16	consider 39:20	52:14.18 54:20	52:17 55:2.4	corporations 362:3
confined 342:12	94:6 97:22 160:22	64:9 92:5 97:7	64:12.16 71:15	corral 39:21
confirm 220:12	161:1 177:12	98:5 109:22	74:3 89:22 300:10	correct 42:4 65:17
confirmation 54:22	258:20 271:6	131:22 132:19	355:16 394:14	87:15 149:18
55:14 63:14 64:7	355:18 356:8	253:13 265:15	continued 56:7	168:22 179:8
73:17 220:11	391:19	319:17	365:19	182:12 198:13
322:21 338:16	considerable	consultant 2:2,12	continues 51:18	218:12 244:22
conflating 165:19	175:22	2:12 179:11 245:1	continuing 107:17	252:20 253:3
conflation 165:15	consideration 80:2	245:5 272:16	187:16,20	319:17,18 373:19
conform 60:7	85:13 123:6	366:9	contract 82:22	correctly 280:15
conformation	204:18 380:17	consultation	contracted 89:14	355:10
55:20	considerations	359:18	contractors 199:1	corrosion 180:7
conforming 85:20	48:10 59:18 85:6	consulted 228:12	contrast 82:6	181:21
confronted 226:2	309:16 364:21	Consulting 101:15	344:12	corrosive 242:16
confusing 259:14	considered 68:9	contact 53:22	contribute 100:8	corrosiveness
confusion 34:14	70:4 77:12 136:5	250:14	176:12 296:18	241:21
congress 25:11	136:14 140:4,22	contain 29:6 143:8	315:18 318:19	cost 29:9 183:16
35:4,18 80:6	142:22 150:5	contained 53:12	386:22 397:3	258:16
90:10,16 94:3	152:17 174:22	250:18	contributing 34:9	costs 23:14 64:1
97:1 120:7 121:21	304:5 377:7	container 137:9	contribution 365:1	285:10 287:22
124:6 130:7,20	considering 68:22	180:6,12	control 17:9 77:13	292:15 309:19
147:19 193:22	116:18 197:16	containers 221:8	78:16 296:9	367:4
195:5 232:4,7,12	consistencies 253:8	containment 12:20	327:18 354:14	Cotton 2:2 3:5 7:4
248:18,20 252:2	consistency 252:17	13:11 19:2 22:8	controlled 13:5	8:9 38:18,22
255:20 256:1,8,11	consistent 10:2	143:18 144:2,20	365:15	39:10 40:20 42:4
286:9,11 335:9	27:17 35:10,13,19	145:3 146:21	controlling 324:21	42:12 43:16 44:20
343:10 346:18	40:8 57:13 59:2,8	250:20	controversies	45:14 46:2,4,8,10
354:19 391:6	83:3,22 85:3,9	contaminate	131:6	123:17 144:22

	l	I	l	
230:15 231:8	171:15 181:12,16	creating 350:12	235:13 276:7	dated 360:20
263:14	183:4 197:12	creation 349:13	culture 197:16	daughter 253:6
Council 124:9	199:5 203:20	credence 346:15	303:19	daunting 8:10,13
Council's 263:5	223:14 231:4,14	credentialed	curious 279:2	day 21:20 56:9
count 257:1	248:8,20 297:22	318:15	312:8	74:20 115:7 258:3
counter 21:13	309:15 311:12	credibility 76:8	current 3:6 10:17	275:4 346:17
counterproductive	315:3 318:16	131:10 247:13	11:18 56:19,21	362:12 384:11
32:12	353:15 355:22	283:6 292:20	60:8,8,9 62:4,7,14	389:13
counting 122:13	369:20 398:17	credible 3:10,18	106:9 112:10	days 220:18 235:22
158:6 383:2,10	court 11:12 22:5,12	6:14,17 48:9	128:7 192:12	DC 1:13
countries 105:6	25:22 35:7,14	140:10 396:2	211:7 214:2	deal 40:14 89:9
127:10,12 129:13	37:10 79:22 83:17	creep 215:6	261:11 312:19	90:20 131:5,9
152:2,13 153:7	83:18,19,20 85:7	creeps 47:3	313:22 320:17	147:7 216:2
350:3 358:7	85:11 146:5	crisis 345:21 346:2	323:1 374:8 389:8	218:10 223:1
country 92:21	court's 80:3	criteria 19:20 20:1	currently 50:4 81:4	234:21 263:2
120:8 170:21	cover 78:11 127:15	21:1 54:2 80:19	86:4 135:5 176:14	271:12,13 281:22
251:13 261:9	127:20 128:1	95:8,20 96:17	319:15 374:1	297:10 299:13
358:17 359:1	188:3 239:7	107:14 170:17	cut 118:9 311:9	306:1 325:22
counts 83:17,19	covered 88:16	177:6 189:11	394:2	335:12 340:10
county 109:2	396:15	197:14 198:6,7	cuts 180:11	355:15 366:8
343:21,22 344:4,4	covers 78:7 150:16	201:8 223:18	cutting 30:8	386:19
344:9 371:11,16	co-chair 321:11	234:2 236:10	cycle 78:5 103:16	dealing 41:1,3
371:17	372:9	253:16,20 255:19	103:18 112:9	177:7 181:10
couple 10:10 18:5	Co-Chairman 5:18	265:2 268:15	113:2,5 203:9	203:8 261:3 263:3
19:17 24:15 46:11	co-chairmanship	269:5 288:14	288:5,8 315:6	264:10 267:21
122:18 123:2,11	397:6	361:12	325:8 372:10,22	274:9 277:4
142:21 143:8	co-chairman's	criterion 131:21	cycles 372:11	288:11 302:3
162:4 166:19	330:13	critic 172:1	C-O-N-T-E-N-T-S	369:11
168:2 176:4	co-chairmen	critical 153:18	3:1 4:10	deals 88:19 268:1
183:22 206:7	397:10	158:22 203:12	C.F.R 263:18 265:5	311:8
208:12 225:7	co-chairs 1:13	250:12 362:12	265:16 266:10	dealt 243:5 265:6
236:12 262:2	397:5	363:4	267:18	deaths 13:20
263:7,15 279:21	co-locate 373:5	criticality 98:17		230:19
303:8,15 308:11	co-locating 372:15	criticized 130:15	$\frac{\mathbf{D}}{\mathbf{D} + 12}$	debatable 73:21
312:1 315:11	crack 177:17	criticizing 266:3	D 1:12	debate 74:3 90:4
354:11 372:13	cradle 391:17	critics 33:4 172:10	Dan 3:14 157:19	105:9 130:1
coupled 292:5	crazy 41:11 117:15	critiques 163:10,10	202:13 212:20	157:12 173:3
314:21	117:16 119:21	cross 160:3 291:4	351:21	205:2 220:3
coupling 375:12	221:5	cross-examine	dance 126:5,8	283:15 285:16
courage 352:9	create 43:7 183:11	69:12	dancing 395:11	292:13,17 309:21
395:18	262:10 299:7	cross-section 384:2	dangerous 184:2	310:3,4,21 325:14
course 20:2 40:11	316:7	crucial 170:15	Daniel 2:9 101:21	375:3
60:10 61:7 86:12	created 77:2 94:18	225:11 267:13	data 21:22 25:3	debates 29:9,14
91:2 110:13	128:14 263:1	302:15 338:8	30:5 130:10	273:21,22 309:15
116:10 120:22	267:3 268:9	379:12	165:19,20 316:17	debating 123:10
121:11 163:14	312:16	crystal 137:20	395:15	decade 123:17
167:5,6,8 169:17	creates 94:19 284:8	crystalline 180:5	date 60:9 258:14	129:2 198:21

٦

199:11 204:6	decommissioning	definitive 11:22	depend 168:7,8,9	325:7,20 340:8
decades 90:20	18:11 320:8	degradation 72:17	168:13 240:12	designers 37:16
120:2 132:17	deep 3:7 48:21 89:1	degree 70:2 247:18	depending 31:4	designing 50:15
164:10 256:16	101:5 114:18	369:4	70:3 152:19	290:6 293:21
352:14	140:8 185:8,10	delighted 229:6	226:19 241:9	340:13 361:18,19
decay 19:9	186:7 189:4 241:3	deluged 49:3	291:15 368:19	designs 88:19
decayed 29:7	252:21 259:7	demand 203:22	378:12	219:9 283:16
decide 61:9 153:3	289:2 292:6 293:8	274:22	depends 69:21 71:2	289:6 369:6
194:1 354:12	294:22 296:2,18	demanding 47:2	168:14 188:7	desirable 253:16
387:22 399:4,6	302:3,4 319:20	democracy 261:1,2	234:4 239:15,18	desire 374:8
decided 33:19	323:20 326:17	democratic 133:11	deposit 137:14,17	desires 314:3
248:5 273:9	376:18 395:17	demonstrate	137:18 138:8	desperately 172:17
349:21 358:17	deeply 6:3 8:14	106:11,20 109:13	deposition 138:1	despite 33:9
385:2	162:1 295:6 359:7	demonstrated	depots 371:5	destroyed 306:11
decides 120:7	369:17 370:19	14:21 75:18 120:3	depth 288:21	destructions
deciding 66:11	Deere 221:2	120:14 198:17	Deputy 101:8	249:21
163:15	defeated 350:19	demonstrates	123:5	detached 76:10
decision 26:11	defend 15:15 58:4	308:20	derailed 142:1	detail 62:15 66:5
30:10 33:12 47:8	59:2 230:4	demonstrating	derive 361:12	80:4 126:21
47:17 50:8 55:3,8	defendable 161:17	114:16 115:10	derived 195:19	154:15 176:1
55:17,22 56:1	defended 160:3	148:19	describe 97:15	186:18 199:19
63:12 64:10,14,15	defense 26:7 204:1	demonstration	107:18 117:5	detailed 17:2 24:19
65:12 81:3 86:9	239:16 251:12	34:8 104:18 106:2	225:11 354:6	25:1 108:16
104:15 129:8	257:17 341:7	109:11 320:10	described 35:7	154:13 199:6
131:21 132:5,7,20	343:6 373:22	demonstrations	137:17 378:21	246:17 249:2
133:4 134:3 167:4	374:1	104:11	describing 76:21	328:6
168:7,13 170:16	defense-in-depth	denied 231:17	153:6	details 20:20 133:5
170:17,22 171:7	107:19	dense 393:4	description 167:7	155:7 177:22
171:13 190:3,8	defense-related	Denver 274:19	169:11	195:21 206:12,14
194:9 220:1	251:19	deny 383:9	deserve 347:18	207:21
226:21 229:4	defensible 104:12	department 47:21	deserves 307:1	detection 257:6
233:21 234:10	147:6	50:14,19 55:1	design 92:4 98:3	determination 24:3
235:6 236:20	defer 63:14 374:2	56:8,12 65:4,10	139:7 224:6	34:21 235:18
253:21 282:1	deferring 64:15	77:19 80:20 81:1	226:20 228:9	319:16 320:11
300:19 306:3	deficiencies 361:9	101:18 130:15	242:7 283:20	determine 26:6
307:6 341:9	deficit 283:6	164:2,20 260:6	287:18,19,20	95:8 145:11
348:21 349:6	292:13	262:10,15,21	288:17 289:3,12	182:17 202:22
359:4 360:22	define 58:1	266:21 267:15	290:1 292:9 295:9	determined 28:16
374:5	defined 201:12	268:10 271:3	295:22 324:8	85:14 217:11,12
decisions 11:12	283:12 310:7	304:7 306:21	327:19 349:5	249:10 318:7
51:7 52:5,7 69:1	defines 13:5	328:14 333:21	372:15	determining 28:10
92:21 104:2	defining 269:22	341:6,9 350:21	designate 290:3	325:10 336:6
120:17 134:4	definitely 234:19	352:6 354:9 355:9	designated 2:2 5:7	deterministic 177:6
184:11 187:6	317:9 386:12	356:5,11 358:16	5:9 80:15 95:7	181:5 255:3
202:20 205:4	389:7	361:4 364:6	144:12	develop 64:4 90:13
216:8 307:5	definition 391:19	Department's 64:3	designed 17:4	9/:1/ 111:4 113:3
322:12	393:7	65:12	223:6 283:7 286:1	129:14 143:22

	1	1	1	1
158:3 213:13	111:1 144:10	183:16 267:21	disagrees 115:17	88:16,21 97:19
297:5 306:5 347:8	175:3 188:13	dig 176:8 253:7	disappear 140:17	103:14,15 109:6,7
376:15	190:2 193:15	259:7 293:22	304:1	129:16 134:22
developed 9:4 53:6	195:2,2 196:9	295:6 323:16	disappointed 365:9	135:2 136:4 139:1
57:971:10,15	217:8 219:16	dilemmas 370:20	disasters 307:22	140:8,9 143:7,12
86:13 128:10	224:16 231:8	diligence 133:19,22	disbelief 145:15	143:17 150:7
141:15 164:8	232:9 233:3 236:2	184:8	disbursing 312:22	157:5 190:6,9
273:7 300:1	236:3 240:3	diligently 124:2	disciplines 159:3	196:9 204:10
developers 11:20	247:18 260:11	dimension 348:5.8	247:19	225:18 249:12
developer's 124:19	263:7 264:17	348:9	disclaimer 50:3	252:11,22 256:4
developing 71:8	268:15 271:7	dimensions 309:17	disclosure 68:17	259:19 261:10
97:18 133:3 143:1	273:2,19 274:6	309:22 315:7	discomfort 217:17	266:10,14,19
143:12 157:1	284:8 288:22	338:6 347:21	discourage 388:21	268:12 269:6
178:14 193:17	292:17 295:21	diminished 139:21	discourages 291:2	276:14 285:7
210:15 262:13	297:11 301:4	diminishing 284:22	discover 218:16	288:12 289:8
265:5 274:5 377:4	302:7 307:8 315:4	dimly 219:9	discretion 82:5	290:2 293:15,22
389:14	315:8 318:5	dioxide 28:6	discriminate 117:1	299:22 300:8
development 37:21	319:11 320:1.16	176:22	discriminating	303:14 312:6.8
71:9 96:17 98:4	338:21 347:21	direct 125:1 155:21	105:1	313:3.7 314:20
235:13 259:15	349:5 363:6	355:16	discuss 78:20 131:1	318:8 320:13
288:7 290:21	368:10.14.22	directed 31:3 79:2	376:9	321:22 323:3
300:8 322:9	369:4.6 371:8	79:7 81:11 82:2	discussed 114:19	327:3 332:13
362:13	373:10 376:2.14	direction 103:12	144:21 358:1	357:18 372:8.11
develops 81:21	380:4	108:8 147:19	discussing 148:16	372:18 374:2.3.6
devise 143:16	differentiates	189:5 191:13	discussion 3:16.23	375:17
devising 279:14	315:14	273:3 279:1	7:18 41:16 62:15	disposals 140:11
diagram 301:6	differently 42:11	285:12 326:1	102:5.22 129:10	dispose 42:17
dialogue 173:1	64:22 211:10	350:3 367:6 390:9	143:6 162:17	113:4 185:6 218:7
366:15 381:15	274:8 276:17	directions 78:14	220:4 276:12	237:5 240:14
die 257:21	292:12 369:5	368:17	289:18 308:2	252:18
died 383:1	difficult 6:10 54:4	directly 142:19	310:8 331:13	disposed 325:11
diet 58:7 255:7	58:3 83:6 91:6	145:8 199:22	332:2 340:9	disposer 205:17
differ 171:5.5	98:2 103:21	273:5	342:13 351:22	disposing 252:17
368:19	104:15 161:9	director 74:11 75:8	378:1 379:11	303:20 325:11
difference 72:14	181:22 190:16	101:8 121:8	395:5	339:19
81:14 191:5 240:5	227:21 258:19	122:16 123:4.7	discussions 54:5	disposition 127:5
260:22 326:15	260:4 286:13	244:18 245:9	159:1 242:8 280:4	129:18
349:16 356:13	295:3.9 296:11	246:12 346:9	346:4 370:13	disputes 254:14
387:12	298:21 301:18	dirt 253:2	disperse 264:4	disqualifying 21:3
differences 45:1	322:20 334:8	disadvantages	disposal 1:4 3:10	141:21 267:17
81:21	339:22 345:16	342:18.19	3:19 5:11 6:15.20	disruptions 249:19
different 12:13	348:19 353:22	disagree 114:21	13:3 19:22 22:5	disruptive 153:16
37:18 41:14 42:2	380:3	163:21 203:4.13	26:13 42:16.19	237:14
57:4 58:16 60:14	difficulties 62:11	206:3.8 208:6	49:20 53:8 75:21	dissolve 28:6
85:18 87:13 89:17	90:19 145:6	306:18	78:11 79:17 83:7	241:19
91:1.10 92:22	273:17 296:5	disagreed 67:20	83:12 87:7 11 16	distances 312:22
93:5 99:12 14	difficulty 43.4 62.7	85:7 264:21 22	87:20 88:1 4 6 11	distinguished
···· ////=,1 /				

			1	
244:9 245:20	249:8,11 251:22	dosed 28:22	228:11 229:11,18	dumped 341:11
321:13	252:7.17 253:7	doses 28:17.18	230:4 232:6.11	D.C 85:7 146:5
distinguishing	255:22 267:2	31:10 222:11.15	234:16 235:7.8.11	
151:13	268:16,21 274:5	255:16	238:6,14,19	E
distributed 28:19	306:19 342:7	dose-based 31:6	240:22 241:12	E 1:12
distributes 28:14	346:19 349:18	264:2 342:16	244:21,22 245:8	eager 331:11
distribution 288:13	351:16 355:6	doubly 8:12	245:19 259:4	ear 336:19
315:20 344:19	357:9 364:4	Dowdeswell 227:11	263:14 264:19	earlier 33:20 82:1
District 83:18	389:17	downside 353:13	272:11 282:11	156:2 214:18
distrust 295:14.20	DOE's 16:2 50:5.9	downwind 382:16	303:8 317:10	252:14 253:5
307:7	86:5 95:22 112:15	382:20	323:8 332:3.17	268:3 270:4 332:7
disturbed 17:1	124:15 179:13	dozen 127:8 171:19	333:13 345:9	338:7 359:17
diverse 249:1	doing 16:5 43:10	252:13	draft 123:12	372:14
275:14	51:5 69:6 100:9	Dr 3:5.12.13.13.14	277:22 342:5	early 25:2 63:20
diversity 275:17	114:5 115:15	3:21.22.22 7:4 8:9	drafts 230:8	91:14 92:7,11
395:3	134:5 168:17	38:18.22 39:10	dramatic 237:7	98:14,18 152:8
divide 197:20	179:19 183:17	40:20 42:4.12	dramatically 41:14	181:13 220:18
division 48:18 69:5	186:15 204:16	43:16 44:20 45:14	188:13	242:12 257:6
74:12 75:9 79:12	224:18 237:16	46:2.4.8.10 101:7	draw 38:6	281:12 298:18
94:12 102:1	240:17.18 271:22	101:8.11.14.17	drawing 91:8	364:19
doable 116:11	282:18 287:9	102:8.9 113:8.10	drawn 154:21	earth 70:19 105:11
118:2	288:17 290:7	113:11 125:8,11	164:13 370:18	163:8 164:11
docket 260:7	297:7 301:2 315:5	125:14,19 126:1,4	drawn-out 199:7	223:9
docketed 281:19.19	319:9 329:6	126:7 132:3 134:8	dread 316:22	earthquakes
Doctor 101:13	361:19 362:8	134:10.11 142:11	dreaded 304:22	222:14,15,16
292:22	389:17.19 394:6	167:1 169:17.22	drift 178:9	223:8,12,12,14
document 267:8	397:14 398:12,13	170:4.8.13 172:3	drifts 52:19 64:20	224:4,6
282:4 333:21	dollars 250:11	172:7,20 173:1,6	drill 191:9	earthy 71:5
335:6,18	336:11 342:22	177:14,16 179:10	drilling 17:12,12	earth's 138:9
documented	Domenici 247:8	183:18 185:20	24:1 173:11	easier 90:17 218:10
367:10,19 368:5	dominant 222:13	186:10 187:21	drinking 16:19	364:7
documents 133:6	dominated 300:2	188:1,5,11 189:17	drive 24:2 241:18	easiest 53:10
184:5	Don 221:2	189:22 190:10	312:7	easily 46:14,20
DOE 10:3 20:15	donate 6:7	191:7,15,20 192:1	driven 374:11	177:12 221:10
26:7,7 27:8 29:9	door 261:16	192:4,5,14,17,20	driver 316:15	east 232:17,21
33:12 34:16 45:7	dose 16:14 26:22	193:3,11,22 194:3	drives 370:22	235:14 236:4,4
45:21 51:1 59:1	27:16 29:17 30:13	195:9,13 197:4,18	driving 159:6	easy 46:13 63:1
67:18 84:20 95:11	31:19 32:5,16	198:4,12,15 200:6	325:2	89:20 90:5 95:10
99:9,21 113:16,16	33:13 35:12 36:9	204:7,9 205:22	dropped 33:22	115:22 116:6
113:17 114:6	57:6,16 59:3,7	206:2 208:8 209:4	drops 329:16	160:13 161:16
118:15 119:12,16	82:15 84:4,21	209:12,16,19,22	drum 250:19	190:19 191:1
141:15,21 158:4	105:21 144:12	210:13,20 211:1,6	dry 215:15	260:21 323:4
161:16 179:15	146:11 147:4	211:13,21 212:10	dual 112:4	350:20 358:10
193:6 198:22	148:22 150:20	212:18 213:20	due 122:22 184:8	368:1
204:1 205:11	151:16 152:13,19	214:4,7,14 215:8	dug 178:7	eating 250:4
219:17 246:8,9	158:18 255:4	216:12 217:22	dump 341:15	echo 390:18
247:8 248:7,11,13	342:16	220:17 222:6,7	393:13	economic 139:21
		-	-	-

٦

		1	1	1
341:19 343:11	251:21 276:21	emplacing 64:20	211:15 257:16	257:10 303:22
economically 65:9	283:21 306:13	207:17	260:6 262:10,15	enormously 243:2
education 324:14	315:11 318:11	employ 326:14	266:22 267:16	ensues 292:13
Edwards 2:5 3:8	323:4 378:11	employed 199:10	268:6,10 271:3	ensure 53:12 84:22
74:10 75:4,5,7	385:11 393:17	288:16 308:22	284:14,15 288:4,5	110:8 247:12
88:13 90:18 95:5	election 371:14	employee 113:14	288:6 304:7	ensuring 160:9
97:20 346:9	elections 340:3	328:16	306:21 317:4	entertain 180:22
EEG 247:5 249:14	372:2	employees 195:4	328:15 333:21	enthusiasm 366:21
effect 15:3 237:7,14	electric 366:10,11	enable 351:12	341:7 350:21	entire 173:3 216:3
264:15 312:6	electrical 78:8	enables 117:1	358:16 361:6	272:19,22 300:7
346:10 369:20	electricity 258:2	167:10	390:1	320:7 333:2
374:21 375:2	element 171:2	enabling 81:18	enforce 80:15	384:11
effected 92:13	236:15 299:15	96:10 124:8	enforced 268:1	entirely 42:2
160:16,21 161:4	elements 3:9,17	231:12	enforcement 77:16	135:11
185:1 274:20	6:13,17 89:12	enact 194:6,14	enforcing 118:22	entities 286:5 287:9
effective 82:15	246:19	encapsulate 158:8	engage 230:2 284:7	entity 208:17
91:17 244:14	eliminated 121:5	159:16	289:17,18 338:1	286:19 324:10
274:13 295:2	232:18	encompass 289:7	370:8,13,19	enunciated 225:13
297:18 348:12	elites 339:3	encompasses 108:3	388:21	environment 9:17
effectively 296:1	Elizabeth 227:11	encountered	engaged 316:19	19:8 75:9 77:7,11
effectiveness 157:4	email 389:22	219:17	328:19 368:20	79:4 82:4 84:6
158:1 160:8	embark 111:18	encounters 219:17	369:17 370:16	144:18 174:3
effects 144:5 145:9	113:5	encourage 154:19	371:7 390:15,16	185:11 196:9
151:19 196:12	embarrass 245:14	264:3 281:14	399:2	229:3 271:7
301:17	embedded 232:12	encouraged 205:9	engages 350:10	275:16 304:16
efficiency 54:8	embracing 110:4	249:3 282:2	engaging 368:20	393:11,17
157:3 158:1 160:8	emergence 157:15	encouragement	engineer 149:8	environmental 2:5
efficiently 95:18	emergency 329:3	293:19	181:2 210:3	2:9,10 77:2 84:22
181:6	emerging 348:1	encouraging 270:4	engineered 13:7	89:15 90:3 91:4
effort 39:17 43:6	Emeritus 244:19	endeavor 350:9	15:20 19:5 61:22	91:13 92:2,7
103:5 179:15	eminently 116:11	ended 223:1 262:16	116:9 137:8 140:6	98:15 101:18
182:4,18 183:11	emotional 27:19	267:4 271:20	143:19 150:11	116:10 134:20
183:13 184:21	emphasis 24:18	333:11 382:21	164:9 168:16	142:17 144:4
351:7,19 352:10	161:17	endorse 16:2	169:8 250:21	145:2 207:11
352:11,11 354:7	emphasize 73:9	endorsing 395:7	251:1,3,6	244:19 262:11,14
355:16	264:19 265:9	endure 128:9	engineering 107:22	262:19 263:20,22
efforts 78:22 109:3	317:13	enduring 132:15	134:1 139:6	267:5 268:4 269:1
176:16 247:12	emphasized 14:6	133:15	213:10 218:22	281:22 296:7
298:3 370:8	21:18 153:8	end-product	224:15 272:7	335:2,4,12,21,22
eggs 364:13	empirically 317:8	158:18	352:11	342:5 360:21
eighties 308:4	emplace 63:20	energy 27:13 35:12	engineers 350:10	366:13 367:17
EIS 33:13	220:22 221:17	50:15,19 55:1	352:19	envisioned 291:22
Eisenhower 1:19	241:14	56:8,12 77:4,5,19	England 117:10	envisioning 289:9
398:1	emplaced 63:15	80:21 81:1,10,15	enhance 218:22	EPA 9:15 10:2,13
either 35:17 152:8	221:13	82:6,13,17.21	enhanced 149:9	10:18 11:15 12:10
170:9 172:20.21	emplacement	95:21 130:6.16	enjoyed 163:5	13:20 18:21 25:21
206:14,18 246:22	17:16 187:14	164:2,20 185:5	enormous 227:22	26:5 27:13 28:2
,		, í		
	1	I	1	1

