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ABSTRACT 

The research presented in this paper uses a GIS-based cellular automata (CA) framework to study and create an applied and 
ecologically significant model of spread for invasive plant species. Cellular automata (CA) coded within a Geographic Information 
System (GIS) are employed to test the ability of studied parameters of vegetation dynamics to represent spatial growth patterns. This 
method combines the well-established spatial data management and presentation capabilities of GIS with the spatial and temporal 
modeling capabilities of CA theory, creating the ideal tool for applied, data rich modeling. 

Instead of conventionally testing a previously created model, parameters are examined through simulation for their contribution to 
spread and the resulting spatial pattern. Initial simulation runs focus on the different effects of stochastic versus deterministic parameter 
values. Further studies examine the effect of different relationships, conditions and interactions between parameters. Upper and lower 
bounds to parameters, the interactions between parameters, and the relative importance of each parameter are examined in a number 
of combinations. Each parameter is then accepted or declined to create a conceptual model outlining the ecologically most significant 
features of the species. The authors show how models of invasion and vegetation dynamics can effectively be transposed into a 
contextually rich environment through a GIS-CA framework of model creation. 

 

1. INTRODUCTION 

Ecological models of  spread and dispersal have been created 
for a variety of species over many decades. Technological 
development over the last few years has only recently allowed 
spatially data sets to be simulated in a temporally explicit 
environment, or vice versa, dynamical models to become 
spatially explicit.  Thus, only the most recent studies of 
vegetation spread and the invasion of introduced species 
incorporate GIS as well as some form of dynamic modeling in 
one- or two-dimensional space. Most work, however, 
concentrates on presenting a predetermined model in an 
abstract computer simulation environment. The focus has been 
on the system’s ability to display the model (results), as opposed 
to its ability to develop or compose a model, acting as a creative 
tool in an applied situation.  
 

This  paper is an introduction to the use of GIS and cellular 
automata (CA) in modelling the contextually complex real world 
phenomenon of species invasion.  Most importantly, it advocates 
creative exploration and play as a means to examine a real 
world parameter space through simulation.  Section Two 
introduces Cellular Automata, examining its formal definition and 
uses,  developing the ideas of complexity that inhibit CA based 
modelling.  Modelling theory, the use of space and time in 
ecological modelling,  an understanding of creative exploration 
and play and the use of dynamic models are examined to 
support our discussion of applied modelling situations in sections 
Three to Five.  Section Six introduces our case study species 
Rhamnus alaternus and examines the process of model 
conceptualisation and simulation strategy used to explore the 
species invasion.  We finish with a discussion of the implications 
of CA use in modelling, implementation potential and ideas of 
moving agents.   
 
2. CELLULAR AUTOMATA 

Formally, cellular automata (CAs) are composed of the four 
elements cell, state, neighborhood and rule. A CA consists of a 
regular uniform lattice, which could be infinite in extent. The 
square cells of the lattice make up the cellular space (Wolfram 
1986). The cellular space could be one-, two- or three-
dimensional (Batty 1997). Every cell has a discrete variable. The 

values of the variables at each cell specify the state of the 
cellular automaton. The state of a cell depends on the states of 
other cells in the neighborhood of that specific cell. The 
neighborhood is defined by the immediately adjacent cells. The 
most common types of neighborhood in CAs are the von 
Neumann neighborhood and the Moore neighborhood. The state 
or value of the cell is updated according to the neighbouring 
pixel. Wolfram (1985) distinguishes totalistic CAs and outer 
totalistic CAs. Totalistic CAs update pixel values considering the 
value of the neighborhood, whereas outer totalistic CAs consider 
the neighborhood as well as the previous value of the pixel. The 
updating of pixels takes place in discrete time steps according to 
fixed rules (Wolfram 1986). Each time step could be called a 
generation, iteration or cycle. The rules of a CA are supposed to 
be local and uniform. Local in that context means that action 
takes place locally only. No action at a distance is permitted to 
determine the state of a cell; the cell state is updated according 
to the neighbors of that specific cell only (Toffoli 1987)1. Uniform 
means that the laws or rules of the CA are uniformly applied to 
every cell, regardless of the position of that cell within the 
geographic space. Although these rules can be of very simple 
construction, CAs produce complex behavior in most cases. 

