

NTSB National Transportation Safety Board

The Role of

Operators and Regulators

Presentation to: Leadership

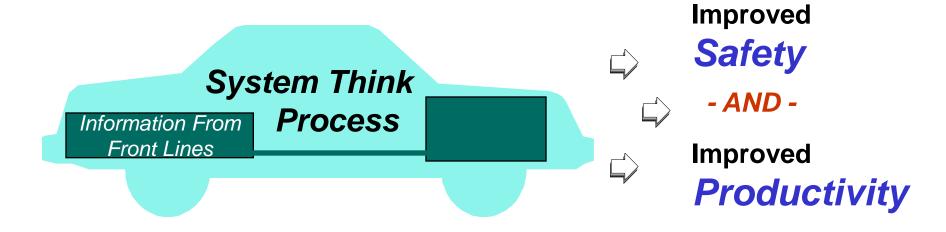
And Major Accident Risk Seminar

Name: Christopher A. Hart

Date: August 31, 2010

In Preventing Mishaps

Truth of Conventional Wisdom?


- Conventional Wisdom:

Improvements that reduce risk usually also reduce productivity

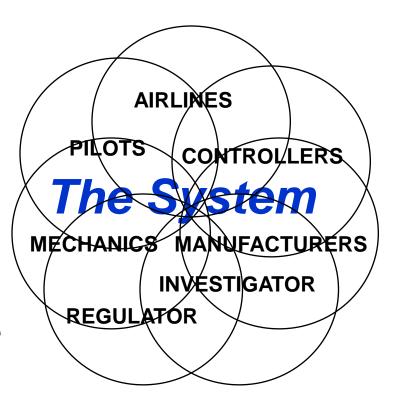
- Lesson Learned from Proactive Aviation Safety Information Programs:

Risk can be reduced in a way that also results in immediate productivity improvements

Process Plus Fuel Creates A Win-Win

<u>Outline</u>

- The Context
- Importance of "System Think"
- Importance of Better Information
- Safety Benefits
- Productivity Benefits
- The Role of Senior Management
- The Role of the Regulator


The Context: Increasing Complexity

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Front-Line Workers More Likely to Encounter Unanticipated Situations
- Front-Line Workers More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal

The Result:

Front-Line Staff Who Are

- Highly Trained
 - Competent
 - Experienced,
- -Trying to Do the Right Thing, and
 - Proud of Doing It Well

... Yet They Still Commit

Inadvertent Human Errors

When Things Go Wrong

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's also explore why the system allowed, or failed to accommodate, your mistake

and

You should be PUNISHED! Let's IMPROVE THE SYSTEM!

Fix the Person or the System?

Is the Person Clumsy?

Or Is the Problem . . .

The Step???

Enhance Understanding of Person/System Interactions By:

- Collecting,
- Analyzing, and
 - Sharing

Information

Objectives:

Make the System

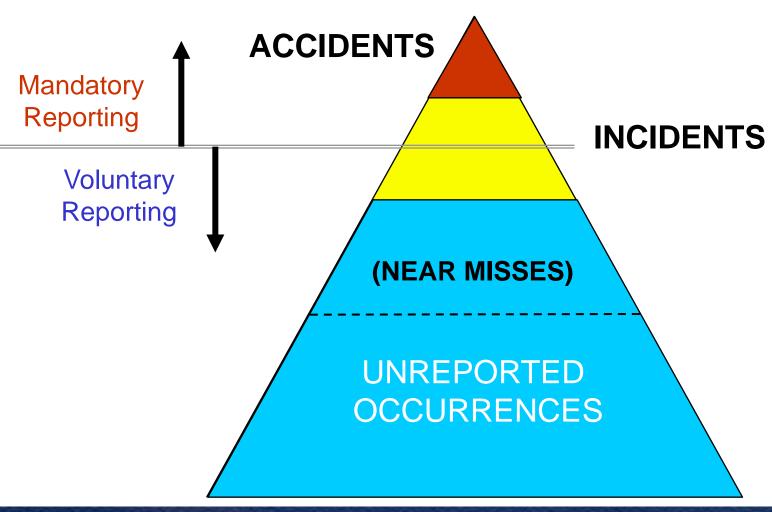
(a) Less Error Prone and

(b) More Error Tolerant

The Health Care Industry

To Err Is Human:

Building a Safer Health System


"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

U.S. Institute of Medicine, Committee on Quality of Health Care in America, 1999

Current System Data Flow

Heinrich Pyramid

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

Legal Concerns That Discourage Collection, Analysis, and Sharing

- Public Disclosure
- Job Sanctions and/or Enforcement
- Criminal Sanctions
- Civil Litigation

Typical "Cultural" Barrier

"Safety First"

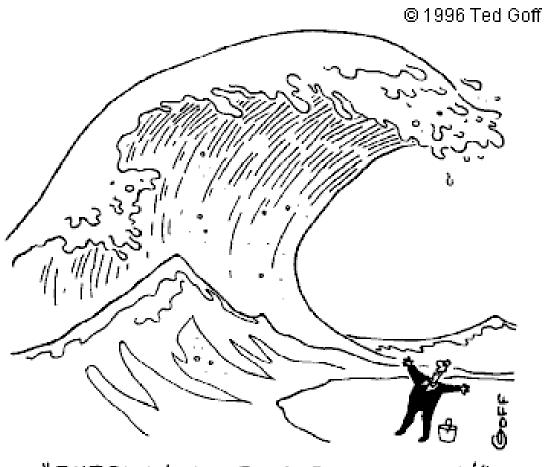
Middle Management

"Production First"

Front-Line Employees

"Please the Boss First...