Г

29.16 20.16 22.12	212.11 15 10	102.17 001.00	24.427.19	amonoine 122.10
28:10 29:10 32:15	312:11,15,19	195:17 221:22	evolved 54:4 57:18	exercise 152:10
40:7 42:15 45:20	$310:0\ 338:20$	Europe 190.2	$107.9\ 285.5$	255:8 505:20
40:15 50:15 51:1	equivalent 82:10	Europe 180:2	evolving 154:5 Euring 167:14	exercises /1:1/
57:14 00:8 74:12 75:10 76:2 7 79:2	erode 242:18	European 250:12	Ewing $10/:14$	301:3
75:10 76:2,7 78:5	error 220:1	230:12 289:0	exact 550:4	exigency 551:5
78:13,21 79:2,7 70:12 16 90:1 12	escape 13:17	evaluate /0:1/	exactly 30:19 39:10	exist 307:2 319:2
/9:15,10 80:1,12	especially 42:8	12:15 145:18	45:5 / 5:1 82:18	330.17,17303.3
80:15,18 81:3,11	120:18 137:15	144:1 104:8	230:2 300:4 319:8	existed 9:14 137:2
82:2,7,14,18,22	163:9 164:1	1/2:18 18/:12	329:10,17 387:8	existing 34:17
83:13,16,21 84:13	365:10	219:21 252:12	395:13	85:16 91:13 103:2
84:19 85:2,13,13	essential 3:9,17	254:15	examine 160:4	192:10
86:1,10,15 89:22	6:13,1/1/1:2	evaluated 164:4,19	259:16	exists 64:7 350:19
94:13 95:7,11	210:14 215:21	evaluating 59:10	examined 89:1	expand 320:14
98:8,11 100:3	246:19 247:2	70:20 83:11 104:6	example 12:2 28:21	351:11 364:16
102:1 116:15	248:1,16 252:11	141:20 204:15	44:3 47:11 93:13	expect 13:9 36:18
118:12 119:10,15	254:13 255:2	evaluation 2:11	109:21 110:20	64:19 205:16
123:11,14,21	293:18 295:8	76:11 92:19 139:2	136:8 141:15	260:13 329:18
124:8 141:15,16	298:10 299:11,15	139:15 144:6	167:14 171:17	335:12 373:3
142:22 147:9	342:17 343:8	244:20 246:11,17	178:16 186:17,17	expectation 16:7
149:18 154:3,8,20	essentially 14:1	249:14 277:16,20	189:10 194:13	20:8 22:10 34:12
170:18 193:6	40:7 137:21	287:4	196:8 211:21	72:19,21 125:17
199:3 200:1,20	174:11 176:19	evaluations 16:4	242:3 249:22	149:20 150:16
201:12,21 203:6	197:13,16 198:7	136:19,20	253:1 258:4 262:8	234:1 270:5
203:11 205:12	221:7 227:14	evaporation 254:9	276:3 294:5 328:4	expectations
226:10 230:6,7	250:19 296:17	event 8:10 21:17	335:1,2 348:1	267:18
232:12 249:8,11	397:15 398:13	226:3 292:4	351:5 358:15	expected 164:10
254:18 255:11,14	establish 81:11	events 15:3,4	examples 96:11	219:16 258:16
256:7 264:4,9	82:2 84:18 120:9	106:17 128:6,21	252:14 309:13	267:8
269:5 273:18	120:12 153:2	164:18,21 237:14	358:5,6,6	expecting 260:12
274:17 275:12,21	established 16:11	296:11 299:2	excavated 52:20	expense 190:15
278:14 308:13	16:16 83:21	301:7 369:20	excavating 64:20	expensive 63:19
346:9,19 366:8	146:22 147:17	371:12	exceeded 14:8	117:3 190:14
367:10 376:19	152:22 163:18	eventually 196:17	149:13 311:16	352:4
377:19 379:20	293:6	304:1	exceeding 14:15,19	experience 6:2,22
EPA's 34:12 35:16	establishing 25:1	everybody 119:16	14:20	39:8 44:9 57:12
56:16 59:6 76:21	75:14 76:22 77:6	171:16 232:12	excellent 141:7	63:18 70:13,18
82:10 83:19 84:15	109:5 198:20	270:19 273:3	214:15 216:14,16	75:19 90:12 96:5
85:8 143:15 380:1	estimate 58:7	275:4 280:12	216:18	97:7,12 108:22
380:6 390:22	estimated 29:9	298:11 329:9	exception 33:16	109:1 130:21
EPA/NRC/DOE	59:3	367:5 387:22	362:17	177:18 179:11
48:5	estimates 15:6	everybody's 5:4	exchange 243:2	208:11 265:20
equally 38:9 82:21	192:6	evidence 105:17	367:2	272:18 297:6
253:21 268:14	estimating 53:14	107:6 166:18	excuse 200:6	320:7 352:14
279:13	57:4 73:2	310:19 316:14	209:22 211:14	experienced 242:5
equals 377:4	estimations 145:9	evolution 38:6 44:3	321:1	experiences 38:7
equity 148:2	et 58:7 65:5 105:2,2	evolutionary 297:5	exemplary 133:17	99:5 389:3
225:15 226:15	130:1 186:1	evolve 260:10	exempted 26:12	experiment 169:21

experimental	exploratory 17:12	faced 183:12 187:9	factored 55:7	fashion 283:21
301:16 305:13	24:1	189:15 215:18	factors 99:14 159:5	285:17 325:12
316:14	explore 372:12	facilitating 318:19	342:17 343:7,12	326:6
experimentalist	exploring 175:17	facilities 97:19	fail 184:21 270:13	fashioned 221:22
106:13	exposed 153:20,21	248:1 289:13,19	382:5	fast 38:14
experimenting	exposure 221:21	305:6 313:1,8	failed 53:16 230:21	faster 242:18
305:3	247:22 250:6	314:20 325:8	failure 76:13	Fathers 194:6
experiments 64:12	256:16,17,19	341:7 372:17	263:11	fault 21:5 45:4
106:21 159:21,21	257:7,9	373:6 375:13	fair 21:12 57:19	307:16
256:1,3,5 290:10	exposures 84:11,16	facility 51:19 55:8	220:2 255:17	favor 21:9 83:19
expert 106:12	252:6 393:6	56:1,7 78:1 79:15	300:2 304:5	133:1,2,2 195:12
130:11 138:5	express 49:16	80:19,22 91:19	305:21 311:2,10	favorable 19:22
165:12,12 185:22	135:11	94:17 99:1 246:8	311:13 317:16	141:19
186:5 214:9	expressed 217:17	288:17 289:6,7,8	334:14,19 353:20	favorite 119:7
227:22 275:12	expression 99:17	290:2,5 291:15	378:6	282:8
353:7 378:8 379:2	expressions 145:15	296:22 308:10,13	fairly 12:7 49:2	Fe 341:21
379:5	extend 77:16	308:18 314:7	54:21 69:12 74:4	fear 291:7 329:15
expertise 8:19 91:1	extended 11:22	316:18 318:1,8	82:5 89:4 95:17	329:15
96:6 129:7 197:15	78:9 85:21 259:13	320:13 338:1	98:7,14 108:14	fears 305:12
203:2 216:6 217:2	extension 129:10	339:8 340:5	269:16 293:7	feasibility 15:11
227:3 275:12	extensive 109:1	344:21 345:1	375:16	feasible 28:11
293:9 318:17	extent 131:19	367:7	fairness 295:7	84:10 135:3
319:1 331:1	132:8 148:9,10	facing 83:6 293:21	299:14,17,18	feature 140:15
352:15 376:19	154:9 218:17	294:14 307:10	300:5 302:14	312:5
377:12,14 389:10	310:1 318:18	fact 8:15 40:15	306:3,6 348:15	features 106:17
experts 90:1	374:7	45:17 87:8 88:9	faith 43:9	141:21 160:18
227:15,19 275:13	extra 117:15 233:8	89:13 91:12 99:20	faithful 278:19	164:18,21
275:14 319:6	233:9,11,11	115:16 116:6,22	faithfully 380:18	federal 2:2 5:7,9
349:1 356:2	263:16 289:4	119:20 125:1	falls 77:17 279:9	66:21 118:11
357:17 361:16	314:22	147:2 165:22	familiar 23:2 102:3	119:5 124:9
366:17 377:7	extraordinarily	168:8,21 182:5	269:20	154:11 194:12,13
379:14	305:2	196:3 207:4	famous 301:1	194:15,16,18
explain 27:21 59:1	extraordinary 6:2	218:21 223:22	far 28:20 32:19	195:4 205:2,10
66:5 67:2 128:2	329:21	247:4 253:6,11	88:3,9 93:19	206:20 209:14
145:11 160:17	extreme 133:19,22	256:19 264:13	115:21 132:4	262:5 286:4,5,11
184:10 328:20	extremely 129:3	279:10 286:11	138:10,14 147:9	287:11 297:20
344:10 350:20	130:12 131:13	311:14 315:19	148:13 150:18	357:2 361:2
356:13 382:1	132:1 133:13	319:9,15 328:10	157:21 175:11	362:15 365:16
explainable 144:14	194:7 257:19	328:12,21 330:3	199:6 203:22	380:21 381:2,8,12
explained 340:22	295:3 301:18	338:15 341:21	209:5 251:11	federalism 285:22
387:7	340:21	346:15 350:16	258:19 259:9	feds 119:17 195:3
explaining 330:3	eyed 382:22	353:9 355:13	326:17 336:20	feedback 96:21
explanation 355:6	• 	359:3 369:9	FARLANE 303:6	230:17
explicit 153:12	F	390:20 392:19	305:19 309:4	feel 69:15 130:20
197:5 302:2	fabulous 243:1	398:13	356:14,20	219:12 264:5
explicitly 342:15	face 87:6 176:20	factor 52:22 99:4	fascinated 303:17	278:2 281:13
exploration 234:22	227:8 370:20	161:1 256:18,20	fascinating 308:6	330:21 382:10
-		,		

Г

204.4	241 10 256 17 19	e•	07.01	6 4 4 4 1 0 0
384:4 frailing 270, 16	341:10 350:17,18	11rst-01-a-Kind	9/:21 6-110(-0.22.07.4	10rtunate 120:8
teeling 2/9:16	367:13 373:16	2/2:7	follow 96:9,22 97:4	245:18 249:6
316:5	3/7:11 379:12	int 30:8 43:7 108:19	123:15 239:10	forums 69:9
feels 330:21	finding 31:16	206:16 259:21	349:12 375:21	forward 39:9 97:18
fees 122:5 316:2,3	261:19 265:12,12	268:20 270:15,19	followed 83:14	103:9,11 105:19
feet 117:9 253:1,2	294:4	320:16,19 386:14	109:22 110:1	107:16 108:1,20
fellow 41:8 130:19	findings 80:3 83:3	fitting 111:22	177:5 190:7 230:6	109:8 111:12
162:7	fine 27:10 116:16	210:16	following 7:20	132:11 262:12
felt 33:10 34:5	126:1 149:2 171:9	five 7:17 26:9 49:5	209:8 269:10	264:5 271:11
157:13 202:13	171:12 200:12	49:7 81:2 136:11	275:21	295:13 299:4
247:7 332:7 333:8	278:3	179:14 226:8	follows 102:21	321:6 322:13
380:18 386:21	finish 49:3 55:13	236:21 238:20	197:1	330:14 336:7
387:13	117:22 170:5	253:17 302:21	follow-through	344:3 373:13
FERC 68:18	225:20 301:20	359:2 365:9 386:7	120:13	380:16 382:13
field 106:14 140:3	359:10	394:12 396:5,7	follow-up 41:19,22	384:18 385:2,22
150:9 159:21	Finland 180:5	fix 8:19 25:21 30:3	97:3	386:5 399:5
175:13 177:20	309:10 325:15,17	35:17 217:15	food 257:22 258:2	fought 340:3
188:16,19 248:22	firmly 114:15	fixed 35:21 44:7	foolish 332:16	found 7:14 13:22
297:13	115:22	flakes 382:17	333:4	83:20 197:4
fields 175:3 275:15	first 6:12 8:6 10:11	flawed 231:12	foot 40:21	207:10 226:3
275:16	12:4,16 16:22	flexibility 104:1	force 325:2 386:16	270:17 305:5
fiercely 51:2	25:19 51:20 52:3	108:9 133:1	forced 61:20 282:3	361:9
Fifty 243:8	53:6 57:10 62:4	153:12	forces 224:17	Foundation 283:1
figure 223:22 224:8	66:7 71:8 77:11	flexible 25:6 33:6	forcing 377:2	Founding 194:6
280:21 298:13	79:22 80:11 81:3	108:15 111:4	foresee 226:20	four 12:7 91:10
300:22 305:1	85:17 89:7 91:12	flight 321:4	foreseen 184:13.14	100:1 294:21
367:3 388:7	102:12.20.104:3	float 174:15	Foresight 149:7	350:16 359:2
figured 175:1	114:14 119:8	floor 29:14	forgetting 305:17	380:13
330:1 355:14	126.18 130:3.5.9	Florida 117:20	forgot 172:13	fraction 114:3
fill 320.6	136.3 143.4	flow 58.18 71.11 13	322.2	292.1
final 21.20 32.13	147.14 188.8	216.4 279.15	form 58.18 76.5	fracture 180.11
32.15 36.1 3 55.7	189.6 190.1	flows 227.2	277.22	fractured 216.4
55.21 83.15 86.2	209.13 214.7	Fluor 183.22	formal 67.8 69.10	frame 36.5 104.4
95.18 132.20	217.5 16 221.3	flux 174.13	69·13 14 76·4	136.4 17 288.15
154.12 222.9	228.4 230.7 237.4	focus 6.11 18.17	248.22	292.11 295.18
275.3 301.21	220.4 230.7 237.4 254.7 272.14	65.12 142.20	formations 2/11.16	202.11 200.10
finalized 380.17	273.1 272.14	157.6 150.14	former 68.17 18	38/1.17 387.22
finally 24.5 52.10	304.14 311.16 22	100.6 263.7 260.2	2/15·1 288·10	framed 167.1
50.16 81.6 107.17	318.77 373.0	285.7 201.3 18	2+3.1200.17	frames 10/1.10
264.10 204.6	318.22 323.9	205.7 291.5,10	forth 186.21 200.3	100.16 148.15
204.19 304.0	245.20 240.20	510.10 forward 25.7 24.21	201.7 202.12	109.10 140.15
539.3 391.0 394.7	259.10 261.10	10Cuseu 23.7 54.21	204.16 17 205.14	152.14 205.15
106.16 165.16	262.17 264.9 11	44.7 107.10	304.10,17 303.14	290.4 fromowork 96.14
174.2 195.9 100.4	266.11 272.2	175.10 270.14	248.15 240.7 10	107.7 109.0
1/4.2 103:0 199:4	300.11 3/3:2 201.10 202.10 10	274.12 378.8	340.13 349:7,10	107.7 108.9
200:22 207:17	301:18 382:10,10	200.0	301:0,13 302:4 262.6 270.4 16	109:18 111:18
227:0 232:10	380:12	290.9	303:03/9:4,10	112:12 143:11
255:4 298:1	11 1151-01-a 290:21	TOIKS 29:11 90:19	10runcoming 348:6	195:1/ 320:1/
			1	

Г

	1	l	1	l
frameworks 109:6	240:6,7 241:14	148:3,7,8,13	126:17 147:13	136:4,15,19,20
299:8	283:8 284:10	150:18 151:3,13	285:11 288:4	137:16 138:14
framing 379:1	285:6 315:5 325:8	160:6 165:6	289:22	139:1 140:6,11,16
France 152:16	342:6 372:9,11,22	183:12 185:4	generate 149:1	141:6 143:7
325:15,21 365:2	373:18 374:3,17	187:11 192:11	175:9 295:13	146:18 147:5
Francisco 116:19	391:22	222:16 258:18	312:14	150:21 157:5
frankly 195:20	fulfilled 125:16	260:14 261:20	generated 145:14	176:12 177:11
324:4 393:16	full 65:11 68:16	286:17 287:6	149:5	234:6 252:22
Frazier 2:2 5:3.6	75:17 85:1 149:21	289:12 290:21.22	generates 285:17	291:21 323:20
74:22 100:20	232:2 264:10	291:8 296:11.12	generating 148:20	geological 3:7 83:7
244:3 385:10.13	359:13	312:14 316:21	181:19 187:19	89:1 101:5.18
385:18	fully 166:8 248:18	323:19 326:2	316:10	128:16 129:16
FRC 124:9	255:3	327:18 338:2	generation 78:8	134:20 139:6
free 65:4 264:5	fun 36:1 78:17	394:9 399:8.12	181:13 225:16	191:4 234:21
French 317:22	function 62:21 77:5		312:20 391:16	geologically 188:18
frequency 133:10	203.12 298.7.9	G	generations 148:3	geologist 138:12
frequent 312:5	functions 77:3 93:5	gain 97:12	148:7.9 225:15	geology 127:17.18
frequently 92.12	205.19 293.7	gained 57:12	261.20 290.22	128.9 19 188.21
99·9 19 100·2	325.9	277:18	291.8 313.22	geosphere 13.8
144.16 253.10	fund 246.10 350.22	gallon 250:18	326.10 338.3	germane 337.12
319.1	355.1	game 76:14 283:19	generation's	Germany 152:18
freshman 206:4.6	fundamental 22:7	286:3 378:6	261:11 265:11	153:22 155:11
friend 102:3	203:8 215:2.8	GAO 341:5	generators 313:2	gerrymandering
friends 167:15	224:20 225:12	gap 41:15	315:17 316:3	33:4
Frishman 2:12	294:20 303:12.13	garnering 340:1	generic 14:11 28:4	getting 22:22 65:6
3:21 245:4 272:13	320:3 379:9	368:21	33:20 51:20 103:2	88:9 98:17 132:19
272:14 282:7	funded 114:6 350:9	gas 28:13	103:4 107:9 110:7	134:1 161:3
310:22 340:18	funding 258:18	gaseous 269:4	279:12.12 361:1	175:11 177:22
355:4 356:3.12	352:15 354:2.2	Gate 116:5	gentlemen 247:12	218:4 221:13
376:17	357:1	gather 399:7	330:5	274:11 353:3
front 75:1 92:1	funds 254:5 258:21	gathering 394:5	genuinely 341:10	359:21 369:10
93:16 127:19	funny 377:8	gauge 345:2 387:10	geochemical 136:9	383:20 384:3
163:1 387:3 391:3	furious 371:20	geared 144:5	138:7 158:12	387:2
frustrated 280:12	further 38:6 48:11	general 43:5 47:14	180:7	girl 382:15
frustration 269:10	80:2 85:13 175:1	77:7,11 78:4 79:4	geochemist 134:19	give 7:8 21:12 34:6
fuel 12:18 17:19	244:6 256:2 316:4	82:3 86:14 87:14	158:12	49:17 130:2 156:9
20:13 46:22 72:17	317:3 345:8 376:5	103:3,8 107:16	geochemistry	212:8 226:17
75:22 78:5.10	392:20 396:3	108:14 143:4	150:10 159:4	239:7 241:12
79:1,18 89:3	399:6	144:9 145:16	geographically	271:2 331:16
103:16,17 109:7	fused 250:17	148:6 152:12	312:22	334:22 346:14
112:9 113:2,5	future 1:1 5:8 41:6	191:9 249:16	geologic 3:11 6:15	347:22 354:11
127:6 137:21,22	54:13 60:17 72:5	259:1 378:9	9:21,21 32:2	394:19
139:7 188:12	72:8,12 76:5	generalize 307:14	48:21 49:20 53:8	given 54:11 59:22
190:9 191:12	84:10 85:15 86:13	generally 9:11,16	59:14 83:12 84:6	62:9 96:19 110:20
192:10 202:7	104:7 105:13	77:6 78:21 79:3	87:7,19 88:1,2,6	126:19 134:12,13
203:9.21 217:18	-		, . , , , -	. , -
	115:6,22 117:7	79:16 91:9 98:22	88:11 110:15	135:22 166:5
218:4,7 220:21	115:6,22 117:7 140:18 144:4	79:16 91:9 98:22 118:13 124:10	88:11 110:15 134:22 135:2	135:22 166:5 205:4 222:17

252:1 333:6	236:11,12 237:11	142:20 156:5	360:4 362:19	governments 67:4
334:14,16 339:18	238:20 239:1	162:2 167:2	364:16 374:14	281:11
361:18 365:18	242:9 255:12,21	169:12 172:1,3,7	381:9,16 386:20	governor 247:4
371:10 392:19	261:6,22 262:12	173:6 176:9 178:9	387:21 390:9	286:16 287:1
398:10	273:5 278:21	180:19 182:7	393:12,13,17	governors 287:5,10
gives 128:15	282:1 287:17	185:17 187:11	394:5 395:6,15	287:11
214:16 265:19	299:14 307:13	188:1 189:5	396:2,7,12	go/no-go 20:1
266:11	313:8,13 315:22	192:20 193:7,11	Golden 116:5	gradual 308:11
giving 7:4 49:17	321:6 334:11,20	193:19 195:1	good 5:17 14:5	gradually 383:21
68:19 80:17 193:9	336:7,22 339:10	196:14,21 200:21	21:15 29:15 38:22	384:7
glaciated 138:11	345:7 351:14	203:22 204:11	40:3 41:16 75:5	graduate 247:18
glaciation 36:16	357:5,7,16 359:11	207:15,18 211:8	97:21 102:13	grandchildren
glaciers 128:14	364:8 368:17	214:4 217:14	110:21,22 117:1	225:19,22
glad 386:8	371:14 373:12	218:7,20 220:12	119:20 124:1	grandparents
Gladiator 128:3	379:8,15 381:14	223:20 230:20	125:4 127:16	224:19
glass 381:20	382:18 386:13	232:16,20 233:2	134:1 140:16	granite 180:5
glimpse 266:12	396:8,10	237:5,19 238:17	141:11,12 153:4,5	granted 50:17
glowingly 245:17	goal 25:8 181:3,7	240:10,13 242:3	159:9 163:10	51:17 79:8
go 8:5,22 20:20	182:14 183:10	244:4 250:4	166:16 199:16	grants 354:14,14
25:21 33:12 35:17	261:12 391:20,20	258:19 259:16	200:9 218:8	Graphically 41:13
36:14 37:3 46:9	392:8,9,11,13	260:8,14 262:6	221:16 223:1	grasp 377:13
47:8 50:12 51:20	393:10	263:7,8 266:13	224:6,19 234:1	grateful 6:3 135:8
55:21 59:5 65:11	goals 145:10 181:8	267:12,19 273:8	235:10 236:18	302:22 330:8
66:9 69:7 80:4	261:4 327:22	277:13 278:22	241:3 244:8 245:6	grave 391:17
88:6 90:10 91:6	goes 27:22 28:6,11	279:3 290:3	248:10 273:9	great 16:1 39:4
91:12 92:18 93:9	28:13 127:20	291:20 292:18	275:7,8 279:5,22	70:12 88:13
93:18 95:8,12	132:7 155:7	293:11,18 295:4,8	280:2,9 298:20	114:12 131:9
99:17 100:5,7,21	211:14,15 237:12	295:16,17 296:13	328:4 330:2,9	199:9 208:5 216:2
102:13 103:9,10	241:18 342:21	296:14 297:7,10	337:18 343:5	221:10 234:21
103:12 105:22	going 5:4,13 8:12	298:4,13,14,16	346:11 356:22	308:20 340:10
106:1 108:19	8:15 9:11 10:22	299:4,5 300:2,2,3	358:5,14 360:13	341:14 366:21
110:7 111:8,14	12:19 20:22 22:21	302:6,6,14 307:2	361:11 368:9	367:8
113:1 118:9	23:7,17 24:2 25:3	307:3,4 309:21	381:20 384:2	greater 14:18,19
119:13 122:6	26:10 29:5,9	310:2,8,9,14,20	393:10 396:11	251:11,15 256:20
125:2 126:21	31:15 36:2 38:11	311:4,15 314:12	gotten 24:10 201:5	258:18 283:22
131:16 132:10	39:9,16 41:7	315:15 317:5	331:6 380:11	284:1
154:15 160:15	47:20 54:5 62:10	321:4,10,15	govern 20:16	greatly 181:19
165:8 166:21	64:21,22 65:1	322:18 330:6	government 56:13	340:13
170:15,21 178:15	88:10 98:1,13	334:11 335:6	98:19 99:2 122:20	Greenpeace's
188:5 190:13	100:13 102:13,16	336:7 337:14	133:10 169:10	288:22
191:13 192:4,14	104:2 105:10	338:1 339:9 340:8	229:16 230:2	grew 177:19
193:4,11 194:9	107:16 108:1,6	340:10 343:17	247:10 286:11	grim 341:19
195:14 207:1	109:8,14 111:12	345:17 346:21	341:10,15 347:5	ground 13:1 138:3
210:10 212:17	112:4,13 114:13	348:18,19 349:2,9	350:9 357:2 361:2	305:8
217:6 218:8 225:9	115:12 116:20,21	352:3,7 353:2,8,9	362:3,16 365:16	groundwater 16:18
228:20 229:16	117:8 124:17	354:2,15 356:9	366:3 377:10	19:6 32:16 53:19
234:7,12,19 235:4	126:17 134:14	357:21 358:17	395:18	59:12 60:13 145:5

216:4	guy 114:4 123:22	55:21	hare 153:20	hearing 58:5 66:3
group 2:11 6:1 7:19	167:16 206:10	Hanford 181:11,13	harm 67:11	67:7 68:6,7,10,15
68:1 127:11	guys 164:17 303:10	183:22 184:6	haul 350:8 351:4	69:10,13 160:2
153:18,19 173:16	356:15,18,21	185:13 187:18	haunting 265:3	239:14 269:14
204:22 227:15	358:2	237:17,17	hazard 40:14 87:17	273:4 281:7,16
244:20 246:12		Hank 2:14 3:22	140:14,15	350:15 399:6
247:9 257:3 261:8	<u> </u>	245:8 282:15	hazardous 9:18	hearings 7:14
301:2 361:18	Hagel 1:13,16 5:19	312:2 318:20	26:13 40:9 41:2,9	69:18 231:16
366:13 378:12	73:6 74:5 100:22	334:20 337:1	42:1 87:9,12,17	346:4 370:1
380:20	113:8 125:8,12,16	364:2 367:21	87:21 88:15,20	397:20
groups 68:7,11,12	125:20 126:2	372:14	hazards 40:19 88:7	heart 13:12 384:19
90:3 91:4 93:14	134:8 142:11	haphazard 386:13	251:20	heat 241:16,17,19
98:18 204:19	244:7,8 245:16	happen 200:19	head 99:21 178:6	242:3,16
276:9 291:3	246:4 258:6,9	222:17,18 223:15	183:22 191:8	heating 242:12
316:16 371:7	259:3 272:11	232:13 260:14	296:21	heavy 42:8 221:8
391:1 394:16	282:7,11 292:22	261:16 282:5	headed 108:8 179:2	221:12 303:21
grow 353:6	302:17,21 311:19	285:16 315:15	health 29:19 81:11	Heck 115:6 116:1
growing 145:17	321:1,9 323:5	393:5	82:8,11,19 139:22	heels 11:13
grown 233:12	330:5 396:21	happened 9:3,10	144:4 145:9,10	Heifetz 368:2
guarantee 340:11	397:1	10:7,20 18:12	151:18 160:9	held 25:13 92:8
guarantees 283:19	hair 226:4	25:10 26:20 27:21	196:12 248:3,3	145:14 171:15
guess 9:20 73:11	half 117:13 122:5	37:5,22 121:12	249:15	hell 280:16
102:12 127:17	180:12 228:13	122:7 181:12	health-based 27:15	help 6:9 199:11
156:14 161:10	292:2 301:6	233:12 242:19	hear 39:5 110:5	240:19 306:13
183:6 192:19	304:17 308:4	309:8 388:10	131:11 155:22	312:3 317:7 347:9
201:22 217:16	half-full 381:20	happens 36:14	189:2,6 198:10	349:18 377:15
229:11 305:22	half-life 29:8 42:7	128:20 147:7	208:12 266:3	helped 202:14
317:20 333:9	136:10,12 239:20	287:16 298:12	272:17 331:8	helpful 48:14 87:5
336:20 346:12	half-lives 42:3	309:10,14 314:11	332:2,9 333:4	197:4 315:22
360:22	136:6	353:2,2 363:18	345:18 346:13,16	316:9 360:11
guidance 34:14	halted 47:21	369:15 371:21	355:5 358:1	helps 348:4
90:15 142:6	hand 15:17 29:21	happy 60:18 86:20	359:12 376:10	hesitate 189:5
152:22 153:3	30:5 33:3 136:22	200:18 346:21	378:14 396:5	hesitating 237:1
206:14,19 207:8	147:15 225:16,18	hard 117:2 120:12	heard 79:20 83:9	hey 253:11
209:8 226:17	225:20,21 312:17	121:2 124:1 125:4	92:14 102:17,19	He'll 48:19
230:1 267:15	348:5 364:1 396:8	129:4 177:2	104:4,22 108:3	high 12:17 24:13
guide 112:17 278:6	handful 152:1	180:14 191:16	111:16 126:21	42:22 48:18 64:1
307:9	handle 250:14	215:21 216:7	132:2 145:16	75:22 79:18 89:2
guidelines 10:4	handled 88:8 196:7	224:10 225:6	146:10 149:3,19	109:6 112:14
20:15,16 21:17	196:9 339:7	232:17 238:22	160:15 162:11	127:5 129:15
34:17 47:14 95:3	392:14	247:7 298:5	227:11 263:6,14	133:12 135:1,4,19
124:10 142:8	handling 288:1	306:19 348:7	277:8 278:15,20	135:20 140:14
210:16 262:14	326:11 339:12,19	359:21	295:1 296:5 297:4	141:4 153:19
266:22 267:11	hands 254:11	hardened 392:15	331:13 342:14	159:11 181:10,13
268:11,18 274:6	281:18 286:19	394:14	343:4 346:3,9	184:12 190:7
298:19 395:16	349:4 394:22	harder 47:3 145:10	350:14 376:12	192:7,7 195:19
Gulf 173:12	hand-in-hand	324:13	387:8 398:14	196:3 198:18

