
1

MetaMap Evaluation

Alan R. Aronson

May 8, 2001

1. Overview

The evaluation of Metathesaurus strings (or candidates), against the input text that caused them to
be retrieved by MetaMap is described in this paper.1 This evaluation occurs after the text has been
parsed into manageable pieces called phrases, the variants for a phrase have been computed, and
the Metathesaurus candidates containing at least one phrase variant have been retrieved. The pur-
pose of evaluation is to determine how well each candidate matches the text.

2. Candidate Evaluation

The candidate evaluation process is described in the following steps:

• describing the input to the process and how it is filtered;

• defining the evaluation function;

• extending that function to a complete mapping of the text;

• summarizing the algorithm; and

• indicating how several MetaMap options affect the process.

Throughout the descriptions, input phrases such as of obstructive sleep apnea are used for illustra-
tion. For normal MetaMap processing, the phrase is filtered by removing non-content words such
as prepositions, determiners, etc. In the above case, the filtered phrase is obstructive sleep apnea.

1. Much of the material here is derived from the paper MetaMap: Mapping Text to the UMLS Metathesaurus, 1996.

MetaMap Evaluation 2

2. Candidate Evaluation

2.1 Input
Input to the evaluation process consists of a phrase, its variants, and Metathesaurus candidates.
The variants for the phrase of obstructive sleep apnea are shown in Figure 1 organized according

to the first word of the variants. Each variant is represented by a vinfo/5 predicate indicating the
variant’s generator, the position of the generator in the phrase, whether the generator involves the
head of the phrase, the variant, itself, and a list of its words. The basic information about a gener-
ator or variant is actually represented by a v/6 term which has arguments the variant, itself, its
part of speech, its variant distance score and history, its base forms, and its distance from the right
end of the phrase. Examples of the complete representation for variants are

apnea
 vinfo: apnea, [3,3], yes, apnea, [apnea]
apneas
 vinfo: apnea, [3,3], yes, apneas, [apneas]
apnoea
 vinfo: apnea, [3,3], yes, apnoea, [apnoea]
hypnic
 vinfo: sleep, [2,2], yes, hypnic, [hypnic]
obstructive
 vinfo: obstructive, [1,1], yes, obstructive, [obstructive]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apneas,

[obstructive,sleep,apneas]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apneae,

[obstructive,sleep,apneae]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apnea,

[obstructive,sleep,apnea]
osa
 vinfo: obstructive sleep apnea, [1,3], yes, osa’s, [osa]
 vinfo: obstructive sleep apnea, [1,3], yes, osa, [osa]
sleep
 vinfo: sleep, [2,2], yes, sleep, [sleep]
 vinfo: sleep, [2,2], yes, sleep, [sleep]
 vinfo: sleep apnea, [2,3], yes, sleep apnoea, [sleep,apnoea]
 vinfo: sleep apnea, [2,3], yes, sleep apnea, [sleep,apnea]
sleeper
 vinfo: sleep, [2,2], yes, sleeper, [sleeper]
sleepers
 vinfo: sleep, [2,2], yes, sleepers, [sleepers]
sleeping
 vinfo: sleep, [2,2], yes, sleeping, [sleeping]
sleeplessness
 vinfo: sleep, [2,2], yes, sleeplessness, [sleeplessness]
sleeps
 vinfo: sleep, [2,2], yes, sleeps, [sleeps]
sleepy
 vinfo: sleep, [2,2], yes, sleepy, [sleepy]
somnus
 vinfo: sleep, [2,2], yes, somnus, [somnus]

Figure 1. Variants for the phrase of obstructive sleep apnea organized by first word

2. Candidate Evaluation

MetaMap Evaluation 3

v(apneas,[noun],1,“i”,[apnea,apnoea],1),
v(obstructive sleep apneas,[noun],1,“i”,[obstructive sleep apnea],3),and
v(sleepers,[noun],4,“di”,[sleeper],2).

