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Ecological niche modeling, a new methodology for predicting the geographic course
of species’ invasions, was tested based on four invasive plant species (garlic mustard,
sericea lespedeza, Russian olive, and hydrilla) in North America. Models of ecological
niches and geographic distributions on native distributional areas (Europe and Asia)
were highly statistically significant. Projections for each species to North America—
effectively predictions of invasive potential—were highly coincident with areas of
known invasions. Hence, in each case, the geographic invasive potential was well
summarized in a predictive sense; this methodology holds promise for development
of control and eradication strategies and for risk assessment for species’ invasions.

Nomenclature: Hydrilla, Hydrilla verticillata (L.f.) Royle HYLLI; Russian olive,
Elaeagnus angustifolia L. ELGAN; sericea lespedeza, Lespedeza cuneata (Dum.-Cours.)
G. Don LESCU; garlic mustard, Alliaria petiolata (Bieb) Cavara & Grande ALAPE.

Key words: Invasive species, ecological niche modeling, Genetic Algorithm for
Rule-set Prediction, prediction.

Ecological niche modeling has seen considerable explo-
ration as a tool for understanding complex biodiversity phe-
nomena (Jones and Gladkov 1999; Joseph and Stockwell
2000; Peterson 2001; Peterson et al. 1999, 2000, 2001,
2002; Scott et al. 1996, 2002; Walker and Cocks 1991).
On the basis of previous explorations (Zalba et al. 2000),
Peterson and Vieglais (2001) presented the framework of a
methodology for application of this tool to the challenge of
predicting the geographic potential of species’ invasions.
This approach uses an ecological niche model based on the
ecological characteristics of known occurrences in the native
distribution of a species to identify suitable areas for the
species on a potentially invaded range.

The application of ecological niche modeling in predict-
ing species’ invasions was introduced based on example tests
with two avian invasions that occurred in North America in
the past (Peterson and Vieglais 2001). The method has also
been used to evaluate a series of additional invasions, in-
cluding the Asian longhorned beetle (Anoplophora glabripen-
nis) in North America (Peterson and Vieglais 2001), bass in
Japan (Iguchi et al. 2003), and eastern North American owls
in western North America (Peterson and Robins 2003).
Nevertheless, the method has not been applied broadly to
invasive plant species, particularly as regards economically
important invasive pest species.

In this article, we develop retrospective tests for the pre-
dictive accuracy of ecological niche models for four invasive
plant species in North America: garlic mustard, sericea les-
pedeza, Russian olive, and hydrilla. Each of the species is
well established as an invasive species in North America.
This suite of species thus offers ample opportunity for de-
tailed statistical testing of the predictive abilities of the eco-
logical niche–modeling approach.

Methods
Georeferenced occurrence points from the species’ native

ranges were drawn from diverse sources, including herbari-

um specimen records and scientific literature, including flo-
ras, systematic treatments, etc. Overall, 143 points were
available for garlic mustard, 41 for Russian olive, 30 for
hydrilla, and 28 for sericea lespedeza.

Ecological niches were modeled using the Genetic Algo-
rithm for Rule-set Prediction (GARP) (Stockwell 1999;
Stockwell and Noble 1992; Stockwell and Peters 1999). In
general, the procedure focuses on modeling ecological niches
(the conjunction of ecological conditions within which a
species is able to maintain populations without immigra-
tion) (Grinnell 1917). Specifically, GARP relates ecological
characteristics of known occurrence points to those of points
sampled randomly from the rest of the study region, seeking
to develop a series of decision rules that best summarize
those factors associated with the species’ presence (Feria and
Peterson 2002).