	1			1
203:21 295:14,20	120:18 132:6	hydrology 158:14	145:8 165:6	315:6 340:7 350:7
295:20	196:22 204:21	hypothetical	impatience 25:11	351:13 373:9
higher 318:20	233:15 330:21	323:15	impeccable 212:12	397:7,9,12,18
319:5 393:7	377:10 394:4		imperative 298:14	398:8
highest 354:8 355:6	399:12	I	imperatives 354:21	importantly 38:9
highlight 83:4 93:3	hoped 199:18	IAEA 105:7 109:2	implement 54:4	impose 23:14
94:5 263:15	hopefully 102:16	112:16 142:7	61:19 80:15	imposed 84:5
highlighted 130:9	220:4 229:13	ice 117:9 180:10,11	150:15	impossible 63:3
highly 90:8 153:20	384:7	iceberg 150:4	implementation	140:1 216:1
212:1 213:8 297:1	hoping 312:2	idea 22:15 29:16	77:16 156:20	293:12
304:21 339:15	horizon 326:5	33:17 118:10	207:13 306:14	impractical 63:3
high-level 69:5	horizontal 221:7	138:13 172:17	implemented 26:15	140:7
251:18,22 257:15	horrible 39:13	212:10,13 221:5	34:15 152:3	impressed 213:4
257:17 276:14	host 285:13 289:16	234:7 317:3 324:6	231:11 261:5,14	impression 387:6
280:14 313:16	302:12 314:3,6,7	356:22 375:16	334:11	improved 378:11
342:9 344:21	318:4 332:10.19	ideally 92:16	implementers 83:7	improvements
373:22	349:9	ideas 134:17	implementing	157:2
hired 247:17	hot 242:7	identical 211:9	15:11 27:5 133:12	impugning 199:5
historical 124:7	hottest 53:13	212:1	149:22 152:10	199:20 200:12
211:13.17	hour 102:3 243:9	identifies 132:8	implicated 353:17	imputation 43:8
historically 322:3	243:11	identify 158:4	implication 297:2	inability 211:17
history 3:4 7:5 8:17	hours 245:12	259:18 293:20	implications 288:6	inadequate 132:14
8:18 83:10 124:14	House 119:11	335:6	292:10 302:9	inadvertently
126.20 128.4	342:7	identifying 253:16	315:4 372:15	226.1
130:22 150:8	How's 212:15	ideological 369:16	implicit 368:14	inappropriate
184:5 212:5	huge 122:19 183:13	idiocy 211:6	implied 153:12	36:17 141:9
283:10 309:8	235:21 345:5	ignore 248:12	193.5	incineration 371:4
313:11 339:11	368:13	276:16	implies 318:12	include 110:11
349.20 367.15	human 15.4 5	ignored 277:13	imples 510.12	318.10 325.9
hit 149.6 336.19	23.16 30.16 21	illustrate 127:17	importance 92.10	342.8 9 17 358.3
hits 394.20	31.13 32.6 33.18	137:16	important 26.19	included 18:20
hold 178.13 326.21	59.10 128.16	illustrates 256:15	39.7 51.16 61.3	20.11 32.16 34.10
348.2 363.8	133.21 137.1	illustrative 173:20	77.8 79.11 82.21	40.6 251.1 7
hole 140.8 185.10	151.2.296.15.16	imagery 307:20	89.16 103.16	288.5 342.6
259.7 289.2 292.6	323.20	imagine 103:20	104.18 106.19	includes 15:4
321.20 22 322.14	humans 53.22 62.5	191:16 207:15	110.7 112.9	231.15
323.3 326.17	104.7 145.8	229:19,19 238:22	142:22 157.7	including 131.14
holes 23.22 110.21	humble 224.12	immediately 5:13	158.5 8 159.14	139.9 150.7
319.21 320.16 21	humility 249.12	136:1 361:22	161.8 163.19	204.19 267.6
Holm 328.15	hundred 122.10	immoderate	175.10 176.8	204.17 207.0
320.21	165·7 225·7 326·7	249:13	192·22 19 <i>1</i> ·A	250.7 5 4 5.10 361·14
home 160.13 371.1	hundreds 58.8	impact 30:17 84:22	192.22 194.4	inclusion 16.2
Homefront 18/1.5	117.0 161.13	148:8 249:15	201.0 227.18	incorporate 56.21
Homoland 361:5	164.13 223.16	281:22 309:10	201.7 227.10	110.0
honor 127.2	271.5	335:3.4.13.21	247.20 231.3,10	incornerated 2.8
honorably 171.5	4/1.3 hydraulie 169.99	336:1 342:5	252.10 250.15	36.11 56.17
hono 73.2 75.10	hydrologist 159.12	impacts 144.4	237.11,19 200.22	increase 177.10
nope 13.3 13.19	nyur ologist 130.13		212.2213.10	111CI Cast 122.19
	1			1

258:1 283:18	infinite 190:15	295:13	60:11 103:20	307:15 311:21
292:4 315:2	infinitely 190:15	initiated 339:2	143:20	313:10 319:22
increased 61:15	inflation 122:14	inject 42:16	integration 158:21	325:13 326:16
84:16 139:13,14	inflexibility 283:12	injecting 241:15	intellectual 124:22	327:5 337:9 339:1
153:8 364:8	influence 81:19	injection /1:11	intend 278:7	344:6,9 355:5
increases 139:16	influenced 385:1	input 90:1 93:10	intended 63:1	362:19 370:21
increasing 157:3	inform 75:20 171:6	95:13,13,14	282:5	interests 91:3
181:19 284:14	176:21	197:21 236:5	intense 199:6	92:14 124:3
316:4 374:21	information 51:10	241:5 376:11	379:14	139:22 377:16
393:8	51:12 52:15,17,21	380:8,12 381:6,6	intent 85:3 97:1	interfere 348:8
increasingly	52:22 55:7 75:13	382:7	219:7 220:8	intergenerational
146:13 150:20	87:5 153:10	inputs 234:22	311:10,11	148:2 226:15
incredible 137:5	159:17 160:1	inquiry 275:20	intention 86:15	314:1
incumbent 106:7	165:2,4,5,11	276:22	intentioned 261:4	interim 313:1
independence 51:2	179:19 205:6	insert 333:18	intentions 94:3	intermediate 63:17
76:8 119:9 120:4	232:3 234:4,8,13	inside 13:9 167:18	119:20	international 71:16
120:12 161:11	234:15,17 236:16	178:9 382:18	interact 110:12	108:21 109:13
198:8 257:16	236:19 237:19	insight 96:19	296:15 381:4,4	127:4,7 142:6
independent 2:12	277:18 299:3,12	173:20 174:12	interaction 116:9	144:11 154:16
50:21 197:15	367:2 377:5 383:4	175:10	155:22 156:11	155:7 167:17
203:17,19 210:4	390:14,21 398:6	insights 175:7	162:6 198:21	212:19,22 271:21
245:1 246:10	399:7	379:6	203:2 230:13	321:4
247:2 284:19	informative 38:17	insistence 269:22	231:3 331:8	internationally
315:7 349:14	informed 92:6	insoluble 250:17	352:15 384:18	105:3 115:14
350:1 357:6	96:19 233:20	inspection 51:17	interactions 192:21	151:22 322:10
Indian 67:5	234:10 235:6	inspired 279:20	201:15 202:14,18	interns 382:9
indicate 41:5 84:12	236:20 248:18	instability 140:13	interacts 284:4	interpret 93:11
299:6 318:4	374:5 378:1	instance 139:6	288:18	interpreted 14:7
indicates 290:1	informs 170:17,22	142:7 165:7	interagency 261:8	50:7 153:13
indicating 294:9	172:21	274:16	interest 75:18	interregional
indication 50:8	infrastructure	instances 124:4	76:13 139:21	312:19 315:19
311:17	371:7 373:10	328:9	341:2 353:6	interrupt 169:16
indicators 146:18	ingestion 255:6	instigate 176:5	369:17 371:7	172:22 321:2
individual 16:12,14	inhaled 255:6	instigation 130:18	377:13 396:13	327:7 356:15,21
18:19 23:12 28:18	inherent 19:13	Institute 89:15	interested 8:16	intervene 370:2
32:10 35:1 59:7	inherently 215:22	249:9	64:6 89:13 134:2	intervened 247:5,9
60:12 82:16 84:3	inherited 124:8	institution 131:2	137:10 202:12	intervention
126:12 140:5	initial 9:3 54:10	institutional 3:18	213:4 237:8	162:13 323:20
147:4	130:4 180:1	6:18 17:8 204:12	239:22 240:2	interventions 11:4
individuals 13:1,15	187:15 190:6	244:12 285:20	280:8 319:20	11:20
27:16 154:1 281:8	237:4,15 283:20	287:7,17	324:17 368:7	inter-generational
Indoor 101:22	306:15	institutionally	369:16 378:10	312:11
industrial 221:22	initially 45:11	270:17	390:16 399:9	intimidating 69:15
industry 125:2	283:13 292:3	institutions 283:9	interesting 137:15	INTRAVAL 71:17
133:17	320:9 338:9,17	283:13	273:10 284:11	intriguing 284:16
inertia 211:18	373:21	integrate 158:17	286:3 291:16	314:16
inevitable 140:12	initiate 61:17	integrated 40:1	301:9,10 304:22	introduce 101:3

		l		
introduced 178:1	300:19 328:7	137:7 138:14	268:9 269:6	356:10 399:10
introduction	343:3 352:2 355:7	143:18 144:2	288:12,14 290:13	joining 6:1 100:11
102:21	359:7 361:4	145:3 158:5	292:12,20 293:20	jolt 374:20
intrusion 15:4,5	364:19 366:6	250:19 307:19	294:1,15 303:14	Jonathan 1:13,17
23:16 30:16.21	371:2 389:8	391:20 393:10.16	309:20 310:5,15	2:5 3:8 74:10
31:13.14 32:6.8	392:17	issuance 86:16	312:10 332:12	75:7 233:14.16
33.18 59.10	involvement 66.1	issue 17·20 21	334.9 345.22	323.6 396.21
intuition 218.11	66.11 92.11	20.21 23.7 29.3	346.18 20 371.8	Joshua 187.2
intuitively 251.13	135.20 260.16	44.19 45.3 61.18	379.10.13	Journal 253.5
273.11	262.1 9 271.14	70.2 83.2 87.6 20	issue's 162.22	iov 387.2
invade 324.2	202.1, 7271.1+ 272.3, 274.12	88.5 90.2 21	itom 02.0	judge 135.15
invont 273.13	272.3 274.12	138.17 155.11	itoms 05.12 157.6	276.21 344.3
inventory 251.10	293.2 297.10	150.17 155.11	202.9	270.21 344.3
244.17 245.2	334.17 339.11 245.2 246.6 16	102.1 1/4.1 1//./	202.0	Judging 72.12
344:17 343:2	545.2 540.0,10 252.14 259.4	185:4,0 201:1	iterate 5/9:10	141:2
304:7	353:14 358:4	204:5 207:5	Heration 579:4	Juagment 29:15
invest 11/:14	359:14 363:2	221:15,17 225:14	It d 92:16	130:11 131:17
148:12	364:22 365:11,12	227:21 241:7,13	It'll 102:16	149:3,15 150:5
invested 363:14	367:18 368:12,18	247:21 248:11	T	165:12,12,16
investigate 213:17	369:12 371:11	261:3 264:8,9		167:3 171:4,13
313:11 317:8	372:1	269:4 284:2 287:8	Jackson /5:11	172:21 184:12
investigating 25:4	involves 130:11	288:1 302:4,5,15	Janet 161:5	185:22 214:9
313:15	298:21 368:13	305:8,9 310:6	Japan 180:3	218:18 226:2,19
investigation	involving 127:8	313:20 314:1,11	Jenkins 282:11	judgments 187:1
186:12 236:10	134:2 150:10	314:13 316:14	Jenkins-Smith	300:5
289:10	228:18 251:12	325:16,21 331:4	2:14 3:22 245:8	Judith 328:15
investigations	261:5 262:16	332:2,10 337:5,8	282:13,15 307:11	329:21
237:16	263:1 365:22	337:13 338:7	309:12 313:9	Judy 2:21 4:13
investigators 92:3	379:2,3	345:1,8,15 346:12	316:12 323:14	385:18,22 386:3
invisible 140:18	Iodine-129 136:10	346:22 358:12	325:4 327:10	386:15 390:19
invitation 134:16	ionizing 258:4	361:3.7 369:18	328:3 334:20	397:2
379:13	392:5	371:16.17 376:14	337:3 338:22	iump 299:4 304:12
invite 172:1 386:4	irradiated 391:21	391:10 392:6	353:12,16,21	309:6 331:11.12
386.7	irradiation 257.22	issued 78.3 6 13	368:3,6,9 373:19	331.17 337.2
invited 390.2	irrational 22.13	79.16 80.13 18	374:16 375:15	June 394.13
inviting 126.11	irrelevant 43.15	81.3 83.13 86.2	Jim 202:18	iuries 370.10
281.11	303.17	152.3 154.4	iob 37:13 51:3	jurisdiction 3/2.10
involve 68.1 90.3	Isaacs 2/1.12 110.5	155.10 277.22	143:15 193:14	380.1
261.7 270.22	170.1/ 228.11	issues 6:10 7:5	199:16 200:9	jurisdictional
201.7 270.22	1/9.14 220.11 Island 208.1	11.14 22.6 20	213.16 280.17	254.12
570.10	Islanu 506.1	$11.14\ 22.0,20$ $22.1\ 24.16\ 27.1$	298.21 300.15	234.15
111v01veu 8:14 9:2	Isolate 145:9	25:1 24:10 27:1	306.19 330.2	Jurisaicuons 78.2
24:12 48:7 121:15	Isolated 285:11,14	40:11 85:11 95:4	377.18 383.5	91:5 92:15
123:3,19,22 134:0	isolating 290:8	100:2 112:4	204.10	jury 337:7
1/4:/ 203:14	392:8	122:21 154:10	J74.10 ioha 288.7 242.2	Justice 259:10
230:12 261:21	isolation 34:9	1/3:4 1/6:20	juus 200./ 343.3	justification 42:6
262:5 281:16	80:12 88:3,10	180:9 192:16	JUCKEYIII 311:3	85:11 375:6
284:7 288:9	91:18 95:6 96:12	197:17 221:11	Join 8:8 394:21	justify 335:19
289:20 296:19	108:12 136:20	241:9 244:16	Joinea 5:21 /1:6	

200:4 2:15 5:15 7:3 222:1 7:1 229:8 32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
2:15 5:15 7:3 222:1 7:1 229:8 32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
5:15 7:3 222:1 7:1 229:8 32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
7:3 222:1 7:1 229:8 32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
7:1 229:8 32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
32:4,8 8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
8 236:11 39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
39:10 23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
23:7 ,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
,16 31:3 3:13 45:10,12 60:8 64:15 68:4 7
31:3 3:13 45:10,12 60:8 64:15 68:4 7
3:13 45:10,12 60:8 64:15 68:4 7
45:10,12 60:8 64:15 68:4 7
60:8 64:15 68:4 7
64:15 68:4 7
68·4 7
$(1/) \rightarrow /$
5·21
3.21 8/1·0
7 20
96·14 22
)0.14,22 00·1
55.1 5 116·2
255.4
255.4 7·0.10
7.9,10
/.10
0
0 01.5
<i>7</i> 1. <i>J</i>
245.15
245.15
02:20 5 221.2
5 551.2 4.17
4.17 70:0
0.21.21
9.21,21
5.5 250.0 2.6
2.0 12.15
13.15
104.7 15
194.7,15
0.17
J.17 • 1 25•5
. т ээ.э
1 205.15
5·18

250.10	267.19 212.17	24.12 26.9 42.22	210.12 221.19	B atan an 290,10
339:19 Joy 201:5	267:18 515:17	24:13 30:8 42:22	319:13 321:18	listener 380:10
lay 291:5	544:10 Ladarbarg 197.2	48:19 /5:22 /9:18	389:8 Ro 77:12	179.17 209.7
156.22 221.20	Leaerberg 187:2	89:2 90:8 99:22	$\frac{110}{156} / 7.12$	1/8:1/298:/
150:22 221:20	Lee 228:11 507:11	109:0,15 112:14	259.1	litany 275.9
200:2 505:21	$\begin{array}{c} 1011 \ 20.14 \ 54.17 \\ 27.16 \ 54.15 \ 56.20 \end{array}$	112:13 127:0	238.1 lifeevale 220.7 12	277.5
304:10 328:10 279:11	37:10 34:13 30:20	129:15 155:12	lifetime 520.7,12	2/7.5 literature 129.4 6
5/0.11 Joadon 172.15	175.22 202.20	133.1,4,19,20	72.16 152.10	220.18 257.11
170.15	200.10 323.22	140.14 141.4	72.10 132.10	329.10 337.11
1/9.1J	352.4 353.21	151.4,5 152.22	$201.11\ 203.11$	505.10 507.20 litigated 15:15
loadorshin 132.16	$302.9 \ 302.19$	133.3 101.10,14	151.21 174.18	littlo 7.6 0.3 12.0
133.11 248.2	233.8 10 11 12	181.17 104.12	liked 386.21	24.3 30.5 AA.15
367.10 368.1	233.0,10,11,12	102.7 105.20	likelihood 180.12	24.3 39.3 44.13 15.10 66.6 07.15
Jona 11.7 127.4	Jogelly 252.20	196.3 7 203.20	310.14	45.1700.077.15 100.15 102.17
leads 290.11 300.3	253·3	206.22 230.1 18	likes 370.22	105.9 129.4
329.18	legislation 9.6 11.7	234.15 242.11	likewise 218.13	153.21 168.14
Jeak 185.17 19	25.15 81.18 86.11	254.15 242.11 264.22 284.4	limit 16.13 26.22	182.21 100.14
186.67 393.12	93.16 96.10 97.1	286.16 314.8 19	28.8 22 42.21	208.1 247.7
395.15	124.8 250.22	318.7 20 319.1	57.6 16 59.7	260:11 263:13
leaked 254:8	legislative 11.4	323:19 326:9	60:12.85:17.18	265:18 279:1
learn 52:18.20	93·4	339:5 354:8.9	105:4 107:10	300:22 309:7
63:17 152:1	legislature 248:17	363:10 366:1	154:18	323:16 332:9
175:14 187:11.15	248:20	377:14	limitations 42:16	335:8 345:4.7
224:15 239:2	legitimate 204:3	levels 29:18 60:14	limited 130:1	353:10 362:9
265:19 303:9	228:5 261:18	87:18 241:8	135:22 159:9	364:17 365:14
360:3	327:21 339:13	242:15 355:6	limiting 13:15	366:5 367:4 376:4
learned 96:1 97:16	length 227:5 229:6	Lewis 175:20	limits 14:5,16,16	382:14,17,19
98:17 128:19	lengthy 83:10	liar 383:16,18,19	14:19,21 23:6	397:8
179:17 186:2	lesser 131:19	license 34:15 37:6	32:2 53:5 59:11	live 58:6 174:1
216:2 260:11	lesson 260:10	50:5,9 51:7,17	84:5 250:16 312:4	318:15 396:19
270:14 272:3	lessons 38:7,8 39:7	52:4,9 53:1 67:19	313:7,12 314:9,13	lived 38:16 118:17
360:2 381:21	252:10 270:14	86:6 106:1 109:22	line 38:4 246:15	Livermore 216:21
learning 23:19	272:2 360:2	110:2 131:22	333:11	222:21
52:12 132:9	letter 248:6 286:22	132:6,19 152:4	lines 45:4 107:5	lives 304:17
133:19 326:2	letting 210:5	168:18 204:15	128:18 139:2,5,12	living 114:1
329:6 374:19,19	let's 11:2 18:3	234:3 260:7	139:14 166:17	local 67:4 91:4
learn-as-you-go	20:14 27:11 51:20	licensed 51:19	301:12,13,14,15	92:13 98:18,22
110:9	54:18 55:12 64:8	392:19	linkages 372:11	281:11 316:10
leave 11:20 54:7	100:15 102:20	licensee 106:7	lip 270:21	318:13 319:5
214:5 266:7	156:9 157:17	219:12	Lisa 75:11	329:9 339:3 366:1
279:18 321:3	159:14 162:8,19	licensing 10:2	list 74:21,22 253:19	366:17 367:7
leaving 393:7	185:16 186:10	15:12,15 18:10,13	275:17 378:1	392:16,22
lecture 166:12	189:3 195:16	18:14 20:3,6	listed 131:12	locally 343:1
212:8	245:22 287:19	73:16 77:20 97:7	141:21	located 17:10 21:5
lectures 134:13	299:14 336:7	107:21 109:20	listen 274:14	45:5 213:13 301:5
led 9:6 48:4 84:17	354:11 394:22,22	111:15 135:16	276:10	306:7 341:20
161:5 262:6	level 12:17 14:2,7	179:21 202:4	listened 276:9,11	location 174:16,17

locations 77:13	53:10 55:4 60:16	loop 96:21	303:7 305:13,14	maintainable 228:6
lock 261:16	67:18 68:22 73:14	Los 216:15 253:1	378:4	maintained 211:17
loggerheads 254:19	89:16 92:18,19	339:9	love 195:1	maintaining
logic 209:6 212:12	95:16 96:12 97:22	lose 111:11 139:17	low 31:9 53:17 73:3	140:21
236:10 312:12	122:10 128:13	301:8 347:13	112:15 174:13	majesty's 119:18
logical 364:10	139:15 145:21	losing 300:17	196:7 222:12,14	major 9:5 11:3
long 10:11 15:17	147:11 154:20	loss 122:17	272:1	36:16 127:1,18
16:10 20:10 23:5	157:17 159:4	lost 62:19 270:3	lower 122:4 190:13	167:8 253:12
29:6 37:17 38:19	178:16 180:3	301:18 306:9,14	206:22 378:11	273:20 288:1
53:21 54:21 64:10	181:9 195:16	347:16 348:18	low-level 254:6	293:20 296:2,16
64:19 84:5,17	196:5 199:3 211:9	lot 8:13 22:21,21	305:4	298:14 299:13
88:9 95:6 115:5	217:7 219:8,9	27:20 28:22 29:13	Luckily 352:19	309:16 312:10
116:17 123:22	237:15 240:8	31:1 35:5 37:14	lumped 381:11	318:16 348:5
124:1 125:15	261:2 273:12	41:22 43:17,22	lumpy 310:12	361:9 371:17
133:13 134:6	286:22 291:10	44:8 58:20 62:14	lunch 366:12	majority 115:4,9
135:19 141:17	326:7 332:14	73:17 90:22 96:2	luxury 102:12	171:16 290:19
143:10 145:12	349:21 352:8	96:3,5 99:18		308:17
148:4 153:11,13	362:6 367:15	103:17 106:15	M	maker 226:22
179:6 198:17	384:18 392:13,20	112:13 118:4,8	M 282:19	makers 341:9
201:20 236:18	looked 13:21 14:3,9	142:6 154:15	MAC 303:6 305:19	making 76:16
238:18 241:15	15:20 35:14 39:12	165:2 167:22	309:4 356:14,20	104:16 168:7
249:10 273:17	45:12 89:2 128:4	177:1 179:20	MacFARLANE	183:14 194:20
278:21 282:21	145:18 174:21	186:18 191:10,10	1:20 39:3 70:8,15	205:4 219:10
286:9 287:17	186:8 221:2	191:11 201:15,19	70:22 71:4,22	229:4 267:3 296:5
289:9 296:4	291:11 334:17	203:1,2,18 210:2	72:7 114:21 130:1	300:19 301:15
297:13 304:17	350:5 381:2	213:16 216:20	163:2 169:15,18	313:21 316:6
334:20 339:10	382:21 383:1	217:17 220:13	170:2,5,11 171:22	323:8 338:8 349:6
347:11 348:20	looking 12:10	221:20 222:15,22	172:5,9 192:9	353:22 360:22
350:8 351:4	23:20 28:3 45:7	224:8 225:22	208:5,9 209:10,15	387:6,16,19
354:21 396:6	45:20 57:5 65:19	228:17 231:18	209:18,20 210:12	388:11
longer 7:6 15:21	91:15 92:22 99:11	239:21 241:16	210:18,22 211:4	makings 154:15
34:5 41:21 55:16	112:16 123:18	263:14 269:9	211:12,20 212:9	manage 208:18
56:3 59:17 86:9	145:3 149:12	285:17 286:19	212:16 213:18,22	302:7 316:20
370:17	151:14,22 160:19	290:10 303:9,10	214:6,13 215:7	346:5
longest 207:14	161:6 175:2	306:4,15 310:19	216:10	managed 227:12
351:7	183:19 196:10,12	311:12 316:21	machinations	management 24:14
long-lived 250:13	196:13 235:14	328:5 342:13	364:9	41:2 71:19 78:19
long-term 17:5	262:11 264:3	357:10 358:12	mad 371:13	79:17 89:10 99:21
19:14 24:19 33:10	266:16 285:9	361:16 364:6	Madia 351:21	99:22 109:11
40:13,18 78:9	300:7 314:12	365:13,13,17	359:7,12	110:4,10 129:18
84:7 85:4 108:12	319:3 341:6 346:1	367:16.16 380:12	magazine 294:9	132:21 133:4
129:14.16 202:22	358:10 361:3	381:21 382:2	magical 289:20	140:2 141:5
324:1 350:8	376:17.21 385:22	386:9 389:11.11	magnesium 251:8	179:12 189:20
375:17	388:19 396:8.10	390:15 391:6.11	main 377:17 378:9	221:16 263:10
look 8:10 9:2.4.9.11	looks 14:11 76:8	396:15	maintain 47:3	269:18 284:10
13:6 18:3 22:13	139:19 187:9	lots 139:4 208:10	76:12 108:12	285:5 294:7
27:11 45:10.18	237:10 354:10	208:10 230:22	207:10	300:19 348:20
,				
			1	1

٦

349:14 397:17	221:19 250:6	271:6 301:10,21	382:10 383:7,15	235:3,9 236:14
manager 205:10	252:17 253:7	307:15 309:14	399:10	238:5,10,16
managers 89:18	255:5 289:11	310:10 323:11	meetings 67:1.3	239:12 240:4.15
302:13 353:22	304:21 305:10	326:16 334:19	74:16 75:16 100:6	240:21 241:7
managing 302:8	325:10 326:11	343:15 348:8	235:21 248:16	249:6 267:7 303:6
349:15	339:7.13.19.374:2	349:20 361:8	253:22 277:11	305:19 309:4
mandated 31.1	mathematical 17.5	366.2 384.20	343.21 359.16	311.20 314.14
mandating 61.16	150.13	meaning 150.19	360.2 380.11	317.10 318.9
mandatory 278.4	matrix 250.17	279.13 355.7	381.5 18 22	319.8 19 331.21
manifestation	matter 100.18	meaningful 56.1	382.11 384.1	333.16 336.21
138.8	105.20 117.16	260.17 18 19	389.20 399.8 11	338.20 340.17
maninulating	167.12 13 160.7	200.17,10,17	300.12	3/5.7 11 13
252.8	205.1 228.22	mooningloss 255.8	377.12 maga naonla 20.2	343.7,11,13
332.0 monkind 269.2	203.1 220.22	meaningless 255.0	meltdown 170:10	330.14,20 372.7,0
111111111111111111111111111111111111	243.13 247.4	166.4 077.12	meltdown 170.10	575.20 575.9,20 276.1 279.14
manmade 249:20	235:0 230:18	100:4 277:15	mendowns 170.12	3/0:1 3/8:14 200:5
manner 2/3:8	295:21 302:11	302:5 320:15	member /:2,11	390:5
Marcus 128:5	330:18 341:21	350:5 357:7	39:3 40:5 44:12	members 1:15 5:20
Mark 2:6 3:12	343:16 354:19	387:18	44:21 45:15 46:3	7:22 39:1 74:18
101:/114:12	399:15	meant 26:4 29:5	46:6,9 61:2 63:10	/5:6 82:16 115:19
217:16 236:22	mature 42:8	67:3 110:11 268:7	65:2,14,18 66:4	278:15,17 295:11
markers 41:5	max 255:16	2/1:6 332:22	66:13,16 67:15,22	321:13 331:10
marks 382:19	maximum 82:15	334:16 335:18	68:4,16 69:6,14	370:11 385:4
Marriott 1:12	McCARTIN 2:4	measure 13:13	70:5,8,15,22 71:4	397:22 398:6,19
Mars 174:3,14	3:8,15 48:16 49:4	57:6 73:20 74:1	71:22 72:7 87:4	memory 326:13
186:17	49:9,15 62:13	157:18 329:13	97:4 119:13 130:4	mention 74:14
Martian 186:18	64:2 65:3,17 66:2	measured 32:19	135:5 162:11	251:17 253:11
Mary 2:22 4:14	66:7,15,20 67:17	133:9 308:8	163:2 169:15,18	262:2 265:22
386:1 390:12,13	68:3,5 69:3,17	mechanism 137:7	170:2,5,11 171:22	343:4
397:8 398:14	70:14,21 71:1,6	350:18 355:20	172:5,9 176:3	mentioned 18:18
Mary's 397:2	72:2,11 73:11	mechanisms 369:5	179:3 180:1,16	23:17 52:3 56:16
masked 15:19	102:4 156:1,4,7	media 15:18 111:5	183:6 185:14	57:3 60:1 97:6
match 27:4 268:18	156:13 161:21	145:2 177:11,22	186:4 187:5	143:7 150:13
material 52:9	165:22 201:10	178:3 179:7 218:8	188:10 189:8,21	192:17 268:3
55:16 63:21 77:14	219:6 237:3	234:6 236:3	190:4,12,22	322:2 332:18
77:21 79:5 189:11	239:19 240:11,20	medical 151:5	191:14,19,22	377:18
190:16 202:11	241:1 265:7	256:17 257:8	192:3,9,11 193:9	mentioning 19:18
212:14 217:10	343:14 379:19	meet 22:1,16 25:5	193:21 194:2	merged 18:14
234:14 252:22	mean 10:8 21:4	29:12 46:16 72:10	195:9 196:19	merit 256:5
322:18,19 325:21	29:3 41:10 43:13	98:16 99:21 100:5	208:5,9 209:10,15	merits 92:20 307:1
339:9 369:17	71:2 76:6 97:5	118:15 157:11,20	209:18,20 210:12	374:6
386:9	118:3 129:18	181:3 234:2	210:18,22 211:4	Merkhofer 228:12
materials 40:10	146:15 177:5	395:10,16	211:12,20 212:9	MESERVE 1:21
42:17 87:7,8,12	182:20 195:7,18	meeting 1:6 3:2	212:16 213:18,22	mess 254:11
87:14,17,22 88:20	209:20 212:4	5:12 6:11 83:10	214:6,13 215:7	message 10:8,9
149:10 150:11	216:1 233:10	127:9 163:17	216:10 217:5	messed 254:4
158:15,15 179:5	237:3 239:21	244:5 253:10	218:14 220:15	messes 367:17
184:2 202:5	241:11 256:21	345:20 366:12	222:3 233:16.19	messy 10:9 12:8
				<i>.</i>