Even in the simple ‘game of life’ (Gardner 1970), complex 
patterns can evolve from a few rules and just two cell states. 
Starting from most initial configurations, a number of well-
designed effects will occur which are evidence of the self-
organizational ability of CAs (Toffoli and Margolus 1987). The 
‘game of life’ shows that CA are able to model phenomena like 
reproduction, self-organization and a complex evolution, all 
typical of living communities (Benati 1997). Toffoli and Margolus 
(1987, p. 141) state that ‘in spite of their wide interdisciplinary 
appeal, cellular automata would have remained at the level of a 
parlor game if they had not been shown to be capable of playing 
a serious role in the modeling of physics’. Stephen Wolfram 
(1983, 1985) was the first to systematically use the ability of CA 
to provide models where physical phenomena like ordering, 

                                                            
1 Note that this does not contradict Batty. If action-at-distance is 
required, a larger neighbourhood is defined. Therefore, the 
updating of the cell can still be considered as a local 
phenomenon. 
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chaos, turbulence, fractality etc. can be isolated (Toffoli and 
Margolus 1987). 

3. MODEL (THEORY) CREATION AND VERIFICATION 

Ecological processes are inherently complex. The process-
orientated nature of the physical environment is complicated by 
biological systems, population dynamics and spatial 
heterogeneity.  Models have been used to study many aspects 
of species and community ecologies. Many recent studies of 
vegetation spread and invasion of introduced species 
incorporate GIS and some form of dynamic modeling in one- or 
two-dimensional space. Most work, however, concentrates on 
presenting a predetermined model in an abstract computer 
simulation environment. The focus has been on the system’s 
ability to display the model (results), as opposed to its ability to 
develop or compose a model, acting as a creative tool in an 
applied situation.  

Mathematical models have traditionally been derived from 
multiple complex iterations of approximate data.  This was 
mostly due to parameters being unmeasurable, and hence 
resulted in an overall lack of accuracy.  Because equation based 
models involve averages and approximations, they can not 
provide information on individual components or properties 
(Wolfram 1984, Itami 1994).   This is a disadvantage in study of 
plant dispersion, as it is often extreme events and migrations 
that can cause the invasion and spread of an organism.  Thus, 
the variability of movement within a population is more 
representative of true invasion rates (Itami 1994, Goldwasser et 
al. 1994). In early ecological study, space was represented in 
mathematical models as a single explicit statement describing 
the area of influence (Silvertown and Lovett-Doust 1993).    
Ecological modeling emphasized temporal dynamics through the 
projection of state changes occurring at one location over time 
(Hunsaker et al. 1993). 

Many ecological models have focussed dispersal based on 
internal, or population based conditions, such as density or 
extinction (Molofsky 1994, Tilman 1994).  This is a justified 
approach, however the ‘canvas’ has been a one dimensional, 
continuous, and homogeneous cell based structure.  These 
authors have then taken their results and claimed conclusions 
about the behavior of spread of a species across two 
dimensional, heterogeneous space, an assumption that is 
unrealistic in complex environments.   

The complexity of calculations and variables involved in spatial 
reasoning (Renshaw 1991) and lack of computational power, 
prevented the exploration of spatial and temporal restraints on 
ecological populations in a large and unrestricted manner until 
recently (Itami 1994, Bascompte and Sole 1995).In this respect, 
another research characteristic of CAs becomes important, i.e., 
their use in building simple conceptual models of spatially 
distributed dynamical models. CAs are dynamic systems that 
exhibit the same kind of dynamics as partial differential 
equations. Therefore, they can be used to build simple 
conceptual models of spatially distributed dynamic models. As 
an example, CAs could be used to determine the best set of 
rules for an object to go from state A to state B. Furthermore, 
given a set of rules, a CA can tell how many iterations it takes to 
get from state A to B  (Wagner 1997). 