Occurrence points are divided into training and test data
sets—50% of the data points are set aside for a completely
independent test of model quality (extrinsic test data), 25%
are used for developing models (training data), and 25% are
used for tests of model quality internal to GARP (intrinsic
test data). Because these subsamples are made independently
and randomly for each model run, GARP models effectively
take advantage of most of the information in the input data
set. GARP works in an iterative process of rule selection,
evaluation, testing, and incorporation or rejection: a method
is chosen from a set of possibilities (e.g., logistic regression,
bioclimatic rules), applied to the training data, and a rule is
developed or evolved. Predictive accuracy is then evaluated
based on 1,250 points resampled from the test data and
1,250 points sampled randomly from the study region as a
whole. Rules may evolve by a number of means that mimic
DNA evolution: point mutations, deletions, crossing over,
etc. The change in predictive accuracy from one iteration to
the next is used to evaluate whether a particular rule should
be incorporated into the model, and the algorithm runs ei-
ther to 1,000 iterations or until convergence.
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All modeling in this study was carried out on a desktop
implementation of GARP now available for public down-
load (Scachetti-Pereira 2001). This implementation offers
much-improved flexibility in the choice of predictive envi-
ronmental–ecological geographic information system (GIS)
data layers: in this case, initially, we used 15 layers sum-
marizing elevation, slope, aspect, flow accumulation (5 up-
stream area contributing to water flow), flow direction (5
modeled direction of water flow), topographic index (5
tendency to pool water) (all from the U.S. Geological Survey
Hydro-1K data set) (USGS 2001), and aspects of climate
including mean annual diurnal temperature range, mean an-
nual number of frost days, mean annual precipitation, mean
annual solar radiation, mean annual maximum temperature,
mean annual minimum annual temperature, mean annual
temperature, mean annual water vapor pressure, and mean
annual number of wet days (1961–1990; from the Inter-
governmental Panel on Climate Change) (IPCC 2001). The
area of analysis was Europe and western Asia for Russian
olive and garlic mustard, eastern Asia for sericea lespedeza,
and southern and eastern Asia for hydrilla.

To reduce environmental data layers to just those that
provide the highest predictive accuracy, we used a jackknife
manipulation. We ran multiple iterations of models, omit-
ting each data layer, or suites of data layers, systematically.
We then calculated correlations between inclusion of each
data layer in the model (coded binarily) and omission error
(percentage of extrinsic test presence data not predicted as
present) to detect data layers that contribute negatively to
model performance when evaluated based on independent
test data. Correlations of the order of r . 0.05 were con-
sidered indicative of data layers that detract from model
quality; such layers were removed from further analyses. It
is important to note that jackknife manipulations were per-
formed solely on native distributions of species and thus do
not affect the independent nature of the invaded-range tests
presented herein.

For production of final models, we submitted the occur-
rence data to GARP, which used 25% of the input data to
generate models to be refined and evaluated using the re-
maining points. Unlike previous applications, which either
used single models to predict species’ distributions (Peterson
2001; Peterson et al. 2002) or summed multiple models to
incorporate model-to-model variation (Peterson and Vieglais
2001), we used a new procedure (Anderson et al. 2003) for
choosing best subsets of models. The procedure is based on
the observations that (1) models vary in quality, (2) variation
among models involves an inverse relationship between er-
rors of omission (leaving out true distributional area) and
errors of commission (including areas not actually inhabit-
ed), and (3) best models (as judged by experts blind to error
statistics) are clustered in a region of minimum omission of
independent test points and moderate area predicted (an axis
related directly to commission error). The relative position
of the cloud of points relative to the two error axes provides
an assessment of the relative accuracy of each model. To
choose the best subsets of models, we (1) generated 100
replicate models by repeated random resampling of training
and test data sets, (2) eliminated all models that had omis-
sion errors on the basis of independent test points, (3) cal-
culated the average area predicted present among these zero-
omission models, and (4) identified models that were within

1% of the overall average area predicted. Model quality for
native range predictions was tested using the extrinsic test
data: chi-square tests were used to compare the observed
success in predicting the distribution of test points on the
basis of that expected under a random model (proportional
area 3 number of extrinsic test points estimates the expected
number correctly predicted if the prediction were to be ran-
dom with respect to the distribution of the test points).

