

Nanoelectronics and More-than-Moore at IMEC

Moore's Law

In 1965, Intel co-founder Gordon Moore predicted that the number In 1965, inter the number of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of silicon would double every couple of transistors on a piece of transistors on of transistors of transistors and the story couple of years - an insight later dubbed "Moore's Law." His prediction has years - an ever-shrinking transistor sizes have allo held true, as ever-shrinking transistor sizes have allowed exponent growth in the number of transistors on a single chip.

Moore's Law is now a be pplies its principles eople to play, lear e company has

tronics industry, and in Whole new ways for have come about a e's Law.

Cost scaling Improved performance

a latic Manybutuning Cat par

10

1965

Number of Conferents per Integrated Circuit

105

Node-to-Node Transistor scaling requires:

- 50% area reduction
- 25% performance increase @ scaled V_{dd}
- 20% power reduction
- Repeats every 2-3 years

Moore's law & transistor scaling

Rayleigh equation defines litho roadmap

Wavelength $\lambda \downarrow$

$$resolution = k_1 \cdot \frac{\lambda}{NA}$$

Exposure wavelength (λ)

436nm : g-line 365nm : i-line 248nm : Deep-UV (KrF) **193nm : Deep-UV (ArF)** 157nm : Vacuum UV (F2) **13.5nm: Extreme UV (EUV)**

Lord Rayleigh

 k_1 factor \downarrow

Low k_1 lithography (k1 \ge 0.25)

© IMEC 2011

Resolution enhancement techniques, process control.

NA ↑

Projection lens NA

Dry lithography : ≤ 0.93 Immersion lithography : ≤ 1.35

EUV lithography: 0.25 - 0.32NA

What is EUV lithography?

The EUV radiation (13.5nm) is strongly absorbed by all known materials and gases. As a consequence:

- The **optics** must be **reflective** and fully contained in **vacuum**
- The reticle must be reflective too, and no pellicle can be used to keep the possible defects out of focus.

- All mirrors (including the reticle) use an alternating stack of Mo/Si layers with a theoretical maximum reflectivity (under normal incidence) of only 74%. Keeping the mirror count to a minimum is a priority.
- Lots of EUV **intensity** is **lost** (high power is needed).

CRITICAL ISSUES: source power, masks and resists

IMCC © IMEC 2011

EUV performance

imec © IMEC 2011

EUV extendability Self-aligned double patterning

imec

9

Moore's law & transistor scaling

Research challenges

imec © IMEC 2011

Transistor scaling Power... Performance... Area

IMEC © IMEC 2011

Need new materials and/or new architectures !

IMEC © IMEC 2011

IMCC © IMEC 2011

Need new materials and/or new architectures !

IMEC 2011

Fully depleted devices

Transistor scaling Power... Performance... Area

Device performance

Strain engineering and high-mobility channels

Device performance

Strain engineering and high-mobility channels

Selective (in STI trenches) III/V QW MOSFET

Key Characteristics

"ART" (Aspect-Ratio-Trapping) with InP-on-Si buffer MOCVD 8" Epi (AIXTRON), with raised (n+)-InGaAs S/D

1st functional transistor characteristics !

Work on-going for further improvement in buffer defectivity and doping (insulation)

IMEC © IMEC 2011

High mobility channel materials Co-integration with standard Si CMOS

- 1. Selective growth of (Si)Ge and/or III/V in STI trenches
- 2. High-κ gate stack for low EOT
- 3. Self-aligned doped raised S/D for contacts
- 4. Further strain engineering for mobility boost

p QW FET

6000

Y. Zhang et al., J. Appl. Phys. (2010)

What's next?

Exploratory devices: TunnelFETs

Tunnel-FET basic idea: use the band-to-band tunneling in p-i-n device as an energy filter to overcome the 60mV/decade subthreshold slope limitation ON/OFF switching determined by band-to-band tunneling at source side

Exploratory devices: TunnelFETs

- Extensive modeling effort to calibrate tunneling efficiency (using P-i-N diodes)
- Enable exploration of new device concepts
- Integration of demonstrators (vertical & horizontal) in progress

The pinch-off nanowire MOSFET A junctionless device

- Negative gate voltage will push the majority carriers (electrons) to the middle of the wire. For sufficient negative gate voltage the channel is pinched off.
- No source and drain needed

SS (nPOFET) \approx SS (nMOSFET) \approx 60 mV/dec

Integration of CVD graphene

Integration of CNTs in interconnects

Chiodarelli N. et al., J. Electrochem Soc, 157 (10) (2010)

Demonstration of CNT interconnects in VIAs and contacts

IMEC © IMEC 2011

DRAM scaling challenges

Source: Qimonda

DRAM Capacitor scaling: EOT and physical thickness scaling at target leakage current

New high-k dielectrics with k > 100 and noble metal electrodes with large WF required to enable DRAM scaling below 20 nm node

