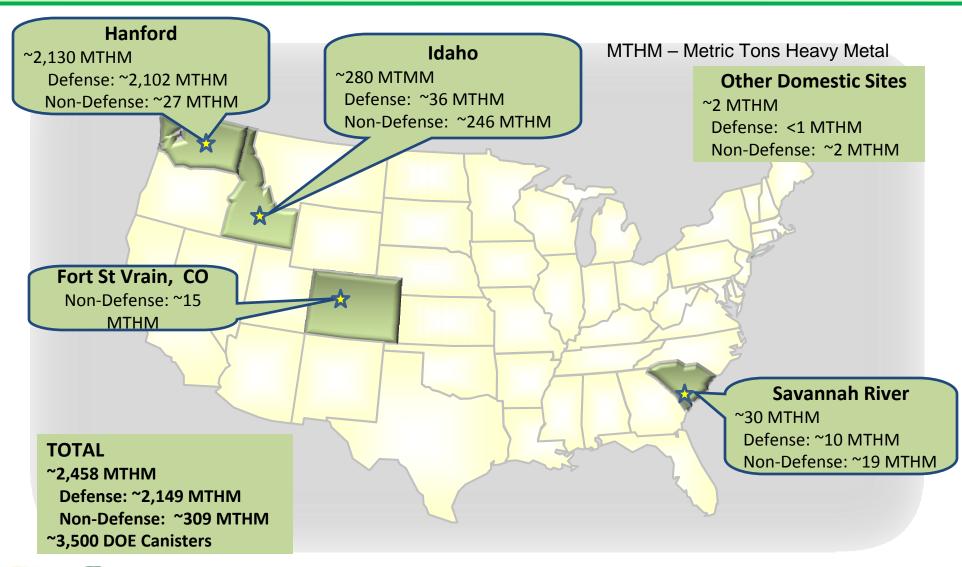


Overview of DOE's Spent Nuclear Fuel & High-Level Waste

Frank Marcinowski
Office of Environmental Management

March 25, 2010


Outline

- ✓ Defense Spent Nuclear Fuel (SNF) and Other Environmental Management (EM) Managed Fuels
 - ✓ Inventory and Types
 - ✓ State Commitments
 - ✓ Current Status at EM Sites
 - **✓** Summary
- **DOE Managed High Level Wastes**
 - ✓ Inventory and Locations
 - ✓ Path Forward
 - ✓ State Commitments
 - √ Stakeholder Issues
- ✓ Other Related Waste
- ✓ Summary

closure

Current SNF Inventory (2010)

Types of SNF in DOE Inventory

Defense

 DOE Production Reactors and Research and Development (R&D) Reactors

Non-Defense

- Core Debris from the Three-Mile Island Reactor
- Commercial Power Demonstration Projects
 - Shippingport
 - Peach Bottom
 - Fort Saint Vrain
- Domestic Research Reactors (DRR)
- Foreign Research Reactors (FRR)

State Commitments

- Idaho Settlement Agreement
 - Spent Nuclear Fuel in dry storage by December 31, 2023
 - Spent Nuclear Fuel out of Idaho by January 1, 2035
 - Penalty Suspension of SNF receipts into Idaho and payment to the State of Idaho \$60,000 per day for each day in violation, subject to appropriations
- Colorado Commitment
 - Fort St Vrain Spent Nuclear Fuel out of Colorado by January 1, 2035

Hanford - Current Status

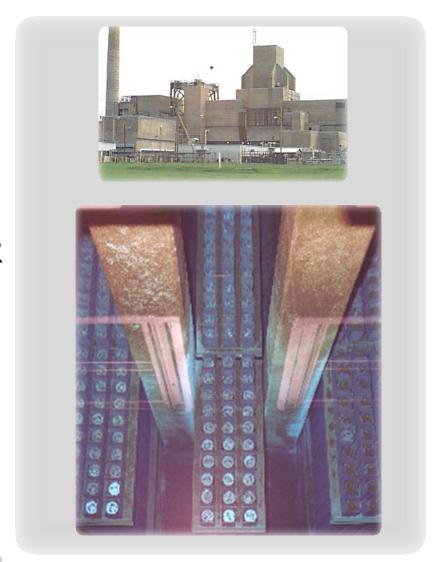
- All SNF has Been Moved From Wet to Dry Storage
- SNF is Stored in ~400 Multicanister Overpacks and Other Dry Casks



