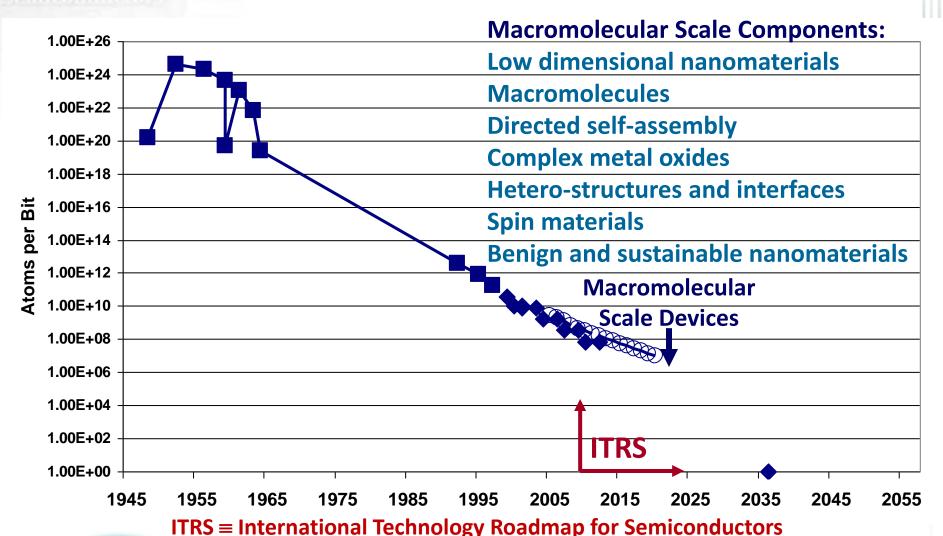
Metrology and Characterization Challenges for Emerging Research Materials and Devices

2011 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics,
MINATEC Campus, Grenoble, France, May 24, 2011

C. Michael Garner, Intel Daniel J. C. Herr, SRC Yaw Obeng, NIST

n committee


Outline

- ITRS Emerging Research Materials [ERM] Scope
- Materials metrology needs for ERM
- The emerging impact of More than Moore
- Impact of the technology cycle on ITRS ERM metrology needs
- Key messages

n communication

Towards Macromolecular Scale Devices: The trend in atoms per bit and material complexity

Revised 2006 from: D. Herr and V. Zhirnov, Computer, IEEE, pp. 34-43 (2001).

Emerging Research Materials Matrix

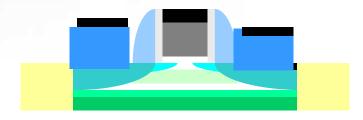
Mat.	Low Dimensional Materials	Macro- molecules	Spin Materials	Complex Metal Oxides	Hetero- structures & Interfaces	Directed Self- assembly	ESH	Metrol. & Model'g
ESH								
ERD								
FEP								
INT								
LIT								
MET								
M&S								
PIDS								
PKG								

Detailed TWG requirements or alignment

General TWG interest or alignment

No TWG interest to date

n committee

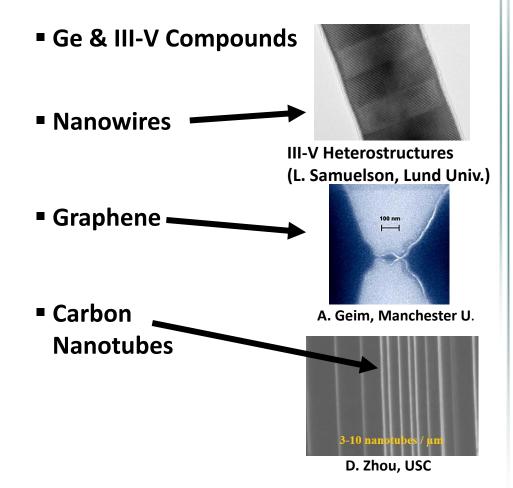

Future Technologies Require New Metrology

- Extending CMOS Logic
 - Alternate channel materials
 - Deterministic doping
 - Novel structures
 - Carbon nanomaterials
- New Memory Technologies
- Beyond CMOS
- Novel Interconnects
- Extending Lithography