		l		1
met 18:21 144:7	104:7,10 105:11	minimum 19:4,7	modest 206:18	11:9,16 12:4,13
146:6 149:21	105:21 117:4,6,14	ministry 355:12	modified 251:2	12:14 23:10 25:12
249:11	121:10 122:19	mini-dose 31:8	273:16	25:16 26:2,3,4
metals 42:9 303:21	128:22 136:11,13	minority 115:1	modify 206:14	27:12,15 30:7
meters 138:3,9	136:16,17,22	163:8	modifying 206:11	31:2,20 33:1,22
methodology 34:3	145:18 146:12	minus 310:12	modular 320:4	34:19 37:20 38:1
methods 115:8	147:16 149:12	minute 23:8 115:13	moment 176:9	43:8,14 44:8
Metlay 212:21	152:14,19 154:19	121:7 133:7	197:2 285:22	49:22 50:1,5,10
metric 151:19	174:9 227:7,10	162:12 262:7	287:20 321:2	57:3 59:18 76:18
metrics 152:12	255:7,16,18 256:9	267:12 274:17	327:8	81:9,13 82:8,10
Mexico 2:10	258:14 336:11	minutes 7:17 38:21	moments 385:14	84:8 86:9 91:9
173:12 244:19	354:11	49:6 113:12	monetary 338:4	96:8,14 109:21
246:7 247:5,10	millions 58:9 85:20	114:11 126:19	money 117:15	131:18 132:10
282:20 307:18	164:14	127:2 156:10	122:18 338:13,15	137:8,13 143:2
308:7,9 309:8	millirem 16:15	162:3 243:10	338:18 363:15	145:22 147:17
318:16 329:14	27:1 28:21 32:15	246:5 258:10	367:4 389:11	150:1 152:4
339:4	36:7,8 59:3	259:9 293:11,16	monitored 287:2	154:14 157:1
Michael 2:12 3:21	117:13 149:14	330:16 386:8	392:16	163:16 167:19
244:21,22 319:12	157:20	mischaracterizing	monitoring 299:1	168:1 176:10
321:6	Mills 78:15	87:15	monkeying 121:3	177:9,13,19,21
microbes 174:1	mind 119:7 121:1	misperception	month 253:5	185:19 186:6
micromanagement	122:1,6 124:3	341:14	months 221:3	198:21 201:14,20
229:20	140:5,16 157:22	mission 97:10	258:1 350:16	202:19 203:21
microorganisms	191:18 211:2	195:5 203:8,11	moot 375:7	207:15 211:3
186:20	225:2 233:5,7	342:4 351:10	moral 256:10	214:19 215:13,18
microphone 155:3	257:8 266:18	misspoke 49:8	364:12	216:3,5,14 220:22
382:14 387:3	299:18 309:14	mistake 226:3	morning 5:17,21	222:9 225:3 233:7
micro-doses 29:2	346:2 354:20	391:9	73:10 75:5 79:21	241:13 242:6
middle 223:22	355:22	MIT 40:22	100:12 101:2	245:2 260:3,18
358:22	minding 117:18	mitigate 61:10	102:18,19 104:22	266:17 269:14,16
midstream 24:8	169:2	218:17,19	111:17 144:21	283:10 289:22
Midwest 236:4	mine 62:5 190:22	mitigation 219:14	149:19 252:5	291:22 298:4
migration 42:18,20	234:14 291:20	mixed 26:14	263:6,14 265:7	326:18 335:3
Mike 274:10	386:12	Mo 311:11	268:4 269:3,7	344:5 350:22
344:16	mined 46:16	mock 165:18	303:18 322:3	354:7 359:4
mil 317:5,5	191:17,17 218:9	model 150:9	378:6	379:22 380:15
Mile 308:1	225:7 240:5 320:2	159:19 165:20	mornings 104:5	386:20,21 387:1
miles 21:5 322:19	mineral 138:1	166:6,7 193:16,18	mortgage 182:16	388:8 391:1
military 239:16	165:4 167:16,18	210:4 238:1	187:20	395:12,22
240:7	mineralization	modeling 89:6	mother 250:4,8	Mountain-specific
millennia 222:18	137:19	129:21 139:8,9	mothers 249:22	43:18
223:15,16 230:20	minimize 63:22	176:16	motivated 213:8	Mountain-style
millennium 129:3	148:7,8 183:11	models 15:1 106:22	motivation 119:19	327:2
milling 78:8	187:8 316:19	130:11 150:13	213:11	mouth 333:7
million 21:6 32:3	340:16	165:19,20,20	motivations 199:5	move 25:12 43:12
36:14 37:1,2	minimizing 292:15	186:1 213:1	200:12	70:9 95:17 97:18
59:15 84:9,17	310:7 312:21	modern 128:8	Mountain 9:9 11:7	103:11 157:16

	I	l	I	I
176:6 190:17	naive 43:3 44:16	202:5 215:1	257:20 272:6	204:21 244:18
205:22 221:9,18	190:20	228:19 237:6	276:4 279:11	245:22 246:2,6
275:22 281:3	name 5:6 75:7	242:4 297:5 337:6	295:2 298:13,16	258:6,8,12 259:3
295:13 319:11	113:13 282:15	nauseam 387:8	298:17 302:2	319:9 328:5
330:14 384:16	328:15 360:20	NCRP 257:2	307:4,14 320:20	341:16 342:4
385:2,11,16 393:9	372:1 381:10	NEA 105:7 109:2	333:4 334:19	344:15 364:3
399:5	NARM 212:3,7	near 16:14,19	335:14 347:10	Neill's 307:16
moved 25:9	narrow 156:15	351:15	349:4 351:4 353:7	neither 169:9
movement 25:13	159:7 253:18	nearly 27:12 174:5	354:22 358:11	343:22 356:8
144:17	351:10	287:14	363:9,10 376:13	NEPA 277:16,20
movie 128:3	NAS 57:13,18 83:4	near-surface 305:6	383:14,16 388:8	282:4,5
moving 37:7 98:4	83:11 84:2,7,12	neat 297:8	392:9,10 395:3	neptunium 136:11
128:21 159:8	84:14 85:3,9	necessarily 45:1	needed 54:12 55:2	neptunium-237
162:15 266:21	147:20 151:11	99:2 113:20	167:22 205:9	136:12
327:6 393:9,11,15	157:16 253:9	135:12 137:5	209:6 236:19	nerve 371:4
multiple 10:22	256:8	178:13 201:21	244:13 270:21	net 368:22
20:18 34:8 35:5	NASA 173:16	223:19 261:13	273:6 332:22	neutral 99:3 344:2
39:15 52:5 53:3	174:22	277:6	352:21 373:11	344:11
58:11,13 92:17	NASA's 174:9	necessary 23:13	needing 30:2 175:5	neutralized 181:18
107:5 139:2,11,14	nasty 248:6	32:11 86:11	needs 106:9,20	Nevada 2:13 66:22
166:17 170:12	nation 289:18	133:12 143:5	107:15,19 108:9	67:1,3 68:9 91:19
194:5,18 197:8	350:8 354:22	148:4 209:9	138:19 141:6	100:6 245:5
240:16 312:8,13	national 2:6,7	248:17 251:4	160:2 196:17	272:16 273:1
328:9 363:3	24:12 27:18 40:6	261:22 270:15	216:7 220:7	287:13 333:5
388:17,18	83:1,12 84:1	293:10 295:19	229:22 234:3	340:20,21 341:11
Multiple-barrier	92:14 93:13 101:9	313:6,6	271:15,17 276:12	343:20 344:17
17:7	101:12 113:15	necessity 99:7	281:2 293:9 337:4	381:19 382:11,16
multiple-barriers	127:5,22 174:20	need 21:10 27:21	346:7 350:8	386:15 389:1
18:8	204:20 216:22	34:5 44:1,9 48:1	354:22 361:21	Nevada's 271:1
multi-attribute	228:22 235:1	50:2 61:9 67:12	363:3,13,14,15,15	340:19
179:13	249:7 253:22	90:22 106:19	379:15 392:8	never 42:8 44:6
multi-barrier	263:5,9 276:22	107:5 108:13	396:3,4	53:6 54:3 72:19
107:18 270:2	282:22 283:1	110:17 111:12,17	negative 333:7,12	117:18 124:13
multi-disciplinary	294:5 318:17	112:18 114:7,9	neglected 74:14	134:13 161:14
247:19	322:8 341:2 343:4	116:17 131:4,5	85:5	169:2 254:3
multi-disciplines	360:14 361:20	132:16 133:22	negligible 31:10	261:17 266:1,5
377:6	362:21 363:10	138:15 141:10,11	negotiate 271:3	269:15 282:5
Murphy 2:8 3:14	365:2	150:22 164:17	280:18 287:2	298:12 339:4,4
101:17 134:10,11	nationally 318:7	169:6 172:17	negotiated 39:20	367:9,13 381:7
142:11 166:16	nationwide 275:20	174:22 182:17	280:3,10,13	388:21 395:13
192:4,5 208:13	natural 137:11,11	183:7 184:18,18	negotiating 286:4	398:17
214:7,14 215:8	139:10 150:12	187:6 189:4	286:17 287:9	nevertheless 137:4
216:12 237:20	179:4 237:8	191:16 197:6	negotiation 286:7	223:10
mushy 125:9	242:19,20 266:2,5	219:20,21 220:6	287:15 318:3	new 2:10 23:18
muster 199:17	naturally 35:3	234:8 235:5 237:4	319:7	37:3 38:5 39:9
.	249:21	237:7 239:3,8	neighbors 384:6	79:9 86:11 97:18
IN	nature 70:1 74:8	247:15 255:3	Neill 2:10 3:20	117:9 120:10,11

000 12 044 10	124 0 120 10	56 10 65 4 10	202.0.206.10	4 110 10 104 14
229:13 244:19	134:8 138:10	56:10 65:4,19	203:9 206:10	nuts 118:12 124:14
246:7247:5,10	1/3:1,6 1/9:10	6/:/ 69:4 /1:/	212:21 220:18	NWPA 109:18
252:21 258:17	183:18 185:20	/3:15 85:1 86:6	221:3 234:20	Nye 343:20,22
272:6 282:20	186:10 204:8,9	94:13 96:4 102:4	245:6 256:19	344:4,9
293:21 295:9	212:18 213:20	112:14 114:6,8	262:3,9 265:4,13	0
299:2 307:18	214:4 220:17	118:13 119:8,8,15	266:1,9 267:9,14	0.164.18
308:9 309:8	228:11 234:16	120:1,14 124:14	268:8 269:12	O 104.10 O ak 25/1.8
318:16 329:14	235:8 241:12	141:15,18 150:1	272:20 278:12	Oak 234.0
332:6 339:3	358:22 360:19	156:19,21 158:11	283:8 284:10,13	objective 136.13
349:13 350:12	364:16 3/8:18	161:5 170:19	284:15,22 285:6	283.14 208.8
351:17 374:18	390:19 North cont 250,21	193:0 197:14	288:4 295:15	205.14 570.0
3/0.13	Northeast 358:21	201:12,21 202:2,9	303:14 304:4,21	objectives 144.1
newly 551:10	Northern 11/:8	202:22 203:3,10	305:9,20 307:22	265.6 368.1 <i>1</i>
114.9 219.0	NorthWest 1:12	205:16,19 204:15	$311.1 \ 517.1,4$ $221.16 \ 225.5 \ 10$	objectivity 246.21
114:0 210:9	NOTUL WOLKS 2:8	205:12 210:19	321:10 333:3,10	obligation 148.3 5
$243.11\ 297.8$	101:15 magag 122:12	219:7,21 220:9	355:17 550:12,10	obligations 80.8
Micely 225:0	noses 122.15	228:2 231:4	251.6 257.2 264.4	148.6 17
NICOLE / 5:1	Hotably 77.5	254:18 255:10	331:0 337:2 304:4 272:19 274:17	observation 138.12
220.17	Hote 51:1 150:8	208:12 271:3	3/3:18 3/4:17	observations 64.12
329.17 mine 124.17 206.15	1/5:0 180:19	2/3:18 2/4:17	300:13 300:1,2	176.4 260.9
207.16 221.9	247:20 290:7	273:12 201:4	369:19 390:1,13	observe 7.13 40.22
207.10 251.0	330.11 339.13	342.9,10 340.19	390.21 391.3,22	69·18 290·4
550.10 ninotoon 250.11	3/3.13 3/4.17	370.19 370.10	394.12 nuclides 136.7	observed 34·2
nineteen 230.11	397.21 noted 82:1 210:12	380.2,13 382.9 387.14	142.0 144.17	274.10
258.17	notes 386:13	307.14 NDC's 22.12 25.16	145.9 144.17	obtain 258.19
230.17 NMSS 121.18	notice 66:13 16 22	AA-2 50-20 51-20	145.1 147.0 240.2	obvious 90.19
351.8	104.20 301.11	44.3 30.20 31.20 56.22 62.13 18	505.10 number 11.12 45.8	247:1.20
NOAA 362.17	381.813	50.22 02.15,18 64·5 121·9 16	A5.11 71.14 20	obviously 68:8 76:7
nodding 230.15	noticed 45.8 66.21	121.9,10 122.2×157.4	72.10 105.8	88:15 91:6 96:9
noise 200.4 5	notices 154.12	161.11 202.3	132.10 105.0	97:22 98:19
non-migratory	notification 93.19	266.18 380.6	157.9 159.9	138:14 145:13
89·4	notion 141.1	NRC-licensed 18.1	161.15 16 171.21	192:17 246:20
non-noliticized	310.13	NSF 353.4 354.11	174.13 186.2 12	333:5 345:21
120:4	notorious 136:8	nuclear 1:1 2:4 13	213:1 218:3 246:7	376:11
non-rad 252:6	not-so-elite 377:16	3:4 5:8 9:12 11:5	249:7 254:1	occasionally 347:4
non-radiological	novel 273:14	11:6 18:4 39:20	257:10 296:3	occur 15:7 128:21
252:3	noxious 367:6	40:15 41:3.4 48:3	304:15 306:6	164:19 167:18
non-retrievable	no-migration	48:16 75:22 77:18	309:16 325:9	242:12 292:7
290:18	321:22	79:1.2.18 81:16	339:1 350:2	298:11 320:12
NORM 212:3.8	NRC 10:1.14 15:12	82:1 86:14 89:3	365:16 367:12	occurred 9:5 138:2
normal 20:9 169:2	18:1.3.5.18.20	90:11 127:6 130:3	numbers 149:1,2	173:17 184:6
324:9	19:11,14,18 20:6	131:7 132:1 135:1	175:13,16,18	275:9 279:5
normally 259:20	31:3 33:19 34:16	135:4,16 136:20	191:8 288:12	306:10 326:13
298:11 337:14	36:10 45:20 48:20	140:2,11 142:4	292:6 319:3	occurring 249:21
	-	,		
north 2:8 3:13	49:16 50:21 51:9	164:8 180:1	numerology 175:12	occurs 84:5 319:16
north 2:8 3:13 101:14 126:4,7	49:16 50:21 51:9 51:18 53:6 55:10	164:8 180:1 198:16 200:10	numerology 175:12 numerous 380:11	OCRD 232:16
north 2:8 3:13 101:14 126:4,7	49:16 50:21 51:9 51:18 53:6 55:10	164:8 180:1 198:16 200:10	numerology 175:12 numerous 380:11	OCRD 232:16

٦

225.12	212.0 10 16 214.6	operating 50.16	opt 54.7	204.10 212.2
255.12 odd 24.4	212.9,10,10 214.0	09.1 5 6 146.9	opt 34.7	204.19 215.2
odda 72:2	210.14 223.0	90.1, <i>J</i> , 0 140.0	optimized 115.5	outweigii 237.7
offor 76.4 176.4	220.11 231.7	52.8 20.20 21	optimizes 111.15	overall 57.5 05.11 76.21 121.2
207.11 209.16	252.1 255.9,12	$52.0\ 00.20,21$ $02.5\ 04.17\ 06.1$	220.21 225.7	157.10 102.4
397:11 398:10	244:5 240:5 294:2	92:5 94:17 90:1	320:21 323:7 226:17	157:18 182:4
ollered 91:1 240:10	299:14 300:12	97:8 98:5 109:2	320:17	195:15 190:15
offering 558:15,18	551:21 552:5 225:1 252:0	508:18	options 520:21	223:10,17
121.16 122.9	555:1 552:9 252:11 257:15		3/2:13	overcome 2/3:10
121:10 122:8	353:11 357:15	218:5	oranges 104:15	323:3
200:2,8,20 210:6	375:20 385:12	operationalize	order /:8 13:19	overlay 3/1:22
216:19 235:12	392:12	189:9 190:5	84:9 108:15	override 233:5
340:2 351:8,9	Oklanoma 2:15	operationally	128:22 132:17	Overseas 115:15
Officer 5: /,9	245:11 282:8,19	218:10	181:17 194:8	overseeing //:22
offices 121:18	290:11	operations 221:16	307:13 358:20	oversight 30:19
123:9	old 23:1 102:3	operator 221:17	366:19	31:2 51:18,19
official 2:2 286:16	124:9 196:13	opinion 103:10	ore 13:22	56:4,7,11 213:6
officials 339:6	221:21	114:22 115:9	Oregon 301:1	2/8:1/ 336:13
359:16 363:5	Olson 2:22 4:14	186:5 191:21	organization	oversimplification
389:2	386:2 390:12,13	352:8	126:13 130:5,17	205:21
offset 316:21	390:13 396:19	opinions 135:11	234:18 395:6	ownership 281:13
offsite 344:18	omissions 176:14	142:16 145:15	organizational	oxide 251:8
off-ramps 63:18	once 35:3 53:16	177:10 372:19	284:9 397:17	oxidizing 179:7
off-the-top-of	88:6 113:1 236:16	opportunities	organizations	D
186:12	277:21 278:5	100:5	281:8,10 283:2	$\frac{\mathbf{I}}{\mathbf{D}\mathbf{A}}$ 100.11
off-the-top-of-th	281:18,19 301:17	opportunity 7:10	organized 278:2	PA 109:11 nackage 20:6-11
186:22	332:11,17 338:10	45:10 49:17 68:20	385:9	52.11 59.19 62.7
of-sequence 259:14	371:2 380:14	75:12 92:11 97:12	organizes 277:8	33.11 30.10 03.7 72.16 00.15
oh 38:22 70:22	381:15 398:5	102:6 134:17	orienting 365:1	72:10 99:13
157:20 200:6	ones 23:2 212:3	155:20 214:17	original 11:14	$\frac{2}{1.1}$
210:20 222:5	255:3 320:10	261:21 265:19	211:15 220:21	packages 19:2
345:11,12 375:9	370:1,2	334:14 365:22	304:4 305:20	55:10 maga 220:5
okay 8:5,9 45:15	one's 70:3 212:3,3	394:9	342:4	page 229:5
46:3,8,9,11 47:15	one-pager 378:3	oppose 291:18	originally 34:4	pages 267:7
49:4,9 59:5 68:16	ongoing 384:18	292:2,2 393:14,18	47:19 49:6 263:18	panacea 189:2
70:5,8 71:6 87:2	onion 335:8	opposed 105:20	OTA 230:16 249:8	panel 5:9,17 8:0
122:22 124:6	onsite 394:14	110:18 181:4	ought 119:6 185:13	03:10 84:2 101:3
125:7 156:6,13	opaque 166:7	183:14 187:16	225:17 251:17	125:18 131:11
161:21 164:15	open 21:12 254:8	194:22 229:15	253:12 291:1,6,7	135:10 102:5,11
165:12,14 166:3	333:2	255:18 267:6	295:5 309:2	164:6 197:21
167:20 186:4	opened 246:13	268:1 287:11	317:14,16 318:3	204:12 244:15,17
188:3 189:8	277:18 309:1	292:15 295:20	347:7,7 350:4	259:6 275:12,19
191:19 192:3,13	opening 3:2,3 8:2	307:19 316:3	outcome 76:14	277.20.202.5.20
193:21 194:2	309:9 325:6	338:13,14 344:20	228:5 288:19	278:20 280:5,20
195:8 198:14	openness 254:3	opposing 340:2,5	369:19	295:12 296:21
199:19 201:4	operate 79:15	opposite 341:13	outreach 161:6	299:16 321:14
207:20 208:5	306:20	opposition 285:18	298:8 362:6	331:10/332:7
210:12 211:4	operated 184:9	339:5,21	outside 77:12	333:3 376:7
			1	

٦

200.20	074.00.070.00	24.00 102 17	l- 0.12 00 01	267.1.270.16
398:20	274:22 279:20	34:20 103:17	people 8:13 22:21	367:1 370:16
panelist 102:2	285:2 290:20	159:8 166:9	27:20 29:1 30:6	3/1:18 3/2:3
panelists 101:1	299:11 310:3	285:15 337:13	30:22 33:14 39:22	3/5:16 3//:5,6,11
244:10 258:10	334:12 335:4	397:19	40:19 41:1,3,4	3/9:2,3 380:20,21
302:22 321:3	339:6 341:15	party 67:9,11 68:7	43:9 48:7 49:14	381:4,9,19,22
363:20 376:5	353:17 362:12	68:9,14 69:10	58:6 66:9 67:18	382:2,6 383:7,14
378:15 399:2	373:12,13 375:6	99:9 286:8 366:9	69:20 93:11 110:5	383:15,21 384:1,4
panels 384:12	378:7	390:22	115:4,15 120:16	385:20 386:3
paper 252:14 253:4	participants 399:3	pass 269:11	120:18 121:19	387:6 388:5,11,19
301:3	participate 6:4	passed 9:14 80:6	122:3 124:2 125:4	388:20 391:11
papers 254:1,3	74:18 102:5 331:7	251:3 335:9	127:8 128:19	394:20
parallel 11:1 39:16	334:14 336:9	passes 393:4	129:1 144:14	people's 291:12
47:20 372:20	384:12 390:2,4	passing 19:19	148:13 153:19	365:18 374:11
parameters 55:5	participating 127:9	128:6 261:20	160:3,16 161:4	perceived 48:9
99:11 287:21	222:20	pass/fail 149:6	171:1,19 184:11	284:18
327:22	participation 67:6	path 9:7 25:17.19	186:7 187:2	percent 121:11
pared 45:12	135:7 229:3	27:12 37:20 113:1	195:21 214:5	122:14,16 215:16
park 116:4.5	231:13 298:20	182:8 185:9	215:15 216:15	251:19 257:8
366.20	360.18 21 361.17	187.20 263.11	231.15 16 235.21	323.22 343.1 2
nart 7:16 13:7 13	362.5 10 14 20	271.11 276.17	236.5 246.21	373.16 374.8
33.20 43.3 44.7	363.2 8 9 368.12	3/0.9	230.3 240.21	392.117
10·21 22 50·6	narticle 17/1·15	nathetic 357.7	247.13,22 240.12	nercention 16/1.1
4 <i>)</i> .21,22 <i>3</i> 0.0	particular 5.22	pathetic 557.7	247.1250.4	$208.22\ 355.0\ 10$
52.18 54.7 7 10	15.122.752.0	272.10	257.21 250.2	256.12 274.11
54.10 54.1,1,10	70.7 80.5 00.2 6	273.19 notion co 242.2	205.19 200.5	550.15 574.11
50.20 60.6 8 16	19.7 89.3 90.2,0	patience 243.5	207.19 209.13	perceptions 24.0
<i>39.20 00.0,0,10</i>	92.20 95.20 94.4	patiently 200.4	274.7,10 273.14	210.0 261.10
05:7 05:5 00:21	94:5 151:18	242.5	275:15 270:5,9,9	210.0 201.10
6/:20 /1:/ /3:20 79 (7 70 20	13/:14 103:10	343:5	2/0:10,11,17	perform 62:1,21
/8:6,//9:20	202:10 223:5	pattern 140:1	277:10,14 278:1	84:20 105:18,19
86:12 88:18	240:3,12 259:12	2/5:21	279:9,16 280:20	18/:12
103:16 106:19	264:21 283:14,15	Paul 301:1,1,15	284:21 287:13,21	performance 13:13
109:12 112:20	298:15 305:12	347:12	290:16 291:6	14:22 15:8 17:2
118:15 121:22	330:1 331:8 358:4	pay 225:17,21,22	292:14 298:7	21:21 22:9 23:18
123:5,10 124:15	particularly 47:2	316:1	300:7 301:2,17	23:19 24:20 25:8
141:17 147:13,18	73:8 108:4 136:8	paying 113:18,19	305:2,6 310:5,18	31:22 34:3,22
154:4,4 157:8,16	138:5 143:1	316:7 317:4	311:12 312:13	36:22 48:18 53:7
159:13 160:7	155:19 176:10	peak 31:18 33:13	316:6,17 318:13	54:22 55:14,19
170:20 175:21	201:8 213:3	35:12 36:9 84:4	319:3 322:10	57:7,11,15 58:15
177:1 178:13	222:20 225:3	84:21	323:19 324:2	58:15,20 59:4
202:2 203:7,11	283:10 286:1	Peel 335:7	326:7,22 329:1	60:6 63:13 64:7
210:6 218:12	289:8 298:6	peer 130:17 131:4	337:11,21 340:20	70:10,13,16,17
229:1 230:16	302:18 375:2	261:1 293:16	341:19 344:20,22	73:17,20 74:1
231:4 232:18,22	parties 134:3 205:8	357:11 363:11	347:5 349:3,8	99:13 106:12,16
242:13 249:12	348:22 369:16	pencil 301:3	350:11 352:5,12	107:4,13 116:13
260:15,22 265:5	partly 217:22	pending 10:17	359:10,16 361:13	129:6,10,21 130:7
265:16 266:10	218:1	11:17 37:8.9 86:4	361:14 362:2,22	138:22 139:9.10
267:19 270:1.2	parts 22:5 25:22	pennies 257:1	363:12 365:4.22	141:16 143:22
,		-	,	