Through many decades of population modeling and vegetation 
analysis there has been debate between the use of stochastic 
and deterministic based parameters.   Stochastic based 
modeling chooses a response to an input (for example) from a 
set of possible responses according to a fixed probability 
distribution. They are often used to simulate real systems under 
random conditions. 

For creative thought to occur in scientific research there needs 
to be a method with which to explore with information.  This can 
be achieved by playing with objects, variables and relationships 
within the known parameter space of a phenomenon.  The ability 
to creatively explore an environment over time and space is 
possible non-destructively only through simulation.  Simulation 
lends itself to detailed experimentation and creativity, pushing 
the boundaries of our current paradigms.   

Itami (1994) argues for the use of deterministic based models in 
his simulation of spatial dynamics utilising Cellular Automata 
theory within a Geographic Information System.  Itami quotes 
Signorini (1989), in saying that although the evolution of a 
simulation is often deterministic, it is not predictable, as new 
organisational devices present themselves during simulation 
experimentation.  This is particularly true where locality in two 
dimensional space, as well as heterogeneity over time, 
contribute to complexity. 

Cellular automata is an ideal tool for the manipulation of 
ecological parameters in simulation models as it utilises a 
“ground-up” modeling approach.  CAs utilise parameters, rules 
and cell states to create models, instead of complex, averaged 
algorithms or non-spatial statistical methods.  This makes CA a 
good tool for testing different components of complexity (as in 
Wolfram 1986). 

4. SPACE AND TIME IN ECOLOGICAL MODELS AND CAs 

Space and time have always been recognised as crucial 
components of ecological change  (Colasanti & Grime 1993).  
Aggregated distributions of plant community species (at one or 
more scales) and juxtaposed neighbourhood competition, has 
led to continued study of spatial patterns of vegetation 
(Silvertown et al 1992, Baltzer et al 1998). 

Population processes such as dioecious reproduction and 
interspecies competition are affected by the initial spatial 
arrangement of a species.  The history of a species in a 
landscape is determined by spatial and temporal autocorrelation.  
The temporal range in which different species (or individuals 
encounter each other, and “how much space each occupies 
when contact is made”  (Silvertown et al. 1992, Tilman 1994).   
The “null hypothesis” to this theory of spatial interrelatedness is 
that the future state of a landscape unit is independent of 
adjacent units (Hunsaker et al. 1993). 

Spatially explicit models are “expected to increase our ability to 
accurately model population subject to complex processes” 
(Baltzer et al. 1998).  The inclusion of space in vegetation 
models introduces more complex rules into a simulation than 
those created from simple parameters.  This can lead to 
unpredictable chaotic simulation and non-linear dynamics 
(Silvertown et al. 1992). 

Geographic space in a GIS is absolute and determined by the 
coordinate system used. In a CA, space is proximal, i.e., defined 
by the adjacency and influence of the neighborhood (Couclelis 
1991). There is disagreement among authors whether space in 
raster GIS should be considered absolute or relative. Peuquet 
(1994) argues that the vector-raster dichotomy mirrors the 
absolute-relative space distinction. Couclelis (1997), however, 
believes that the essence of space in GIS is the georeferenced 
location, no matter if expressed in raster or vector format. 
However, it can be stated that raster GIS and CA share the 
same model of tessellation or cellular space. Even if the notion 
of space in a raster GIS is not originally of proximal nature, the 
cellular space model enables the application of certain analysis 
tools that simulate proximal space (Wagner, 1996). Many spatial 
analytical operators in a raster GIS behave like transition rules in 
a CA. Filter simulating the neighborhood notion could operate 
through adjacency or influence operations and enable the 
analysis of proximal space. Couclelis (1997) regards proximal 
space as the theoretical bridge between absolute and relative 
space. 

