NAS - Nonindigenous Aquatic Species

small fish
Potamopyrgus antipodarum
(New Zealand mudsnail)
Mollusks-Gastropods
Exotic to United States
Translate this page with Google
Français Deutsch Español Português Russian Italiano Japanese

Photo1
Mike Gangloff
Photo2
U.S. Geological Survey
Potamopyrgus antipodarum

Common name: New Zealand mudsnail

Taxonomy: available through ITIS logo

Identification: P. antipodarum has a dextral (right-handed coiling), elongated shell with 7-8 whorls separated by deep grooves. The operculum is thin and corneus with an off-centre nucleus from which paucispiral markings (with few coils) radiate. The aperture is oval and its height is less than the height of the spire. Some morphs, including many from the Great Lakes, exhibit a keel in the middle of each whorl; others, excluding those from the Great Lakes, exhibit periostracal ornamentation such as spines for anti–predator defense (Zaranko et al. 1997; Holomuzki and Biggs 2006; Levri et al. 2007).  Shell colors vary from gray and dark brown to light brown.

Size: The snail is usually 4–6 mm in length in the Great Lakes, but grows to 12 mm in its native range (Zaranko et al. 1997; Levri et al. 2007).

Native Range: The freshwater streams and lakes of New Zealand and adjacent small islands; it is naturalized in Australia and Europe (Hall et al. 2003).

US auto-generated map
Alaska auto-generated map
Alaska
Hawaii auto-generated map
Hawaii
Caribbean auto-generated map
Caribbean
Guam auto-generated map
Guam Saipan


Interactive maps: Point Distribution Maps


Nonindigenous Occurrences: This snail was first discovered in the middle portion of the Snake River in Idaho in 1987.  By 1995, the mudsnail had reached the Madison River in Montana and into Yellowstone National Park the following year (Wyoming). It is also established in Minidoka National Wildlife Refuge, Idaho (USFWS 2005).  Since then, they have been found in the Madison River and several other rivers in and near Yellowstone National Park. Populations were discovered near the mouth of the Columbia River in Oregon in 1997, and the Owens River in California.  Since then, this species is becoming very widespread in California. This species became established in the lower Columbia River, Washington about 1999 (M. Sytsma, pers. comm.) and in the Colorado River in northern Arizona (M. Anderson, pers. comm.) by 2002.  In Utah, the first mudsnails were found about 2001 and have since been found in the Green River and many others. In 2004, mudsnails were found in small Colorado creek near Boulder (P. Walker, pers. comm.).

Great Lakes - P. antipodarum was found established in Lake Ontario in 1991 (Zaranko et al. 1997) and in Lake Erie (Ohio and Pennsylvania) in 2005 (Levri et al. 2007). It may also be established in Duluth-Superior Harbor (Minnesota/Wisconsin) of Lake Superior, where some individuals were found in 2001 (Grigorovich et al. 2003). They have also been collected from southwestern Lake Ontario, New York, the Welland Canal and northeastern Lake Ontario, Ontario, Canada as well as Lake Superior at Thunder Bay, Ontario, Canada in 2001. A population was discovered in Lake Michigan, off Waukegan, Illinois in 2006 (T. Nalepa, pers.comm.).


Ecology: P. antipodarum is a nocturnal grazer, feeding on plant and animal detritus, epiphytic and periphytic algae, sediments and diatoms (Broekhuizen et al. 2001; James et al. 2000; Kelly and Hawes 2005; Parkyn et al. 2005; Zaranko et al. 1997).

The snail tolerates siltation, thrives in disturbed watersheds, and benefits from high nutrient flows allowing for filamentous green algae growth. It occurs amongst macrophytes and prefers littoral zones in lakes or slow streams with silt and organic matter substrates, but tolerates high flow environments where it can burrow into the sediment (Zaranko et al. 1997; Collier et al. 1998; Holomuzki and Biggs 1999; Holomuzki and Biggs 2000; Negovetic and Jokela 2000; Richards et al. 2001; Weatherhead and James 2001; Death et al. 2003; Schreiber et al. 2003; Suren 2005).