٦

1 10 20 150 2	1010 070 17	170 1 4 222 0	102 10 202 12	
148:20 150:2	184:9 273:17	178:16 222:8	pick 193:19 323:13	95:7 96:13 112:7
156:16,18,21	289:9	321:7	334:5	plants 164:9
157:6,15,17 158:2	permanent 56:5	Peters 2:6 3:12	picked 15:16 61:21	284:16
158:7,9,16,20	135:2 136:4 191:3	101:7,8 102:8,9	232:1,2 335:20	plausible 327:17
159:1,15,15,19	327:3,3 372:18	113:8 177:14,16	359:5	play 119:4 178:21
160:7,17 161:2,12	permanently 290:4	187:22 188:1,5,11	picking 108:10	281:15
162:1,18 163:11	permeability 215:5	189:17,22 190:10	picture 127:15,17	player 286:6
163:13 164:7,16	permission 209:7	191:7,15,20 192:1	piece 63:11 103:15	players 216:20
165:17,18 166:1,4	permit 87:16	192:15,20 193:3	127:19 285:8,11	playground 382:15
167:5,6,8,9	perpetual 17:8	193:11,22 195:10	355:22	playing 128:4
172:16 173:7,18	31:1	195:13 217:22	pieces 25:15 74:4	plays 111:22
175:9 179:17	perpetuity 42:10	229:11,18 238:6	103:19 110:2	plea 229:11
184:7,19 203:17	person 153:21	238:14,19 240:22	197:20 394:2	please 264:5 321:6
217:13,20 218:15	158:15 230:10	PETERSON 1:22	Pigford 123:18	396:22
219:2 220:11	259:5 357:1	40:5 61:2 63:10	pilot 65:10 80:12	pleased 135:9
223:11 234:22	381:20 383:17,19	65:2 87:4 97:4	91:18 95:7 96:12	pleasure 102:10
242:14 254:15	personal 136:1	176:3 179:3	307:19	plenty 8:19 231:10
265:6 322:21	191:20 330:11	180:16 183:6	pinpoint 241:11	plug 359:21
366:17	383:20	185:14 186:4	pits 254:8	plutonium 185:5
performance-bas	personalities 274:7	187:5 188:10	place 12:16 34:18	239:22 240:1
60:3 107:11	personally 193:13	189:8,21 190:4,12	42:14 54:7 56:20	241:5
196:15	260:16 349:18	217:5 218:14	73:14,18 84:21	plutonium-239
performed 105:18	persons 77:13	220:15 222:3	91:14 97:17	250:12
performing 264:16	perspective 49:18	233:16,19 235:3,9	120:11 124:6	podium 126:5
performs 170:3	55:10 62:18 64:5	236:14 238:10,16	133:14 165:10	385:11
period 13:18 19:3	65:8 73:7,12,15	311:20 314:14	226:7 233:3	point 16:3 19:15
22:9 24:1 27:2	102:15 108:4	317:10 318:9	236:17 241:17	27:22 36:13 56:9
31:13 33:8 36:8	137:16 138:21	319:8,19 372:7	281:5 286:18	61:7 65:22 81:13
37:17 39:18 43:1	177:20 181:1	373:20 375:9,20	287:18 290:2,4	90:5 96:15 118:6
53:13 55:6 56:15	185:15 196:6,18	petition 86:5 322:1	296:14 328:21	118:8,10 121:6
59:13,14 64:11	224:16 238:21	pH 159:6	332:8 346:6 353:5	127:18 132:12
66:14 74:2 83:8	256:14 257:20	phase 52:8,14	362:18 388:21	155:9 166:16
83:21 84:12,19	260:12 262:22	167:16 187:14,15	placed 146:3	168:11,15 170:15
85:12,19,22	267:20 272:22	207:13 385:7	241:17	175:22 189:7
115:12 116:13	284:17 316:10	phased 52:4 54:17	places 17:10 179:4	190:8 225:12
133:14 134:6	372:20 392:21	73:15 133:3	312:13 388:6	235:5 242:9
144:7,19 149:12	395:14	phases 165:5	placing 132:19	251:18 260:1
164:10 174:5	perspectives 101:4	167:18 190:2	plan 77:1 117:18	262:8 265:9 266:6
241:15 282:21	263:17 339:2	phenomena 223:7	220:21 252:11,12	270:10 274:17
304:9 313:14	perspicacious	296:9	307:20 326:4	275:18 280:11
320:8 326:11	162:2	Phil 130:19	plane 330:7	284:12 289:15
329:14 334:2	persuasive 227:7	phrase 183:7	planet 173:13,14	300:6 301:16
periods 11:22	nertinent 49:19	physical 186:1	230:10	305:16.17 307:21
15:21 16:2.10	perturb 176:15	296:8	nlanning 117:21	314:16 323:8
20.10 84:17 89:7	nervasive 295:10	physics 206:5	364.5	328.13 338:5.10
143.10 145.17	nerverse 61·14	248·4	Plans 3.6	355.4 360.13
146.12 179.6	Per's 41.19 94:11	Ph D 328.2	nlant 80.12 91:18	361.11 364:18
110,12 17,510		1 11.0 520.2		501111 50 1110
			1	
		I		
-----------------------------------	-------------------------------	------------------------------------	---------------------	--------------------------
367:14 379:10	338:6 340:8,13	possibly 126:21	72:12 105:12	presently 138:3
384:3 388:5 394:4	354:19 364:4	161:3 176:5	129:1 144:3 255:4	preserve 17:18
398:3	369:6,20 375:2	273:12 360:5	prediction 151:17	275:7
pointed 11:17 34:2	391:4	374:7	167:6	preserved 107:20
points 10:10 24:15	political 45:22	post 56:16	predictions 15:22	president 50:22
51:22 126:22	48:10 119:9	posted 100:4	24:20 30:21 36:19	101:14 245:12
132:22 133:5	132:16 139:21	394:17	129:5 164:12	presiding 1:13
147:10 260:13	183:3 201:3	post-closure 30:19	171:10	pressure 314:9
293:19 369:13	232:19 247:3	34:13 56:15 59:6	preemption 119:5	331:22 399:13
397:9 398:15	313:18 343:11	92:6 202:6	preface 285:19	pressurized 169:1
Point/counterpoint	350:19 351:2	potential 40:13	prefer 261:2	presumably 119:17
336:22	politically 313:5	67:11 140:22	290:16	presume 314:20
pole 40:21 351:15	politicians 327:14	143:14 176:12	preferably 216:8	pretending 165:13
policies 170:21	politics 48:2 125:1	190:9 214:20	preference 373:16	pretty 10:7,9 11:1
233:11 283:8	365:18 370:5	218:19 221:21	preferences 291:12	151:8 182:5 187:3
287:12 288:2	pollution 200:2	247:21 249:19	318:5	230:11 241:3
315:11	poorly 261:4	250:5 285:6	Preferred 17:10	268:21 294:3
policy 3:4 9:13 11:5	population 256:16	289:10.12	premature 13:20	348:7 375:17
18:4 27:13 35:12	256:17 257:9	potentially 38:2	premised 324:6.20	384:15
48:3 79:2 81:10	342:2 344:18	140:15 141:7.19	prepare 260:7	prevent 17:9 30:20
81:15.16 82:2.6	populations 12:21	311:4	prepared 386:14	45:21
82:13.17.22 84:13	13:14 393:5	power 78:8 148:15	preposterous 117:5	preventing 391:13
85:6.10.14.86:15	portion 35:16	164:8 284:15	118:1 324:22	previous 32:17
90:7.11.94:1.7	281:7	349:4 8 366:10	prerogative 321:10	75:16 155:13
95:21 103:22	portions 80:1.10	391:22 393:21	prescribe 82:15	157:8 357:16
117:16 118:5.18	98·14	PR 362:21	229:14	previously 107:2
118:20 121:2	pose 276:1 292:1	practicality 398:12	prescribed 144.8	158:10
133.13 13 142.5	323.15 377.20	practice 231.22	prescribing 228.20	nride 367·8
171.3 176.21	nosed 89:21 126:17	practices 100.8	prescriptive 82.18	primarily 277.4
194.5 18 195.6	136.2 214.11	precedent 105.4	157.9 181.4 334.8	281·4
197.8 207.3 226.6	nosit 314.5	precious 120.5	346.7 11	nrimary 13.13 63.5
229.13 14 238.11	position 113.21	348.13	nresent 1.15 2.1	137.19 143.6
229.13,14 230.11	261.9 268.21	nrecise 175.13 18	7.7 86.12 131.20	147.1 310.8 327.1
261.7 262.3 9	201.9 200.21	precisely 329.1	141.4 249.1 260.8	nrincinal 101.15
267.14 268.6 8 17	271.21 200.7,14	preclude 17.14	326.11	137.7 300.17
269.12 19 270.10	200.14 207.14 344·11 347·3	precluding 291.2	nresentation 7.17	nrincinally 217.1
272.20 282.16	nositive 96.21	preconcention	7.22 8.6 44.14	principle 225.12
283.15 16 20	39/1.8	201.8	73.971.891.9	231.21 266.22
284.5 285.8 12 15	nositively 310.18	271.0 procursor 262.4	103.1 133.8 155.2	nrincinles 10.14
287.10 20 288.16	positively 510.10	produtormined	317.13 332.18	186.1 257.12
287.17,20 288.10	possess 55.1 110.1	30.10	386.15	nrinted 262.18
207.14 290.7,0	possibility 218.10	50.10 prodicato 117.7	nrosontations 7.3	prince 202.18
292.3,13 304.4	222.20 222.2	predict 21.1/ 22.7	102.6 163.5	PHOT 20.0 52.22
303.20 300.3	352.20 333.2	115.67 170.6	248.15	00.10 232.19 280.21
215.7 221.17	JJU.4 nossible 6.6 15.12	115.0,7 170.0	240.1J	207.21 priori 21/1.10
313.1 321.11 275.7 276.1 225.5	104.9 210.21	1/0.17 290.11 modictable 146.10	presented $234:1,3$	priori 514:10
525:10 17 226:16	104:0 210:21	predicting 72.5 9	172.11	prioritize 5/5:21
555:10,17 550:16	293:18	predicting 72:5,8	1/2:11	prison 541:20,22
		1		

Neal R. Gross & Co., Inc. 202-234-4433

	220 11 224 6			276.20
prisons 367:16	329:11 334:6	131:3 132:7,18	354:12 370:3,6,17	progress 2/6:20
privilege 269:13	337:13 361:1	133:22 134:3	processing 15:13	297:6
333:19	362:22,22 370:15	139:4 141:18	20:3	project 64:19 84:10
pro 210:8 246:22	379:2 391:19	142:2 190:3 193:1	produce 13:19	164:3 168:1
probabilistic 23:4	392:7	194:5 197:7,18	produced 175:7	173:16 205:10
23:16 255:1	problematic	198:2 199:6,13	produces 28:18	245:2
probabilistically	146:13	200:11 202:14,19	277:5	projecting 84:16
15:6	problems 24:21	208:20 225:14	production 288:6	projection 33:13
probabilities 14:15	132:9 134:22	227:12 228:9,14	productive 99:18	36:22 146:11
probability 185:16	164:15 176:13	228:15,18 229:13	professional 76:10	projections 17:5
185:18,21 186:6	201:21 216:7	229:15 230:21	248:16 249:5	33:10 84:20 85:4
186:13 187:10	218:15,20 221:11	231:2,5,12,20	professor 101:16	85:15 144:12
265:1 272:1	224:13 255:21	232:10 233:1,3,4	101:17 134:19	146:2,15 147:5
probably 6:21	257:17 284:12	235:18 259:14	245:8,20 282:9,16	149:18 150:19
44:17 93:2 102:12	294:14,15,20	267:3 272:19,20	323:14	projects 2:13 245:6
109:3 110:21	297:12 299:13	273:11 279:19,20	professors 327:11	272:8
125:13,21 134:12	304:15 312:12	284:3,8 285:8	330:13	prominent 351:13
144:13 179:1	365:5	287:5 288:4,12,14	profound 302:5	promise 380:12
187:18 190:22	procedural 268:5	288:20 289:22	progeny 116:18	promises 270:10
203:6,15 223:9	299:21	292:9 295:7,12	program 47:7,9	promotion 142:14
224:7.9 243:4	procedure 49:5	297:9 299:16.21	55:1.14.20 56:4	prompt 207:7
248:18 277:22	230:5	300:1.1.6.7.11	64:7 65:11 75:13	promptly 254:14
293:13.15 306:20	procedures 93:9.18	306:14 307:6.8.17	111:19 203:5.6.22	254:22
317:7.17 318:7.11	206:21 280:1	308:3 319:14.14	204:1 213:21	promulgate 79:3
342:22 347:11	proceed 37:10	322:11 323:10	232:16 235:12	94:16
348.13 18 349.10	367.5 378.22	324.10 18 20	259.19 260.17 18	nromulgated
350.15 361.21	proceeding 15.15	325.1 326.18	260.19 265.17	157.13 267.2
363.22 396.6	272.8 295.19	327.19 333.8 10	269.21 270.6	proof 16:6 9 20:5 9
nrohlem 31.8	proceedings 20.6	334.10 15 336.10	272.6 276.8	22.11 34.13 50.18
39.14 115.21	74.15	337.6 346.6 347.2	279.15 280.14	296.6 302.10
135.3 146.9	nrocess 3.18 6.19	3/7.11 3/9.5	299.9 300.8 322.6	nronaganda
158.12 13 14 15	10.9 12 12.8	350.19 357.18 20	$322.15\ 21\ 328.14$	355.12
164.5 22 173.15	20.17 21.13 25.2	360.16 362.7	329.19 330.3	nroner 135·3 175·8
175.2 176.18	20.17 21.13 25.2	363.7 366.22	327.17 336.17	263·21
181.0 184.12	27.10 32.14 37.7	374.15 376.16	351.18 352.3	203.21 properly 61.20
185.12 205.16	30.14 40.3 43.5 6	378.10 370.15	350.1 6 361.6 20	205.4 221.13
$165.12\ 205.10$ $215.17\ 217.20\ 21$	<i>1</i> 9.14 40.5 45.5,0 <i>1</i> 8.6 0 <i>1</i> 0.12 50.1	220.7 224.2 220.2	261.21 262.10 11	203.4 221.13
213.17 217.20,21	40.0,9 49.13 JU.4	201.4 202.22	262.19 262.0	231.11 properties 55.4
210.2 220.20	51.4 52.11 05.4	391.4 393.22 204.2 206.2 6	302.10 303.9 264.20 265.2 6 11	properties 55.4
254.10 250.11	00.1, 3, 0, 007.7, 0	394.2 390.2,0 200.2	304.20 303.2,0,11	proponent 552.0
201:10,19 270:11	08:2,19 /1:7 /0:9	399:3 mmaaaaaa 15:2	393:4,5	proposal 50:2
280:3 287:10	80:7 90:10 91:0	processes 15:2		54:10 227:10
291:2 295:1 296:3	91:14 92:10,12,15	4/:20 /2:10 89:19	328:11	349:22
290:19 297:11,16	94:10 95:9,10	106:18 164:18,22	programs /1:14	propose 14/:4
302:4,7 303:20,22	98:3,9,11 99:3	195:1 201:4	101:9 180:3 200:3	proposed 35:22
504:18 512:16	104:16 106:18,21	206:18 265:21	212:19,22 234:21	5/:10 81:8 83:14
316:/ 323:9,1/	110:13 111:22	2/4:4 288:1	235:2/236:13	86:1 13/:/ 14/:3
325:3 327:17	119:10 130:12	295:22 308:21	305:4	154:12 179:21

٦

180:4 246:8,18	56:6 62:14 69:8	260:16 261:5,22	302:12 309:2	191:10 199:12
250:22 285:13	75:13 88:3 101:4	262:8,16 263:1,2	public's 281:18	221:1 233:3 248:9
341:17 351:16,18	102:14 136:1	263:3 267:7 269:9	310:13	253:7 257:20
354:7 377:19	143:11,22 161:7	270:22,22 271:13	publish 248:7	258:22 268:21
378:20	256:13 270:12	272:3 274:9,11,13	published 54:9	275:6,19 286:7,14
proposer 205:17	319:4 353:5 379:6	275:13,14 276:13	248:8 249:3	287:13 296:14
proposing 275:22	382:6	278:17 280:4.6.7	252:14 253:4	298:8 305:1 344:3
349:15	provided 31:7	281:7.8 282:2.16	294:8 344:17	346:5 349:3
proposition 282:14	230:1	283:17.18 285:2.9	357:11	364:13 371:9
343:9	provides 51:14	285:21 288:1	pull 280.6	374:9 378:3
pros 210.10	82.5 97.11 151.17	292.10 295.2	pulled 342:7	380.16 397.16
proscriptive 260.6	158.20 207.7	297.18 298.22	359.22	nuts 348.21
prospect 323.22	283.22 352.15	304.6 306.2	nunch 246.15	puts 540.21 nutting 116.19
375·A	nrovision 79:7 83:5	307.18 20 308.9	punctuated 308.11	188.8 101.11
nrospoctivo 280.8	provisions 10.18	308.14 17 300.18	punctuated 500.11	217.17221.11
prospective 209.0	25.6 27.11 70.8	210.20 222.12	pumshing 312.13	217.17 221.12
	33.0 37.11 79.0 210.15 221.17	224.10 10 11	purely 17.20 43.21	212.15 222.17
314.12 programsta 202.10	219.13 321.17	524.10,10,11 225.1 17 227.20	purport 3/1.10	206.16
prospects 285:18	provoke 7:18	525.1,17527.20 229.16,10,220.15	purported 213:4	390:10
284:1 340:13	prudent 04:11	328:10,19 329:13	purpose 19:12 20:7	pyramia 289:1
protect 12:21 82:11	psychology 301:16	334:13,10 335:11	/2:3 115:10	P-K-U-C-E-E-D
82:19 116:17	pubic 194:4,18	335:22 340:1,9,11	118:18 140:21	5:1
383:3,10	public 2:18 4:12	343:16 345:2,8,15	141:2 143:6,16	p.m 243:12,14
protected 2/9:16	5:21 10:13 24:6	346:6,12,15 347:1	171:11 194:5,18	244:2 330:18,19
341:4	66:1,9,11,19 67:1	352:8 358:3	194:19 207:3,20	399:14
nrotecting 9.16	67.1 60.7 71.18	250.1415260.17	221.6270.7	
protecting 9.10	07.1 09.7 74.10	559:14,15 500:17	331:0 378:7	
16:18 341:3	74:19 81:11 82:8	360:20 361:16	purposes 54:8	Q
16:18 341:3 protection 2:5,10	74:19 81:11 82:8 82:9,11,17,19	360:20 361:16 362:5,9,14,19	purposes 54:8 84:11 114:16,20	Q qualifications
16:18 341:3 protection 2:5,10 12:22 16:11,13	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21	531:6 378:7 purposes 54:8 84:11 114:16,20 121:3 168:7 220:2	Q qualifications 238:8
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6	Q qualifications 238:8 qualitative 21:2,18
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6
16:18 341:3 protecting 5:10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16.17	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7.9.20	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22 proud 250:1 274:8	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15
16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protects 13:14 protracted 181:22 proud 250:1 274:8 prove 140:9 149:17	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12 231:15 235:18 21	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9 publicly 3:10 18	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6 126:16 127:12	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15 172:18 174:5,8
16:18 341:3 protecting 9:10 16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22 proud 250:1 274:8 prove 140:9 149:17 proven 91:17 21	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12 231:15 235:18,21 236:5 248:15	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9 publicly 3:10,18 6:14,18 244·14	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6 126:16 127:12 171:18 172:13	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15 172:18 174:5,8 175:5
16:18 341:3 protecting 5:10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22 proud 250:1 274:8 prove 140:9 149:17 proven 91:17,21 provide 13:3 18:7	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12 231:15 235:18,21 236:5 248:15 249:14 15 251:11	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9 publicly 3:10,18 6:14,18 244:14 387:17 19	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6 126:16 127:12 171:18 172:13 181:20 185:9	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15 172:18 174:5,8 175:5 quantitatively
16:18 341:3 protecting 5:10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22 proud 250:1 274:8 prove 140:9 149:17 proven 91:17,21 provide 13:3 18:7 41:5 50:3 51:18	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12 231:15 235:18,21 236:5 248:15 249:14,15 251:11 255:2 257:4 5	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9 publicly 3:10,18 6:14,18 244:14 387:17,19 publics 300:18	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6 126:16 127:12 171:18 172:13 181:20 185:9 186:21 189:3	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15 172:18 174:5,8 175:5 quantitatively 290:15
16:18 341:3 protecting 9:10 16:18 341:3 protection 2:5,10 12:22 16:11,13 22:6 27:3 28:22 29:19 59:8,11 60:12 74:11 75:8 75:9,14 76:22 77:2,7 79:4 82:3,9 102:1 109:14 142:18 145:5 147:1 148:13 207:11 230:18 248:3 263:21 264:1 268:4 269:1 protections 249:19 protects 13:14 protracted 181:22 proud 250:1 274:8 prove 140:9 149:17 proven 91:17,21 provide 13:3 18:7 41:5 50:3 51:18	74:19 81:11 82:8 82:9,11,17,19 85:2 90:3 91:3 92:10,15 93:19 95:13 110:13 111:7,11 117:16 118:5,18,20 121:2 124:3 131:6 132:15 133:15 138:18 145:9,9 156:16 160:9,11 161:6 163:22 166:8 171:3 176:21 193:2 195:6 197:8 207:3 220:3 227:16,17 228:3,19 229:3 230:3,13 231:3,12 231:15 235:18,21 236:5 248:15 249:14,15 251:11 255:2 257:4,5	360:20 361:16 362:5,9,14,19 363:1,8,9 364:21 365:11,12 366:20 367:18 368:11,18 368:21 369:12,12 369:21,22 370:3,9 370:11,18 371:3 371:19 372:1 373:4 375:8 377:7 377:9,17 378:8,9 379:3,6,7,11 380:8,11,22 381:5 381:18 383:5,13 385:8,14 386:18 387:21 389:1,7 390:5,5,15,16 399:9 publicly 3:10,18 6:14,18 244:14 387:17,19 publics 300:18	purposes 54:8 84:11 114:16,20 121:3 168:7 220:2 285:13 329:6 354:3 374:20 pursuant 78:14 pursue 86:9 233:22 376:4 pursued 366:3 purveyor 316:18 pushes 283:21 put 10:6 22:18 30:11 32:17 34:4 39:13 46:21 54:13 59:20 69:20 97:17 102:11 116:4 117:12 120:7,9,20 122:2 124:6 126:16 127:12 171:18 172:13 181:20 185:9 186:21 189:3	Q qualifications 238:8 qualitative 21:2,18 105:15,15,20 106:2 153:9 165:13,15 176:17 186:9 qualitatively 145:21 290:14 quantitative 16:17 21:2 23:3,12 24:18 33:22 34:6 53:4 58:12 60:4 104:11,17 105:21 107:4 145:20 146:1 148:21 154:18 165:14,15 172:18 174:5,8 175:5 quantitatively 290:15

٦

quantities 13.18	136.2 155.21	radioactive 24.13	88.19 112.5 322.1	110.3 11 111.12
21.7 28.3 239.20	162.8 20 166.13	52.9 77.14 21	reach 147.8 148.12	111.17 113.2
quantity 28.15 16	166.21 180.16 17	79.5 19 87.7 14	149.15 213.11	120.11 141.9
quantity $20.13,10$ question 7.15 39.2	188.7 190.18 19	87.18 88.11	298.9 312.18	144.3 5 145.19
40.15 41.19 21 22	196.22 197.1	179.12 263.10	reaching 150.5	147.21 148.14 17
43.3 49.5 61.3 6	$208.13\ 217.1$	269.18 276.19	react 379.8	149.15 150.3
63.12 64.18 65.21	200.13 217.4	207.10 270.17	reacting 259.12	151.18 21 153.1 5
70.9 88.14 89.21	258.11 259.8	250.22 254.7 350.2 392.4	reaction 324.5	151.10,21 155.1,5
90.6 94.2 8	256.11 259.0	radioactivity	356.4 375.18	159.5 165.17
102.14 141.8 10	270.2,5 200.20	185.10	reactions 3/10.19	168.17 172.16
142.14 141.0,10	204.12 303.2,7,13	radiological 89.7	368.8	177.2 178.7
142.21 145.12	331.10 12 372.13	89.11 248.2 252.9	reactor 18.12	191.16 196.11 13
155.4 161.19	377.20 21 378.2	397.7	114.1 4 121.19	199.21 203.11
162.10 172.12	389.13	radiometric 138.7	122.17	207.12 216.14 16
173.9 175.4 176.5	auick /11.18 59.5	radionuclide	168.17 169.1 2	$207.12\ 210.14,10$ $222.12\ 224.1$
180.21 182.1 13	97.4 107.14	250·12	170.9 175.20	222.12 224.1
183.1 1 3 8 9	156.14 162.14	radionuclides	176.1 206.10 10	220.3 234.0
187.7 191.1	191.1 19/1.9	13.16 10.0 58.10	313.16 372.9 22	230.17 237.5
$208.14\ 214.11\ 15$	239.13 344.15	58.10 72.18	reactors 61.12	243.1247.10
214.18 220.16	259.15 544.15 375·10	radwaste 251:21	120.18 168.15 18	254·4 5 259·6 19
211.10 220.10	auickly 8.22 44.18	raffinate 212.4	222.22 320.4	265.9 268.1
229.22 227.2,3,0	271.10 321.8	rainfall 254.9	read 23.9 131.14	276.12.279.5.17
252.5 273.6 291.4	auite 65:7 194:14	RAIs 51:11	134.13 14 170.21	280.77281.7
292:1 297:19	195·20 222·12	raise 173.5 291.3	286.22 380.13 21	282.14 283.6 18
300.16 303.4	227.7 268.22	292·19	381.12	285.9 287.15
304.2 306.17	303.11 315.2	raised 15.9 83.5	readily 321.20	203.5 207.15
307:12 311:1.22	353:1 378:20	117:10 252:5	322:14 323:2	294:14 295:5
312:1 313:10	393:16	311:21 326:3	reading 334:5	296:10 301:14
314:2.15 317:11	quote 127:20 128:5	328:10 390:19	ready 46:19 394:21	302:2 303:12
319:11 321:7.12	130:2 133:9	raises 40:11 284:11	reaffirmed 33:16	304:15 306:2.19
324:7.11 325:17	264:13	raising 248:11	real 33:6 213:3	306:22 307:9.15
325:19 327:9	O&As 111:17	ramp 187:16	239:12 254:11	310:5 313:10
331:19 349:13	112:6	ran 235:16 351:1	262:18 266:11	314:2.7 316:21
357:15 361:16		359:8 365:4	271:13.15 298:6	324:13 330:2
363:1,21 369:10	R	random 370:11	389:3	338:17 342:14
373:2,14,20 374:2	radiation 74:11	range 14:1 101:4	realistic 136:18	345:4 346:14
375:22 376:3	75:8,14 76:22	111:5 235:2	167:7 307:9	347:19 348:3,17
guestionable	78:16 101:22,22	rarely 377:3	realities 348:17	349:19 358:9
150:20	124:9 200:3,8,20	ratcheted 42:22	reality 165:21	365:1 382:5
questions 6:12 7:1	203:6 221:21	rate 19:5 53:18	realize 187:19	384:10 386:20
7:11,20 23:11,15	247:21 248:3	122:2,3 215:6	348:16 380:9	388:20 389:5
30:11 31:11 38:19	256:17 257:7	301:4	really 6:20 13:12	394:6 396:5 397:3
38:21 48:12 49:3	258:5 275:15	ratepayers 258:16	27:19 31:1 32:11	399:11
60:19,22 69:1	392:5 393:6	rates 53:17	36:16 37:15 39:15	reason 31:21 32:1
83:6 86:20 87:2	radio 136:7 143:9	rational 47:22	40:3,10,13 41:12	119:5 168:9
90:8 94:11 104:3	144:17 145:1	104:15	44:17 55:15 57:9	169:19 232:14
126:16 131:17	147:8	RCRA 27:6 88:18	61:3 62:6,10 88:7	236:17 255:12

٦

257.4 279.6	recognizing 60.10	189.15	regulated 47.1 00.0	141.13 142.3
339:12 393.10	64:8 95.1 103.13	reducing 177.5	211:10 212:1 2	143:5 11 156.17
reasonable 16.7	recommend 120.6	reduction 317.14	regulates 14.15	157.1 4 8 160.6
17.15 20.4 8 22.9	121.4 197.10 14	reelected 371.15	regulating 3.19	160.10 170.18 19
22.10 29.18 33.16	198.1 254.20	refer 16.7 78.17	6.19 10.14 14.16	171.7 196.15
34.12 72.19 20	258.20	286.10 394.20	16.5 40.9 87.11	198.20 201.15 17
132.5 143.17	recommendation	referee 76.12	133.16 212.13	206.12 20 219.7
149.20 150.16	33.9 35.2 3 11 14	reference 175.20	regulation 6.12 15	219.15 226.8
182.16 18 248.13	35.20 57.18 83.4	referenced 229.5	12.5 33.20 34.20	217.13 220.0
265.11 304.8	84·1 14 85·4 10	references 154.7	35.6 38.9 /1.2	260.10 262.17
205.11 304.0	147.20	referred 20.1	<i>AA</i> ·6 <i>A</i> 9·21 50·1	263.13 266.4 12
380.7	recommendations	referring 69.9	56.10 58.6 60.3	203.13 200.4,12
reasonably 23/1·1	27.18 31.16 / 3.12	reflect 127.14	67.2 86.16 89.11	270.18 273.0,17
236.18 317.15	57.13 50.0 75.21	228.22 283.17	07.2 80.10 89.11	274.5 275.2,3,22
250.10 517.15 reasoning 130.5 12	76.4 81.22 86.17	220.22 203.17	11/17/116.12	270.5 277.14,17
154.21	90.9 91.22 00.17 91.9 91.9 123.15	307.22 303.17	117.11 21 110.12	373.7 337.6 8
reasons 17.18	157.17 277.7	reflecting 130.71	132.14 136.5	334.3 10 380.1 16
20.12 46.13 84.13	278.3 376.6	reflects 374·A	195.15 204.14	382.1 387.7 0
146.72 107.0	recommended 25.6	reformulate 365.6	206.14 207.8	388.12
201.19 217.8	32.5 39.19 84.7	refused 355.18	200.17 207.0	regulator 36.20
238.22 310.17	116.16 249.12	390.6	264.11 11 266.10	96.16 110.12 1 <i>/</i>
230.22 310.17	recommending	570.0 reg 112.4	$267.22 \ 277.4 \ 15$	192.19 22 199.15
369.17	107·12	regain 295.16	207.22 277.4,15	207.6 209.9
reassurance 329.10	reconciliation 89.9	301.19 304.8	277.19,20 270.0,9	210.17 376.13
rebuild 307.3	reconsideration	345.17	270.10 279.3,7	regulators 37.14
347.15 19 348.12	141.6	regard 36.12 38.8	201.11 221.13	83.6 143.15 193.4
348.19	reconvene 243.9	134.15 136.9	349.6 351.9 12	201.11
receive 52:9 53:1	record 68.20 85.1	141.13	352:13 376:3 15	regulatory 2:4 3:4
110.1	98·7 100·18	regarding 3.6 76.4	377.2 380.18	9·1 4 19 22·1
received 380.19	133.18 146.3	79.1 80.8 82.18	393.2	26.17 33.11 15
recentivity 251.15	149.21 154.11	83.10 84.15 85.14	regulations 3.7 10	36.5 37.21 43.5
receptor 144.13	164.7 198.17	101.4	9.7 10.3 12.10	43.22 48.16 50.21
222:11	235:20 236.8	regardless 85.10	25:1 30:8 37.11	57:22 76:1 5 7
recertification 26.9	243:13 286.10 20	198:2	37:19 43:7 48:20	77:18 81:19 83:8
27:9 81:2 3 5	328.17 330.18	regional 288.13	49:18 19 50:20	88:16 103:11 19
95:10 96:18 99:15	359:11.22.371:15	register 66.22	51:6.21 52:1.21	103:20 105:6
265:21	385:19 399:15	154.11 206.21	54:21 57.1 2.8	106.1.9 107.6
recertified 27.8	records 277.7	293:3 380:21	58:10 59:1 62:14	109:5.5 112:3
recertifving 203.15	recover 225.5	381:2.8.12	62:22 66.8 10 12	118.12.121.18
recharge 178.22	recoverability	regression 276.19	73:13 90:14 93.11	124:19 126:20
recognition 52:17	46:18	regs 103:3.9 112:11	94:16 96:20 101:5	132:1 135:17
54:14 59:21	recovery 17:19	193:17	103:7 106:5	138:15 149:2
140:12 302:3	88:17 108:5 122:2	regular 305:10	108:17 109:19	150:5.15 152:6
recognize 20:8	190:1 217:21	regulate 31:18 32:4	110:8.18 19 111.4	154:11 157:2
228:2.281:17	218:2.12.224.21	35:11 40:12 15	111:9.22 112:16	174:10 192:15 16
355:10	recycling 285.7	42:10 212:11	118.14.22.125.6	195:17 197.7
recognizes 16:8	reduce 61:8.15	251:21 252:2	131:20 132:13	198:16 200:10

