GOING THE DISTANCE? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States

Kevin D. Crowley Study Director Nuclear and Radiation Studies Board

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

Presentation to Blue Ribbon Commission on America's Nuclear Future November 2, 2010

Background

- Report issued in February 2006
- Tasking
 - Assess risks of spent nuclear fuel (SNF) and highlevel radioactive waste (HLW) transport in the United States
 - Identify key technical and societal concerns for SNF/HLW transport, now and in the future, and recommend actions to address those concerns
 - Assess the manner in which DOE selects routes for shipment of research reactor SNF between its facilities and recommend improvements

Principal Finding/Transport Safety

- The committee could identify no fundamental technical barriers to the safe transport of SNF/HLW in the United States
- Transport is a low-radiological-risk activity when conducted in strict adherence with existing regulations
 - Highway for small-quantity shipments
 - Rail for large-quantity shipments

What do We Know About Transportation Safety?

Quite a bit, based on:
Four decades of real-world experience
Increasingly sophisticated analytical/computer modeling of severe accident conditions
Full-scale package testing under severe accident conditions

SNF Transport Experience

United States

- ~3,000 MTHM (1960s-2005)
- Mostly by highway
- Some cross country (research reactor fuel)

Worldwide

- 73,000-98,000 MTHM (1960s-2001)
- Mostly Europe
- Mostly by rail, but also by highway and sea
- Mostly short distances (< 1000 km)

Full-Scale Testing

- Sandia National Lab Crash Tests (1977)
 - Tractor-trailer, rail-grade crossing, railcar impact tests
 - ~60 and/or 80 mph, one test included a fire

Sandia National Laboratories

BRC Meeting, November 2, 2010

Modeling of Severe Accidents

1984 tunnel fire near Manchester, England

www.todchat.com

BRC Meeting, November 2, 2010

Principal Finding/Transport Security

- Malevolent acts against SNF/HLW shipments are a major technical and societal concern
- An independent examination of transportation security should be carried out prior to the commencement of large-quantity shipments to a federal repository or to interim storage

Health and Safety Risks

- Radiological health and safety risks associated with the transport of SNF/HLW are well understood and generally low ...
- With the possible exception of risks from releases in extreme accidents involving verylong-duration fires

The likelihood of such extreme accidents appears to be very small, and their occurrence and consequences can be further reduced through relatively simple operational restrictions

Health and Safety Risks (continued)

The Nuclear Regulatory Commission should undertake additional analyses of very-longduration fire scenarios that bound expected realworld accident conditions ... and implement operational controls and restrictions as necessary to reduce the chances that such conditions might be encountered in service

Social Risks

- Social risks (i.e., risks to social well-being) pose important challenges to SNF/HLW transportation programs in the United States
 - Arise from social processes and perceptions
 - Can be difficult to characterize

Take early proactive steps to establish formal mechanisms for gathering advice about social risks and their management

Improving SNF/HLW Transportation in the United States

- Many of the findings/recommendations in the report focus on DOE's program to transport SNF/HLW to Yucca Mountain
- But they also apply to other large-quantity shipping programs
 - Private Fuel Storage
 - Future interim storage facilities

Rail vs. Highway Transport

- Transport of SNF/HLW by rail has clear safety, operational, and policy advantages over highway transport for large-quantity shipping programs
 - Reduces number of shipments
 - Provides greater separation from vehicular traffic and people
 - Operational logistics are simpler
 - Clear public preference for rail
 - But not all SNF storage sites have rail access

Dedicated vs. General Trains

- There are clear advantages that favor the use of dedicated trains for shipping SNF/HLW
 - SNF/HLW transport by dedicated trains is common in the U.S. and many other countries
 - Reduced transit time = lower exposures, faster turnaround, requires fewer packages and transporters
 - Simplifies operational security

Order of Shipping SNF

- DOE should negotiate with commercial spent fuel owners to ship older fuel first to a federal repository or federal interim storage ... should these negotiations prove ineffective, Congress should consider legislative remedies
 - DOE has authority to accord priority to acceptance of SNF from shut down reactors
 - Otherwise must accept SNF designated by owner
 - Could result in logistically complex movements of radiologically active spent fuel

Pilot Program for Shipping SNF

- Initiate transport to the federal repository through a pilot program involving relatively short, logistically simple movements of older fuel from closed reactors
 - Would allow for optimized routing, scheduling, and emergency responder planning and training
 - Treat as a pilot program to gain experience and build public confidence

Organizational Responsibilities

- The DOE Secretary and the U.S. Congress should examine the following options for changing the organizational structure of DOE's program for transporting SNF/HLW to a federal repository to increase its chances for success:
 - Quasi-independent DOE office
 - Quasi-government corporation
 - Fully private organization operated by the commercial nuclear industry
- Objectives: provide greater planning authority and budget flexibility to make multiyear commitments

Closing Thoughts

- Transportation is an essential element of SNF/HLW management systems--needs to be built in from beginning
- Design for rail using dedicated trains
- Involve state, tribal, and local governments in route selection/emergency response
- Develop pilot programs to gain experience and demonstrate competence