Couclelis (1997) also distinguishes between two meanings of 
proximity or neighborhood. Basic spatial proximity can be 
described as simply being next to an object. Functional proximity 
implies influence on objects from neighbouring objects. The 
second meaning of proximity is well known as Tobler’s First Law 
of Geography (Tobler 1975). The integration of CA with GIS that 
has been attempted in the last decade has helped to make CA 
more applicable as a potentially useful tool for qualitative 
forecasting (Couclelis 1997). The combination of the proximal 
space within CA and the GIS functionality as data storage, query 
and display tool delivers a technique to probe hypotheses about 
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the large-scale effects of interactions that take place at micro-
scale (Couclelis 1997).  

5. FROM STATIC TO DYNAMIC MODELS 

The modeling of plant dispersal is but one example for such 
complexity where some interrelations and functions contributing 
to the dispersal process remain unknown. Spatial interactions of 
environmental parameters like soil type, vicinity to the coast, 
slope and bird movement influence the spread of plants. 

Variability over space points to variability throughout the 
population imposed by environmental conditions and resource 
division.  Goldwasser et al. (1994) discussed possible links 
between life history characteristics and position at the leading 
edge of an invasion wave front.  

Mathematical models of spread have traditionally been derived 
from multiple complex iterations of approximate data.  This was 
mostly due to parameters being unmeasurable, and hence 
resulted in an overall lack of accuracy.  Because equation based 
models involve averages and approximations, they can not 
provide information on individual components or properties 
(Wolfram 1984, Itami 1994).   This is a disadvantage in study of 
plant dispersion, as it is often extreme events and migrations 
that can cause the invasion and spread of an organism.  Thus, 
the variability of movement within a population is more 
representative of true invasion rates (Itami 1994, Goldwasser et 
al. 1994).   By focussing on the behavior of the individual object, 
variability within a population can be examined at different 
scales.  Thus, we can see both the wood in aggregation and the 
individual trees.   

For many truly dynamic problems, contemporary GIS are 
considered poor performers. GIS have a poor ability to handle 
dynamic spatial models and the temporal dimension (Wagner 
1996). A CA is operating in discrete time steps or iterations, 
which model a dynamic pattern that is changing for every 
iteration. Though CAs provide a very good modeling and 
analysis tool, a drawback is the lack of satisfying capabilities for 
data input, storage and display. Therefore, they cannot stand 
alone but should be combined with a GIS.  

Unfortunately, there is not much literature on the actual 
implementation of a CA within a Geographical Information 
System. As Couclelis (1997), most authors discuss the specific 
properties of CA, the notion of space peculiar to CA and GIS, 
and the advantages and disadvantages of the use of a CA within 
a GIS. 

Wagner (1997) examines the similarities between GIS and CA 
and the ability to implement each in the other and conclude that 
raster GIS provide all basic requirements of a cellular 
automaton. Multiple bit planes, neighbourhood structures, a 
language for specifying rules and the ability to apply rule sets 
synchronously are features of most raster GIS. Different data 
layers in the GIS simulate the bit planes, which represent past, 
present and future states of cells. Neighborhood structures can 
be constructed by using filters of different size and weighting. 
User-defined operations specified with a raster GIS language 
can be combined with predefined operations and enable a 
powerful tool to specify and apply rule sets. Wagner (1997) lists 
user-defined filters, overlay, cross-classification and 
reclassification as the most important of these operations.  

In contrast to Wagner (1997), Wu (1998), who worked on an 
integrated GIS and CA approach in order to simulate land 
conversion, concludes that the natural affinity of GIS and CA 
justifies an integrated approach by using conventional GIS 
software. Wu acknowledges the fact that there are still many 
issues that need to be addressed in future research, like the 
analysis of sensitivity of a CA or the introduction of statistical 
methods for defining transition rules. Most projects on the 
integration of a CA within a GIS are only prototypes of simulation 
models (Wu 1998). The issue of sensitivity of CAs is a very 
difficult topic of research, as CAs often develop self-organizing 
patterns which cannot be predicted from initial conditions or 
configurations. A slight change in the initial values can lead to a 
very different pattern.  Therefore, it is hard to predict how a CA 

reacts to a range of input values. In the following section, we 
discuss the method for transferring data from reality into 
simulation.  In abstracting objects and relationships from a real 
world system, complexity of the system and the spatial and 
temporal context of its operation need to be considered. 