P. antipodarum is ovoviviparous and parthenogenic. Native populations in New Zealand consist of diploid sexual and triploid parthenogenically cloned females, as well as sexually functional males (less than 5% of the total population). All introduced populations in North America are clonal, consisting of genetically identical females. The snail produces approximately 230 young per year. Reproduction occurs in spring and summer, and the life cycle is annual (Zaranko et al. 1997; Schreiber et al. 1998; Lively and Jokela 2002; Gerard et al. 2003; Hall et al. 2003). They are found in the Great Lakes at depths of 4-45 m on a silt and sand substrate (Zaranko et al. 1997; Levri et al. 2007)

This species is euryhaline, establishing populations in fresh and brackish water. The optimal salinity is probably near or below 5 ppt, but P. antipodarum is capable of feeding, growing, and reproducing at salinities of 0–15 ppt and can tolerate 30–35 ppt for short periods of time (Jacobsen and Forbes 1997; Zaranko et al. 1997; Leppakoski and Olenin 2000; Costil et al. 2001; Gerard et al. 2003; Gerard and Le Lannic 2003). It tolerates temperatures of 0–34°C (Zaranko et al. 1997; Cox and Rutherford 2000).

P. antipodarum can survive passage through the guts of fish and birds and may be transported by these animals (Aamio and Bornsdorff 1997). It can also float by itself or on mats of Cladophora spp., and move 60 m upstream in 3 months through positive rheotactic behavior (Zaranko et al. 1997). It can respond to chemical stimuli in the water, including the odor of predatory fish, which causes it to migrate to the undersides of rocks to avoid predation (Levri 1998). Common parasites of this snail include trematodes of the genus Microphallus (Dybdahl and Krist 2004).




Means of Introduction: P. antipodarum was most likely introduced to the Great Lakes in ships from Europe, where there are nonindigenous populations (Zaranko et al. 1997; Leppäkoski & Olenin 2000; Levri et al. 2007) or in the water of live gamefish shipped from infested waters to western rivers in the United States.

Status: This species is established in Lake Ontario, Lake Erie, Lake Michigan and most likely in Lake Superior. and is expanding its range within the Great Lakes basin (Levri et al. 2007).  In the Great Lakes, the snail reaches densities as high as 5,600 per square meter. (Zaranko et al. 1997; Levri et al. 2007).  Also established in all western states where it is found in the US.

Impact of Introduction: A) Realized: None known.

B) Potential: Likely to find all shallower waters (<50 m depth) as suitable habitat. High spread potential (U.S.EPA 2008). Abundant populations of introduced P. antipodarum may outcompete other grazers and inhibit colonization by other macroinvertebrates (Kerans et al. 2005). In Europe, P. antipodarum causes declines in species richness and abundance of native snails in constructed ponds (Strzelec 2005). By contrast, in one Australian stream, increasing densities of P. antipodarum are positively correlated with density and species richness of native invertebrates, possibly due to coprophagy (ingestion of the snail's faeces) (Schreiber et al. 2002). In geothermal streams in the western U.S., P. antipodarum reaches densities of 300,000 snails m2 and alters nutrient (nitrogen and carbon) flows, consumes large amounts of GPP, accounts for most of the invertebrate production (Hall et al. 2003).  P. antipodarum has yet to colonize streams in the Great Lakes basin, but these are the habitats in which the snail is expected to exert significant impacts (Levri et al. 2007). 

Densities have reached over 300,000 individuals per square meter in the Madison River. A species as prolific as this has potential to be a biofouler at facilities drawing from infested waters. It also may compete for food and space occupied by native snails. There is some evidence in their native range that trout may avoid these snails as a prey.

It is suspected that they can alter primary production of streams and spread rapidly (U.S. EPA 2008).


GL Impact:

Management:

Remarks: P. antipodarum is synonymous with P. jenkinsi and Hydrobia jenkinsi.

