

NTSB National Transportation Safety Board

Reducing Risk While Improving Productivity:

Presentation to:

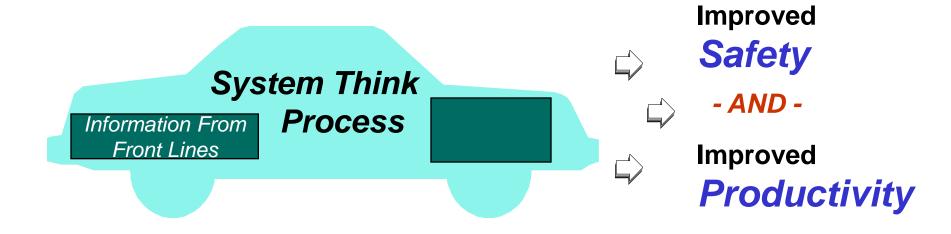
American Gas Association

Name: Christopher A. Hart

Date: October 17, 2011

Key Lessons Learned

The Contrast


- Conventional Wisdom:

Improvements that reduce risk usually also reduce productivity

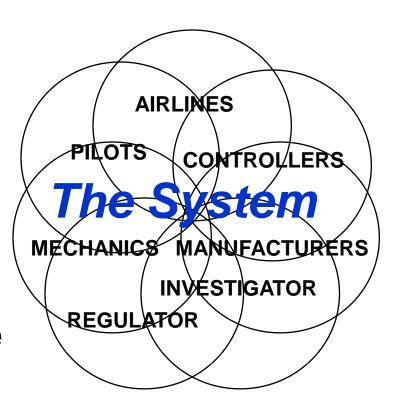
- Lesson Learned from Proactive Aviation Safety Information Programs:

Risk can be reduced in a way that also results in immediate productivity improvements

Process Plus Fuel Creates A Win-Win

Outline

- The Context
- Importance of "System Think"
- Importance of Better Information
- Safety Benefits
- Productivity Benefits
- Aviation Successes and Failures
- Roles of Leadership and Regulator


The Context: Increasing Complexity

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

The Result:

Front-Line Staff Who Are

- Highly Trained
- Competent
- Experienced,
- -Trying to Do the Right Thing, and
- Proud of Doing It Well
- ... Yet They Still Commit

Inadvertent Human Errors

When Things Go Wrong

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's also explore why the system allowed, or failed to accommodate, your mistake

and

You should be PUNISHED! Let's IMPROVE THE SYSTEM!

Fix the Person or the System?

Is the Person Clumsy?

Or Is the Problem . . .

The Step???

Enhance Understanding of Person/System Interactions By:

- Collecting,
- Analyzing, and
- Sharing

Information

Objectives:

Make the System

(a) Less
Error Prone
and

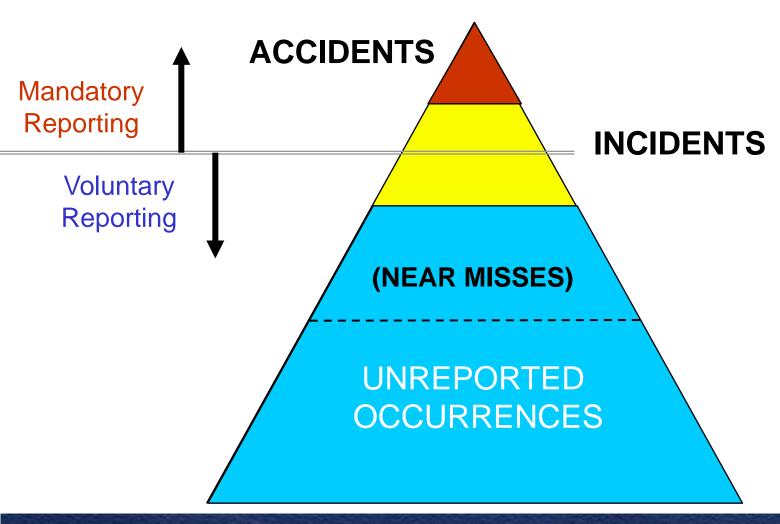
(b) More Error Tolerant

The Health Care Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."


