A. CURRENT STATUS AND DISTRIBUTION		
1. In Wisconsin?	a. YES 🛛 NO 🗌	
	b. Abundance: variable - ability to reproduce rapidly coupled with low tolerance of cold temps. can produce wide swings in populations from year to year in northern waters	
	c. Geographic Range: Mississippi and St. Croix Rivers, Lakes MIchigan and Superior	
	d. Type of Waters Invaded (rivers, ponds, lakes, etc): lakes, rivers, streams	
	e. Historical Status and Rate of Spread in Wisconsin: 1 st reported in St. Croix River in 1977, Mississippi River 1981, St Loius River estuary in 1999 and 2001, found in Lakes Michigan and Superior (1 st Superior sighting 1997), does not appear to have spread rapidly once introduced	
2. Invasive in Similar Climate Zones	YES X NO Version Where: est. in much of U.S., very successful in the south, established across U.S. above 40 deg. latitude	
3. Similar Habitat Invaded Elsewhere	YES X NO Vhere: No. MN	
4. In Surrounding States	YES X NO Where: IL, MN, IN, MI,	
5. Competitive Ability	High: Where able to become well established, can be highly invasive; some are hermaphroditic, increasing ability to invade and reproduce rapidly. Low: Limited thermal tolerance may limit success in parts of WI.	
B. ESTABLISHMENT POTENTIAL AND LIFE HISTORY TRAITS		
1. Temperature:	Range: 36 - 86 deg. F (some may survive at lower temps but not thrive)	
2. Spawning Temperature:	Range: lasts ~6 months beginning early summer; can occur almost continuously at water temps > 16 deg. C (61 deg. F). Temps > 37 deg. C or < 1 deg. C inhibit spawning	
3. Number of Eggs:	Range: Release veligers brooded in parent's gills - single clam can release hundreds per day, up to 70K per year * Hermaphrodites exist and can self-fertilize	
4. Preferred Spawning Substrate:	Fine clean sand, clay, and coarse sand preferred; can be found in low numbers on almost any substrate	
5. Hybridization Potential:	none found	
6. Salinity Tolerance	Fresh: 🛛 Marine: 🗌 Brackish: 🖂	

7. Oxygen Regime	Range: prefer high DO, DO < 3.0 mg I–1 at the sediment-water interface shown to significantly impair growth
8. Water Hardness Tolerance	Range: there appear to be a number of studies looking at the response of Corbicula sp. to specific metals, chemicals, etc., but was unable to find general hardness tolerance.
9. Easily confused for Native Species?	List: none found - some people have confused them with zebra mussels
C. DAMAGE POTENTIAL	
1. Likelihood of Damage	a. Presence of Natural Enemies: Eaten by native and non-native fish, birds, raccoons, and crayfish.
	b. How well introductory and expansion pathways can be described and quantified: Thought to first enter U.S. when imported for food; now spread via bait bucket release, accidental introduction with imported aquatic species, intentional introduction - bought as food and realeased, aquarium releases, passive movement with currents
2. Environmental Impacts	a. Alteration of ecosystem composition, structure and function: can alter benthic substrates
	c. Damage to ecosystem resilience/sustainability: potential to reduce species diversity
	d. Loss of biological diversity: Can reach thousands per square meter, dominating benthic community, displacing native species
	e. Abiotic modifications (affects on turbidity, H2O chemistry, etc.): none found
	f. Biotic effects on other species (loss of cover, nesting sites, forage, changing competitive relationships: compete with native mussels for food and space; compete with juvenille fish (filter feeders) for food
D. NET SOCIO/ECONOMIC IM	
1. Positive aspects of the species to the economy/society:	Effect: Commercialized as fish bait; sold for food (primarily in Asia)
2. Direct and indirect effects of the invasive species:	Effect: cost to industry to remove from water intakes, costs likely passed on to consumers
3. Type of damage caused by organism:	Effect: biofouling
Industries affected by invasive:	Effect: power plants and industrial water systems; can also cause
4. Loss of aesthetic value affecting recreation and tourism:	problems in irrigation canals and pipes Effect: none found
5. Increased cost to a sector (monitoring, inspection, control, public education, modifying practices, damage	Effect: increased cost to industries affected

repair, lower yield, loss of export markets due to quarantine:	
6. Cost of prevention or control relative to cost of allowing invasion to occur (cost of prevention is borne by different groups than cost of control):	Effect:
7. Cost at different levels of invasion:	Effect:
E. CONTROL AND PREVENTIC	N POTENTIAL
1. Costs of Prevention (including Education):	unknown
2. Responsiveness to Prevention Efforts:	unknown - variety of pathways to target
3. Detection Capability:	fairly easy to detect when present, as adults aren't very mobile.
4. Control Tactics Effective:	Mechanical: 🔀 Biological: 🗌 Chemical: 🔀
5. Efficacy/Feasibility of Control (effort, # of staff):	manual removal, drastic temperatures, and chemicals are used to control them in water intake pipes/industry. No know treatment in natural areas
6. Cost of Control:	High: 🛛 Medium: 🗌 Low: 🗌
7. Non-Target Effects of Control:	controls used in industry not feasible in natural areas
8. Threshold at which control would be attempted:	n/a
9 Efficacy of Monitoring:	n/a - found little information on monitoring for this species.