Projection of the rule-sets for these models onto maps of
North America provided predictions of potential distribu-
tions. Predictive accuracy was tested by means of the follow-
ing manipulations: (1) known occurrences were tallied from
the PLANTS National Database (USDA 2002) as county
records for Russian olive, garlic mustard, and sericea lespe-
deza, and from the nonindigenous aquatic species infor-
mation resource as U.S. Environmental Protection Agency
hydrologic unit codes (HUCs) for hydrilla (USGS 2002);
(2) known occurrences (number of known county or HUC
occurrences henceforth referred to as Nk) were transferred
to Arc (ESRI 2001) shapefiles; (3) the observed predictive
success was counted as the proportion of the Nk counties
or HUCs predicted present by all best-subset models; (4)
Nk counties or HUCs were chosen at random from the
attributes table of the Arc shapefile, and the number pre-
dicted present by all the best-subsets models was counted;
(5) the previous step was repeated 100 times to build a
distribution of randomized predictive accuracies; and (6) the
observed success was compared with the distribution of ran-
domized results to obtain an approximate probability value
for how unexpectedly good the best-subsets prediction was
(i.e., one-tailed probability).

Results and Discussion

The jackknife manipulations identified data layers that
detracted from the predictive abilities of the algorithm. For
example, for Russian olive, diurnal temperature range, as-
pect, annual mean minimum temperature, mean annual
temperature, and wet days were highly correlated with high
omission error (all r . 0.05); the remaining 10 data layers
were used in further analyses. For garlic mustard, elevation,
flow accumulation, annual mean precipitation, solar radia-
tion, and annual mean and maximum temperatures were
eliminated. For sericea lespedeza, elevation and mean max-
imum annual temperature were eliminated. For hydrilla, no
data layers were eliminated.

Best-subsets models for native ranges of each species (Fig-
ure 1) were highly statistically significant. The chi-square
tests, based on the independent extrinsic test data sets, in-
dicated predictive ability far better than random models
(garlic mustard, all P # 1.06 3 1029; Russian olive, all P
# 1.51 3 1024; sericea lespedeza, all P # 4.50 3 10210;
hydrilla, all P # 2.04 3 1024). Hence, all best-subsets mod-
els were highly predictive on native distributions, and for
that reason, we proceeded to explore their predictions for
invaded distributional areas in North America.

Projecting the native range models for each species to
North America, a variety of potential distributional extents
were observed (Figure 1), ranging from relatively small (hy-
drilla and sericea lespedeza) to quite large (Russian olive and
garlic mustard). In each case, however, the observed degree
of coincidence between the projection of the native range



Peterson et al.: Predicting weed distributions • 865

FIGURE 1. Predictions of native distributional areas and potential invaded distributional areas for hydrilla, sericea lespedeza, Russian olive, and garlic mustard.
White symbols on native distribution maps indicate occurrence data used to build ecological niche models. Black polygons on the introduced distribution
maps indicate known occurrences at the level of counties or hydrological units. Increasingly dark shading indicates greater confidence in prediction of
presence (5 model agreement).
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FIGURE 2. Results of validation tests for invaded distributional predictions for hydrilla, sericea lespedeza, Russian olive, and garlic mustard. Histograms
indicate the frequency distributions of coincidence between model predictions and random suites of counties or hydrological units. Observed predictive
success indicated for each species can be compared with these distributions to obtain an idea of model success in predicting occurrences above and beyond
random expectations.

model and known occurrences was considerably better than
the randomized replicates in the test of model prediction
accuracy (Figure 2). As an example of tests of predictions
for invaded ranges, for garlic mustard, random selections of
206 counties (the number of counties for which we have
North American occurrence records) fell in areas of high
prediction and produced a range of 161 to 190 counties;
our model projections, however, successfully predicted 201
of the 206 known county occurrences, and hence the co-
incidence of our model predictions with actual invasion pat-
terns was unexpectedly close (P , 0.01). For hydrilla also,
the observed number of successful predictions (247) fell out-
side the range of randomized coincidences (90 to 130), in-
dicating a significant prediction of the invaded range (P K
0.01). For Russian olive and sericea lespedeza, observed val-
ues fell in the highest category of the randomizations, well
outside the 95th percentile of the distributions. Hence, in
all cases, the ecological characteristics of species in their na-
tive geographic distributions successfully predicted the po-
tential geographic extent of invasion in North America.

The results of this study are quite simple: ecological niche
models developed on native geographic distributions and
projected to other regions can predict the geographic poten-
tial of species’ invasions with high accuracy. This conclusion
echoes the original publications based on this approach or
its parallels (Higgins et al. 1999; Holt and Boose 2002;
Peterson and Vieglais 2001; Zalba et al. 2000). Beyond in-
vasive applications, GARP’s predictive abilities have been
tested and proven under diverse circumstances (Anderson et
al. 2002a, 2002b; Godown and Peterson 2000; Peterson

2001; Peterson and Cohoon 1999; Peterson and Vieglais
2001; Peterson et al. 1999, 2000, 2001, 2002; Stockwell
and Peterson 2002).

