text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
Funding
design element
Find Funding
A-Z Index of Funding Opportunities
Recent Funding Opportunities
Upcoming Due Dates
Advanced Funding Search
Interdisciplinary Research
How to Prepare Your Proposal
About Funding
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Related
Grants.gov logo

Email this pagePrint this page
Division of Computer and Network Systems

Computing Education for the 21st Century  (CE21)

CONTACTS

Name Email Phone Room
Janice  Cuny jcuny@nsf.gov (703) 292-8900  1105  
Jeff  Forbes jforbes@nsf.gov (703) 292-4291  1175  
James  E. Hamos jhamos@nsf.gov (703) 292-4687  835  
Mimi  McClure mmcclure@nsf.gov (703) 292-5197  1160  

PROGRAM GUIDELINES

Solicitation  12-609

Important Notice to Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG), NSF 13-1, was issued on October 4, 2012 and is effective for proposals submitted, or due, on or after January 14, 2013. Please be advised that, depending on the specified due date, the guidelines contained in NSF 13-1 may apply to proposals submitted in response to this funding opportunity.

Please be aware that significant changes have been made to the PAPPG to implement revised merit review criteria based on the National Science Board (NSB) report, National Science Foundation's Merit Review Criteria: Review and Revisions. While the two merit review criteria remain unchanged (Intellectual Merit and Broader Impacts), guidance has been provided to clarify and improve the function of the criteria. Changes will affect the project summary and project description sections of proposals. Annual and final reports also will be affected.

A by-chapter summary of this and other significant changes is provided at the beginning of both the Grant Proposal Guide and the Award & Administration Guide.

DUE DATES

Full Proposal Deadline Date:  March 13, 2013

Second Wednesday in March, Annually Thereafter

SYNOPSIS

The Computing Education for the 21st Century (CE21) program aims to build a robust computing research community, a computationally competent 21st century workforce, and a computationally empowered citizenry. In this undertaking, there are three interrelated challenges: the significant underproduction of degrees needed for the computing and computing-related workforce, the longstanding underrepresentation of many segments of our population, and the lack of a presence of computing in K-12.

Innovation in information technology (IT) has driven economic growth, underlies many of our recent scientific advances, and ensures our national security; it is not surprising then that predicted IT job growth is very strong. Yet students are not majoring in computing in sufficient numbers to fulfill the forecasted demand. This shortfall is exacerbated by the longstanding underrepresentation of women, persons with disabilities, African Americans, Hispanics, Native Americans and indigenous peoples in computing. We cannot meet workforce demands without their participation and we cannot, in an increasingly competitive world economy, afford to cede the talents and creativity of so many. To ensure their participation, and the full participation of all students, we must provide better opportunities to study computing in K-12. We must start with a better understanding of how students learn computing. Unlike many of the other STEM (science, technology, engineering, and mathematics) disciplines, computing has not developed a robust research base on the teaching and learning of its fundamental concepts and skills. That research base must be built and it must be used in providing all students with rigorous academic curricula that cover computational concepts and skills, and the breadth of application and potential of computing. Providing access to rigorous, academic computing in K-12 will require an unprecedented effort to develop curriculum and materials and to prepare teachers.

CE21 thus supports efforts in three tracks:

Computing Education Research (CER) proposals will aim to develop a research base for computing education. Projects may conduct basic research on the teaching and learning of computational competencies in face-to-face or online settings; they may design, develop, test, validate, and refine materials, measurement tools, and methods for teaching in specific contexts; and/or they may implement promising small-scale interventions in order to study their efficacy with particular groups. Efforts can focus on computational thinking as taught in computing courses or infused across the curriculum, they can target students or their teachers in informal or formal educational settings, or they can address any level within the K-16 pipeline, from elementary school through high school and college.

CS 10K proposals will aim to develop the knowledge base and partnerships needed to catalyze the CS 10K Project. The CS 10K Project aims to have rigorous, academic curricula incorporated into computing courses in 10,000 high schools, taught by 10,000 well-trained teachers. CS 10K proposals can address a wide range of needed activities, including the development of course materials, pedagogy, and methods courses, as well as professional development and ongoing support for teachers, approaches to scaling, best practices for increasing the participation of students from underrepresented groups, and strategies for building K-12, university, and community partnerships.

Broadening Participation (BP) proposals will aim to develop and assess novel interventions that contribute to our knowledge base on the effective teaching and learning of computing for students from the underrepresented groups: women, persons with disabilities, African Americans, Hispanics, Native Americans and indigenous peoples. Proposed interventions should be designed to engage and retain students from these groups and, at the same time, to increase their knowledge of computational thinking concepts and skills. Proposers are encouraged to leverage the resources provided by the existing BPC-A Alliances and to develop interventions that, if proven successful, could be implemented within a BPC-A Alliance. For additional information on the Alliances, see http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503593&org=NSF.

In aggregate, CE21 projects will contribute to our understanding of how diverse student populations are engaged and retained in computing, learn its fundamental concepts, and develop computational competencies that position them to contribute to an increasingly computationally empowered workforce.

RELATED URLS

CE21 Frequently Asked Questions (for solicitation NSF 12-527)

THIS PROGRAM IS PART OF

Additional Funding Opportunities for the CCF Community

Additional Funding Opportunities for the IIS Community

Education and Workforce Program


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program

News



Email this pagePrint this page
Back to Top of page