Extending CMOS Alternate Channel Materials

MOS

Need to assess:


Materials Performance

Gate materials

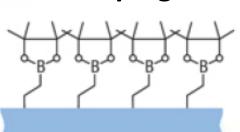
Contacts

Interfaces

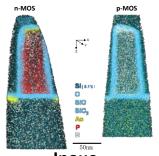
Alternate Channel Materials

Identify Novel Metrology and Modeling Needs

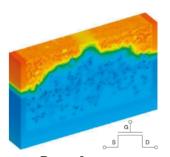
Characterization Challenges for Nanoscale Alternate Channels


- Characterization of Mobility of Nanostructures
 - Separate interface traps and trapped charge from mobility
 - Lack of mobility test structures for nanowires, etc.
- Composition and dopants
- Embedded interfaces
- Statistical fluctuations in dopant concentration and location in nanoscaled devices

Deterministic Doping Characterization Needs


Patterning & doping via DSA

Monolayer Doping


Ho, Javey, Nature Materials 2008

3D atom probe

Inoue,
Ultramicroscopy 2009

3D simulation

Roy, Asenov Science 2005

- ACS NANO 2008

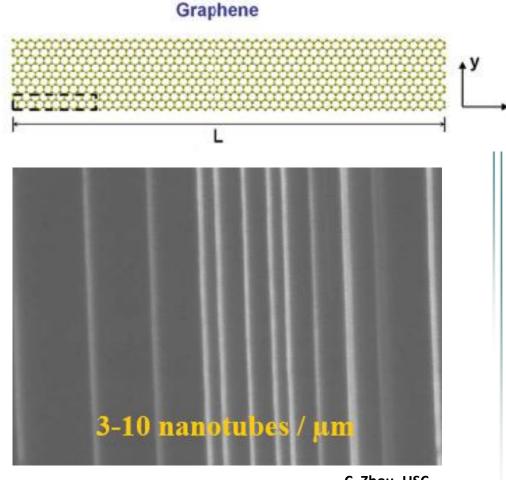
 DSA Produces Order
- **Implant Delivers Dopants**

Bosworth, Ober,

Massive Parallel Dopant Control

Metrology and Modeling Progress

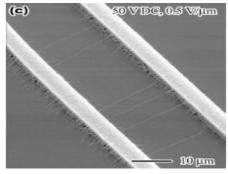
- As devices shrink, fewer carriers will control device operation
- Need to control concentration and location



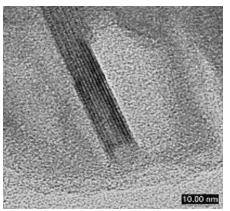
Extending CMOS Nanoscale Carbon Channel Materials

Challenges

- Location
- Alignment
- Defects
- Interfaces
- Bandgap

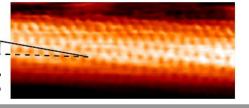


n lemational


Carbon Nanotube Structural Characterization

SEM can locate nanostructures

E-Field Aligned Growth, H. Dai 2001


TEM has weak image contrast

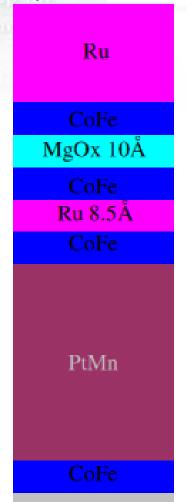
E. Plonjes, J. W. Rich, et. al.2001

Scanning Tunneling Microscope

Can resolve bonds, but is challenging

Smalley, et. al., 1997

How much will aberration correction improve carbon imaging?