The research presented in this paper uses a GIS-based cellular 
automata (CA) framework to study and create an applied and 
ecologically significant model of spread for the invasive plant 
species Rhamnus alaternus. The case study area and species 
are exemplary in that invasion is currently at a small scale, at an 
individual level and is in a contextually rich environment. 

6. FROM REALITY TO SIMULATION 

6.1. RHAMNUS ALATERNUS: A SPECIES FAR FROM HOME 

Due to its effect on coastal ecosystems, the plant species 
Rhamnus alaternus (evergreen buckthorn) has been deemed an 
invasive species in New Zealand (ARC 1998, Harre 1998). 
Rhamnus was introduced to New Zealand in the late 19th century 
as an ornamental plant, its thick glossy green leaves and dark 
red berries making an attractive addition to garden hedges 
(Fromont 1996, ARC 1998). New Zealand’s wild Rhamnus 
population is currently focussed in the Hauraki Gulf as it favors 
the warm coastal breezes of the inner islands and is 
predominately bird dispersed (Fromont 1996, Fromont 1997, 
Cameron 1999, Mitchell 1999).  Species found to favor the 
plants fruit include  blackbird (Turdus merula), starlings (Sturnus 
vulgaris) and song thrushes (Turdus philomelos) (Fromont 
1996).  These birds are all introduced species that have been 
found to be diverse feeders, moving amongst a range of 
environments (Day 1995, Anderson 1997). This means that 
disperser behavior is a prominent effect at smaller spatial and 
temporal scales rather than over large areas. Rhamnus grows in 
coastal environments, resulting in direct competition for space 
with endemic Pohutukawa trees, which are often roosts for the 
birds that disperse fruit (Harre 1999). Due to this effect on the 
coastal ecosystems of the Hauraki Gulf, Rhamnus has been 
declared a ‘total control’ plant pest by the regional authorities 
who are now initiating control methods (ARC 1998, Harre 1998).  

6.2. RULE BASE SPECIFICATION 

Fruiting plants survive in unique and specific spatial landscapes 
controlled by seasonal change associated with pollinator and 
disperser behaviour.  These spatial and temporal constraints act 
as the conceptual building blocks in modelling dispersal and 
spread of a species. To focus a simulation in time and space 
while maintaining complexity of the system, a set of rules can be 
produced ranging from explicit constraints to intrinsic and 
extrinsic parameters. 

 
The conceptual model of Rhamnus growth and spread (see 
appendix A1) outlines a basic lifecycle model of a dioecious 
plant species, with specific constraints on growth and spread as 
well as neighbourhood competition in space and time.  The 
conceptual model acknowledges the cyclical nature of and within 
the lifetime of an individual plant.  Phenological data was 
gathered from studies by Fromont (1996, 1997) and Herrera 
(1984, 1995) and from discussions with local experts (Cameron, 
Harre and Mitchell 1998, 1999).  Field work and interviews by 
Cole (1999) on Waiheke Island in the Hauraki Gulf produced 
spatial floral information contributing to rule base specification 
and environmental constraints. The work of Anderson (1997), 
Williams & Karl (1996) and Day (1995) examining New Zealand 
bird species behaviour over different floral landscapes provides 
further data on which to base disperser assumptions and 
simulation strategies. 