Institute of Medicine, Committee on Quality of Health Care in America, 1999

Current System Data Flow

13

Heinrich Pyramid

14

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

Legal Concerns That Discourage Collection, Analysis, and Sharing

- Public Disclosure
- Job Sanctions and/or Enforcement
- Criminal Sanctions
- Civil Litigation

Typical "Cultural" Barrier

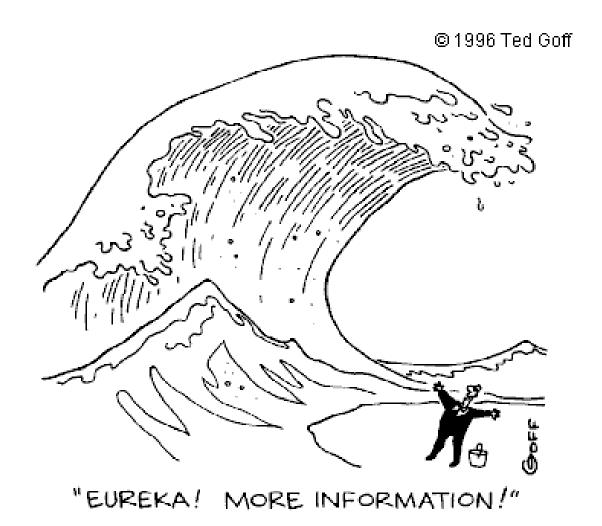
"Safety First"

Middle Management

"Production First"

Front-Line **Employees**

"Please the Boss First...
THEN Consider Safety?"

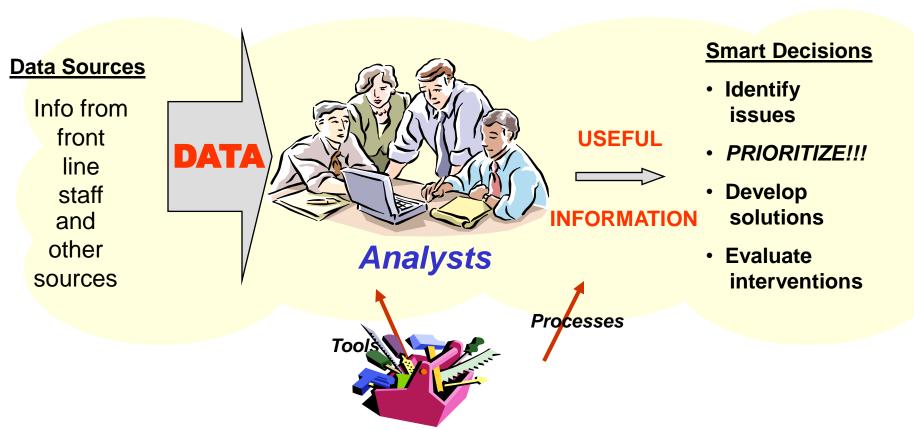

Legal/Cultural Issues

Next Challenge

Improved Analytical Tools

As we begin to get over the first hurdle, we must start working on the next one . . .

Information Overload



19

From Data to Information

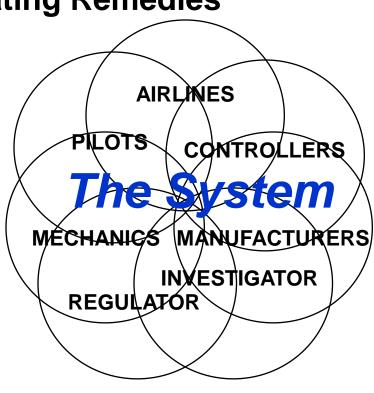
Tools and processes to convert large quantities of data into useful information

Aviation Success Story

65% Decrease in Fatal Accident Rate, 1997 - 2007

largely because of

System Think


fueled by

Proactive Safety
Information Programs

P.S. Aviation was already considered VERY SAFE in 1997!!

Aviation "System Think" Success

- Engage <u>All</u> Participants In Identifying Problems and Developing and Evaluating Remedies
- Airlines
- Manufacturers
 - With the systemwide effort
 - With their own end users
- Air Traffic Organizations
- Labor
 - Pilots
 - Mechanics
 - Air traffic controllers
- Regulator(s) [Query: Investigator(s)?]