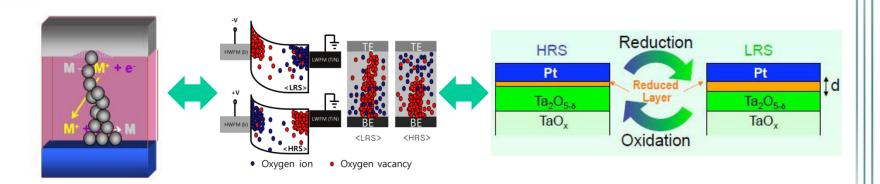

emorational

Novel Memory Technology Options

- Spin Transfer Torque RAM
- Redox RAM
- Ferroelectric FET
- Electronic Effects Memory
- Nanowire Thermal Phase Change Memory
- Nanomechanical Memory
- Macromolecular Memory
- Molecular Memory

Spin Transfer Torque RAM Metrology Needs

NiFeCr

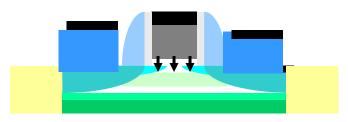

n (committee)

- Characterization of embedded film thickness and uniformity
- MgO 10A +/- X%
- Properties of embedded interfaces with multiple thin films
- Detection of defects

Memory Devices and Materials

Redox RAM: How can we experimentally verify the Redox RAM operating mechanism?

Characterization Challenges:


- Location and concentration of vacancies
- Atomic structure and electrical properties of "filaments"
- Movement of vacancies with applied fields

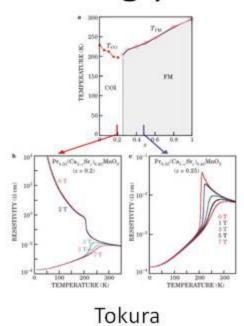
Beyond CMOS Materials and Interfaces

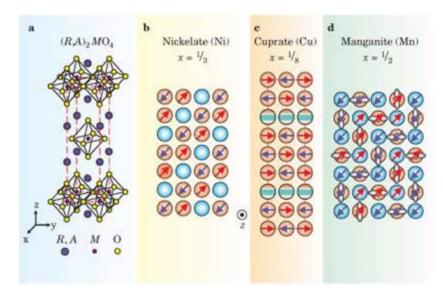
Switches that leverage new state functionality integrated with CMOS

Charge Based Ferroelectric Polarization

Negative Capacitance FET

States Other Than Charge Only Spin State


Individual or Collective


Need for room temperature assessment of:

- Ferromagnetic Materials, Dilute Magnetic Semiconductors
- Complex Metal Oxides
- Strongly Correlated Electron State Materials (FE, FM, FE & FM)
- Molecules
- Interfaces [2D E Gases]
- Native Interconnects

Strongly Correlated Electron State Materials

Tokura

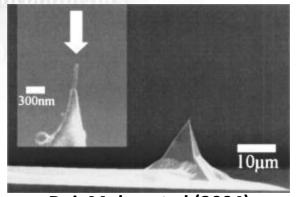
- Materials exhibit complex phase relationships
 - Spin, charge, orbital ordering
- Phase transitions can be induced by small perturbations
 - Magnetic field, phonon, charge

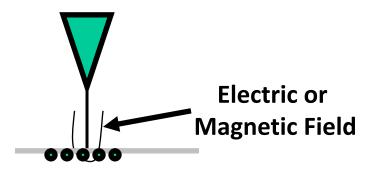
How do we probe phase change dynamics and kinetics?

2D Electron Gas at SrTiO3-LaAlO3 Interface

1x10⁻³ AlO₂ LaÒ⁺ 1x10⁻⁵ TiO₂⁰ 1x10⁻⁷ SrO⁰ 1x10⁻⁹ T = 300 K3+1Measurement limit 12 14 0 d (uc) $V_{G,b} = 0 - 60 \text{ V}$ 70 V V_{DS} (mV) 80 V **Critical thickness** 90 V 100 V J. Mannhart et. al. 2006 T = 4.2 K-10 -5 5 10 0 $I_{DS}(\mu A)$ How do we validate the models? What role do vacancies play?