Distinct objects and relationships defined in the conceptual 
model are formalised as in appendix A3.  Temporal and spatial 
extent and resolution, as well as minimum and maximum 
parameter values specify each object.  Fixed definitions of 
objects and relationships are strengthened by model 
assumptions (see appendix A2), which make the creation of the 
rule base as transparent as possible.  These assumptions 
determine implementation constraints such as sub-cellular 
homogeneity and absence of long term climatic change.   
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The initial rule base follows the temporal cycle of the conceptual 
model, incorporating constraints such as substrate, parental and 
coastal proximity.  It must be acknowledged that incorrect 
approximation of disperser behaviour parameters can be a major 
factor in simulation model error (Ruckelshaus et al. 1997).  
Because of this, the rule base incorporates several indicators of 
disperser movement including  favouring roosting perches such 
as the native coastal canopy species Pohutukawa (Metrosideros 
excelsa) and Karo (Pittosporum crassifolium) (as noted by Harre 
(1999) and Cole (1999)), and temporal and spatial floral 
competition landscapes for pollinators and dispersers 
(Buchmann & Nabham 1996).  The rule base is a simple ASCII 
file that can be created by any domain scientist regardless of 
their GIS expertise.  

6.3. SIMULATION STRATEGY 

Ruckelshaus et al. (1997) suggested through their own 
simulation study that incorrect disperser parameter caused 
greater error in modeling than misclassification of land type. 
Disperser efficiency and effectiveness are key parameters to 
understanding plant dispersal.  As defined by Reid (1989), 
disperser efficiency is the probability that a seed dispersed by 
the vector will lodge in a safe site and germinate.  This is 
incorporated in our model two fold through landscape surfaces 
of germination probability and by differential success rates at 
different locations.  This is a backward approach to disperser 
efficiency in that the focus is on space rather than following the 
disperser. Disperser effectiveness is the proportion of seedlings 
in a population that a particular seed disperser is responsible for 
disseminating.  This is illustrated in our model through allocation 
of fractions of fruit volumes between gravity and bird dispersal.  
This division needs to be explored to determine effect. 

The simulation needs to test for the following: 

1. Scale of effect of disperser behaviour: efficiency 
and effectiveness.  

2. Perpetual success of pollination 
3. The effect of neighbouring species (as attractors 

and detractors) 

The first test constricts the disperser range – in long range and 
short range distribution, from total movement, to smaller steps.  
This reduces the bird dispersers effect on spread and tests the 
dependency of Rhamnus on bird dispersal. The second test 
alters the volume of successful fruiting and hence population 
numbers that can be dispersed.  The third strategy examines the 
effect that neighbouring (native and introduced) species have on 
Rhamnus.  This will be primarily examined by phenology of 
common species, to create an appropriate level of competition 
against Rhamnus in particular areas dependent on assumed 
pollinators and temporal competition.   

7. DISCUSSION 

Species invasion is a prime example of a complex and not well 
understood problem in the realm of dynamic spatial modelling. 
We can distinguish between well-understood phenomena where 
this complexity is addressed by stochastic modelling and less 
informed conceptual models that require an exploratory 
approach. In instances where there is a lot of data, neural 
networks have been successfully employed to develop a 
plausible model. The disadvantage of neural networks, however, 
is their lack of explanatory capacity. True cellular automata are 
ideal tools to deal with the complexity of the problem at hand but 
are restricted by their notion of neighbourhood and the idea of 
homogeneous space. In many respects, this study exhibits 
characteristics of agent based systems. Software agents, and 
especially their spatial variants (Kohler et al. 1996, Booth 1997, 
Manrubia et al. 1999), however, are complex constructs in 
themselves. The evolutionary character of agent based systems 
can be examined and interpreted (e.g. with respect to the 
similarity of modelling results with observed real world 
phenomena) but they do not lend themselves to the kind of 
automatic self documentation that is inherent to the GIS 
implementation presented here. The CA theory informed 
parameter estimation in GIS (that is) presented in this paper, 
strikes a fine balance between the simple elegance of CAs and 

the complexity of agent-based systems in a technical 
environment that has by now almost ubiquitous character. 
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A1. CONCEPTUAL MODEL OF RHAMNUS ALATERNUS DISPERSAL 
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A2. ASSUMPTIONS FOR IMPLEMENTATION 

 
1. Success of life stages is dependent on environmental 

(external) and inter and intraspecies population constraints.  