Idaho National Laboratory - Current Status

- Diverse Inventory of SNF
 - Includes both DOE-origin and commercial SNF
- Diverse Storage Facilities
 - Numerous dry storage methods
 - Wet storage pool in use
- Na-Bonded SNF Stored and **May Require Treatment**
 - Na-Bonded Fast Flux Test Facility (FFTF) fuel currently being treated; will complete in 2011
- Continue to Receive Foreign Research Reactor (until 2019) and **Domestic Research Reactor Fuel**

Fort Saint Vrain - Current Status


- ➤ 15 Metric tons Dry Storage Facility managed by DOE
- Nuclear Regulatory Commission (NRC) Licensed Facility
- First Commercial Scale High Temperature Gas Cooled Reactor Plant in the United States

Savannah River Site - Current Status

- SNF is currently in Wet Storage
- Disposition Alternatives for Aluminum-clad SNF Under Consideration
- Current Plan to Receive FRR (until 2019) and DRR

Status of Foreign Research Reactor/ Domestic Research Reactor Receipts

- FRR Program Supports U.S. Non-proliferation Policy
 - Over 9,200 assemblies from 29 countries received (as of March 2010)
 - Aluminum-clad at Savannah River Site; non-Aluminumclad at Idaho National Laboratory
 - Current plans are to receive FRR until 2019
- DRR Program Accepts Spent Fuel from U.S. Universities and Other Government Research Reactors