RHEED excited Cathodoluminescence


n kemmingan



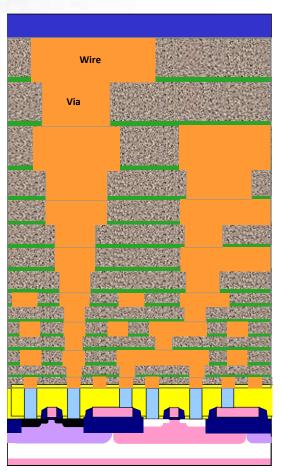
Oxygen Vacancies
D. Winkler, et. Al. 2005

Decoupling nm-Scale Probe-Sample Interactions

Dai, Moler, et al (2004)

Probe discrete nanostructures:

- Apply multiple spectroscopic techniques to characterize the materials and interface properties and interactions
- Need models and algorithms to separate probe-sample interactions
- Understand the impact of the uncertainty principle

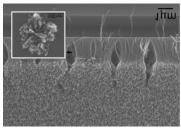


How do the probe fields perturb the "state"?
Can the probe perturbation be minimized?
What algorithms can extract the "state"?

Interconnect Materials

Interconnects

n kamarilana


Ultra-thin Barrier Layers

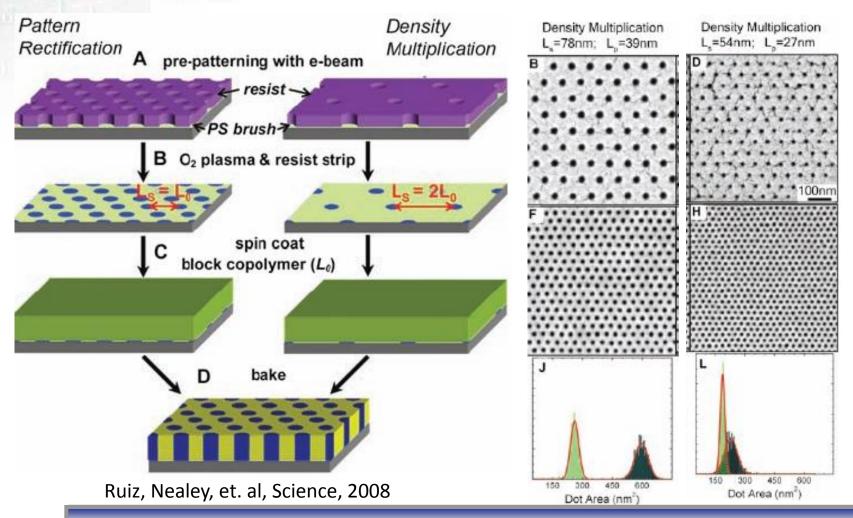
- Transition Zr Barriers to Interconnect TWG
- Novel sub 5nm materials
- **■**SAMs

Ultra low к ILD

Novel Interconnects and Vias

Carbon Nanotubes

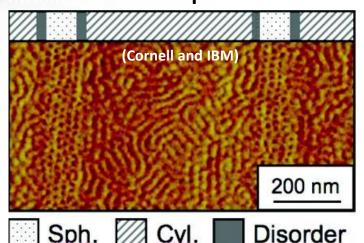
MIRAI-Selete / TOSHIBA, APEX 3 (2010) 055002 Graphen

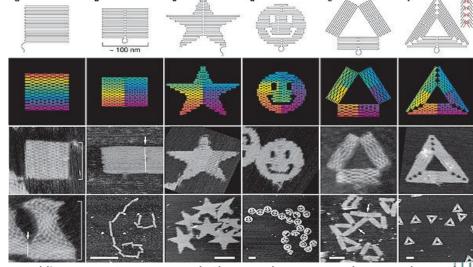

Native Interconnect

Fujitsu Lab / CREST, APEX 3 (2010)

