NTSB National Transportation Safety Board

Collaboration:

Presentation to: Southern Gas Association Management Conference Name: Christopher A. Hart Date: April 19, 2012

MAI

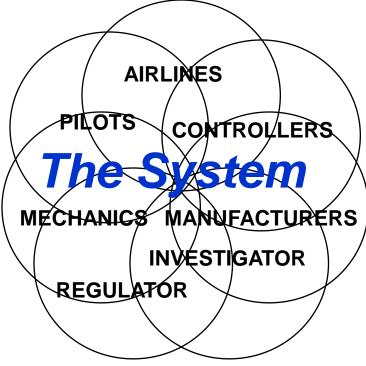
Safety Culture at the Industry Level

- Collaboration to Reduce Risk
- Improving Productivity, Too
- Role of
 - Leaders
 - Regulators

<u>NTSB 101</u>

- Independent federal agency, investigate transportation accidents, all modes
- Determine probable cause(s) and make recommendations to prevent recurrences
- Determine *cause,* not *liability or blame*
- SINGLE FOCUS IS SAFETY
- Primary product: Safety recommendations
 - Acceptance rate > 80%

33


The Context: Increasing Complexity

More System

Interdependencies

- Large, complex,
 interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution

• Safety Issues Are More Likely to Involve Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

The Solution – System Think

Awareness of how a change in one subsystem of a complex system may affect other subsystems within that system

"System Think" via Collaboration

Bringing all parts of a complex system together to

- Identify potential issues
- **PRIORITIZE** the issues
- Develop solutions for the prioritized issues
- Evaluate whether the solutions are
 - Accomplishing the desired result, and
 - Not creating unintended consequences

Collaboration: A Major Paradigm Shift

- Old: Regulator identifies a problem and proposes solutions
 - Industry skeptical of leader's understanding of the problem
 - Industry resists regulator's solutions and/or implements them begrudgingly
- New: Collaborative "System Think"
 - Industry involved in identifying problem
 - Industry players have "ownership interest" re solution because everyone had input, everyone's interests mutually considered
 - Prompt and willing implementation (and tweaking)
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Differing and sometimes competing interests
 - Labor-management issues between participants
 - Participants are potential adversaries
- Regulator probably not welcome
- Not a democracy
 - Regulator must regulate
- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System

Make the System

(a) Less Error Prone

and

(b) More Error Tolerant

April 19, 2012

Aviation Success Story

65% Decrease in Fatal Accident Rate,

1997 - 2007

largely because of

System Think

fueled by

Proactive Safety Information Programs

P.S. Aviation was already considered VERY SAFE in 1997!!

This collaborative process was successful

without generating

any new regulations!!

April 19, 2012

Manufacturer "System Think" Success

Aircraft manufacturers are increasingly seeking input, throughout the design process, from

- Pilots (<u>User</u> Friendly)
- Mechanics (Maintenance Friendly)
- Air Traffic Services (System Friendly)

SGA Management Conference

13

Not Only Improved Safety, But Improved Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
- Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes off line for VERY EXPENSIVE (!!) disassembly, inspection, repair, and reassembly

But Then . . .

Why Are We

So Jaded in The Belief That

Improving Safety

Will Probably

Hurt The Bottom Line??

April 19, 2012

Costly Result\$ Of Safety Improvements Poorly Done

Safety Poorly Done

- 1. Punish/re-train operator
- Poor workforce morale
- Poor labor-management relations

Safety Well Done

Look beyond operator, also consider system issues

- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

April 19, 2012

SGA Management Conference

16

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done

2. Management decides remedies unilaterally

- Problem may not be fixed

Safety Well Done

Apply "System Think," *with workers*, to identify and solve problems

- Remedy may not be most effective, may generate other problems
- Remedy may not be most cost effective, may reduce productivity
- Reluctance to develop/implement remedies due to past remedy failures
- Remedies less likely to address multiple problems

3. Remedies based upon instinct, gut feeling

- Same costly results as No. 2, above from fro

Remedies based upon evidence (including info from front-line workers)

17

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done

4. Implementation is last step

Safety Well Done

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

So . . . Is Safety Good Business?

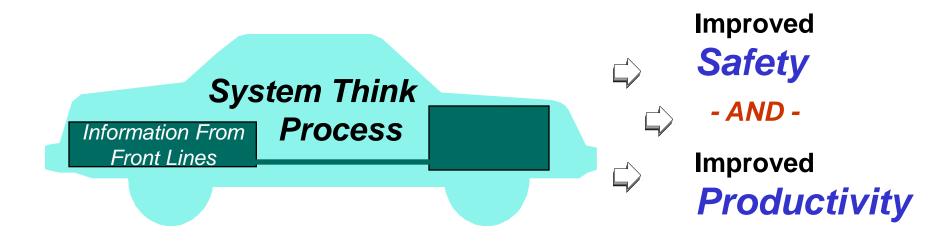
- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs

The Role of Leadership

- Demonstrate Safety Commitment . . . But Acknowledge That Mistakes Will Happen
- Include "Us" (e.g., System) Issues,
- Not Just "You" (e.g., Training) Issues
- Make Safety a Middle Management Metric
 - Engage Labor Early
 - Include the System --

Manufacturers, Operators, Regulator(s), and Others

- Encourage and Facilitate Reporting
 - Provide *Feedback*
 - Provide Adequate Resources
 - Follow Through With Action



How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
- Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce *policies for protecting information and those who provide it*
 - Encourage other industry participants to do the same
- Recognize that compliance is very important, but the mission is reducing systemic risk

20

Conclusion: Process Plus Fuel Enables A Win-Win

Thank You!!!

Questions?

April 19, 2012