2. All flowers are successfully pollinated and fruit will be 
produced on any female within a certain distance of male 
plants.  

3. Location of long distance dispersal is random after volume 
of species reaches a set space or volume 

4. Closely grouped individuals will compete for space to 
exclusion of successive individuals over time until one plant 
occupies each space.   There is no 3D modelling of 
stratification of the canopy. 

5. Other sub-cellular processes will be parameterised to the 
2x2m cell and 100x100m coarse grid cell size within a 
hierarchical data structure. 

6. There is no human control, or change in current landuse 
patterns over the duration of the simulation.   

7. Climate remains constant and appropriate to growth, 
reproduction and germination over the temporal extent of 
the model. 

8. Food required by dispersers < food available to dispersers.   

9. The disperser population spends most time in the area with 
the highest fruiting density. 

10. Assume homogeneity of environment within grid cells (2m x 
2m). 

 
A3. PARAMETER BOUNDARIES FOR CONCEPTUAL MODEL 

• Parameter: Germination 
Definition: Seed germinates dependent on space availability and 
environmental constraints. 
Units: Number of individuals / grid cell. 
Minimum value: 0 
Maximum value: 10 
Spatial resolution: Individual plant (within 2 x 2 m grid cell) 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly 
 
• Parameter: Growth 
Definition: Plant grows, increasing spatial occupation and 
vegetative volume (and hence fruiting potential if female) 
dependent on space and environmental constraints. 
Units: Metres / year 
Minimum value: 0 
Maximum value: f(age, substrate, location). 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly 
 
• Parameter: Maturity 
Definition: Time from germination to adult able to reproduce 
dependent on environmental constraints. 
Units: Years to mature plant 
Minimum value: 1 
Maximum value: 5 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly 
 
• Parameter: Flower 
Definition: Male and female plants flower, ready for pollination. 
Units: Number/m² 
Minimum value: 0 

Maximum value: average = 10000/5 m² 
Spatial resolution: individual – within 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly 
 
• Parameter: Gender 
Definition: Dioecious species. 
Units: Individual – male or female  
Minimum value: 35% female 
Maximum value: 50% female 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly association at germination 
 
• Parameter: Fruiting 
Definition: Female individuals fruit for 2 months per year.  
Units: Fruit(seed)/m²/female tree  
Minimum value: 0 
Maximum value: average = 10,000(30,000)/5m²/vegetative 
volume of female tree. 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly  
 
• Parameter: Pollination 
Definition: Dioecious species.  Distance between female and 
closest male Rhamnus individuals for pollination.   
Units: Metres (grid cells) – between closest edges of grid cells. 
Minimum value: 0 (0) 
Maximum value: 16 (8) 
Spatial resolution: 2 x 2m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly  
 
Parameter: Gravity aided dispersal 
Definition: Dispersal of seed through fruit fall from tree. 
Distribution local to parent tree. Dependent on slope 
Units: Metres (grid cells) from parent tree - between closest 
edges of grid cells 
Minimum value: 0 
Maximum value: f(slope)  
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly  
 
• Parameter: Bird aided dispersal 
Definition: Fruit ingested by birds distributes seed across 
frugivores home range. Initiates long range dispersal of plant 
species. Dependent on pattern of bird visits, slope and bird 
digestion. 
Units: Metres (grid cells) from parent tree 
Minimum value: 0 
Maximum value: full extent of study area 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly  
 
• Parameter: Space 
Definition: Area available for germination and growth of plant. 
Units: Metres² 
Minimum value: 1/15 of grid cell space for seedlings 
Maximum value: 8 x 8m² for large mature tree 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly  
 
• Parameter: Slope 
Definition: Slope of topography 
Units: Degrees 
Minimum value: 0 
Maximum value: 90 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Constant 
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• Parameter: Perches 
Definition: There is a positive correlation between proximity to 
bird perch trees and clusters of Rhamnus alalternus, i.e. – a 
distance decay function from large trees in constrained area. 
Units: Metres 
Minimum value: 0 
Maximum value: Extent of grid – with decreased probability. 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly. 
 