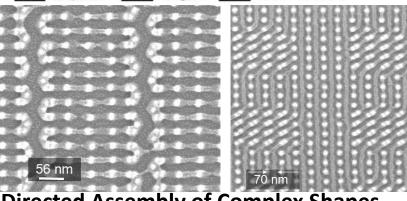
20 nm

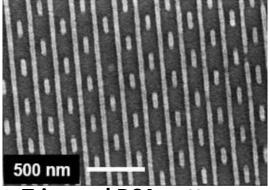
Directed Self Assembly for Extending Lithography

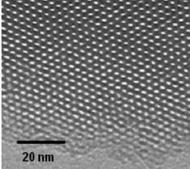

Defect density characterization is needed over large areas.


n kammillonal

Resolution and Complexity


Due to unique crosslinking ability of PaMSb-PHOST, multiple morphologies on one wafer are possible



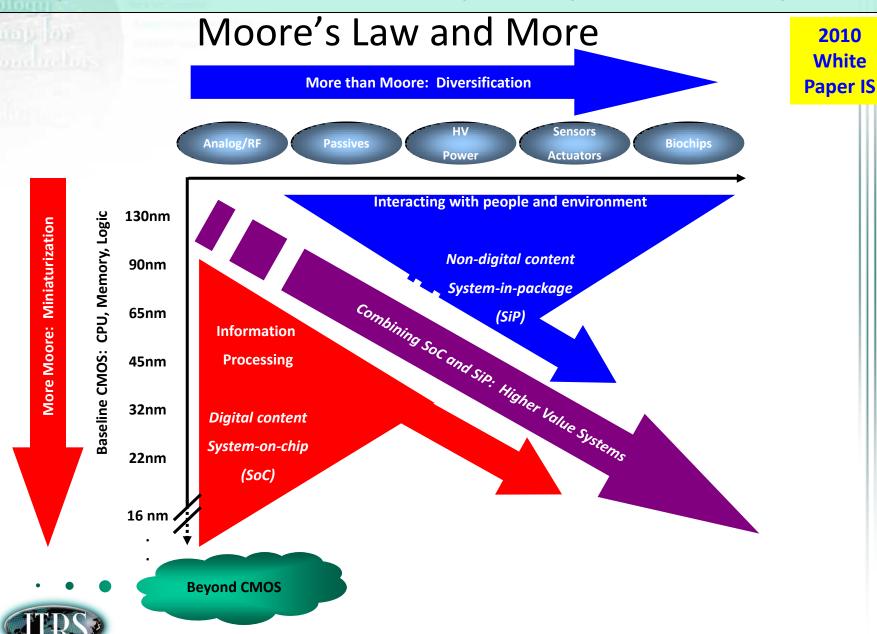

Folding DNA to Create Nanoscale Shapes and Patterns, Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

Directed Assembly of Complex Shapes
(MIT)

Trimmed DSA patterns
(MIT LL)

