Science News

Insect Cyborgs May Become First Responders: Search and Monitor Hazardous Places

ScienceDaily (Nov. 23, 2011) — Research conducted at the University of Michigan College of Engineering may lead to the use of insects to monitor hazardous situations before sending in humans.

Professor Khalil Najafi, the chair of electrical and computer engineering, and doctoral student Erkan Aktakka are finding ways to harvest energy from insects, and take the utility of the miniature cyborgs to the next level.

"Through energy scavenging, we could potentially power cameras, microphones and other sensors and communications equipment that an insect could carry aboard a tiny backpack," Najafi said. "We could then send these 'bugged' bugs into dangerous or enclosed environments where we would not want humans to go."

The principal idea is to harvest the insect's biological energy from either its body heat or movements. The device converts the kinetic energy from wing movements of the insect into electricity, thus prolonging the battery life. The battery can be used to power small sensors implanted on the insect (such as a small camera, a microphone or a gas sensor) in order to gather vital information from hazardous environments.

A spiral piezoelectric generator was designed to maximize the power output by employing a compliant structure in a limited area. The technology developed to fabricate this prototype includes a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femtosecond laser.

In a paper called "Energy scavenging from insect flight" (recently published in the Journal of Micromechanics and Microengineering), the team describes several techniques to scavenge energy from wing motion and presents data on measured power from beetles.

This research was funded by the Hybrid Insect Micro Electromechanical Systems program of the Defense Advanced Research Projects Agency under grant No. N66001-07-1-2006. The facilities used for this research include U-M's Lurie Nanofabrication Facility.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

| More

Story Source:

The above story is reprinted from materials provided by University of Michigan.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Ethem Erkan Aktakka, Hanseup Kim, Khalil Najafi. Energy scavenging from insect flight. Journal of Micromechanics and Microengineering, 2011; 21 (9): 095016 DOI: 10.1088/0960-1317/21/9/095016
APA

MLA

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Search ScienceDaily

Number of stories in archives: 113,547

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

 
  more breaking science news

Social Networks


Recommend this story on Facebook, Twitter,
and Google +1:
Other bookmarking and sharing tools:
| More

Breaking News

... from NewsDaily.com

In Other News ...

Copyright Reuters 2008. See Restrictions.

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

 
Post this page to your favorite social bookmarking site:
close
Include this item in your blog or web site:
close
Cite this article in your essay, paper, or report:
close
Email this page's link to a friend or colleague:
close