• Parameter: Continentality 
Definition: Species prefers coastal habitat. 
Units: Metres from coastline 
Minimum value: 0 
Maximum value: To centre of island – distance decay probability 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Constant 
 
• Parameter: Warm coastal breezes 
Definition: Species grows best in warm aspect conditions. Better 
growth and reproduction 
Units: Aspect in degrees 
Minimum value: 0 
Maximum value: 360 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Constant 
 
• Parameter: Shelter 
Definition: Germination and juvenile stages require some shelter 
for success. 
Units: Metres from shelter 
Minimum value: 0 
Maximum value: Distance decay from sheltered aspects and 
vegetation 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly. 
 
• Parameter: Substrate 
Definition: Species prefers clay or rock substrate for growth. 
Units: Nominal class [clay, rock, sand, humus] 
Minimum value: - 
Maximum value: - 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Constant. 
 
• Parameter: Seed crop 
Definition: Spatial and temporal differentiation of volume of seed 
produced.  
Units: Proportion of potential 
Minimum value: 0 
Maximum value:1 
Spatial resolution: 2 x 2 m grid cell 
Spatial extent: Waiheke Island / Hauraki Gulf 
Temporal Resolution: Yearly 

  

 
 

A4. RULE BASE (All input grids that are necessary to run the 
model are displayed in italics.) 

1. Cell states = {germinating(g), juvenile(j), adult male(m), 
adult female(f), fruiting  female(F), empty(e)} 

2. Grids of constraints 
COASTAL = { Distance decay inland from 
coastline } 
PERCHES = { Distance decay from bird 
perches } 
SUBSTRATE = { clay, rock, sand, humus } 
SHELTER = {sheltered, not sheltered } = 
f(aspect) 
RHAMNUS = { initial distribution of 
Rhamnus alaternus plants} 

3. Successful FRUITING (F) = MATURITY + POLLINATION + 
[FLOWER*GROWTH] . 

4. Dispersal = if  F > 5 in NEIGHBOURHOOD  
then  2/3 * FRUITING = BIRD_DISPERSAL 

and 1/3 * FRUITING =  
GRAVITY_DISPERSAL 
else   ½ * FRUITING = BIRD_DISPERSAL 

and ½ * FRUITING =  
GRAVITY_DISPERSAL 

5. BIRD_DISPERSAL =  distance_decayPARENT(F) + 
PERCHES + SPACE 

6. GRAVITY_DISPERSAL  =  distance_decayPARENT(F) + 
distanceSLOPE + SPACE 

7. GERMINATION(g) = [BIRD_DISPERSAL or 
GRAVITY_DISPERSAL] + anySUBSTRATE + 
lowprobCOASTAL + SHELTER 

8. GROWTH(j) = at one iteration from (g)  [ 
anySUBSTRATE + highprobCOASTAL] * 1/8m² + 
(GROWTH(j)n – 1) if  at iteration: x(i) = (g)ⁿ > 1 individuals 
then (j)ⁿ  = n – 1  at x(i + 1) until n = 1  

9.  MATURITY[(m), (f)] = [claySUBSTRATE or 
rockSUBSTRATE] + highprobCOASTAL  +  [ [1 iteration < 
GROWTH > 5 iterations] since GERMINATION] 

10. GROWTH [(m) , (f)]  =  MATURITY  +  [GROWTH(j)  +   
(GROWTH ~ [(m),(f)]n – 1) + 1/4m²] 

11.   MATURITY[f  F] =  (f)FLOWER + POLLINATION  

12.   directionGROWTH  =  SPACE + clay/rockSUBSTRATE + 
highprobCOASTAL 

13.   long_rangeDISPERSAL =  randomDISPERSAL  coarse 
grid. 

14.   mortality (j) = if x(6), (j) ≠ (m), (f) or (F) 
then n = 0 and cell = e 

15.   mortality (g) = if x(2), (g) ≠ (j) 
then n = 0 and cell = e 