Mudsnail populations consist mostly of asexually reproducing females that are born with developing embryos in their reproductive system.  This species can be found in all types of aquatic habitats from eutrophic mud bottom ponds to clear rocky streams. It can tolerate a wide range of water temperatures (except freezing), salinity, and turbidity in clean as well as degraded waters. They feed on dead and dying plant and animal material, algae, and bacteria. Its tolerance of a broad range of ecological factors make the possibility of further spread likely. In moist conditions, this snail can withstand short periods of desiccation.

The public should be careful to decontaminate fishing and sporting equipment so as not to spread existing populations or start new ones.  Regulations on commercial shipping of this species are in effect. The species supports a number of parasites in its native range, but none have been found on North American populations examined.



References:
Aamio, K. and E. Bornsdorff. 1997. Passing the gut of juvenile flounder Platichthys flesus (L.) – differential survival of zoobenthic prey species. Marine Biology 129: 11–14.

Broekhuizen, N., S. Parkyn and D. Miller. 2001. Fine sediment effects on feeding and growth in the invertebrate grazer Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Letpophlebiidae). Hydrobiologia 457(1–3):125–132.

Collier, K. J., R. J. Wilcock and A. S. Meredith. 1998. Influence of substrate type and physico–chemical conditions on macroinvertebrate faunas and biotic indices in some lowland Waikato, New Zealand, streams. New Zealand Journal of Marine and Freshwater Research 32(1):1–19.

Costil, K., G.B. J. Dussart and J. Daquzan. 2001. Biodiversity of aquatic gastropods in the Mont St–Michel basin (France) in relation to salinity and drying of habitats. Biodiversity and Conservation 10(1):1–18.

Cox, T. J. and J. C. Rutherford. 2000. Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature. New Zealand Journal of Marine and Freshwater Research 34(2):203–208.

Death, R. G., B. Baillie and P. Fransen. 2003. Effect of Pinus radiata logging on stream invertebrate communities in Hawke’s Bay, New Zealand. New Zealand Journal of Marine and Freshwater Research 37(3):507–520.

Dybdahl, M. F. and A. C. Krist. 2004. Genotypic vs. condition effects on parasite–driven rare advantage. Journal of Evolutionary Biology 17(5):967–973.

Gerard, C., A. Blanc and K. Costil. 2003. Potamopyrgus antipodarum (Mollusca: Hydrobiidae) in continental aquatic gastropod communities: impact of salinity and trematode parasitism. Hydrobiologia 493(1–3):167–172.

Grigorovich, I. A., A. V. Korniushin, D. K. Gray, I. C. Duggan, I. R. Colautti and H. J. MacIsaac. 2003. Lake Superior: an invasion coldspot? Hydrobiologia 499(1):191–210.

Hall, R. O. Jr., J. L. Tank and M. F. Dybdahl. 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1(8):407–411.

Hall, R. O. Jr., M. F. Dybdahl and M. C. Vanderloop. 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications 16(3):1121–1131.

Holomuzki, J. R. and B. J. F. Biggs. 1999. Distributional responses to flow disturbance by a stream–dwelling snail. Oikos 87(1):36–47.

Holomuzki, J. R. and B. J. F. Biggs. 2000. Taxon–specific responses to high–flow disturbances in streams: implications for population persistence. Journal of the North American Benthological Society 19(4):670–679.

Holomuzki, J. R. and B. J. F. Biggs. 2006. Habitat–specific variation and performance trade–offs in shell armature of New Zealand mudsnails. Ecology 87(4):1038–1047.

Jacobsen, R. and V. E. Forbes. 1997. Clonal variation in life–history traits and feeding rates in the gastropod, Potamopyrgus antipodarum: performance across a salinity gradient. Functional Ecology 11(2):260–267.

James, M. R., I. Hawes and M. Weatherhead. 2000. Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology 44(2):311–326.

Kelly, D. J. and I. Hawes. 2005. Effects of invasive macrophytes on littoral–zone productivity and foodweb dynamics in a New Zealand high–country lake. Journal of the North American Benthological Society 24(2):300–320.