Note that sleepers is an inflection of a derivational variant of sleep, hence its history “di”; and its
distance from sleep is determined by the values shown in Table 1. Here, the single-letter codes for

a single variation step are obvious except to note that the transformation from a complete form to
an acronym or abbreviation is denoted “a”, and the transformation from an acronym/abbreviation
to its expanded form is denoted “e”. Since sleepers is one derivational step and one inflectional
step from sleep, its total distance is 4, the sum of 3 and 1.

130 Metathesaurus strings are retrieved for the phrase of obstructive sleep apnea. Each candidate
is represented by a usc/3 term with arguments the list of words (determined by MetaMap tokeni-
zation) for the string, the string, itself, and the string’s Metathesaurus concept. Some of the candi-
dates are listed here according to the variant which retrieved them:

• obstructive sleep apnea (2 candidates)
usc([obstructive,sleep,apnea],Sleep Apnea, Obstructive,Sleep Apnea, Obstruc-

tive)

usc([obstructive,sleep,apnea,syndrome],Syndrome, Sleep Apnea, Obstruc-

tive,Sleep Apnea, Obstructive)

• obstructive sleep apneas (1 candidate)
usc([obstructive,sleep,apneas],Apneas, Obstructive Sleep,Sleep Apnea,

Obstructive)

• osa (5 candidates)
usc([osa,antigen],OSA antigen,OSA antigen)

usc([osa,gene,product],osa gene product,osa gene product)

usc([osa,protein],osa protein,osa protein)

usc([osa,obstructive,sleep,apnea],OSA - Obstructive sleep apnea,Sleep Apnea,

Obstructive)

usc([osa,obstructive,sleep,apnoea],OSA - Obstructive sleep apnoea,Sleep

Apnea, Obstructive)

• obstructive (49 candidates)
usc([obstructive,hypertrophic,cardiomyopathy],Obstructive hypertrophic car-

diomyopathy,Cardiomyopathy, Hypertrophic Obstructive)

Variant Type
Distance

Value

spelling (p) 0
inflectional (i) 1
synonym (s) or

acronym/abbreviation (a, e)
2

derivational (d) 3

Table 1. Variant Distances

MetaMap Evaluation 4

2. Candidate Evaluation

usc([obstructive,hyperbilirubinemia],Obstructive hyperbilirubinemia,Jaun-

dice, Obstructive)

usc([obstructive,liver,cirrhoses],Cirrhoses, Obstructive Liver,Liver Cirrho-

sis, Obstructive)

usc([obstructive,lung,disease],Disease, Obstructive Lung,Chronic Obstructive

Airway Disease)

usc([obstructive,jaundice],Jaundice, Obstructive,Jaundice, Obstructive)
...
usc([obstructive],Obstructive,Obstructed)
...

usc([obstructive,symptom],OBSTRUCTIVE SYMPTOM,OBSTRUCTIVE SYMPTOM)

usc([obstructive,sleep,apneas],Apneas, Obstructive Sleep,Sleep Apnea,

Obstructive)

usc([obstructive,sleep,apnea],Sleep Apnea, Obstructive,Sleep Apnea, Obstruc-

tive)

usc([obstructive,sleep,apnea,syndrome],Syndrome, Sleep Apnea, Obstruc-

tive,Sleep Apnea, Obstructive)

usc([obstructive,hydrocephalus],Obstructive Hydrocephalus,Obstructive Hydro-

cephalus)

usc([obstructive,genitourinary,defect],Obstructive genitourinary

defect,Obstructive genitourinary defect)

• sleep apnea (1 candidate)
usc([sleep,apnea],Apnea, Sleep,Sleep Apnea Syndromes)

• sleep apnoea (1 candidate)
usc([sleep,apnoea],Sleep apnoea <1>,Sleep Apnea Syndromes)

• sleep (58 candidates)
usc([sleep,walking],Sleep Walking,Somnambulism)
usc([sleep,apnea],Apnea, Sleep,Sleep Apnea Syndromes)
usc([sleep,apneas],Apneas, Sleep,Sleep Apnea Syndromes)
usc([sleep],Sleep,Sleep)
usc([sleep,deprivation],Sleep Deprivation,Sleep Deprivation)
...
usc([sleep,analyzers],Sleep Analyzers,Polysomnography Analyzers, Computer-

ized)
usc([sleep,recorders],Sleep Recorders,Polysomnographs)
usc([sleep],Sleep <3>,Sleep brand of diphenhydramine hydrochloride)