Г

005 0 10 005 11				<i>, ,</i>
205:2,12 206:11	releases 9:17 17:9	removed 60:5	15:1,3 16:15,19	representation
213:5 221:15	50:14 53:14,20	240:1	17:1 18:16 19:7	369:11
234:2 244:12	79:5 82:4 184:6	removes 238:3	21:16 22:16 28:11	representational
254:12,17 255:21	relevant 165:5	removing 302:11	29:4 30:19 32:20	371:10,22
259:14 263:12	398:7	rendered 63:2	37:16 38:5 41:7	representative
265:4,13 266:1,9	reliance 266:2,5	reneging 269:11	46:16 47:9,18	65:20 286:15
267:9 268:9	348:21	renewable 361:6	48:1,19,21 50:16	370:9,12
271:21 272:19	relied 56:5 220:6	reopen 90:10	52:10,16,19 56:11	representatives
278:12 281:2	229:8	Reorganization	62:20 63:15 64:4	274:20 366:14
284:3 294:16	relies 57:6	77:1	69:5 70:17,20	370:6 379:7,7
299:22 301:22	relooking 389:19	reorganize 385:8	72:13 81:8,13	represented 127:10
319:14 320:17	rely 17:8 109:8,9	repeated 382:8	86:10,13 88:1,3	representing
333:22 334:7	149:4 218:19	repeatedly 138:11	97:13 118:14	127:12 142:17
336:12 351:6	relying 58:16	204:21 346:3	129:19 130:14	379:3
376:7 394:13	132:13 146:18	repeating 391:9	131:7 132:21	represents 128:2
regulator's 108:4	158:19 159:10	repetition 40:2	133:3 137:8,12	160:7
282:1	341:8	repetitive 102:17	140:15,16 144:19	reprocess 393:15
reinvent 255:12	remain 42:9 133:14	replaced 87:19	145:4 154:2 158:4	reprocessing 17:19
reiterate 269:8	203:7	replacing 64:14	159:8 166:2 170:7	78:10 195:19
reiterated 170:19	remained 344:1	report 24:11 31:6	180:21 191:17	196:3 240:9
170:20	remains 236:9	50:22 83:13 127:5	213:12.21 218:9	289:13 291:15
reject 395:9.19	remand 268:5	127:13.19 129:9	223:5 232:15.17	315:1.12.14
rejected 35:8	271:20	129:15 130:3.6	232:21 234:20	318:11 372:16
relate 75:21 129:11	remanded 11:15.16	131:15 133:5.9	235:12.13.240:5	373:1.6 375:12
144:15 146:15	25:22.80:1.11	171:20 175:20	242:1.2.246:18	reproduce 174:4
180:18 252:8	85:12 98:13	212:20.20.249:3	250:11 253:20	Republic 194:10
related 19:20 22:6	remarks 3:3 156:4	253:9 257:2 263:5	270:6 290:17	reputable 257:3
30:15 78:7 83:11	156:10	277:5.21.22.322:9	291:11.13.21	reputation 120:21
136:2 145:8	remedy 268:7	360:15 361:11.15	292:8.11.296:10	330:12
259.20 348.15	remember 39.17	362:8 365:8	309.1 9 311.15 16	requested 341.22
350.6	40.22 171.21	378.21	313.17 320.2	requests 51.12
relates 45·3 138·18	230.19 232.22	reports 71.20	321.18 322.6	162:4
241.8 314.15	236.2.272.7	119.11 191.9	323.21 325.18 19	require 22:13 34:7
332.13 342.14	274.15 307.22	192.5 248.7 9	332.13 335.14 15	38·5 54·21 70·1
345.21 346.22	328.12 349.20	360.1	337.12 18 339.18	87.19 21 90.10
relation 136.6	351.22	renositories 3.7 11	341.18 342.21	108.16 149.19
relationshin 213.13	remembered	6.16 9.18 21 22	3/3.16 3//.1	107.8
301.5	382.14	$10.10 \ 9.10, 21, 22$ $10.14 \ 11.21 \ 12.17$	3/9.9 357.20	required 19.1 /
relative 283.11	remind 105.3	10.14 11.21 12.17 $1A \cdot A 10 11 18 \cdot 1$	358.20 21 359.1 6	26.8 58.22 70.16
relatively 136.15	16/1·6	28·1 28·2 17·15	364.5 9 374.22	78.15 80.22 70.10
1/0.7 170.18	rominded 8.16	20.4 50.5 47.15 17.10 70.6 101.6	376.15 303.13	82.22 84.20 02.8
201.12 221.4	romindor 250.14	47.1979.0101.0	305.4 5	02.22 04.20 92.0 1/1.16 18 251.1
366.10	romiss 203.2	120.10 114.10	595.4,5 roprosont 60.13	256.7 262.10
JUU.19 rologg 10.1 72.6	romoto 375:5	129.14 204.10	112.20 127.15	250.7 202.10
101000 17.4 23.0 20.2 52.17 10	romovel 17.14	270.12 300.0	113.20 127.13	207.1,10,10 304.4
20.3 33.17,10	romovo 55.16	312.11 3/2.1/	133.12,21 309.21	16.12 17.17 20.12
00.11 203.19	58.11 12 104.2	12.6781017	370.17 371.13,18	10.13 17.17 20.12
1 CICASCU 103.11	30.11,13 104.2	13.0,7,0,10,17	304.2 370.13	22.0 33.3 34.11

Г

Page 4	1	3	9
--------	---	---	---

25.19.52.4.55.0	05.10			100-2 11 204-10
55:18 55:4 55:9 55:12 59:12 147:1	95:18 magalwa 05:2,12	responded 264:1	retiring 240:13	199:2,11 204:19
55:12 58:15 147:1 147:2 150:15	resolve 95:2,12	responders 529:5	retrievability 1/:1/	204:21 212:21
147:5 150:15	255:12 magalwag 254:12	responding 380:18	20:11 34:11 44:19	220:19 221:4
181:3	resolves 254:15	responds 527:20	40:11,12,19 47:4	240:19 201:8
12:22 12:2 11	resonate 310:20	response 155:0	55:9,11,20 01:0,8	280:1 557:11
12:22 15:2,11	resonates 337:21	102:14 201:0	01:18 02:3 03:1	300:18
10:12,17,20 17:5	resorts 555:9	214:18 257:1	10:9 75:10 108:2	reviewed 179:15
17:0 18:2,19,20	resounding 502:19	287:1 300:11	108:0,10 155:2	295:10 522:12
22:2,7 25:15	resource 16:19	3/3:4,8 384:17	140:4,6,14,20	303:11
20:13,15 32:11	88:17 108:5	380:17 398:22	141:2 1/0:7	reviewing 50:4
34:1,6 55:19 56:6	121:20 140:22	responses 154:13	180:18,21 181:2,6	81:4 212:19
57:14 58:12 60:5	190:1 217:20	192:15 267:6	185:3 189:19	reviews 361:4,8
60:13 61:7,19	218:1,12 224:21	324:12	190:14 217:7	revise 54:6,12
63:9 88:19 89:4	289:11 348:13	responsibilities	219:1,9 220:20	59:22 60:16 64:21
108:14 141:14	3/4:19 3/5:5	76:2 79:12 80:17	224:13 288:21	revised 80:9,13
144:21 146:7,21	390:14,21	271:14	290:13,20	revising 59:20
157:9,11 180:20	resourced 203:5	responsibility	retrievable 62:9,9	86:15
202:1 270:1	resources 17:11	94:12 252:1	62:16 63:5,8	revision 35:22
333:22 334:1	148:11 199:17	271:16 313:3	108:11 287:3	revisit 232:14
requires 82:14	200:13 201:2	336:13 384:21	290:17 372:18	revisited 231:9
106:1 241:4	204:1 246:9 319:4	responsible 50:15	373:17 374:9	255:9
requiring 252:21	respect 16:17 23:8	56:13 77:20 202:2	retrieval 375:7	rewarding 135:10
requisite 293:8	47:10 49:20 50:8	210:15 336:6	retrieve 56:2	rework 88:12
research 114:4	54:17 55:10 62:15	347:20 349:15	189:12,14 190:15	rewriting 209:16
121:9,15,17 122:4	67:5 96:3 122:22	350:2 366:9	196:11 217:9	209:21 210:1
122:8,11,13 123:5	131:17 132:22	rest 7:7	218:20 219:3	re-certification
123:7 159:22	182:14 185:2	restraining 229:7	220:1 221:18	272:4
203:19 216:19	208:11 213:20	restricted 93:21	325:20	re-engineering
245:10,19 263:5	220:19 227:4	289:20	retrieved 220:7,7	133:20
289:7 291:19	241:13 373:17	restrictive 196:1	return 336:10	Ribbon 1:1 5:7
314:22 315:12	374:17 375:12	346:8	reversal 9:5 182:14	86:17
316:1,1 317:6	379:21 380:15	result 125:1 227:20	183:11 187:9	RICHARD 1:21
318:11,12 322:16	382:11	249:5 348:3	189:16	richest 137:18
350:9,12 351:8,11	respectfully 206:8	resulted 159:13	reverse 61:9,21	138:8
352:7 354:13	respective 78:1	201:16	62:2 63:19 64:1	rid 34:19 343:5
356:1 357:3,8,10	254:20 290:12	results 32:9 148:21	182:4,17 183:13	ride 349:11
361:5 362:17	respects 51:22	161:16 165:18,20	307:13 329:17	Ridge 254:8
365:15 372:16,21	respirability	168:6 175:16	374:15	ridiculous 117:4
373:5 374:4,18	250:16	295:8 305:14	reversed 182:6	390:6
375:12	respirable 250:15	resume 244:4	reversibility 44:22	right 5:3 10:16
researched 369:4	respond 93:22	resumed 100:19	47:6 325:14,21	23:5 31:7 35:15
researcher 357:6	143:13 154:10	243:14 330:19	reversible 183:15	44:20 47:12 62:2
reservations 387:1	162:9 166:15,20	resuspended 255:6	325:12	62:13 63:4,10
resides 344:5	187:22 197:1	retain 20:13	review 51:3 123:16	68:5 70:9 75:1
residual 317:18	227:16 324:18	retained 33:8	130:4,17 131:4	76:20 88:22
resistant 180:6	360:9 384:22	retaining 85:16	135:6 180:2	100:20 108:8,14
resolution 86:5	386:9	Rethinking 24:13	186:14 187:1	109:15 112:14

		1	1	
125:21 151:10	340:16 342:16	394:11	200:7 321:14	Sandia 199:10
165:8 183:6	343:8 355:19	roles 50:12 93:5	328:13 351:17	255:15 282:22
189:16.18 190:9	362:6 369:14	96:13 194:13	365:4	Santa 341:21
191:14 192:13	393:8	201:12 249:4	rural 329:3	sarconhagi 289:2
196.20 202.10	risks 31.9 61.8 64.1	254.20	Russians 181.16	Saskatchewan
207.7 208.9	183.20 196.12	rolled 15.7	RW 354.7	137·15
209.15 210.19 22	222.11 13 257.7	rolling 308.6	R&D 351.18	sat 274.18
209.13 210.19,22	268.2 284.21	Ron 368.2	KGD 551.10	satisfied 209.1
215.22 210.17	200.2 204.21	room 102.4 195.22	S	260.20 367.5
225.10 220.15,22	203.4 270.12,22	230.17 385.0	safe 52:16 55:18	satisfy 281.1
220.0 227.7,17	316.20 317.18	230.17 303.7 root 250.6	65:8 72:22 98:7	satisfying 201.1
230.3 233.13	310.20 317.18	roughly 375.10	157:10 168:20	saturated 28.4
239.4,3,9 240.11	$330.2 \ 342.13$	round 2.22 100.10	173.11 175.4	A2.12 71.12
240.22 270.21	202.21	100110 3.23 190.19 107.2 202.2 221.7	219.8 10 220.9 14	43.13 /1.13
204.12 294.19	392.21 might based 112.19	197.5 505.2 551.7	safeguards 202.4	170.20 209.2 Sevenneh 191.11
297.17 510.4	112.22 105.10	304.13 rounds 100.10	safely 265.14	Savailliali 101.11
524:14,10,19 221,15 22 222,15	112:22 195:10	rounds 199:19	safer 139.15	18/11/
331:15,22 333:15	$204:11\ 542:10$	roundtable 383:5	safety 3.10 6.10	save /:8
334:11 330:21	risk-benefit 391:14	route 510:1 529:4	17.17 21 20.12	saved 279:15
337:7 343:19	risk-informed 44:5	329:10	17.17,21 20.12	saw 157:5,15
353:3 354:9,15	60:2 61:5 10/:11	routine 381:3	40.12 J1.3 JJ.3 55:15 56:3 6 13	158:10 341:12
356:17 383:22	196:14	393:6	57.5 61.11 12 16	355:15,19 356:4
388:15 389:17	river 128:6 181:11	row 391:3	<i>57.5</i> 01.11,12,10 <i>62.10</i> 21 <i>64.14</i> 15	356:16 364:1
392:6 398:15	18/:17	rub 277:10	02.19,21 04.14,15	382:17
rigid 30:4 63:9	road 104:2 283:21	rule 26:21 27:5	03:12 09:0 72:13	saying 72:4,14 99:6
269:21	349:19	32:13,15,17 85:12	81:12 82:8,12,20	115:1 121:1 122:1
rise 308:11	Robert 2:6,10 3:13	96:8 154:14 265:5	107:5 108:5	122:6 169:22
risk 14:8 32:4 33:6	3:20 101:11	267:2,3 268:12	112:17 130:13	178:11 184:17
60:14 61:15,15	244:18 353:14	rulemaker 205:18	133:18 135:15	200:9 206:4 211:2
63:11 84:4 89:10	robust 143:12	rulemaking 32:14	138:19,22 141:3	227:13 229:15
89:10,17,18 94:18	200:17 223:4	39:21 145:22	145:11 157:7	233:6,8 237:21
94:18 112:12	rock 180:5,8 216:4	147:13 280:2,3,10	159:11 160:9	239:17 240:19
129:8 144:12	232:17 241:16,19	280:14	175:10,20 178:19	249:18 254:4
146:11 148:22	241:20 242:8,12	rulemakings 10:22	178:22 190:1	277:12 283:4
150:20 151:16	276:7	rules 30:9 49:13	207:10 219:19	285:19 287:5
152:13,18,22	Rockies 232:21	83:19 93:16	220:2,8 221:11,16	324:19 333:18
173:8,9 183:12	rocks 128:19,20	154:12 232:5,7	225:1 270:6	354:20 355:22
184:19 185:16	Rod 167:14	246:5 268:20	276:14 279:11	361:19 372:5
187:8,12 189:15	Roger 2:16 3:22	270:15,22 286:9	280:22 296:6	377:11 393:19,20
195:14 196:6	245:19 318:20	286:12,20 287:15	309:18 322:10	says 13:6 223:11
227:6 229:2	319:9 352:1,20	324:5,15 372:4	344:3 374:18,20	240:22 245:14
249:13 257:12	358:8 360:8	377:19 395:8,10	Sagan 187:2	308:20 327:21
296:7 297:3,8,12	364:17,18	ruling 21:14	sake 253:8	343:10 390:1
297:14,15,22	Roger's 369:13	run 91:18 113:11	salt 47:2,3 178:15	scale 49:7 104:7
298:2,6,9,11	role 76:9 79:13	120:19,20 168:18	178:18 225:4,5	129:2 132:17
302:12 310:7,12	95:19 135:17	169:3,21 362:9	250:20	136:16,17 137:1
313:22 315:20,21	162:18 175:9	running 100:15	salvageable 255:11	139:8 140:13
316:18 317:14	271:16 336:6	150:21 177:1	San 116:19	150:21 277:3
	-	•	-	-

scales 128:22	scientific 31:21	secret 389:20	284:21 285:11	194:14 205:18,19
scared 280:16	91:1 95:13 115:8	Secretary 119:12	288:19 299:10	258:22 353:1
scares 396:5	139:4 151:12	130:6 398:10	313:21 316:16	separated 135:18
scary 282:14	270:7 345:22	Secretary's 354:9	338:14,15 339:13	204:17
scenario 32:8	357:12	section 77:8 79:6	sees 131:6	separately 141:1
190:10	scientifically	155:6 291:5	Seismic 222:22	SEPTEMBER 1:9
scenarios 143:14	318:14 396:1	secure 392:22	selected 11:6	sequence 11:2
153:16 160:18	scientist 101:12	security 202:5	215:19 259:16	series 298:18 301:4
170:14	105:12 245:2,20	207:11 288:7	269:16 299:20	308:7
schedule 269:22	scientists 90:1	361:5	335:7	serious 186:14
scheduled 100:14	159:2 163:9 293:5	see 8:17 9:10 30:7	selecting 20:18	190:8 253:21
243:10	294:4 310:11	33:14 65:15,19	79:14 111:15	280:20 304:18
scheme 88:16	350:10,11 352:1	69:7 75:1 80:2	113:2 132:18	362:11 363:16
96:14 118:12	352:18,19 353:17	81:20 89:1 108:5	218:21 262:12	365:5 370:8
124:5,20 275:6	354:4 359:19	108:6 111:3	selection 21:20	seriously 175:17
schemes 119:2	379:5	130:16 143:16,17	92:4 98:2 141:6	333:3 363:1
scholars 350:10	scope 277:12,17	154:20 170:3	141:18 142:2	serve 75:20 181:7
352:13 354:13	377:22	178:3 185:20	208:19 288:14	398:2
School 253:5	scrambled 48:2	191:3 192:1	335:19 370:11	served 183:21
schools 317:22	scraps 362:8	207:19 210:18	Senate 29:14	194:10
Schultheisz 2:9	scratch 255:13	219:18,21 226:20	Senator 5:18 44:10	serves 48:17
3:14 101:21	screen 272:1	228:1 240:15	73:5 102:9 142:14	service 119:18
142:13 155:5.18	screening 21:19	243:10 245:6	244:7 245:13	270:21 390:14.21
202:16.17	111:14 253:15	254:3 272:5	247:8.8 282:8	Services 342:7
science 22:14	264:8 265:2	273:11 275:7	senior 48:17 78:19	serving 130:20
106:15 116:15	267:16	278:1.18 279:22	99:21 247:16	341:1
123:12 128:8	se 184:3	288:10 290:17.19	sense 20:9 30:14	session 74:19 243:7
134:1.5 168:10	seabed 140:9	290:20 294:21	33:2 60:4 63:16	244:5 274:22
175:3 186:15	seal 132:20 291:7	301:10 314:10	65:9 89:17 96:17	331:19
205:3.5 213:9	sealed 129:19	316:19 323:1.3	105:1.16 106:3	sessions 7:16
216:3 224:15	seat 336:11 371:19	324:5 326:15	118:5.20 124:20	set 6:21 9:6 11:8.12
263:19 264:20	second 45:18 47:16	340:19 344:2	128:16 139:20	14:5.12.20:16
270:12 283:1	47:18 48:1 63:11	345:14 352:16	182:2 197:7 198:8	25:16.17 30:4
293:14 294:9	77:15 81:4 92:9	361:17 362:18	198:12 210:5	40:1.11.43:7
297.6 345.22	106.22 131.11	363.19 373.3	211.19 212.6 14	47.12.49.1.51.6
351:17.19.352:7	168.15 173.19	374.8 375.11	230:22 370.4	62:8 90:14 95:6
352.10 11 353.13	197.3 232.15 20	380.20 381.9	sensible 114.17	100.6 103.2 8
354.6 356.2 357.4	235.11 305.9 16	396.20 399.12	115.11 116.12	$107.9\ 10\ 16\ 111.4$
357.4 363.16	305.17 311.17	seed 112.7	125.6 195.6	130.18 162.19
364.21 367.20	324.15 334.12	seeing 32.9 163.6	sensitive 339.16	173.2 176.19
sciences 83.1 13	358.21 359.1 6	3/15·1/	sensitivity 167.11	178.2 170.17
84.2 93.12 101.10	364.5 9 373.15	seek 67.1 89.77	377.15	186.22 200.17
134.20 174.20	secondly 6.16	seemingly 257.1	$\frac{377.13}{\text{sont} 1/1.22}$	246.11 262.17
204.20 274.20	113.77 108.5	soon 33.1 01.10	sontonco 117.77	240.11 202.17
204.20 247.0	251.20	0/·20 100·2	225.20	274.12 303.11
274.0 277.0	201.20 seconds 258.12	165.16 107.5	223.20 soparate 0.7 50.11	315.7 320.1 221.4
360.15	271.10	105.10 192.5 260.10 272.2	153.16 100.1	313.7 320.1 324.0
500.15	2/1.17	207.10 273.2	155.10 170.1	552.0 501.12
	1		1	1

363:22 377:20	304:11	180:8	147:22 150:6,7,9	311:5 312:8
391:3	shots 382:21	simplified 150:14	159:9 160:19	332:10,19 333:11
sets 9:7,15 10:1,3	show 10:7 14:17	159:19	163:16,16 176:12	335:7 341:6
37:18 50:13 266:7	42:18 50:19 57:15	simplifying 151:2	178:15,20 179:21	358:18 359:15
268:15	67:10 231:18	193:14	184:8 199:9	371:8 374:1
setting 14:7 76:10	251:4 300:22	simply 30:8 149:4	200:16 208:18	388:17,18 392:19
78:22 80:18 111:9	324:15 370:1	287:5 308:20	213:12 214:12	site's 144:2
118:11,15,22	395:15	310:20 368:21	215:3,9,10,13,15	site-specific 27:14
203:10 204:13	showed 231:8	simulcast 69:19	215:19,20 216:15	33:2 103:6 111:2
207:22 265:17	235:21 314:18	sincere 346:22	216:17,21 218:22	111:10 147:18
314:10 364:20	372:14	sing 126:9	219:8 220:9 224:6	297:1 371:9
setup 111:18	showing 93:12	single 20:19 162:9	225:3 226:19	siting 10:3 20:15
seven 127:12	146:20 286:10	200:1 237:22	231:22 232:2	21:1 38:5 47:14
shaft 221:1.12	290:15	265:10 268:17	233:21 234:3	47:15 124:15
shallow 87:16 88:4	shown 198:19	278:9 344:7	235:2 236:10	141:14 142:3.7
252:19	shows 37:6 315:19	347:14 380:14.19	237:16 240:3.12	268:18 289:19
shame 360:4	side 44:15 54:14	393:3	240:17.18 253:17	332:11 357:20
395:17	133:21.21 199:9	singled 163:6	259:22 266:17	sitting 208:16
shape 228:5 310:15	199:13 221:6	192:19	268:16.18.20	301:2 360:6.10
share 115:9 134:17	328:8 347:15	single-leak 71:10	269:14 270:15.19	391:7
179:10 284:14	357:4.4	sir 142:12 189:17	287:3 289:10.13	situation 43:11
392:12 397:5	sides 366:21	258:8.12	290:17.18 292:15	62:22 92:17
sharing 349:8	side-step 275:8	sit 126:5.7 171:1	292:16 296:9	107:21 108:10
Sharp 130:19	sign 74:20 75:2	352:9 385:15.19	306:11 313:14	111:20 126:20
shear 180:10 218:3	signed 337:22	387:2	324:8 333:9.12	129:12 164:4
218:6	385:21 394:16	site 19:21 20:19	335:3.7.19.20	262:21 341:19
shelf 59:21 258:1	significant 12:14	21:4.8.14.20.22	336:14 340:2.21	363:8
Sheron 122:11	15:2 75:18 81:18	23:9 26:7 28:2.9	344:17 349:15	situations 143:13
shielded 174:18	146:10 158:19	30:9 31:2 32:3	366:7.20 382:17	242:19
shift 180:17	160:8 291:9	33:1.5.6 35:1	382:20 392:22	six 126:16 131:16
shipment 393:3	292:10 314:19	42:19 43:13.19.22	393:12 394:19	162:9 174:8 253:2
shock 10:6	339:5.21 349:8	45:18 47:2.16	395:10.15.16.19	254:6 310:12
shop 258:3	significantly 15:21	50:14 59:18 61:21	396:9.10	SKB 213:4.15
shore 355:20	87:22 219:20	76:19 79:5.14	sites 15:18 16:4	skeptical 186:3
short 23:5 163:7	sign-up 74:21,22	82:4 84:8 86:10	20:18 21:3 25:3	skepticism 205:7
183:18 249:10	silly 334:3	91:20 92:3.3.4.20	45:5.8.12.13	SKI 213:5
300:13 301:13	similar 40:17 60:6	94:14 95:22 98:2	49:21 89:1 92:17	skillful 367:19
320:8 330:15	133:22 137:21	98:3.22 103:4	92:18.22 105:2	skin 335:8
352:21 366:19	154:5 176:19	105:16.17 106:3	124:17 131:19	skip 36:1 70:9
391:11	185:12 195:14	107:9,22 108:11	141:8,20 152:10	298:17
shorter 105:10	292:6,7 315:3	110:18 111:15	177:11 179:14	sky 382:17
shorthand 271:4	373:3,8 375:11	117:2 118:15	190:13 214:20.21	sled 349:19
shortly 217:7	simple 195:7.20	131:8 132:18	235:14 236:3	slide 10:7 154:6
270:12	215:4 238:1	139:5,15 141:6.9	240:16 254:6	251:10
short-term 41:13	267:21 271:1	141:10,18 142:1	262:12 264:3	slides 102:11 156:8
42:6	287:15 381:6	143:19,20 144:6	268:14 288:13,14	372:14
shot 26:10 256:8	simpler 178:19,22	146:16 147:18,19	299:19,20 310:2	slightly 11:1
	• ´	<i>,</i>	,	