3 nm Silicate pores

n kanna liona


2D and 3D materials characterization is needed

Summary of ERM Metrology/Characterization Needs

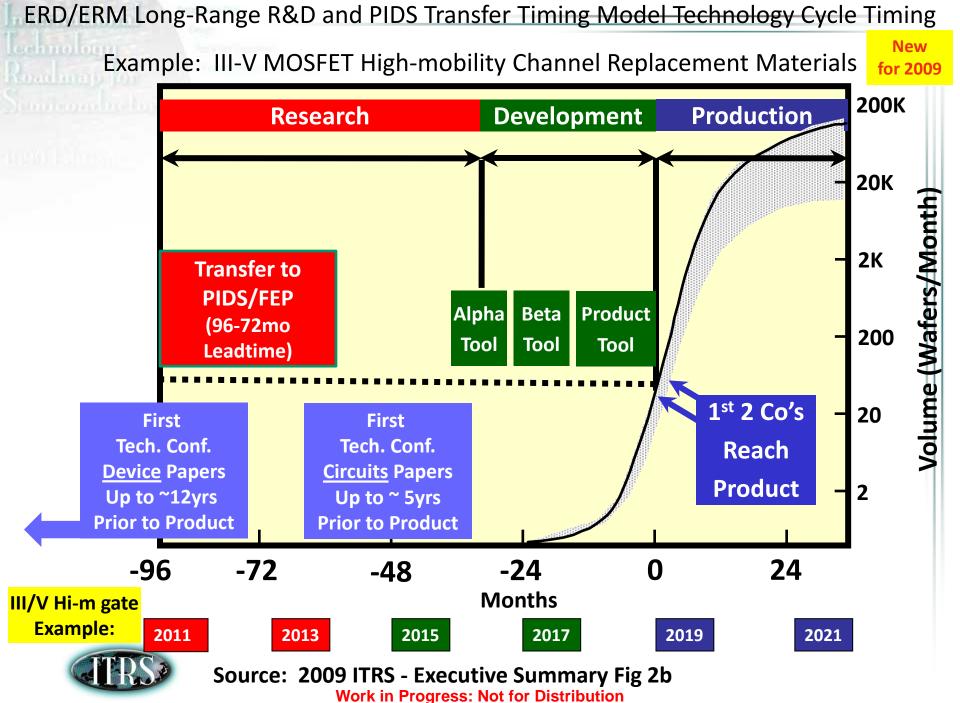
- Properties and composition of nanoscale structures and materials
- Nondestructive characterization of embedded interfaces and nanostructures
- Vacancies and defects in nanoscale structures
- Directed self assembly morphology and defect densities over large areas
- Simultaneous characterization of spin and electrical properties

2010 Update/2011 Renewal MtM Graphic Proposal from Europe IRC

Work in Progress: Not for Distribution

2010 White

ITRS More than Moore Directions


- ITRS is introducing Wireless More than Moore in 2011 and evaluating More than Moore for:
 - Energy
 - Smart Lighting
 - Automotive
 - Security
 - Medical and Health
- Too early to identify specific materials and metrologies

Impact of the Technology Cycle on ITRS ERM Metrology Needs

- Research: Needs characterization to determine and validate mechanisms.
- Development: Needs characterization and metrology to optimize materials, interfaces and device operation.
- Manufacturing: Needs metrology to control the process and validate control.

2011 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, MINATEC Campus, Grenoble, France, May 24, 2011

Earliest Intercept for New Materials in Technologies

Application Opportunities	Ge and III-V	Carbon Nanotubes and other Metal Nanotubes	Nanowires	Graphene	Oxide Nanoparticles	Metal Nanoparticles	Novel Macromolecules	Self-Assembled Materials	Complex Metal Oxides/ Transition	Spin Materials [Fe, Co, Mn, Ni, etc.]
Process Materials										
Lithography					Resist nD					
Device: Memory										* MRAM
Device: Logic										
Interconnect										
Packaging								< 2 yrs.		
Earliest Potentia Insertion Horizon		urrent olication	3-5 y	rs.	5-10 yrs.	10-1	5 yrs.	15+ yrs		Not on padmap

Metrology needs to support research, development & manufacturing

Key Messages


- Emerging materials, devices and interconnects:
 - Will be needed to extend and enhance CMOS.
 - May use new physical principles and state functions and may represent convergent opportunities, e.g. native interconnects.
 - Require new characterization and metrology options, with a new focus on atomic scale and nanoscopic material properties.
- The projected earliest insertion horizons highlight the need for a focus on developing new metrologies.

n kamarilana

"If you can't measure it, you can't manufacture it." Mike Postek

n lemational