• sleeper (2 candidates)
usc([sleeper,peptide],sleeper peptide,sleeper peptide)
usc([sleeper,short],Short, sleeper,“Short-sleeper”)

• sleeping (6 candidates)
usc([sleeping],Sleeping,Asleep)
usc([sleeping,sickness],Sleeping sickness, NOS,Trypanosomiasis, African)
usc([sleeping,excessive],Sleeping Excessive,Disorders of Excessive Somno-

lence)
usc([sleeping,out],Sleeping out,Sleeping out)
usc([sleeping,rough],Sleeping rough,Sleeping out)
usc([sleeping,pill],sleeping pill,sleeping pill)

2. Candidate Evaluation

MetaMap Evaluation 5

• sleeplessness (1 candidate)
usc([sleeplessness],Sleeplessness,Sleep Initiation and Maintenance Disor-

ders)

• sleepy (1 candidate)
usc([sleepy],Sleepy,Sleepy)

• apnea (1 candidate)
usc([apnea],Apnea,Apnea)

• apneas (1 candidate)
usc([apneas],Apneas,Apnea)

• apnoea (1 candidate)
usc([apnoea],Apnoea,Apnea)

During normal MetaMap processing (called semantic mode processing), Metathesaurus candi-
dates with extraneous words are filtered out because they are plentiful but produce mappings
which are inferior to those associated with candidates with fewer words. Specifically overmatches
and concept gaps are not allowed. An overmatch is a candidate with non-matching words on one
end of the candidate. Examples of overmatches for the phrase of obstructive sleep apnea, where
the extraneous words are italicized, include ‘Central sleep apnea’, ‘OSA - Obstructive sleep
apnea’,1 ‘Obstructive appendicitis’, ‘Sleep Walking’, ‘Sleeping sickness, NOS’,2 and ‘Primary
sleep apnea of newborn’. Concept gaps are like overmatches except that the extraneous words
occur in the middle of the candidate. An example of a concept gap is ‘Computerized Medical
Record System’ for the text computer system. The extraneous words are again italicized.

2.2 Evaluating Candidates
The evaluation function computes a measure of the quality of the match between a phrase and a
Metathesaurus candidate. For normal MetaMap operation the evaluation function is based on four
components: centrality, variation, coverage, and cohesiveness. A normalized value between 0 (the
weakest match) and 1 (the strongest match) is computed for each of these components. A
weighted average of the components is computed in which coverage and cohesiveness receive
twice the weight as centrality and variation. The actual weights used were determined empiri-
cally; relative evaluation values were not particularly sensitive to differences in the weights. The
result is normalized to a value between 0 and 1,000, 0 indicating no match at all and 1,000 indicat-
ing a perfect match (modulo capitalization and uninversion). Throughout the description of evalu-
ation, the candidates ‘Obstructive sleep apnoea’, ‘Sleep Apneas’3 and ‘Sleepy’ will be used to
illustrate.

In preparation for computing the evaluation function for a given phrase and candidate, a match-
map containing information about the mapping from phrase text to Metathesaurus candidate is
computed. It consists of a list of matchmap elements each of which has a phrase component, a

1. Alternatively, this example could be interpreted as a left overmatch: OSA - Obstructive sleep apnea; in either case
the hyphen is ignored.

2. NOS is ignored by MetaMap

3. This analysis also applies to the Metathesaurus string ‘Apneas, Sleep’ because MetaMap only sees strings unin-
verted.

MetaMap Evaluation 6

2. Candidate Evaluation

concept component and a variation level. The phrase and concept components indicate a word
span of matching words in the phrase and candidate, respectively; and the variation level is just
the variant score for the words in the candidate. Example matchmaps for the phrase of obstructive
sleep apnea are shown in Table 2.