THEN Consider Safety?"

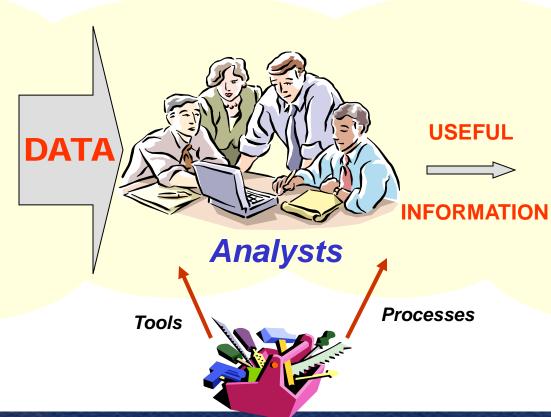


Next Challenge

Improved Analytical Tools

As we begin to get over the first hurdle, we must start working on the next one . . .

Information Overload


"EUREKA! MORE INFORMATION!"

From Data to Information

Tools and processes to convert large quantities of data into useful information

Data Sources

Info from frontline staff and other sources

Smart Decisions

- Identify issues
- PRIORITIZE!!!
- Develop solutions
- Evaluate interventions

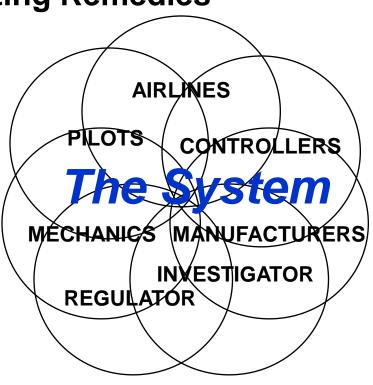
Aviation Success Story

65% Decrease in U.S. Fatal Accident Rate, 1997 - 2007

largely because of

Proactive Safety Information Programs

plus


System Think

P.S. Aviation was already considered *VERY SAFE* in 1997!!

Aviation "System Think" Success

Engage All Participants in Identifying Problems and Developing and Evaluating Remedies

- Airlines
- Manufacturers
 - With the systemwide effort
 - With their own end users
- Air Traffic Organizations
- Labor
 - Pilots
 - Mechanics
 - Air traffic controllers
- Regulator(s)

Major Benefit: **pavings**

*Significantly More

Than Savings From Mishaps Prevented

OPERATIONS MAINTENANCE

Immediate Benefits

Long-Term

Benefits

Not Only Improved Safety, But Improved Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
- Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes off line for VERY EXPENSIVE (!!) disassembly, inspection, repair, and reassembly

But Then...

Why Does

Improving Safety

Usually

Hurt The Bottom Line??

Costly Result\$ Of Safety Improvements Poorly Done

Safety **Poorly** Done

Safety Well Done

1. Punish/re-train workers

Look beyond workers,

- Poor workforce morale

also consider system

- Poor labor-management relations

issues

- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

- 2. Management decides remedies unilaterally
- Problem may not be fixed

- Apply "System Think," with workers, to identify and solve problems
- Remedy may not be most effective, may generate other problems
- Remedy may not be most cost effective, may reduce productivity
- Remedies less likely to address multiple problems
- Reluctance to develop/implement remedies due to past remedy failures
 - 3. Remedies based upon instinct, gut feeling
 - Same costly results as No. 2, above

Remedies based upon evidence (including info from front-line workers)

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done Safety Well Done

4. Implementation is last step

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

Conclusion: Is Safety Good Business?

- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs

The Role of Senior Management

- Demonstrate Safety Commitment . . . But Acknowledge That Mistakes Will Happen
 - Include "Us" (e.g., System) Issues,

Not Just "You" (e.g., Training) Issues

- Make Safety a Middle Management Metric
 - Engage Labor Early
 - Include the **System** --

Manufacturers, Regulator(s), and Others

- Encourage and Facilitate Reporting
 - Provide Feedback
 - Provide Adequate Resources
 - Follow Through With Action

How The Regulator Can Help

- Emphasize Importance of System Issues in Addition to Worker Issues
- Encourage and Participate in Industry-Wide "System Think"
- Facilitate Collection and Analysis of Information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same

Thank You!!!

Questions?