Г

207 12 269 10	1 1 1 1 6 10	270 12 200 5	100 10 107 10 10	114.0
307:12 368:10	solubility 58:19	3/0:12 399:5	192:13 197:10,13	sponsor 114:9
Slovic 301:1 347:12	soluble 250:16	sorting 384:16	234:5,7,11 236:17	sponsored 216:19
slow 194:21	solution 129:14,17	sorts 123:20 149:9	269:5 290:8	282:21 308:7
slug 181:20	135:3 316:8 323:4	315:12 371:10	381:10	sport 76:11
small 28:19 50:3	327:17	375:11 389:10	specifically 11:9	spouse 253:19
114:3 174:17	solutions 228:21	sound 105:7 106:18	69:2 81:7 82:11	spread 242:10
182:7 259:11	323:12	107:12	82:14 165:1 266:7	392:15
310:10 320:3	solve 255:20	sounding 249:13	320:18	spreading 313:22
smaller 203:14	261:10,15,19	sounds 278:8	specification 32:18	stability 32:2 59:14
338:3	323:16	source 196:11	specifications	105:16 136:19
smart 187:3	solving 257:16	211:11 212:13	36:12	139:6 150:8
smelter 368:5	265:10	237:6 261:9	specified 13:16	stable 74:4 179:6
Smith 282:12	somebody 39:18	source-based	18:5 19:6 21:7	342:1
smooth 27:12	175:12 226:6	112:12 195:10,18	36:20	staff 7:3 51:2 69:8
smoother 204:5	334:4 338:12	South 358:19	specifies 82:7	96:5 101:11
social 131:10	346:20 359:12	396:20	specifying 32:8	200:13 246:22
140:13 227:4	387:21	southeast 236:4	spectator 364:22	247:17 249:4
232.9 245.10	somenlace 117.12	358.19	spectrum $62.7.11$	271.5 274.17
260.15 293.4 14	120.7 234.6 12	southeastern 339.3	345.6 350.11	275.12 13 367.12
200.15 255.4,14 201.4 205.14 16	235.4	southeastern 337.3	speculation 305.15	staffs 275.12
205.20 20 200.6	200.7 somowhat 55.21	112.15 15 262.18	speculation 303.13	stans 273.1 stans 52.8 11 211.3
295.20,20 299.0	00.2 106.4 202.2	224.2	201.11	227.4 274.19
300.12,13,303.17 206.17,242.11	99.5 100.4 202.5 205.20 260.9	324.3	304.11	237.4 274.10
300:17 343:11 247:9 250:11	203:20 309:8	spacecran 175.15	spending 11/11/	322:9 340:7
34/:8 350:11	3/3:8	1/3:22 1/4:16	spent 12:17 17:19	359:20 384:14
351:15,20 352:1,7	soon 48:2 49:3	spanned 308:4	20:13 46:21 /5:22	staged 193:1 329:5
352:11,19 353:13	339:16 384:16	speak 48:19 126:17	79:1,18 89:3	stages 18:9 272:9
353:17 354:4	sooner 222:18	269:14 385:21	106:15 109:7	321:18
355:8 356:1 357:4	sophisticated 132:2	386:7	127:6 137:21,22	staging 108:19
359:18 364:21	sophomore 206:5	speaker 48:15	168:16 188:12	109:10,17,20
367:20 369:14	sorry 172:13	speakers 104:5	190:9 191:12	110:10 111:12
socially 313:6	192:12 330:11	163:20 299:16	192:10 202:7	189:20
societal 40:14	345:14	speaking 91:9	203:21 217:18	stainless 182:9
181:1,3,8 182:14	sort 6:9 42:21	94:21,22 356:22	218:4,7 220:21	stake 369:6
183:9	47:13 61:13 62:8	special 33:21 34:18	240:6 241:14	stakeholder 100:6
societies 133:11	89:8 96:11,21	specialized 192:2	254:4,18 258:14	298:20 363:2
140:19 185:4	102:21 107:1	specialties 174:7	272:21 342:6	stakeholders
249:5	128:6 153:19	species 137:2	343:1 374:3	300:18 363:5
society 122:21	180:20 182:12	specific 19:21	376:21	stakes 369:18
140:18 151:14	232:19 247:1	21:11 32:22 33:7	spitting 371:13	stand 281:9 371:13
181:7 183:12	253:14 276:1	40:16 43:19 65:21	split 339:4	372:3
225.13 303.19	278.22 279.19	66.17 72.10 76.2	splitting 174.13	standard 11.9 15
sole 164.3 266.2 5	280.5 8 291.21	89.15 93.15 103.5	spoils 258.2	11.16 12.15 14.3
333.12	301.15 303.18	104.3 107.10	snoke 245.12 17	14.14 15.12 16.6
solely 1/6.18 162.0	304.22 311.0	100.3 110.18 10	310.0	18.6 18 22 20.5 5
soliciting 02.10 10	318.3 17 376.10	1/7.10 20 166.20	snoken 205.11	22.11 22.4 24.7
solid 260.4	310.3,17 320.19	147.17,20 100.20	200.16 296.1	$\begin{array}{c} 22.11 \ 23.4 \ 24.7 \\ 26.1 \ 2 \ 27.4 \ 14 \ 12 \end{array}$
solubilities 70.17	251.1/ 241.13	100.21 1/0.3,1/	277.10 JOU.1	20.1, 227.4, 14, 10 28.1, 10, 20.12, 17
solubilities /2:1/	554.4 550.1	101.1 105.7	sponge 304:14	20.1,10 29:12,17
1		1	1	

				0.05 01 000 10
30:3,13 31:7 32:5	standpoint 158:1	starvation 257:22	stature 167:17	365:21 398:18
32:14,17 34:10,12	159:4 192:18	state 2:8,12 26:16	Status 3:6	storage 78:10
35:9,17 36:15	220:8 285:9	26:16,19 27:7	statute 395:17	131:8 213:12
40:8 46:16 78:21	287:14	68:8,17,20 91:4	statutes 80:7	287:3 289:4 313:1
80:18 84:3 105:21	stands 12:11	92:12 98:19 99:1	statutory 81:14	314:21,22 332:13
115:11,11 117:13	Stanford 101:16	101:19 132:4	109:18 112:11	373:7,12,17,18
123:21 146:1,4,14	stare 171:1	134:21 136:12	123:8 146:7	374:9 375:13,17
147:4,16 148:12	staring 390:7	141:4 142:15	195:17 312:4	394:14
149:5,13 151:15	start 7:21 8:21	194:13 245:5	313:7	stored 392:18
153:2,13,17	11:13 20:17 49:14	246:11,16,19	stay 179:6 321:5	stories 328:6
154:18 174:10	64:9 71:3 74:14	247:10 248:19	385:9	365:14
202:6 203:10	87:1 100:15	252:7 271:15	stayed 86:4	story 173:19
263:19 264:2,7	102:20 111:10	272:16 273:1	steel 181:14 182:9	220:18 249:10
265:1 382:12	162:21 177:15	286:15,16 287:3	250:18	256:10 337:17
391:1 396:4,11	189:13 197:2	305:4 314:8	stellar 120:21	369:1 382:9
standards 9:16	206:3 237:15	316:11 336:5,8	328:16	straight 115:2
10:18 11:18,21,22	238:2 239:2 244:5	339:5,8,10,14	step 66:7 99:10	118:9 273:19
13:9 14:12 22:17	250:3 279:4 283:4	340:2 341:16,20	219:22 256:2	382:22
25:5,14 27:3 28:2	283:5 291:16	341:22 343:2,20	322:13 336:8	straightforward
36:11 37:17 50:13	292:12 303:3,5,7	344:12 359:16	385:6 387:19	179:18 367:1
56:17,18,19,21	322:17 331:9,20	363:5 392:11	396:3	strategies 288:22
57:14 59:6 60:11	333:14,16,17	stated 81:7	stepped 382:13	strategy 396:4,8,12
62:4,8 73:13	334:5 338:5 341:6	statement 40:7	stepping 394:10	stratification
75:15 76:6,11,22	359:9,13 366:15	84:22 86:19	steps 18:14 63:17	370:12
77:6,17 78:3,5,13	368:16 377:22	130:16 156:2,3	254:21 392:20	stream 196:7
79:3,17,21 80:8,9	387:20 388:4,6	163:7 229:5	step-wise 322:11	streams 113:4
80:13,16 81:12	389:14 395:8	259:13 269:20	sterilizes 186:19	192:2 196:2
82:3,7,9,10,14,19	398:4,5	282:1 294:5	Steve 2:12 3:21	212:11
83:2,14,15,16	started 5:5 7:18	334:19 335:3,4,21	245:4,6 309:6	street 1:12 248:9
86:2,3 91:13 92:2	10:12,13,15 71:9	336:1 342:6	311:21 337:3	streets 395:11
92:7 97:17 98:16	100:21 102:22	387:16 394:17	340:17 343:14	strict 88:15 89:4
118:13,15 143:1,2	127:7 156:19	395:13	356:9 376:4	271:1
143:21 144:10,15	270:4 273:12	statements 76:16	378:19	strictly 84:14
145:5,7,13,21	279:3 298:18	85:5 269:18	stick 162:13	267:22
147:9,12 148:22	308:5 326:19	335:13 380:16	stickers 308:1	strikes 94:12
149:20 152:2	328:17 339:16,20	states 119:3,3	345:3	striking 315:1
154:3,16 155:8,12	352:17 353:3	129:12 213:2	stifled 124:4	stringent 16:21
155:12.13.16	355:17 365:3.17	228:16 236:6	stifling 125:4	23:7 28:1
163:17 201:16	388:14 389:18	251:21 252:2	stigma 355:18	strong 105:4 106:8
202:21 207:22	starting 111:8	274:21 281:10.11	356:17	112:21 121:20
249:11 251:5	275:11.20 279:6	284:20 286:1.5.6	stockpile 192:10	128:7 211:7
252:21 254:12	333:10 355:12	286:10 311:3.6.7	stood 41:9 187:1	213:10 305:11
255:8.11.14	360:13 361:11	314:6 371:6	351:3	394:16
264:18	372:13 379:1	state-level 339:21	stop 28:13 31:22	stronger 316:5
standing 91:16	381:18 384:3	state-of-the-art	32:1 47:7 132:21	strongly 133:1
231:16.17 397:3	391:19	19:15	292:18 300:9	145:14 171:14
398:17	starts 338:12 388.1	statistics 375:11	stopped 47:17	strontium 188.12
			1	1

٦

241:2	73:21 233:5 247:3	52:15 183:4 332:8	395:4	Sweden 180:4,10
struck 227:10	376:2,2,19	sufficiently 53:17	supportable 30:20	213:5 309:9
328:16	subjective 22:12	233:21 327:18	160:1	Swedish 152:6
structural 283:5	106:4	suggest 65:1,5	supported 121:21	213:21 364:20
structurally 200:22	subjectivity 21:11	275:10 356:18	308:18 344:22	swept 128:11
292:16	subjects 350:14	suggested 7:6	352:20	SWIF [*] I [*] /1:9
structure 9:4	submit 51:13 65:5	263:20 264:1	supporting 30:9	Swiss 155:12
109:18 137:20	67:13 68:6,11,12	281:4 322:7 341:5	107:2 120:22	switching 182:8
263:12 281:5,6	68:13 133:21	366:11	135:7 159:17	Switzerland 155:11
334:7 397:18	257:10	suggesting 157:19	355:8	sympathize 380:22
structured 155:19	submitted 27:9	241:2	suppose 122:12	sympathy 37:14
283:9 372:2	99:14 152:5	suggestion 160:14	166:14	symposium 40:22
397:16	154:14 178:12	280:12,13	supposed 47:18	syndrome 252:13
struggles 160:12	222:10 394:18	suggestions 146:17	72:9 166:11	synthesis 282:17
stuck 176:18	subsequent 183:21	160:21 161:2	supremacy 286:2	synthesizing 283:2
studied 206:4	347:15	suit 391:2	sure 45:1 66:15	system 3:18 6:18
214:9,22	subsequently	suitability 34:19	69:3 107:22 162:7	13:10 15:1 19:5
studies 137:10	306:10 324:2	84:6,8 395:16	162:19 163:2	33:5 34:22 39:9
139:11 150:10,12	subset 329:8	suitable 233:22	183:14 193:8	58:3,17 61:13,16
228:22 298:22	substance 38:8	suited 225:3	197:20 207:6	61:22 71:5 72:21
304:20	substantial 187:7	summaries 24:11	210:1 222:17,18	92:4 112:10 113:3
study 40:6 83:1	284:13 290:18	summary 73:11	269:19 277:13	116:9 119:9 128:1
89:14 97:21	308:16,17 313:17	321:9	303:6 307:16	139:17,19 140:6,8
183:19 348:1,2	329:14 375:2	Superfund 366:6	313:21 328:4	141:3 143:12,17
362:13,14 365:3	substantially 87:13	366:20	338:2 348:3 356:5	150:7 168:16
studying 239:2	185:18 292:4	supersede 139:22	388:16	169:8 177:2,8
stuff 114:2 116:18	310:14 368:19	supplemental	surely 331:14	180:4,8 181:3
116:19 189:13	substitute 52:13	153:9	surface 138:4,7,9	187:11 194:12
191:10 222:22	subsystem 54:2	supplemented	222:12 241:8	196:16 211:7
233:10 234:6	58:12 60:4 107:13	121:17	305:5 334:18	214:2 215:1
238:7 303:22	265:6	supply 284:15,19	surprised 341:10	217:14 237:9
359:21 363:17	sub-title 88:18	support 99:1	surprising 319:1	242:2,20,21
374:5,9 389:4,11	succeeded 300:16	104:15 121:14	surprisingly 22:3	244:13,13 256:22
392:13 396:17	success 76:13 91:9	122:12,15 123:1	surrounded 330:21	266:2,6 270:2
stylized 33:17 59:9	100:9 249:12	132:3 133:15	330:22	281:9 294:16
sub 140:8	329:19	135:8 159:2,22	surrounding 298:4	295:10 296:14
subcommittee 1:4	successful 91:21	165:17 168:2	survey 308:8	299:1,22 302:13
1:11 5:12 75:12	234:2 275:11	172:15 175:19	Susan 1:19 398:1	312:7 317:16
75:17 103:14	309:13 310:2	209:7 283:19	suspect 127:15	321:19,20,22
123:13 154:20	340:4 367:13	284:1,13 285:18	161:22 173:3	348:21 371:22
204:10 315:8	382:12	285:21 291:12	316:12 317:2	372:2 373:11
372:8,10 397:6	successfully 309:1	292:3,11 308:10	sustain 223:9	391:16 394:3
398:1,2	sue 195:2	314:19 315:2	352:10	397:12
subcommittees	sued 231:15	317:5 337:15	sustained 350:9	systematically
5:10 74:17 391:12	sufficiency 332:3	340:11 343:16,22	351:7	369:3
397:15 398:4	334:6	347:10 373:4	sustaining 352:22	systems 17:7 61:12
subject 26:14 29:20	sufficient 37:2	374:21 394:16	swamping 40:18	70:19 136:15

Г

٦

127.11 11 12	280.0 240.0 267.8	280.22	tachniques 72.15	280.10	
137.11,11,12	200.9 540.9 507.0	309.22 tonglod 252.18	technological 324.8	500.19 tonds 228.12	
173.21 215.22	507.11 tolk 20.14 21 23.8	tangicu 333.10	326.8 10	tons 238.10	
273.15 206.15 16	25.15 18 A2.15	tank 102.10	520.0,19 technologies 186.8	$\frac{19}{19} tens 230.10 \\ ton foot 251.15 \\ to$	
275.15 290.15,10	25.15,10 42.15	182.0 184.2 12	226.14 272.22	torm 20.6 10 84.6	
SO1.22 S12.0	44.10 45.19,22	182.9 104.3,13	520.14 572.22	88.10 120.17	
5-E-5-5-I-U-IN	40.21 40.0 49.19	103.12 tool: 8.10 204.12 14	185.8 210.20	227.6 200.2	
244.1	100.2 100.14	261.10 204.13,14	222.10 246.1	237.0 309.3	
T	100.2 109.14	501.10 500.10	323.10 340.1	525.15	
$\frac{-}{t 27.13286.22}$	110.3,0,22 112.0	taskeu /0.1	262.16 272.10	207.11	
table 3.23 22.20 20	115.12,20 151.20	tasks 204.10 390.9	technology based	597.11 torms 7:20 57:2	
112:20 162:22	154.1 150.15	taste 333.7	14.3	62.4 64.5 66.20	
215:17 331:7	105.11 22 204.22	taugiii 99.7	14.3 tectonic 15.1 17.10	105.1 10 106.11	
335.11 16 377.17	195.11,22 204.22	toom 68:12 76:12	toll 15.10 21.22	100.5 116.17	
384.13 395.22	229.0 234.2 201.7	202.14 220.22		109.3 110.17	
tabulations 109.4	201.10 202.7	203.14 329.22	49.2 114.7,10,22	119.14 140.14	
Tacoma 368.5	203.4,0 203.10	tear 220.4	119.22 124.1	140.10,19,22	
tag 390.20	209.17 274.19,21	Teah 247:10	1/5.10 100.14	150.2,4,19 100.11	
Tailings 78.16	270.5,4 207.19	technical 20.22	194.19 220.17	105.22 170.20	
take 7:6 15:1 29:5	292.14 297.10,20	20.1 26.22 27.4	229.13 230.7	177.22 103.13	
36.15 40.13 51.1	310.10 329.20	30.1 30.22 37.4 70.1 85.0 00.1 21	255.14 259.17	201.10 210.14	
53.21 76.16 89.6	229.11 247.5	$70.1\ 03.9\ 90.1,21$	274.15 275.1	201.10 219.14	
89.15 100.13	350.11 347.3 257.1 267.1 200.2	92.19 119.15	291.0 297.21	221.11 201.3	
136.7 138.15	334.1 307.1 300.3 202.14 16 204.4 6	120.5,15 121.10	320.3 332.21	274.12 270.3	
154.4 159.13	303.14,10 304.4,0 206.19 209.14	121.17 130.3	250.12 262.4	209.5 504.0 515.5	
175.16 177.16	390:18 398:14	133:21 133:0,14	339:13 302:4	320:19 334:9	
182.22 183.18	<i>taikeu</i> 29:15 45:10	130:18 138:21	280.15 201.7	373:4377:12 270:10 290:9 0	
221.8 227.22	40:4 107:8,14	139:2,22 130:22	589:15 591:7	579:19 500:0,9	
221.0 227.22	104:2 204:20	100.1 100.1	110.7 125.2 250.2	torribly 257.11	
230.10,17 230.0	203:7 209:2 290:1	198:18 199:7,12	119:7 125:5 250:5	terribly 237:11	
254.21 256.2 8	552:5,5,18 550:5 267:11 278:5 16	212:21 220:19	393:22	territory 27:20	
259.9 11 290.3	307:11 378:3,10 279:17 292:6	221:4 228:21	tens $105.17224.11$	142.17 144.7	
304.10 319.10	3/8.1/ 383.0 297.11	251:19 254:11	10:21 40:6 65:10	145.17 144.7	
321.10 322.13	38/:11	245:4 240:10,17	40:21 49:0 05:10	340:21 344:17 265:11 282:16 20	
320.15 338.18	taiking 8:15 41:4	253:12 255:20	89:13 113:12	303:11 382:10,20	
3/7.1/ 3/8.10	40:0 98:18 99:8	268:6 269:22	114:11 110:8	testified 248:19	
353.3 360.5	103:18 191:0	272:15 284:0	120:18 127:1	testimony 85:9	
363.1/ 15 368.10	200:11 223:20	292:20 299:9	133:7 215:10	$22/:11 \ 30/:11,13$	
368.15 377.11	225:1 239:1 240:6	306:12 313:8	227:9 230:20	testing 106:14,14	
38/10 385.13	240:7 274:10	319:0 303:4	238:9 245:10	1/8:1 220:11	
386.13 306.7 7	282:17 285:13	3/9:12 381:22	246:5 251:18	389:3	
taken 30.7 106.17	287:12 294:20,22	<i>c</i> .14 17 07:12	254:7 258:10,14	uesus 04:15 Towar 272-1 202-10	
160.2 201.20	303:3 323:22 209:12 226:0 19	0:14,1/9/:13	259:9 295:11,10	1 exas 2/3:1 282:19	
328.21 225.18	328:13 330:2,18	105:22 104:12	310:11 330:16	Mank 5:15 38:13	
340.21 333.10	338:7,9,11 339:16	140:10 264:12	554:21 396:7	44:12 48:13,22	
342.11 347.4	342:22 348:14	2/0:16 281:1	tena 139:3,15	60:18,20 65:14	
J04.21 takas 238.2 270.22	368:11 375:3	318:14 319:22	166:15 179:5	/0:5 /3:6 /4:5,6	
LANCO 230.3 219:22	386:17 388:13	technique 253:15	287:11/369:22	/5:3,4,12 86:21	
			1		

	1			
87:4 100:10,22	201:22 202:7	275:10 277:9	161:18 163:21	317:12,14,18
101:8,13,20 102:7	206:15 208:19	284:22 288:18	164:4 166:4,15	322:2,15 324:9
102:9 113:8 125:8	210:14 217:6	289:19 299:1	167:2 171:1,8,9	325:4,6,8 326:8
125:18 126:3,3,10	220:10 221:12	301:13 303:20	171:10,11,14	326:12,15,22
134:7,8,11 142:10	224:20,21 225:7	305:1 306:8	173:19 176:7,22	332:3,16,17,19
142:11,13 155:17	230:8,19 232:19	315:13 316:22	178:8 179:16	333:3,4 334:15
163:4 193:5	233:7 237:18	320:20 332:1	180:13 181:8	337:7,10,22 338:8
196:20 202:15	240:17 252:16	334:15 335:11	182:15,20 184:18	340:18 341:8,16
242:22 243:2	262:7 264:21	336:15 337:12	184:18 185:7	343:7,15 344:6
244:8,9 245:7,11	269:15 270:17	338:16 340:6	186:10,13 187:21	345:16,17 346:7,8
245:18,21,22	276:5 301:9	343:3 345:3,14	188:20 189:4,6,17	346:9 347:6
246:2,6 258:11	321:21 326:17,20	346:14 347:9	189:18,19,22	348:10,16 349:5
259:2,3 272:10,11	336:1 337:16,20	348:14 349:1,21	193:13 195:13	349:10,17,18,22
272:14 282:6,7	340:14 343:18	355:2 363:11	196:10 198:6,13	350:4,7 353:16
292:22 302:16,17	346:11 351:1	364:17 368:13	198:15 201:12,16	355:9 356:21
302:22 303:8	357:18 366:11	369:2,15 370:9	201:19 202:3,9	357:19,19 358:3
321:15 323:5,5	377:8 388:19	372:19 379:22	204:5,10 205:13	358:11 360:3,13
330:16 364:3	389:12 391:13	380:5,6,20 383:12	205:16 208:17	360:17,22 362:2
384:9 385:5	395:1	398:12	209:19 214:1,4,11	362:20 363:3,4,13
390:11 396:14	things 8:14 9:2	think 12:12 20:22	214:14,16 215:17	364:7 365:21
398:18 399:2	10:19 11:12 20:2	23:22 24:10 26:18	217:1 221:14	367:15 369:2
Thanks 86:22	22:13,21 39:16	27:8,10,20 28:5	223:4 224:2,19	370:4 374:13
126:1 163:2	42:9 43:21 44:8	29:2,10 32:20	227:7 228:17	375:1 376:8,12
theme 279:2	47:12 52:19,20	38:4 39:6,14,15	229:21,22 231:11	377:17 379:20
themes 127:1	60:16 64:21,22	40:2,20 42:15,20	237:4,10,11,17	380:3 381:1,9,17
129:20 130:8	73:18 74:2 87:16	43:16,22 44:2	238:2,11,19,21	381:21 382:3,6
theoretical 139:8	87:20 93:22 103:6	47:5 48:22 49:10	241:6,9 254:16	383:12,21 384:6
theory 9:20 286:3	104:13 114:12,13	50:11,12 53:10	256:10 260:13,16	388:10 394:15
thereon 333:13	120:14 121:12	60:1,4 61:3 63:5,7	260:18,20 261:14	395:2,4 396:13
thermal 168:22	123:2 127:21	69:22 73:22 91:8	261:17 269:2	397:7,22 398:14
thermodynamic	131:12 150:17	91:11 92:1 95:1	270:16 272:4,5,6	thinking 30:2
165:4	158:6,8 159:7,10	97:20 98:21 99:6	274:3 276:11,17	37:21 41:12 43:17
thick 235:16	159:14 162:14	103:22 104:9,17	276:17,22 278:4,9	44:1,4 63:21
thin 138:18 141:5	167:12,12 169:5,6	104:19 105:8,14	278:10,11,13,21	106:15 154:9,17
149:3 174:14	169:8 178:10	105:14 106:6,19	279:11,19,21	154:17 158:17
194:12	188:14 195:3	107:12,14 108:7,8	280:6,8,19 281:17	178:5 183:16
thing 18:17 24:9	201:19 202:5	108:13,18 109:7,8	287:20,22 289:3	185:15 188:17
34:16 40:4 41:16	207:5 215:9,12	109:9 110:6 111:5	289:15 293:7	273:12 277:1
47:11,13 48:5	220:13,14 226:13	111:8,10,14,16	294:2,13,17,22	278:22 279:4
61:14,21 63:6	226:15 231:18	113:1 115:18,20	295:5,16,17	288:3 289:17
64:11 73:12 74:13	235:4,19 236:1	116:13,14 118:1,6	303:13,16 304:3	298:5 312:9 338:5
94:5 97:14 103:21	237:14 239:21	119:3 121:1,2	304:14 305:18	360:1,11 368:16
123:19 124:15	240:1 243:4	125:20 126:7	306:1,3,13,19	370:4,5 393:22
151:7 161:9,10	249:16 251:10	127:8 128:15	307:6,13 308:19	394:1
169:9 177:1	254:22 257:18	131:12 132:2,5,8	309:2,7,9,13,17	thinks 115:18
187:17 194:7	262:3 263:16	133:8,16 137:4,13	311:14 313:5,9	third 92:16 145:2
199:21 200:1	271:8 273:9	141:7 142:7 143:8	314:2 316:17	305:18,19

Thomas 2:2.2.5	055.17 007.15	170.6 202.0	124.14 145.16	250.2.222.16
Thomas 2:2 3:5	255:17 297:15	1/9:6 202:9	134:14 145:16	250:3 332:16
367:11	throwing 108:7	207:14 227:5	151:4 168:21	toucn 40:21 51:21
thoroughly 168:21	3/4:12,13	228:2 230:12,14	200:20 209:13	112:4
thought 8:2 24:20	tied 307:22	230:10 230:15	226:8 264:7 265:3	touched 80:4
25:4 32:3 46:7	tier 36:6	238:18 239:4,5,7	2/2:1/2/9:2	303:13,18
108:17,18 116:14	tiered 361:21	239:9 241:15	282:17 283:3	tougn 297:19
128:1/14/:5	tiers 363:4	248:8 203:12	294:11 300:10	349:10,19
182:21 188:2	11m 2:2 5:0,10	200:13 2/1:13	331:13 342:14	toxic 42:9,17
197:17 198:8	48:1/05:14/0:0	272:22 273:17	350:14 358:1	traceable 259:17
210:2,7,9 215:15	/3:0/4:21 102:4	282:21 284:5,22	380:10 391:8	traces 522:5
221:4 235:18	107:14 108:15	285:5 289:9	000ay \$ 0:11 151:14	LFACK 98:7 189:18
230:7 308:9	121:19 204:4	292:19 295:18	2/0:15 A-14 05:01 07:12	286:10,20 321:5
314:10 315:10	219:5 230:22	296:4 297:13	told 25:21 27:13	tracked 285:3
327:13 333:5	238:5 239:14	299:2 300:13	29:10 33:12 49:0	tractable 182:5
341:1 345:13	241:11 244:8	304:8 307:3 308:7	115:2 120:22	traditional 296:6
356:1 359:14	3/9:17 384:9,20	311:2 313:15	123:1 164:17	tragedy 121:20
361:15 364:22	385:15,16 386:17	319:10 320:8	195:5 277:11	trained 105:11
366:22	387:4	321:3 326:12	356:6 382:18	129:8
tnoughts 8:2 90:14	time 6: 7,8 9:3	329:14 334:20	38/:11 Tom 7:4 (11 9:9	transcripts 69:19
192:21 228:21	10:15 12:1,9	339:22 348:20	10m /:4,6,11 8:8	transier 315:16
397:2	15:10 16:10 17:15	349:22 351:7	24:12 38:13 39:3	transferred //:3
thousand 14:20	19:6 20:10 28:17	358:12 362:4,4	40:5 43:2 44:12	transferring 313:1
89:7 104:21 116:8	29:1,8 30:22	363:14 3/4:4	48:13,22 49:10	316:8
152:14 227:9,9	31:18,19 35:11	383:18 384:22	50:11 52:3 79:20	transfers 315:20
293:15 312:14	36:1,5,9 37:18	386:18 387:17	80:4 102:22 103:6	transients 169:3
thousands 58:9	38:10 52:6 53:2	391:11 395:20	110:5 123:17,17	transit 393:4
104:19,20 134:12	53:20,21 54:2,12	timeline 9:2	144:21 179:14	transition 61:4
161:13 164:13	54:19,20,21 55:13	timely 273:8	228:11 230:15	transparency
257:21	56:14 57:12 59:22	times 14:20 100:1	231:7 269:2 322:3	134:2 184:18
thread 357:16	64:11 66:14 74:2	136:13 141:17	tomorrow 59:16	254:2
363:22	84:4,12,21 85:21	143:8,10 149:3	115:7 399:4	transparent 69:16
threats 310:9	87:2 104:4,7,10	153:11,14 195:2	Tom's 7:21 8:5	69:21 70:4 160:20
three 10:22 12:5,19	105:18 106:15	231:8 248:19	73:9 94:9	166:7 220:4
18:9 30:11 44:16	109:15 113:17	249:17 256:20	tongue 331:15	392:10
45:14,15 52:6	115:5,12 118:9	331:14	tonight 169:13	transport 58:18
53:9 54:2 60:11	121:9 124:1,16	timing 95:16	tools 72:15	71:18 72:18 136:9
100:1 114:13	128:6,16,16,21	Timothy 2:4 3:8,15	top 99:20 123:7	329:4,15 393:2
118:11,19 119:20	129:2 130:2	48:15	178:5 191:8 301:5	transportation
123:8 156:14	132:17 133:8,11	Tim's 385:17	301:6,12	78:11 312:21
193:6 235:22	134:6 135:22	tip 150:3	topic 75:19 176:6	328:8 392:21
240:16 253:1,18	136:3,4,16,17,17	title 65:22	topical 391:12	transuranic 12:18
262:5 304:11	137:1 139:16	today 6:1 7:4 8:12	topics 156:14	79:19 246:8
308:1 335:7,19	140:13 144:7,19	49:18 56:19,22	182:21	250:15 251:22
350:16 360:17	146:12 147:4	76:17,17 107:7	torqued 48:10	252:18 342:12
363:19 380:13	148:11,15 149:11	113:18,19 114:6	total 34:22 256:15	transuranics
397:15	149:12 152:13	114:15 121:10	257:9	313:19
throw 48:6 174:11	157:12 164:19	127:9 131:12	totally 103:5 164:9	trap 270:7
			1	