In addition to computing which words of a phrase match which words of a candidate, it is impor-
tant to know how many pieces were used to accomplish the match. The matchmap is used to
derive the set of connected component sizes for both phrase and candidate. (See the definition of
cohesiveness below for more information.) Examples of connected component sizes are given in
Table 3. Each of these examples indicates that the match consists of one maximal connected com-

ponent of the same size for both the phrase and the candidate. A more interesting example would
be if we had the text of sleep obstructive apnea and the candidate ‘Sleep Apneas’, the connected
component sizes would be [[1,1],[2]] indicating the phrase has two components of size 1 (sleep
and apnea) and the candidate has a single component of size two (sleep apneas).

The remainder of this section consists of definitions for the four components of the evaluation
function plus an additional component which is used when word order does not matter.

• Centrality: The centrality value is simply 1 if the string involves the head of the phrase and 0
otherwise. Centrality values for our examples are displayed in Table 4. Note that ‘Sleepy’

Candidate Matchmap

Obstructive sleep apnoea [[[1,1],[1,1],0],[[2,3],[2,3],0]]
Sleep Apneas [[[2,2],[1,1],0],[[3,3],[2,2],1]]
Sleepy [[[2,2],[1,1],3]]

Table 2. Matchmaps for selected Metathesaurus candidates

Candidate Connected Component Sizes

Obstructive sleep apnoea [[3],[3]]
Sleep Apneas [[2],[2]]
Sleepy [[1],[1]]

Table 3. Connected component sizes for selected Metathesaurus candidates

Candidate Centrality

Obstructive sleep apnoea 1
Sleep Apneas 1
Sleepy 1

Table 4. Centrality values for selected Metathesaurus candidates

2. Candidate Evaluation

MetaMap Evaluation 7

would have gotten a centrality value of 0 if the head of the example phrase were apnea rather
than obstructive sleep apnea.

• Variation: The variation value estimates how much the variants in the Metathesaurus string dif-
fer from the corresponding words in the phrase. It is computed by first determining the varia-
tion distance for each variant in the Metathesaurus string. This distance is the sum of the
distance values for each step taken during variant generation. The values for each step were
listed above in Table 1. The variation distance determines the variation value for the given vari-
ant according to the formula V=4/(D+4). As the total distance value, D, increases from its min-
imum value of 0, V decreases from a maximum value of 1 and is bounded below by 0. The final
variation value for the candidate is the average of the values for each of the variants. Variation
values for the example candidates is shown in Table 5. Note that the values for Ds in the table

are simply lists of the distance values for the candidate variants.

• Coverage: The coverage value indicates how much of the phrase string and the Metathesaurus
string are involved in the match. In order to compute the value, the number of words participat-
ing in the match is computed for both the phrase and the Metathesaurus string. These numbers
are called the phrase span and Metathesaurus span, respectively. Note, however, that gaps are
ignored.1 The coverage value for the phrase is the phrase span divided by the length of the
phrase. Similarly, the coverage value for the Metathesaurus string is the Metathesaurus span
divided by the length of the string. The final coverage value is the weighted average of the val-
ues for the phrase and the Metathesaurus string where the Metathesaurus string is given twice
the weight as the phrase. Example coverage values are given in Table 6.

• Cohesiveness: The cohesiveness value is similar to the coverage value but emphasizes the
importance of connected components. A connected component is a maximal sequence of con-
tiguous words participating in the match. The connected components for both the phrase and

Candidate Variation

Obstructive sleep apnoea Ds = [0,0,0]; V = (1+1+1)/3 = 1.0
Sleep Apneas Ds = [0,1]; V = (1+0.8)/2 = 0.9
Sleepy Ds = [3]; V = (4/7)/1 = 0.571

Table 5. Variation values for selected Metathesaurus candidates

1. This somewhat surprising scheme is illustrated by the following example. In computing the coverage for the
phrase an inferior vena caval stent filter with the Metathesaurus string Inferior Vena Cava Filter, the phrase span is 5
even though stent does not participate in the match.