DOE Spent Nuclear Fuel Summary

DOE Spent Nuclear Fuel inventory

<u>Defense SNF</u>
Savannah River Site 10 MTHM

Hanford 2,102 MTHM

Idaho National Lab 36 MTHM

Other < 1 MTHM

Subtotal 2,149 MTHM

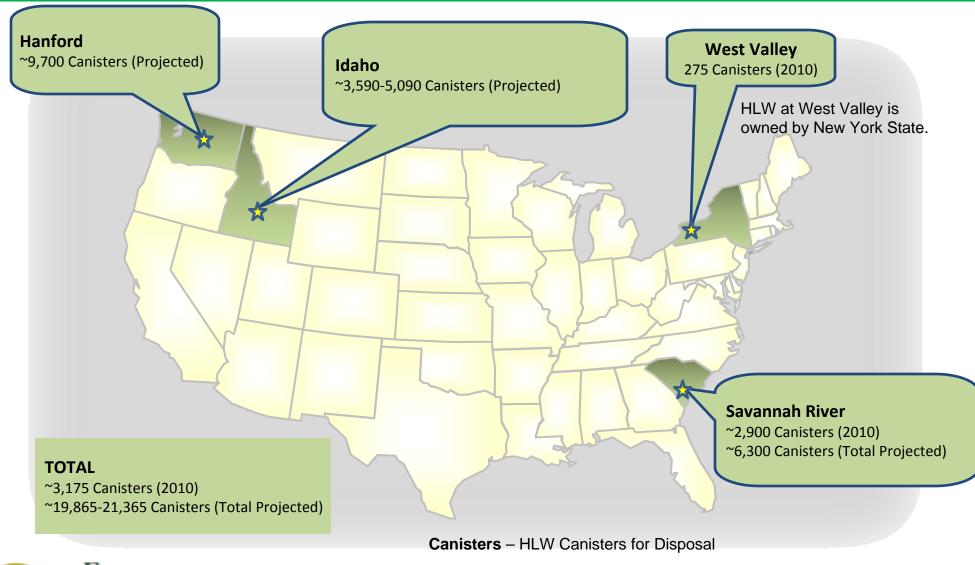
Non-Defense SNF

Savannah River Site 19 MTHM

Hanford 27 MTHM

Idaho National Lab 246 MTHM

Other 17 MTHM


Subtotal 309 MTHM

Total 2,458 MTHM

2010 DOE HLW Inventory

Inventory and Location

Savannah River Site

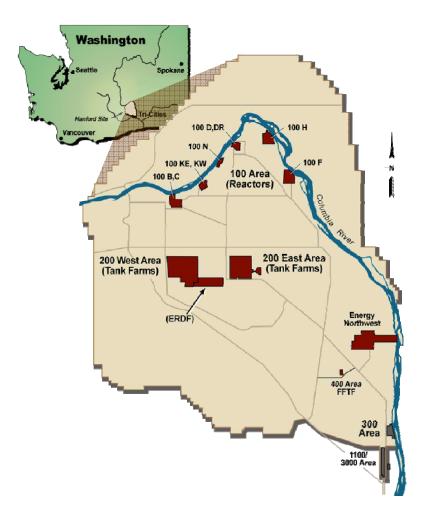
- About 2,900 canisters produced (of 6,300 planned)
- Storage in 2 near surface modular structures (a 3rd is planned)
- About 200 canisters produced per year (expect to accelerate with new technology)
- → 31 million of the 37 million gallons of tank waste remain to be treated (51 tanks; 2 closed)

Inventory and Location (Continued)

Idaho National Laboratory

- Three waste streams:
 - → 4,400 m³ of calcine (a granular solid) stored in 7 bin sets (43 bins)
 - To be converted to monolithic solid by hot isostatic pressing; projected to produce 2,900- 4,400 canisters
 - Sodium Bearing Waste (SBW) –900,000 gallons stored in four tanks
 - To be treated by steam reforming

 about 590 ten-foot canisters of
 granular powder will be produced
 - 7 of 11 tanks closed
- Ceramic/metallic waste produced by treatment of sodium-bonded fuel (NE-managed project) – 100 canisters projected



14

Inventory and Location (Continued)

Hanford

- ➤ 53 million gallons of liquid waste (177 tanks, 6 emptied) awaiting treatment in Waste Treatment Plant (WTP)
- 9,700 canisters projected; about 400+ per year planned
- ~1,900 cesium/strontium capsules in wet storage

Inventory and Location (Continued)

Non-DOE High Level Waste

- West Valley
 - ➤ 275 canisters of EM managed commercial-origin HLW stored in hot cell (dry cask storage planned)

Path Forward

- Savannah River Site and Hanford Vitrify/Immobilize Tank Waste
 - Store canisters of treated waste on-site
- Idaho National Laboratory Treat HLW Calcine by Hot Isostatic Pressing to Form a Monolithic Solid; Treat Sodium Bearing Waste (SBW) by Steam Reforming
 - Store canisters of treated calcine and SBW on-site
- Develop Improved Treatment Methods to Reduce Costs and Schedules
- Continue Safe Canister Storage (about 22,000) On-Site
 - Storage designed for 100 years

State Commitments

Idaho Settlement Agreement

- Settlement Agreement between the State of Idaho, DOE, and the Department of the Navy
 - HLW Calcine must be ready for transport out of Idaho by December 31, 2035
 - Penalty: suspension of SNF receipt into Idaho, subject to appropriations

Stakeholder Issues

- Uphold State Commitments Concern that Waste May be Stored On-Site Indefinitely
 - Hanford TPA
 - Idaho Settlement Agreement
 - South Carolina Federal Facility Agreement
- Maintain Institutional Controls, Develop Technical Basis for Extended Storage and Assess Environmental Impacts

DOE High Level Waste Summary

DOE High Level Waste Inventory Summary

Location	Existing Canisters	Total Projected Canisters
Defense HLW Savannah River Site Hanford Idaho National Lab Subtotal	2,900 0 0 2,900	~6300 ~9700 ~3,590-5,090 ~19,590-21,090
Non-Defense HLW West Valley	275	275
Total	3,175	~19,865-21,365

Related Waste Issues

Greater Than Class C (GTCC) Waste

Consists of:

- Activated metals from decommissioning nuclear power plants
- Radioactive sealed sources and other media from licensees
- Non-defense transuranic waste (TRU)

> Scope:

- 1,100 m³ currently exists in storage
- 4,200 m³ to be generated by existing facilities (future plant decommissioning)
- 6,400 m³ may be generated by proposed facilities or projects

> DOE has statutory responsibility to provide disposal for GTCC LLW

 GTCC has no current disposal path, but DOE is in process of developing environmental impact statement evaluating disposal alternatives

Summary

- Continue Safe Management/Storage of HLW and SNF
- No Significant Near-Term Technical or Safety Impacts for 50+ Years
- Continue to Develop Improved Techniques to Reduce Treatment Costs and Schedules
- Potential Compliance Issues with Affected States Without Disposal Path for Defense Wastes