Kerans, B. L, M. F. Dybdahl, M. M. Gangloff and J. E. Jannot. 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone ecosystem. Journal of the North American Benthological Society 24(1):123–138.

Leppäkoski, E. and S. Olenin. 2000. Non–native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2(2):151–163.

Levri, E. P. 1998. Perceived predation risk, parasitism, and the foraging behavior of a freshwater snail (Potamopyrgus antipodarum). Canadian Journal of Zoology 76(10):1878–1884.

Levri, E.P., A.A. Kelly and E. Love. 2007. The invasive New Zealand mud snail (Potamopyrgus antipodarum) in Lake Erie. Journal of Great Lakes Research 33: 1–6.

Lively, C. M. and J. Jokela. 2002. Temporal and spatial distribution of parasites and sex in a freshwater snail. Evolutionary Ecology Research 4(2):219–226.

Negovetic, S. and J. Jokela. 2000. Food choice behaviour may promote habitat specificity in mixed populations of clonal and sexual Potamopyrgus antipodarum. Experimental Ecology 60(4):435–441.

Parkyn, S. M., J. M. Quinn, T. J. Cox and N. Broekhuizen. 2005. Pathways of N and C uptake and transfer in stream food webs: an isotope enrichment experiment. Journal of the North American Benthological Society 24(4):955–975.

Richards, D. C., L. D. Cazier and G. T. Lester. 2001. Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. Western North American Naturalist 61(3):375–380.

Schreiber, E. S. G., A. Glaister, G. P. Quinn and P. S. Lake. 1998. Life history and population dynamics of the exotic snail Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae) in Lake Purrumbete, Victoria, Australia. Marine and Freshwater Research 49(1):73–78.

Schreiber, E. S. G., G. P. Quinn and P. S. Lake. 2003. Distribution of an alien aquatic snail in relation to flow variability, human activities and water quality. Freshwater Biology 48(6):951–961.

Schreiber, E. S. G., P. S. Lake and G. P. Quinn. 2002. Facilitation of native stream fauna by an invading species? Experimental investigation of the interaction of the snail, Potamopyrgus antipodarum (Hydrobiidae) with native benthic fauna. Biological Invasions 4(3):317–325.

Strzelec, M. 2005. Impact of the introduced Potamopyrgus antipodarum (Gastropods) on the snail fauna in post–industrial ponds in Poland. Biologia (Bratislava) 60(2):159–163.

Suren, A. M. 2005. Effects of deposited sediment on patch selection by two grazing stream invertebrates. Hydrobiologia 549(1):205–218.

U.S. EPA (Environmental Protection Agency). (2008) Predicting future introductions of nonindigenous species to the Great Lakes. National Center for Environmental Assessment, Washington, DC; EPA/600/R-08/066F. Available from the National Technical Information Service, Springfield, VA, and http://www.epa.gov/ncea.

Weatherhead, M. A. and M. R. James. 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia 462(1–3):115–129.

Zaranko, D. T., D. G. Farara and F. G. Thompson. 1997. Another exotic mollusk in the Laurentian Great Lakes: the New Zealand native Potamopyrgus antipodarum (Gray 1843) (Gastropoda, Hydrobiidae).



Other Resources:

USGS Nonindigenous Species Information Bulletin - New Zealand Mudsnail

USGS New Zealand Mudsnail photo gallery

Potamopyrgus spp. (ANS Clearinghouse Bibliography)

Potamopyrgus antipodarum (Global Invasive Species Database)

New Zealand Mudsnails in the Western USA

Great Lakes Water Life Photo Gallery

Oregon Sea Grant - New Zealand Mudsnail Guide




Author: Benson, A. J. and R. M. Kipp

Revision Date: 3/14/2011

Citation Information:
Benson, A. J. and R. M. Kipp. 2011.   Potamopyrgus  antipodarum. USGS Nonindigenous Aquatic Species Database, Gainesville, FL.
http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=1008 RevisionDate: 3/14/2011


Download Adobe Reader