Candidate Coverage

Obstructive sleep apnoea (3/3 + 2*3/3)/3 = 1.0
Sleep Apneas (2/3 + 2*2/2)/3 = 0.889
Sleepy (1/3 + 2*1/1)/3 = 0.778

Table 6. Coverage values for selected Metathesaurus candidates

MetaMap Evaluation 8

2. Candidate Evaluation

the Metathesaurus string are computed. This information is abstracted by noting the size of
each component. This produces a set of connected component sizes for both the Metathesaurus
string and the phrase. The cohesiveness value for the phrase is the sum of the squares of the
connected phrase component sizes divided by the square of the length of the string. A similar
cohesiveness value is computed for the Metathesaurus string. The final cohesiveness value is
the weighted average of the phrase and Metathesaurus string values where the Metathesaurus
string is again given twice the weight as the phrase. Examples of cohesiveness values are given
in Table 7. (A slightly modified cohesiveness computation is used for final mappings; see sec-
tion 2.3 below.)

Recall that the final evaluation value is the weighted average of the four evaluation components,
coherence and cohesiveness getting twice the weight of centrality and variation, normalized to a
value between 0 and 1,000. The final evaluation for our examples is shown in Table 8.

The final list of candidates for the phrase of obstructive sleep apnea is shown in Figure 2. Note

that ‘Sleep Apneas’ (or ‘Apneas, Sleep’) does not appear here because it is a string for the concept

Candidate Cohesiveness

Obstructive sleep apnoea (32/32 + 2*32/32)/3 = 1.0
Sleep Apneas (22/32 + 2*22/22)/3 = 0.815
Sleepy (12/32 + 2*12/12)/3 = 0.704

Table 7. Cohesiveness values for selected Metathesaurus candidates

Candidate Final Evaluation

Obstructive sleep apnoea 1,000*(1.0 + 1.0 + 2*1.0 +2*1.0)/6 = 1,000
Sleep Apneas 1,000*(1.0 + 0.9 + 2*0.889 + 2*0.815)/6 = 884
Sleepy 1,000*(1.0 + 0.571 + 2*0.778 + 2*0.704)/6 = 755

Table 8. Final evaluation values for selected Metathesaurus candidates

1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or Syn-
drome]

 901 Apnea, Sleep (Sleep Apnea Syndromes) [Disease or Syndrome]
 827 Apnea [Finding]
 827 Obstructive (Obstructed) [Functional Concept]
 827 Sleep [Functional Concept]
 827 Sleep <3> (Sleep brand of diphenhydramine hydrochloride) [Organic

Chemical,Pharmacologic Substance]
 793 Sleeping (Asleep) [Finding]

755 Sleeplessness (Sleep Initiation and Maintenance Disorders) [Mental or
Behavioral Dysfunction,Sign or Symptom]

 755 Sleepy [Finding]

Figure 2. The Evaluated Metathesaurus Candidates for of obstructive sleep apnea

2. Candidate Evaluation

MetaMap Evaluation 9

‘Sleep Apnea Syndromes’ which has a better scoring string ‘Apnea, Sleep’. The lesser scoring
string can never contribute to a better mapping, so it is eliminated from the candidate list.

When word order does not matter, the coverage component of the evaluation function is replaced
by the involvement component:

• Involvement: The involvement value is a rough approximation of the coverage except that the
strict word order implied by the matchmap is no longer followed. The involvement value for the
phrase is the proportion of phrase words which can map to a Metathesaurus word whether or
not they do according to the matchmap. For example, given the phrase Advanced cancer of the
lung with words [advanced, cancer, lung] and the Metathesaurus string “Lung Cancer” with
words [lung, cancer], the matchmap maps lung to lung, but does not map cancer because of
word order. The phrase involvement value here is 2/3 as opposed to the coverage value of 1/3.
Similarly, the involvement value for the Metathesaurus string is the proportion of words which
can be mapped to from the phrase. For the current example, the Metathesaurus involvement
value is 2/2 or 1 rather than 1/2 for coverage. Thus the final involvement value for this example
is the average (2/3 + 1)/2 or 0.833.1