FLASH scaling challenges

Floating Gate scaling: cell interference and coupling ratio (CR) reduction are the major issues when scaling and planarizing the floating gate (FG) Flash memory cell

High-k dielectrics for Inter Poly Dielectric to increase CR & FG stack engineering required to enable Flash scaling below 20 nm

Memory program: some achievements

Moore's law & transistor scaling

1965

~ 16-14 nm

Lithography Enabled Scaling

Materials Enabled Scaling

3D Enabled Scaling

imec

3D stacked interconnect

Impact TSV proximity on transistor

3D Design path finding tool

Path-finding

- Fast prototyping tool trades accuracy for rapid turn-around
- Based on early compact models and design rules
- Output spatially aware estimate of performance and power
- Output data for cost and thermal evaluation
- Output specs for design authoring tools

© IMEC 2011

Optical interconnects roadmap

© IMEC 2011

Si photonics

E-O-E transceiver : Key Features

- <u>Single</u> platform integrating all optical functionalities
- <u>CMOS-like</u> fabrication processes
- Small photonics component footprint
- <u>3D</u> connectivity to CMOS wafers for improved O-E performance

© IMEC 2011

Si photonics Passive components library

All devices are fabricated on the same platform

More Moore vs More than Moore

imec © IMEC 2011

MEMS technology options For tight integration with driver IC

	Logic IC Cap Server SIP: Stacked die MEMS CMOS	Cap Sensor SSIP: F2F MEMS CMOS	SIP: 3D vias	SoC: monolithic MEMS CMOS
Interconnect pitch	~ 50 um	~10um	~10um	~1um
Interconnect parasitics	few pF	>100fF	<100fF	few fF

Monolithic approach:

- Most compact solution
- Best solution when needing high density interconnect and low parasitics
- Requires compatible die sizes

3D stacking

- Wirebond, flip chip, TSV depending on interconnect density and parasitics
- Offers more choices in MEMS technologies and die size combinations

IMEC MEMS last technology

Different above CMOS MEMS approaches				
	AI	Poly-SiGe		
Post CMOS integration	yes	yes		
Fracture strength [GPa]	0.2	> 2		
Mechanical Q	low	> 10.000		
Reliability	creep: hinge memory effect	No creep		

CMOS integrated SiGe gyroscope

SiGe cantilever array

Poly-SiGe:

- better mechanical properties than AI: higher strength and Q factor
- better reliability properties than AI: less creep and fatigue

II Mega pixel micro mirror chip

• 11M pixel MEMS + CMOS integration

- 8x8 µm pitch on SiGe platform (Al coating)
- 6 kHz update rate
- Analog tilt angle control
- Extreme mirror flatness <10 nm
- No mirror fatigue & creep

imec © IMEC 2011

Sensors everywhere

The 2010 Trend Watch Sensor Survey Results HOT SENSOR TECHNOLOGIES

McKinsey: "Get Ready For Sensor-Driven Business Models" (March 3, 2010)

Underlying the Internet of Things are technologies such as RFID, sensors and smart-phones

imec

Vision for sensor development

Mission statement:

Development of ultra-low power micro/nanosensors for (bio-) chemical detection including the required read-out and driver circuits implemented in standard cleanroom environment

Main targets

- Increased sensitivity and/or selectivity
- Ultra-low-power (< 20mW)
 - \rightarrow energy autonomous
- Miniaturized integrated sensors
- Cost-effective fabrication

Thermal, Vibrational, RF, Light

IMCC © IMEC 2011

Body area networks examples Personal healthcare & lifestyle solutions

Necklaces/patches

Watch-type

Headsets

Base Stations

e-Nose Advanced sensing in complex environments

Human olfactory system

e-nose: array of non-specific, cross-reactive sensors combined with an information processing system

e-Nose: low power is the key

e-Nose: from vision to reality:

Die = 8.8 mm x 8.8 mm, 160 resonators

w = 100 μm L = 500 μm h = 8 μm Coating: PMMA Detection: Optical Beam Power = 2 mW

 $w = 65 \ \mu m$ $L = 750 \ \mu m$ $h = 500 \ nm$ $Coating: \ PMMA$ Transduction:Piezoelectric actuation/detection
Power = 0.00017 \ mW
(170 nW)

10⁻⁵ frequency shift / %EtOH

2.6 10⁻³ frequency shift / %EtOH

10.000 times more power efficient 260 times responsivity increase

imec

Storage for micro systems:

- All Solid-State devices (integrated systems)
- Microelectronic fabrication techniques

Size determines total capacity:

 High energy density even more important for small form systems

3D charge storage roadmap and application drivers

Module development:

Nano-electronics will continue to drive innovation in many fields.

Societal progress will be enabled by the merger of nano-electronics, nano-technologies, bio sciences and energy efficient technologies.

Global collaboration including entire value chain is required to address the huge R&D challenges.