The time required for this study, however, points to a
critical bottleneck in the development of such predictive as-
sessments. For any particular species, time was spent as fol-
lows: approximately 2 mo for accumulating native-distri-
bution occurrence points; 1 h for invaded-distribution oc-
currence points; 3 d for jackknife manipulations; and 1 d
for final model production, interpretation, and significance
testing. In no case did we find a database that provided
range-wide point information regarding occurrences in the
native range.

To the extent that such predictive approaches are desir-
able, this study then points to a critical need for species’
occurrence data. Herbarium data are relatively seldom in
electronic form and are even more seldom available for
download via the Internet. Indeed, in the Species Analyst
(Vieglais 2000), a distributed biodiversity information net-
work that serves more than 25 million biological specimen
records, only data from the Canadian Royal Botanical Gar-
dens, University of Kansas Herbarium, and the Arizona
State University Herbarium are available for search and
download. Additional herbaria are available for search on
the Mexican national biodiversity server (CONABIO 2002);
a few individual herbaria make their data available as well
(e.g., California State University, Stanislaus; Museum of
Evolution at Uppsala University, Sweden; Botanical Muse-
um, University of Copenhagen, Denmark; and New York
Botanical Garden). However, mainly, herbarium data are
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quite difficult to access, a condition that will cause unending
difficulties for the development of predictive models for in-
vasive species and other applications.

Hence, access to point-occurrence information is complex
at best. Moreover, once data are in hand, they still must be
georeferenced, a process that can absorb significant amounts
of time. A basic minimum requirement would be about 15
to 20 points well scattered throughout the species’ native
distribution—a previous analysis had indicated higher–sam-
ple size requirements (; 50) (Stockwell and Peterson 2002),
but recent advances in model development have made pos-
sible better model quality with fewer input occurrence
points (Anderson et al. 2003). Development of models with
even fewer input occurrence points is possible if one is will-
ing to forego the step of model validation based on inde-
pendent test occurrence data, thus using 50% of points for
model development and 50% for model evolution.

A further challenge is the assembly of input environmen-
tal data sets. Although data comparable with those used
herein are available from the sources cited above and are
soon to be available as an environmental data packet for
download with desktopGARP (Scachetti-Pereira 2001), nu-
merous improvements are possible. For instance, multitem-
poral data from satellite sensors have shown excellent pre-
dictive ability in modeling species’ native distributions (Eg-
bert et al. 2002) and have shown promise in preliminary
applications to species’ invasions (A. T. Peterson et al., un-
published data). Nevertheless, remotely sensed data have yet
to be applied and tested formally.

Data access considerations aside, however, this study fur-
ther demonstrates the predictive power of ecological niche
models for species’ invasions. As has been indicated on the
basis of independent lines of evidence (Peterson et al. 1999),
species’ ecological niches constitute long-term stable con-
straints on their distributional potential (Peterson and Vieg-
lais 2001). This demonstration of predictivity of species’ in-
vasions further supports the conservatism hypothesis—spe-
cies ‘‘obey’’ a consistent set of rules (the dimensions of the
ecological niche) in their geographic distributions. This
demonstration also lays the foundation for a new tool for
investigators interested in anticipating and preventing suc-
cessful species’ invasions.

Ecological niche modeling thus offers a rich, new source
of inferences and predictions regarding the geographic di-
mensions of species’ invasions. Other algorithms have been
applied to the challenge previously, such as climate enve-
lopes (Holt and Boose 2002) or logistic regression (Higgins
et al. 1999; Zalba et al. 2000). The GARP-based approach
has the advantage of much-improved precision in its pre-
dictions: other approaches (particularly climate envelopes)
tend to overpredict the dimensions of the niche rather dras-
tically (Stockwell and Peterson 2002). This improved pre-
cision permits considerably improved predictive power for
native distributions (Peterson 2001) and appears to translate
directly into improved predictions of invasive potential.
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