2.3 Evaluating the Final Mapping
Once final mappings have been computed (see The MetaMap Mapping Algorithm), the evaluation
function is applied to the combined candidates constituting the mappings, and the highest scoring
mappings determine the final MetaMap result. The best mapping for of obstructive sleep apnea
consists of the single candidate ‘Obstructive sleep apnoea’ and is not very interesting. Consider
the non-optimal mapping consisting of ‘Obstructive’ and ‘Sleep Apneas’. The matchmap for this
mapping is formed by simply combining the matchmaps of ‘Obstructive’ and ‘Sleep Apneas’:
[[[1,1],[1,1],0], [[2,2],[1,1],0], [[3,3],[2,2],1]]. The connected component sizes for this matchmap
are [[3], [1,2]]. For a final mapping, the connected component sizes for the candidates are ignored.
Instead the lengths of the candidates are used. This has the effect of basing cohesiveness on con-
cept chunks rather than word chunks, and it also ignores gaps and overmatches in the process. It
also has the property that the candidate part of the cohesiveness value is always a perfect 1 when
the mapping involves a single candidate. For our example, the lengths are [1,2], exactly the same
as the connected component sizes. The final evaluation value for the mapping is 890; details are
given in Table 9.

1. Note that the weighting of phrase involvement and Metathesaurus involvement is equal rather than the normal 1:2
ratio.

Evaluation
Component Value

Centrality 1
Variation Ds = [0,0,1]; V = (1+1+0.8)/3 = 0.933
Coverage (3/3 + 2*3/3)/3 = 1.0

Table 9. Evaluation for the mapping ‘Obstructive’ and ‘Sleep Apneas’

MetaMap Evaluation 10

2. Candidate Evaluation

As another example of computing cohesiveness for a final mapping, consider the text chronic
headache with sleep disorders and the two candidates ‘Chronic Cluster Headache’ and ‘Sleep
Walking Disorders’ (using the options -zg, --term_processing and --allow_concept_gaps).
The connected component sizes for the two candidates are [1,1,1,1], but the candidate lengths are
[3,3]. Since the connected component sizes for the phrase are [2,2], the cohesiveness value for this
mapping is ((22+22)/52 + 2*(32+32)/62)/3 = 0.440

Output from the evaluation process takes the form of ev/8 terms with arguments: the negation of
the normalized value, the Metathesaurus string (candidate), its concept, the words in the string,
the concept’s semantic types, the matchmap, a flag indicating whether the match involves the
head, and a flag indicating whether the match is an overmatch. The evaluation terms for our exam-
ples are:

• ev(-1000, Obstructive sleep apnoea, Sleep Apnea, Obstructive, [obstruc-
tive,sleep,apnoea], [dsyn], [[[1,1],[1,1],0],[[2,3],[2,3],0]], yes, no)

• ev(-884, Apneas, Sleep, Sleep Apnea Syndromes, [sleep,apneas], [dsyn],
[[[2,2],[1,1],0],[[3,3],[2,2],1]], yes, no)

• ev(-755, Sleepy, Sleepy, [sleepy], [fndg], [[[2,2],[1,1],3]], yes, no)

Examples of complete mappings with their corresponding evaluations are:

• map(-1000, [ev(-1000, ‘Obstructive sleep apnoea’, ‘Sleep Apnea, Obstructive’,
[obstructive,sleep,apnoea], [dsyn], [[[1,1],[1,1],0],[[2,3],[2,3],0]], yes,
no)])

• map(-901, [ev(-827, ‘Obstructive’, ‘Obstructed’, [obstructive], [ftcn],
[[[1,1],[1,1],0]], yes, no), ev(-901, ‘Apnea, Sleep’, ‘Sleep Apnea Syn-
dromes’, [sleep,apnea], [dsyn], [[[2,3],[1,2],0]], yes, no)])

2.4 Summary of the Algorithm
This section summarizes the evaluation process elaborating only those steps that have not already
been discussed. For a given phrase and Metathesaurus candidate (or possibly several candidates
for a full mapping):