			1	
trapped 283:14	305:18 306:17	332:12 347:8	294:8 301:11	17:4 19:13 104:13
travel 19:6 53:20	307:1,1,7 308:14	356:12 367:12	307:18 315:3	104:14 118:3
95:14	308:16,20 318:20	371:3 384:15	318:16 322:19	146:11 167:9
traveling 180:2	345:8,15 346:12	399:4	323:15 324:12	178:2 188:16,22
TRB 39:18	347:1,8,13,16,18	TSPA 170:16	332:1 351:1	237:21 249:18
treasury 259:1	347:22 348:5,10	tube 253:14	356:11 372:13,19	297:1 302:11
treat 36:13 88:5	348:12,17 383:22	tubes 364:12	382:22 385:20	uncertainty 53:8
369:22	384:7 389:14,14	tunnel 221:7	393:2,3 397:5	84:16 85:15 153:8
treated 15:5 274:7	trusted 349:2	turn 5:13 56:10	two-stage 109:20	223:2 265:8
treating 289:11	trusts 300:12	129:6 135:22	two-track 43:4	271:12 294:22
327:4 375:5	truth 151:9 166:5	244:6,11 367:6	two-way 297:22	296:2,18 297:4
treatment 23:16	179:1	turned 37:12	298:6.12 387:13	302:4
333:6	try 39:22 49:7	200:16,17 215:10	type 239:15.18	unclear 153:21
Treichel 2:21 4:13	57:20 63:22 111:3	215:14 222:13	240:13 241:10	uncomfortable
385:22 386:11,15	120:6 130:12	227:14 274:21	242:4 247:18	334:4
390:19	148:12 150:15.22	305:13 325:18	257:18 264:6	unconscionable
trend 139:18	162:8 183:13	358:18 366:20	284:8 313:13	254:17
tribal 99:17	184:10.20 185:13	turnout 223:16	326:12	undergoing 86:6
tribes 67:5 91:5	187:8.14 195:4.5	turns 168:6 329:9	types 144:10 145:7	undergraduates
98:20 281:12	205:3 217:15	TVA 210:4	235:2 237:13	243:5
tricky 337:8	219:11 233:2	tweak 324:15	239:21 251:16	underground
tried 10:6 276:10	238:12 254:21	twelve 258:12	262:20 328:21	181:14 305:2
294:11 299:7	259:7.18 260:21	384:10	373:10	underlies 327:2
355:14 357:1	267:20 271:10	twenty 354:21	typical 49:12	underlying 294:16
380:9 381:14	273:13.14 275:7	Twenty-one 271:19	typically 77:17	316:15
1 100 7 0 10 00				
trips 100: / 248:22	280:5 291:6	twenty-two 258:15		undermine 340:12
trips 100:7 248:22 trivial 252:6	280:5 291:6 293:11.18 294:17	twenty-two 258:15 twice 308:8		undermine 340:12 underpinned
trips 100:7 248:22 trivial 252:6 trouble 306:5	280:5 291:6 293:11,18 294:17 297:15 298:1.20	twenty-two 258:15 twice 308:8 two 6:12 9:7.10	$\frac{\mathbf{U}}{\mathbf{U} 221:2}$	undermine 340:12 underpinned 106:21
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14	U U 221:2 Udall 311:11	undermine 340:12 underpinned 106:21 understand 41:20
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11	U U 221:2 Udall 311:11 UK 325:16	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4.7	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19.19	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16.18 122:21
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18.19 348:11	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10.20 144:14
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trving 6:8 32:6	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18.21 194:17
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18.20 183:7	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7.10
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17.20	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16 226:21 250:2	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9 210:3 240:14	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7 228:22 238:20	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9 unappetizing	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13 237:12 238:14.15
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16 226:21 250:2 271:12 286:19	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9 210:3 240:14 258:21 262:21	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7 228:22 238:20 240:16 245:12	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9 unappetizing 238:17	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13 237:12 238:14,15 240:19 267:22
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16 226:21 250:2 271:12 286:19 295:16.21 300:15	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9 210:3 240:14 258:21 262:21 275:6 280:21	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7 228:22 238:20 240:16 245:12 249:16 251:10	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9 unappetizing 238:17 uncertain 53:15	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13 237:12 238:14,15 240:19 267:22 268:19 310:11
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16 226:21 250:2 271:12 286:19 295:16,21 300:15 300:17 301:4.8.12	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9 210:3 240:14 258:21 262:21 275:6 280:21 311:13 312:7	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7 228:22 238:20 240:16 245:12 249:16 251:10 254:17.18 256:16	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9 unappetizing 238:17 uncertain 53:15 147:6 169:7	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13 237:12 238:14,15 240:19 267:22 268:19 310:11 312:12 314:14
trips 100:7 248:22 trivial 252:6 trouble 306:5 364:11 troubled 199:21 TRU 204:1 truck 308:5 trucks 308:15 true 117:15 119:10 119:12 169:11 170:14 238:1 254:10 265:16 266:4 341:13 357:3 truly 63:8 196:5 trust 119:18 128:18 131:10 159:16 226:21 250:2 271:12 286:19 295:16,21 300:15 300:17 301:4,8,12 301:18 304:6.8	280:5 291:6 293:11,18 294:17 297:15 298:1,20 304:22 306:5 312:18 317:16 318:4 321:4,7 323:16 341:15 347:18,19 348:11 354:5 360:12 370:8 trying 6:8 32:6 40:2 58:7 90:13 125:5 129:13 147:7 154:9 168:2 176:18,20 183:7 183:10 188:17,20 194:21 207:9 210:3 240:14 258:21 262:21 275:6 280:21 311:13 312:7 316:19 326:4	twenty-two 258:15 twice 308:8 two 6:12 9:7,10 11:8 18:14 25:14 27:2 30:15 31:11 36:6 37:18 38:7 45:12 47:19,19 49:19 55:19 74:2 77:9 80:6 90:7 96:11 114:13 126:18 132:12 136:7 145:7 147:10 156:15 163:20 186:8 188:13 193:4 194:10 201:11 206:16 217:7 228:22 238:20 240:16 245:12 249:16 251:10 254:17,18 256:16 268:14 274:22	U U 221:2 Udall 311:11 UK 325:16 ultimate 25:7 299:19 ultimately 50:18 53:19 110:1 111:15 137:6 237:10 238:2 380:5 ultraviolet 174:13 174:18 umpire 76:12 UMTRCA 78:17 unabashed 114:9 unappetizing 238:17 uncertain 53:15 147:6 169:7 uncertainties 15:22	undermine 340:12 underpinned 106:21 understand 41:20 77:9 79:11 98:15 99:10 116:21 118:16,18 122:21 128:10,20 144:14 154:8 166:9 167:17 168:4,12 168:20 170:10 188:18,21 194:17 194:20 195:7 205:20 207:3 208:1 210:7,10 223:15 224:22 228:19 232:8,13 237:12 238:14,15 240:19 267:22 268:19 310:11 312:12 314:14 322:20 323:11

Г

328:1 332:12 334:2,9 335:9 340:7 343:18 347:11 358:8 377:10 383:17 391:10 understandable 260:5 understanding	213:2 228:15 284:20 286:1 314:6 371:5 units 67:4 universities 282:22 university 2:9,14 2:16 71:12 101:16 101:19 113:14,18 134:21 245:10,21	78:5,9,15 137:14 137:17,18 138:8 167:20 179:5 185:4 urge 7:16 173:2 204:9,16,18 213:17 221:14 257:11 286:21 329:20 369:8	289:21 358:6 V vacated 22:5 35:16 85:11 valent 136:12 valid 84:13 236:9 validate 72:1,2,3 validating 71:18	vertically 220:22 vested 76:12 248:2 veto 271:2 vetoed 287:4 viable 396:4,8,11 Vicky 1:18 65:13 87:1 190:18,21 222:4 239:10 331:18 375:21
63:8 70:2 89:18	282:19.20 290:10	urgent 162:10	validity 250:9	397:22 398:21
93:15 105:13	308:7 341:22	urging 253:7	Valley 182:6	Vicky's 197:1
128:9 134:4	366:18	use 7:17 17:2 21:1	valuable 97:8	view 50:8 69:20
139:16 158:3	unknowable	24:18 38:2,10,11	131:2 185:5 194:7	104:12 115:1,16
166:2 175:3 229:2	296:17	46:17 47:1 51:9	365:22 382:7	118:10 120:21
232:9 241:5 242:1	unlearned 252:10	60:5 71:15 77:21	value 88:2 162:18	136:18 175:17
242:2 297:3	UNM 253:5	79:7 99:12 151:13	217:11 306:15	182:12 233:8
324:20	unnecessary 23:14	153:3,9 157:5	319:9 379:9	317:20 318:2
understands	unprecedented	175:15 180:4	values 19:10 53:9	332:15 344:7
169:11 255:2	37:13 137:6	185:5,22 211:8	76:8 227:4,18,20	347:17 348:11
understood 31:19	unrealistic 137:1,3	239:8 249:22	228:4 325:2	371:19
54:11 115:15	unreasonable	253:15,19 309:3	variable 242:7	viewed 85:2 151:21
136:16 227:13	248:14	323:14 333:19	variance 322:1	175:4
294:3 337:9	unsafe 149:14,16	345:3	variation 150:22	viewgraph 10:5
undertake 298:19	374:14	useful 7:16 16:1	variations 289:3	39:14 271:18
314:4	unsaturated 23:9	33:11 81:20	varies 206:18	viewgraphs 266:8
undo 47:8	28:2,9 29:4 43:21	131:13 132:9	variety 143:13	viewpoint 357:13
unequivocal 16:8	71:13 178:6,7	146:20 197:17	152:11,13 176:16	views 192:18 201:8
396:16	179:7 216:4	207:7 243:2 365:1	205:7 288:21	249:1,2 345:6
unequivocally	266:11,15,17,20	381:7,13	373:9	376:14 380:4
161:14	268:13 269:6	useless 357:13	various 129:13	Viking 173:16
unfair 311:18	untenable 287:14	uses 152:18	242:15 274:20	Vikings 173:22
unfairness 317:18	unusual 62:22	USGS 71:10	359:10,18 371:5	violated 28:16
unfavorable 19:22	94:14	216:17	vast 115:4,9 171:16	violently 208:6,7
unfortunate 285:17	unwisely 254:5	usually 32:21 238:6	vehement 388:22	246:22
unfortunately	update 103:9,10	288:19	vented 250:19	Virginia 366:10
172:10 369:3	155:13	Utah 287:12	venues 288:16	virtually 62:5
unhappy 224:3	updated 98:13	utilities 363:5	VEPCO 366:10	247:17
unified 198:2	upheld 22:8,10,14	utility 366:11,14,16	version 173:19	virtues 213:3
unify 197:6	147:14,15	UV 186:19	321:9	vis 109:20,20
unilaterally 127:22	upper 291:19	UZ 178:21	versus 21:2 32:20	visceral 324:5
uninterrupted	upside 227:14	U.K 152:21 155:11	44:21,22 62:9	visit 234:20
326:6	uptick 308:14,16	U.S 77:18 87:10	128:16 186:7	vital 246:16 257:13
unique 37:19,22	up-front 112:2	105:5 117:8 135:5	193:4 195:10	271:4
43:19 80:16	152:21	135:16 141:5	218:20/269:4	vitally 293:9
134:15 202:3,9	up/down 149:6	144:11 163:15,21	301:0 311:0	Voegele 2:12 3:21
269:21 394:9	uraninite 137:19	256:15 269:19	305:12 3/2:18	244:21,22 245:1
United 129:12	uranium 13:22	284:14 285:12	3/4:19	259:4,5 272:11

Г

319:18 321:8,16	265:9 266:6	wasn't 15:13 26:9	241:10 242:10	48:8 52:6 53:10
333:13,14,17	268:14 269:17	29:15 55:11	246:8 250:15	57:4 61:22 73:1
Voegele's 332:4,17	273:5 276:20	161:19 230:21	251:18,22,22	88:8 89:9 92:5
volume 181:19	278:3 280:22	254:10 305:20	252:9,10,18 254:6	95:14 99:10 107:2
218:6	284:2 295:15	352:2,3 366:3	255:22 256:4	108:6 109:12
voluntary 332:10	299:6 310:5,22	386:18 392:3	257:15,18 261:10	110:4,10 111:14
332:19 337:6	320:22 323:13	waste 3:4 9:12,18	262:3,9 263:10	116:3 117:6 118:7
volunteer 336:4	331:20 333:19	11:5,6 12:17,18	264:4 267:14	119:1,2 120:2,16
341:17,20 388:17	336:10,11,12,13	18:4 19:2 24:14	268:8,17 269:12	121:8 124:7,19
vote 302:19	341:11 342:10	26:13,14 29:6,11	269:18 272:20	134:5 145:2,19
VRC 391:18	343:15 344:2	39:20 40:16 41:2	276:14,19 280:14	154:7 158:7
	346:15,16 349:3	41:3,4,9 42:22	288:8 290:3	159:16 160:20
W	355:7,11 357:8	48:3,19 53:11,12	293:15,22 294:7	161:3 164:1,3
w 391:2	360:8 361:1	53:13 56:2 58:17	300:20 303:14	166:12 169:12
wait 232:6,6	363:20 367:14	58:18 63:6 64:21	304:4 305:4,20	172:18 175:1,17
waiting 12:6 208:4	368:10 378:22	69:5 71:18 72:16	307:19 311:1	175:18 184:17
wake 174:19	379:17 385:8	75:22 79:2,18,19	313:13,16,16	185:7 186:19
walk 261:17 299:5	388:20 389:1,2	80:12 81:16 82:2	315:16 316:2	187:9 194:14
want 5:20 8:8,22	390:20 391:7,18	86:14 88:7,11,16	321:16 327:4	195:14 196:13
18:17 20:21 24:9	394:7,8 395:1	88:20 89:2 90:11	335:5,10,17	206:20 207:4,7
24:14 39:5 44:16	397:13,21 398:3	91:18 95:6 96:12	336:16 342:9,12	221:20 223:9
46:21 47:1 63:2	398:20 399:1,7,8	108:12 109:6	344:21 349:14	225:4,5 226:4,10
68:14 69:10 74:13	wanted 25:12,12	112:8,10,15,15,19	350:2,22 357:2	226:13,14 230:3
74:18 94:8 97:2	64:4 155:20 173:1	113:4 114:2 120:1	364:4 375:4	231:14 232:15
107:20 111:19	183:15 187:22	127:6 129:15	386:16 388:2,3	233:10 255:10
112:7 114:21	214:17 255:22	130:3 131:7	389:19 391:3,17	261:13,19 263:2
116:6 120:6 123:3	265:22 268:13	132:20 133:13	391:21	263:22 265:8
124:1 135:10	274:19 314:7	135:1,4,6,19,20	waster 239:16	278:19,21 280:22
152:20 156:3,10	337:1 341:4	136:21 139:1	wastes 17:15 42:1	283:7,9,17 284:6
162:6,6,21 164:6	351:14 356:4	140:2,11,14 141:5	192:7 211:8,22	285:15,22 290:6
166:15 173:4	376:4 387:10	142:5 143:9 158:5	339:17 343:6	293:5 295:3
179:5 181:2	wanting 332:1	179:12 180:1	373:22	297:10 302:7
182:15 185:20	384:19	181:11,14,18	watched 199:15	306:22 307:17
188:5 189:12,14	wants 202:13	182:8,10 184:13	watching 328:8	308:5 310:4
192:14,19 193:7	270:22	185:7 187:14	water 13:1 16:19	313:21 320:18
194:3 206:2,3,8	War 184:9	188:20 189:10	22:22 28:7.12	321:13 325:5.20
207:5 208:16,21	Warner 2:8 3:13	190:7 192:2	58:18 117:20	337:9 340:8 341:2
210:9 213:7 217:8	101:14 179:9	195:20 196:2.4.6	128:20 167:19	341:18 347:21
217:9,15 220:13	182:20 206:3.4.9	196:7.16 203:22	169:1.1 178:13	348:12 352:21
222:5 225:19,20	208:14 212:16	208:22 211:5	215:6.16.17	355:1 356:17.18
230:7 234:10	220:15 361:14	212:1.11.21	237:11.12.13	358:3 367:3
236:16 238:4	364:1,15 370:22	213:18 214:2.8	238:3 241:8.18.18	372:21 377:18
242:7,9,10 246:21	378:16	220:19 221:3.8.19	241:21 242:10.16	381:3 385:2 386:4
248:4 253:20	warts 54:15	225:17 226:19	way 10:16 12:3	392:13
256:12 260:1	wash 224:22	234:20 237:13	14:6.13 18:15	ways 12:14 52:21
261:7,11 262:2,7				151 00 1 (1 5
	Washington 1:12	238:3 239:15.16	26:16 36:5 40:12	151:20 161:7
263:4,15 264:5	Washington 1:12 1:13 297:21 300:3	238:3 239:15,16 239:18 240:13	26:16 36:5 40:12 40:16 42:2 47:12	151:20 161:7 283:15 312:20

٦

315:18 320:19	355:13 381:19	238:12	333:19	204:6 260:22
347:7,18,20	West 182:6 358:18	win 347:10 348:7,9	worded 106:6	272:22 315:8
wayside 141:22	we'll 14:5,12 37:10	wind 20:18 21:14	words 14:17 111:21	329:2 355:8 391:4
wealth 313:2	87:1 126:2 132:16	25:5 258:7	153:5 166:3	396:13 398:5
315:16 316:8	152:7 153:2,3	window 255:21	226:18 242:20	works 175:13
weapons 183:20	166:21 205:22	winner 193:19	253:14 320:5	378:13
339:11	233:15 237:2	194:1	374:10	workshop 128:17
web 69:20 100:4	we're 5:4 31:7 37:5	WIPP 9:8,20 11:10	work 23:4 31:3,7	workshops 10:13
webcast 74:17	38:11 42:12 63:21	12:3,19 23:19	43:14 47:17 71:12	world 28:15 114:19
website 69:4	64:6 72:14 100:9	25:13,17,19,20	95:11 113:16	225:14 234:19
394:18 396:17	100:14 105:12,13	26:12,17,20 27:6	124:22 160:12	393:21
WEDNESDAY 1:8	107:21 108:10	27:6 38:2 80:9,16	167:22 184:3	world's 137:18
weeks 294:8	111:21 116:19	80:20 96:12 97:8	200:13 216:14,17	worried 207:12,13
weigh 29:20 90:22	117:17 125:11	97:10,16,21 98:8	216:18,21 224:8	299:10 392:2
307:12	144:3 148:16	98:11,14,22 99:5	231:21 233:15	worry 170:14
weighed 24:16	157:20 160:18	99:22 100:4	237:19 247:3,13	worrying 300:9
weighing 93:20	161:6 166:17	123:18 193:16	248:21 250:1	worse 139:19 219:2
weight 180:11	167:2 169:6	199:4 200:11,16	256:11 273:14	270:17
welcome 3:3 5:11	176:13,18 180:19	203:15 204:21	282:17,20 297:9	worth 19:18 338:9
5:17,20 101:1	181:9 182:5	205:1 211:2 215:3	300:22 303:1	338:11
126:6 228:7	183:10 191:5	215:9 246:13	306:12 313:4	worthless 55:17
244:20	196:10,14 225:1	249:13 250:10,13	316:7 320:14	wouldn't 63:16
welcoming 385:22	240:8,17,18	252:4 253:8	324:13 329:22	94:14 220:14
well-being 286:17	330:20	255:15,22 260:19	330:9 337:20	231:1 242:11
287:6	we've 7:2,6 37:18	265:20 272:3	347:12 357:18	248:6 314:9 324:2
well-deserved	56:20 62:16 67:3	307:15,17 308:2	362:19,22 369:5	338:18 392:4
275:5	71:12 94:20 96:1	313:12 328:3	369:13 373:11	wound 25:14
well-resourced	96:6 120:10	338:20,22 342:5	374:4 377:4	wrap 99:6 237:2
376:18	128:19 144:8,20	342:11	379:14 382:1,2	271:11 379:18
went 10:16 39:12	149:3 155:19	WIPP's 199:8	388:14 394:8	wrestled 124:21
44:6 54:6 66:22	169:4 170:9	wisdom 6:3 39:6	396:12	wrestling 90:20
96:2 100:18	179:16 185:12	253:14	workable 3:10 6:14	write 94:3 96:20
111:20 122:4,9	201:15 216:2	wishes 245:13	91:21	118:13 226:16
141:22 158:11,13	225:13 238:11	withdraw 37:8 86:5	worked 26:21 96:6	248:6 260:21
158:14 184:16	239:1	Withdrawal 25:20	115:5 134:22	277:19,20 282:4
186:18 193:8	whatnot 90:4	80:9,14 81:1,6	173:15 211:2,2	381:8
199:4 200:18	wheel 255:12	95:21	214:21 231:21	writing 277:14
227:18 230:8	where'd 212:4	witness 74:9,10	271:9 297:12	278:6 311:3 377:1
243:13 253:14	whey 268:19	witnesses 6:1,8,21	298:2 307:17	written 130:2
256:18,19 264:2	White 119:11	7:13 69:11,12	333:20 361:15	131:10 163:10
267:2 274:3 306:4	wide 235:2 277:18	woman 328:13	365:8 379:20	171:8 175:21
308:3 311:5	wider 379:11	382:12	380:7	272:21 278:5,12
330:18 359:2	William 2:8 3:14	wonder 201:7	worker 221:20	278:13 286:22
364:11 381:22	101:17	wonderful 200:16	working 10:15	293:14 303:10
399:15	willing 6:7,8 336:4	223:18 359:13	27:10 41:9 59:17	322:8
weren't 17:11 20:1	336:8 395:9	word 26:4 46:17	119:17 124:2,2	wrong 151:8 215:5
274:11,12 336:17	willingness 6:4	72:2 211:7 300:12	125:4 174:6 195:3	215:11,14 390:8,9
	U U			. ,

42:21 43:14 54:19	376:20 379:21 393:2,3 394:10	390:22 395:12,21	147:12 149:8 152:16 154:18	103:3 123:12 147:13 154:4 230:7 231:2
42.21 43.14 54.19	376:20 379:21	390:22 395:12,21	147:12 149:8 152:16 154:18	103:3 123:12 147:13 154:4 230:7 231:2
	376.20379.21	390.22 395.12 21	147:12 149:8	103:3 123:12 147:13 154:4
38:16 41:6,12		20111 20010		103:3123:12
32:1,4 36:7 37:1,2	360:17 365:9	387:1 388:8	117:2,2 146:2	102 2 102 10
26:9 27:3 31:20	356:7.7.11 359:3	380:15 386:20.21	105:4 116:21,22	91:16 95:18 98:12
19:3,7 21:6 23:4	353:3 355:17	359:4 379:22	89:8 104:22 105:1	81:7 84:19 86:12
13:20 16:3,22	351:1 352:14	350:22 354:7	84:18 85:11,17	60:8 79:20 80:10
years 6:22 12:5,7	340:20 341:13,14	327:2 335:3 344:5	42:20 43:1 56:16	191 13:13 56:19,22
354:22 360:16	326:7 331:5 334:2	298:4 326:18	36:7,8 37:1 41:6	190 78:6,7
336:11 353:11	320:5 324:22	289:22 291:22	31:22 33:8 35:9	187 154:4
308:8,16 326:5	300:14 312:14	269:14,15 283:10	24:1 27:5,4 51:12	18 32:19 43:20
250:7 257:3,21	276:8,18 282:18	260:3,17 266:16	13.10 22.9 23.4 24.1 27.3 4 31.12	17 127:10
252.15 255.10	271:19 272:17	245:2 258:16	15.16 22.9 23.4	162 3:16
250.21 240.13,15	201:10 270:8	241:15 242:0	10.000 13:17.20	100 257:5
236.21 246.13 13	255.7,10 250.9	222.9 223.3 233.7	267:17 347:14	160 257.2
222:17 228:13	255.7 16 256.9	210.13 220.22	265:5,16 266:9	16 136.11
174:5 202:21	$254.10\ 10\ 18$	216.13 220.22	10 49:20,22 103:3	156 3·15
152:8,9 155:10	249:20 250:5	215:13.18 216:3.5	1:39 243:14 244:2	150 267:7
147:16 149:12,13	243:6 246:12	211:3 214:19	1.6 255:16	157:20 171:19,20
136:16,17 147:12	238:21 242:12	203:21 207:15	1.3 138:2	32:15 36:6 59:3
105:4 129:2	227:7,10 230:18	201:14,20 202:19	116:16 192:8	15 26:22 28:21
100:1 104:10	222:21 225:8	186:6 198:20	19:3,6,7 116:1,2,6	142 3:14
83:15 84:18 85:12	206:16,16 207:16	177:19,21 185:19	1,000 13:19 16:22	14 206:16
43:1 55:6 65:10	201:14 206:7,15	176:10 177:8,13	30:13,18 62:18	134 3:14
29:8 33:8 36:15	183:20 184:1	167:19 168:1	1 1:9 3:9 18:7 23:3	13 114:12 171:20
24:1 26:1,22 27:4	168:3 182:3	157:1 163:16		126 3:13
year 13:17 22:9	165:7 167:15	152:4 154:14	1	1221 1:12
yardstick 254:16	158:11 164:14	147:17 150:1	0.2 256:20	121 79:6
<u> </u>	154:9,19,22	143:2 145:22	0 176:2	120 342:22
	152:14,15,16,19	132:10 137:8,13		12:38 243:12
Wyoming 287:1,12	146:2,12 149:8	109:21 131:18	0	12 127:11
249:2	143:3 145:18	91:9 96:7,14	\$500 121:10	113 3:13
1/0:18,20 206:15	13/:3 138:2,13	82:7,10 84:8 86:9	\$5 29:10	11,000 128:15
170 10 20 20 6 15	130:11,13,22	/6:18 81:8,12	\$200 121:10	11 98:1,6
wrote 45:9 130:5			\$300 101 10	110010

1980s 307:18 1981 71:7 156:20 161:11 231:2 235:15 1982 11:4 79:2	2002 35:2 351:16 354:8 2003 110:6 2004 11:15 83:18 356:11	390 4:14 399 4:17 4 4:34 399:14	7 7.3 256:18 70s 53:5 57:9 70:12 74 3:8 75 195:2	
147:2 287:1 358:16 359:2 1985 31:5 79:19 147:1 179:11 266:8 1986 47:17 360:7	2005 35:22 86:2 2006 27:8 81:4 2008 36:1 86:3 147:17 155:6 202:21 229:2 264:6 360:20	40 78:0, 7 79:19 80:10 81:7 84:19 86:12 91:15 243:5 263:18 40s 211:16 400 138:9	8 8 3:5 6:21 8:30 1:11 8:32 5:2 80 122:16 123:6	
1987 11:5,14 12:2,3 22:4 80:2 141:22 147:14 232:14 268:5 1990 263:5	365:8 378:21 2009 155:12 2010 1:9 352:16,17 2030 353:7 2040 352:16	$ \begin{array}{r} 430 \ 138:3 \\ 49 \ 3:8 \\ \hline 5 \\ 5 \ 3:2,3 \ 32:20 \\ 121:14 \\ \end{array} $	248:9 80s 223:21 352:18 81 230:14 82 230:14 235:15 83 12:2	
1990s 391:3 1991 170:18 1992 11:7 25:10 80:6 81:10 268:6 1993 80:13 1995 40:5 83:13	22 137:9 246:12 359:15 22nd 1:12 24 16:15 24,000-year 250:13 246 3:20	5,000 29:7 104:21 50 128:11 236:21 238:8 248:19 257:8 293:13 343:1	86 47:21 232:18 235:15 87 9:5 39:17 48:4 142:5 9	
1996 80:19 229:1 1998 80:20 95:22 395:14 1999 54:9 59:21 80:22 83:14 96:1	25 135:1 230:8 282:18 300:14 343:1,2 259 3:21 27 236:2	50s 211:14 500 116:21 235:21 248:9 55 250:18 58 206:6	9,000 256:20 90s 57:10 70:12 95:17 900 6:22 900,000 149:13	
$ \begin{array}{r} 127:3 \ 128:17 \\ 308:5 \\ \hline \underline{2} \\ 2 \ 3:17 \ 18:9 \ 136:13 \\ 2(a) (6) \ 77:8 \\ \hline $	$ \begin{array}{r} 272 3:21 \\ 282 3:22 \\ 293 3:22 \\ \hline 3 \\ \overline{\mathbf{377:1}} \end{array} $	6 6,000-page 267:5 60 33:20 41:12 44:7 49:21 51:22 53:3 54:7,12 56:18	92 9:6 39:17 95:22 95 391:22 392:1,7 960 118:16 267:18 963 118:16 98 27:6 99 381:18	
20 43:14 57:11 64:19 71:21 121:11 122:14 236:6 276:8,18 336:11 347:14 394:10	3:06 330:18 3:24 330:19 30 38:16 90:12 114:2 116:14 122:15 123:20 154:22 158:11	57:8 59:20 60:8 60:17 103:3 123:6 123:10 157:8 170:20 202:2 265:5 266:10 323:22	99.999 200:7	
20,000 174:1 200 117:20 127:8 394:16 2000 128:12 246:14 2000s 224:1 2001 12:3 32:15	167:15 173:18 230:8 261:16 271:19 272:17 331:5 352:14 300 19:3 303 3:23	63 49:22 50:6 52:2 54:6,7,10 60:6 66:21 124:15 157:16 159:13 160:7 202:2 265:16		
83:15 127:4 133:9 145:22 308:17	35 334:2 386 4:13	64 231:4 69 373:16 374:8		