

NTSB National Transportation Safety Board

Collaboration to

Reduce Risk

and

Improve Productivity

Presentation to: Wells Fargo

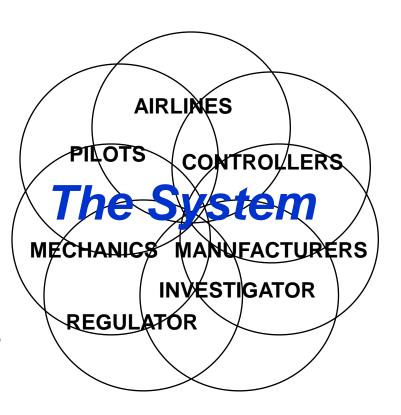
Leadership Meeting

Name: Christopher A. Hart

Date: April 11, 2012

Outline

- Collaboration to Reduce Risk
- Improving Productivity
- Role of
 - Leaders
 - Regulators


The Context: Increasing Complexity

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

<u>The Solution – System Think</u>

Awareness of how a change in one subsystem of a complex system may affect other subsystems within that system

When Something Goes Wrong

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

You should be PUNISHED!

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's *also* explore why the system allowed, or failed to accommodate, your mistake

and

Let's IMPROVE THE SYSTEM!

Another Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

Institute of Medicine, Committee on Quality of Health Care in America, 1999

"System Think" via Collaboration

Bringing representatives from all parts of a complex system together to

- Identify potential issues
- PRIORITIZE the issues (most difficult step, never perfect)
- Develop solutions for the prioritized issues
- Evaluate whether the solutions are
 - Accomplishing the desired result, and
 - Not creating unintended consequences

Collaboration: A Major Paradigm Shift

- Old: "Leader" identifies a problem and proposes solutions
 - Prospective implementers are skeptical of leader's understanding of the problem
 - Prospective implementers resist leader's solutions and/or implement them begrudgingly
- New: Collaborative "System Think"
 - Implementers involved in identifying problem
 - Implementers have "ownership interest" re solution because everyone had input, everyone's interests considered and better understood by all
 - Prompt and willing implementation (and tweaking)
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Differing and sometimes competing interests
 - Labor-management issues between participants
 - Participants are potential adversaries
- "Leader" (regulator?) probably not welcome
- Not a democracy
 - Leader must lead (regulator must regulate)
- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System

Collaboration to Reduce Risk

Is the Person Clumsy?

Or Is the Problem . . .

The Step???

Enhance Understanding of Person/System Interactions By:

- Collecting,
- Analyzing, and
- Sharing

Information

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

Objectives:

(a) Less Error Prone

and

(b) More Error Tolerant

Aviation Success Story

65% Decrease in Fatal Accident Rate,

1997 - 2007

largely because of

System Think

fueled by

Proactive Safety Information Programs

P.S. Aviation was already considered VERY SAFE in 1997!!

Manufacturer "System Think" Success

Aircraft manufacturers are increasingly seeking input, throughout the design process, from

- Pilots

(*User* Friendly)

- Mechanics

(*Maintenance* Friendly)

- Air Traffic Services (System Friendly)

Moral of the Story

- "System Think" can be successful at any macro/micro level, including
 - Entire industry
 - Company (some or all)
 - Type of activity
 - Facility
 - Team

Icing on the Cake – Not Just Safety, But Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
- Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes out of service for VERY EXPENSIVE (!!) disassembly, inspection, repair, reassembly

But Then...

Why Are We

So Jaded in The Belief That

Improving Safety

Will Probably

Hurt The Bottom Line??

Costly Result\$ Of Safety Improvements Poorly Done

Safety **Poorly** Done

Safety Well Done

1. Punish/re-train operator

Look beyond operator, also consider system issues

- Poor workforce morale
- Poor labor-management relations
- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

2. Management decides remedies unilaterally

Apply "System Think," with workers, to identify and solve problems

- Problem may not be fixed
- Remedies may not be most effective, may generate other problems
- Remedies may not be most cost effective, may reduce productivity
- Workers reluctant to develop/implement remedies due to failures of previous remedies
- Remedies less likely to address multiple problems
- 3. Remedies based upon instinct, gut feeling

Remedies based upon evidence (including info

- Same costly results as No. 2, above from front-line workers)

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done Safety Well Done

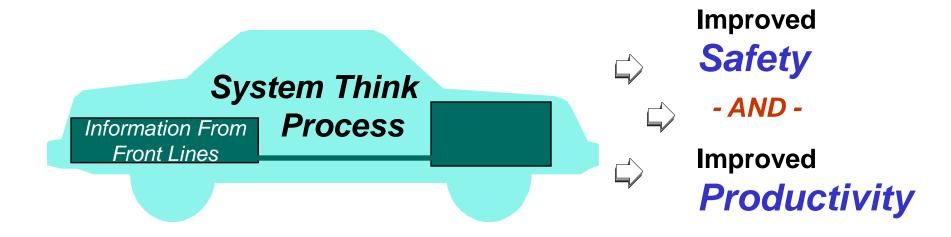
4. Implementation is last step

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

So . . . Is Safety Good Business?

- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs


The Role of Leadership

- Demonstrate Safety Commitment . . . **But Acknowledge That Mistakes Will Happen**
- Include "Us" (*e.g.*, System) Issues, Not Just "You" (*e.g.*, Training) Issues
- Make Safety a Middle Management Metric
- Engage Labor Early
- Include the System Manufacturers, Operators, Regulator(s), and Others
- Encourage and Facilitate Reporting
- Provide Feedback
- Provide Adequate Resources
- Follow Through With Action

How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
- Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same
- Recognize that *compliance* is very important, but the *mission is reducing systemic risk*

Conclusion: Process Plus Fuel Enables A Win-Win

25

Thank You!!!

Questions?