• First check to see if the lowercased phrase text is a stop phrase according to
metamap_stop_phrase:stop_phrase/1. This predicate is defined by those phrases appearing
in one of several MEDLINE test collections which occur at least 40 times and do not produce
any mappings. (This is determined, of course, without the use of stop_phrase/1, itself). If the
phrase is a stop phrase, do not continue; otherwise,

Cohesiveness (32/32 + 2*(12+22)/32)/3 = 0.704
Total 1,000*(1.0 + 0.933 + 2*1.0 + 2*0.704)/6 = 890

Evaluation
Component Value

Table 9. Evaluation for the mapping ‘Obstructive’ and ‘Sleep Apneas’

2. Candidate Evaluation

MetaMap Evaluation 11

• Check to see if this candidate has already been evaluated. If so, return the previous result; other-
wise,

• Compute its matchmap and connected component sizes;

• Compute each of the evaluation components and combine them into a final value;

• Filter out redundant evaluations, where an evaluation is redundant if its score is no better than
another evaluation involving the same concept and having the same phrase involvement. An
example of a redundant evaluation is that for ‘Sleep Apneas’ (with a score of 884) because
‘Sleep Apnea’ (with a score of 901) involves the same concept, ‘Sleep Apnea Syndromes’, and
has the same phrase involvement, sleep apnea;

• Filter out subsumed evaluations, where an evaluation is subsumed by another if its score is
strictly worse and it has the same phrase involvement. The evaluations for ‘Sleeping’, ‘Sleep-
lessness’ and ‘Sleepy’ are all subsumed by either ‘Sleep’ or ‘Sleep <3>’ since in each case their
score is less than 827 and they all involve sleep from the phrase. Note that neither ‘Sleep’ nor
‘Sleep <3>’ subsume each other because they have the same score of 827.

The purpose of filtering out redundant evaluations is to remove strings of a given concept which
cannot outscore a similar string for the concept. The purpose of filtering out subsumed evaluations
is to prepare for computing a final mapping by removing all but the best scoring strings covering a
specific part of the phrase.

2.5 Options affecting the algorithm
The following options have an effect on the evaluation process:

• -z --term_processing affects parsing and, therefore, has an indirect effect on evaluation. If
term processing is in effect for the input text of obstructive sleep apnea, then evaluation
includes the word of which would not be the case without the option. A more realistic example
is that the input text Cancer of the lung <1> appears as cancer of the lung if term processing is
in effect. (Term processing assumes that it may be asked to process Metathesaurus strings with
ambiguity designators. These are removed before further processing.);

• -o --allow_overmatches or -g --allow_concept_gaps: if either of these options is in
force, the initial check for stop phrases is not performed since they were computed without
these options;

• -i --ignore_word_order affects both the computation of matchmaps and also causes the cov-
erage component of the evaluation function to be replaced by an involvement component.
Matchmaps are formed by scanning the list of words in the candidate, matching variants from
the text along the way. Under normal processing the sequence of variants must occur left to
right in the phrase. If word order is being ignored, the variants can match in any order. The
other effect of ignoring word order is the use of involvement instead of coverage; it was
described previously;

• -Y --prefer_multiple_concepts causes the cohesiveness evaluation component to be
inverted, i.e., the cohesiveness value is 1.0 - <original cohesiveness value>;

MetaMap Evaluation 12

2. Candidate Evaluation

• -r <integer> --threshold <integer> invokes filtering out of evaluations not meeting the
specified threshold. This is performed before filtering out of redundant evaluations;

• -s --semantic_types or -q --machine output: either of these options causes the four-letter
abbreviations for semantic types to be added to evaluations. This addition is performed after fil-
tering out redundant evaluations;

• -X --truncate_candidates_mappings truncates the list of candidate evaluations to the 100
top scoring ones; this is done before filtering out subsumed evaluations. (This option also trun-
cates the list of top scoring mappings to 8 after the mappings have been constructed.)

• -P --composite_phrases or -Q --quick_composite_phrases: these options have the indi-
rect effect of setting other options. For -P, the options -zogiX (where -z is --term_processing);
for -Q, just -zi are set. (Note that these options are still under development.)