Major Paradigm Shift

- Old: The regulator identifies a problem, develops solutions
 - Industry skeptical of regulator's understanding of the problem
 - Industry fights regulator's solution and/or implements it begrudgingly
- New: Collaborative "System Think"
 - Industry involved in indentifying problem
 - Industry "buy-in" re solution because everyone had input, everyone's interests considered
 - Prompt and willing implementation
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System
- Not a democracy
 - Regulator must regulate
- Regulator probably not welcome
- Labor/Management issues between some participants
- Participants are potential co-defendants

Applicability of "System" Success:

- Entire Industry
- Company (Some or All)
- Type of Activity
- Facility
- Team

Manufacturer "System Think" Success

Aircraft Manufacturers are Increasingly Seeking Input, Throughout the Design Process, From

- Pilots

(*User* Friendly)

- Mechanics

(*Maintenance* Friendly)

- Air Traffic Services (System Friendly)

Failure: Inadequate "System Think"

- 1995 Cali, Colombia
- Risk Factors
 - Night
 - Airport in Deep Valley
 - No Ground Radar
 - Airborne Terrain Alerting
 Limited to "Look-Down"
 - Last Minute Change in Approach
 - More rapid descent (throttles idle, spoilers)
 - Hurried reprogramming
- Navigation Radio Ambiguity
- Spoilers Do Not Retract With Power

Recommended Remedies Include:

Operational

Caution Re Last Minute Changes to the Approach

Aircraft/Avionics

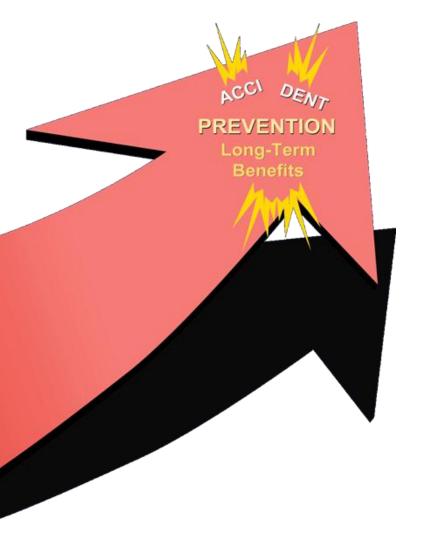
- Enhanced Ground Proximity Warning System
- Spoilers That Retract With Max Power
- Require Confirmation of Non-Obvious Changes
- Unused or Passed Waypoints Remain In View

Infrastructure

- Three-Letter Navigational Radio Identifiers
- Ground-Based Radar
- Improved Reporting of, and Acting Upon, Safety Issues

Note: All but one of these eight remedies address system issues

Major Benefit:



*Significantly More

Than Savings From Mishaps Prevented

OPERATIONS & MAINTENANCE

Immediate Benefits

Not Only Improved Safety, But Improved Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
- Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes off line for VERY EXPENSIVE (!!) disassembly, inspection, repair, and reassembly

But Then . . .

Why Are We So Jaded in The Belief That Improving Safety Will Probably Hurt The Bottom Line??

Costly Result\$ Of Safety Improvements Poorly Done

Safety **Poorly** Done

Safety Well Done

1. Punish/re-train operator

- Poor workforce morale

- Poor labor-management relations

Look beyond operator, also consider system issues

- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

2. Management decides remedies unilaterally

Apply "System Think," with workers, to identify and solve problems

- Problem may not be fixed
- Remedy may not be most effective, may generate other problems
- Remedy may not be most cost effective, may reduce productivity
- Reluctance to develop/implement remedies due to past remedy failures
- Remedies less likely to address multiple problems
- 3. Remedies based upon instinct, gut feeling

Remedies based upon evidence (including info from front-line workers)

- Same costly results as No. 2, above

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

4. Implementation is last step

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

Conclusion: Is Safety Good Business?

- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs

The Role of Leadership

- Demonstrate Safety Commitment . . . But Acknowledge That Mistakes Will Happen
- Include "Us" (*e.g.*, System) Issues, Not Just "You" (*e.g.*, Training) Issues
- Make Safety a Middle Management Metric
- Engage Labor Early
- Include the System -Manufacturers, Operators, Regulator(s), and
 Others
- Encourage and Facilitate Reporting
- Provide Feedback
- Provide Adequate Resources
- Follow Through With Action

How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
- Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same
 - Recognize that compliance is very important, but the mission is reducing systemic risk

Thank You!!!

Questions?

37