# Soitec Metrology Challenges for the Ultra-thin SOI

#### **Oleg Kononchuk, Gregory Riou, Roland Brun, Cecile Moulin**

#### **SOITEC, Bernin, France**



# Outline

- □ Introduction
- □ Layer Thickness Measurements for FD SOI
- □ Electrical characterization of SOI layers
- □ LPD inspection challenge
- □ Preferential Chemical Etching of Structural Defects
- Conclusions



# SOI wafer metrology

| BULK                       | SOI<br>METROLOGY<br>ADJUSTMENT                               | SOI SPECIFIC                       | SSOI SPECIFIC          |  |  |  |  |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|--|
| Crystal parameters         | Defectivity                                                  | Defectivity                        | Defectivity            |  |  |  |  |  |  |  |  |  |  |
| Crystal orientation        | Front side surface                                           | HF                                 | Structural defects     |  |  |  |  |  |  |  |  |  |  |
| Notch characteristics      |                                                              | Electrical                         | Stress                 |  |  |  |  |  |  |  |  |  |  |
| Oxygen                     |                                                              | DIT                                |                        |  |  |  |  |  |  |  |  |  |  |
| Carbon                     |                                                              | Qbox                               |                        |  |  |  |  |  |  |  |  |  |  |
| Metal                      |                                                              | Geometry                           |                        |  |  |  |  |  |  |  |  |  |  |
| BMD                        |                                                              | Thickness                          |                        |  |  |  |  |  |  |  |  |  |  |
| Oisf                       |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Slip Lines                 |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Etch pits                  | Most characterizations identical to bulk                     |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| <b>Geometry parameters</b> |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Diameter                   |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Flatness                   | Metrology adjustment for surface inspectio                   |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Nanotopology               |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Edge                       | SOI spacif                                                   | ic charactori                      | izations               |  |  |  |  |  |  |  |  |  |  |
| Thickness                  | SUI Specific characterizations                               |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Roughness                  |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>(Defectivity, DIT, mobility, Qbox, laver</li> </ul> |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Electrical                 | (Dereetine                                                   | <i>y</i> , <i>bn</i> , <i>mobn</i> |                        |  |  |  |  |  |  |  |  |  |  |
| Resistivity                | thickness                                                    |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Minority carrier lifetime  |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Delectivity                |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |
| Front side surface         | sSOI: stre                                                   | ss measurer                        | nents, Ge%, structural |  |  |  |  |  |  |  |  |  |  |
| Back side surface          | defecto                                                      |                                    | * *                    |  |  |  |  |  |  |  |  |  |  |
| Edge                       | aerects                                                      |                                    |                        |  |  |  |  |  |  |  |  |  |  |
|                            |                                                              |                                    |                        |  |  |  |  |  |  |  |  |  |  |

**Overview of SOI metrology to address development of new SOI products: FDSOI, sSOI** 

Soitec

# Fully Depleted Devices - next generation of CMOS



- Improved SCE & back bias option
- Improved mobility
- Low-noise with least sensitivity to soft-error upsets

# Top Si and BOX scaling for FDSOI



- 1. FDSOI is scalable down to  $L_G=10$  nm with  $T_{si} \sim 7$  nm
- 2. BOX scaling **below 10 nm** enables FDSOI scalability beyond node 11nm
- 3. No dominance of quantum effects for  $\geq$ 5nm

Soitec

# Top Si and BOX scaling for FDSOI



# Global $V_{\mathsf{T}}$ Variation vs. FDSOI Thickness Variation

$$V_{Th}^{A} = \psi_{sf} + \underbrace{C_{Si}}_{C_{OXf}} \psi_{sf} + \frac{qN_{A}t_{Si}}{2C_{OXf}}$$

$$V_{Th}^{B} = \psi_{sf}(1 + \frac{C_{Si}}{C_{OXf}}) + \frac{qN_{A}t_{Si}}{2C_{OXf}} + \underbrace{S}_{C_{OXf}} + \underbrace{C_{Si}}_{C_{OXf}} + \underbrace{C_{Si}}_{C_{OXf}} + \underbrace{C_{Si}}_{C_{OXb}} + \underbrace{C_{Si}}_{C_{OXb}} + \underbrace{C_{Si}}_{2\epsilon_{Si}} + \underbrace{S}_{2\epsilon_{Si}} + \underbrace{S}_{0.5} + \underbrace{C_{Si}}_{0.5} + \underbrace{C_{Si}}_{0.5} + \underbrace{C_{Si}}_{2\epsilon_{Si}} + \underbrace{C_{Si}}_{2\epsilon_{Si}} + \underbrace{C_{Si}}_{0.5} + \underbrace{C_{Si}}_{0.5}$$

B. Doris et. al. FDSOI Workshop Dec. 9, 2009

# $\sigma_{\text{TSi}}$ roadmap for FDSOI

BOX scaling allows relaxation T<sub>si</sub> and T<sub>ox</sub> and  $\sigma_{TSi}$  !



#### SmartCut process flow





#### SmartCut thickness uniformity after splitting



**Implant Depth** 

**Implant Depth** 





#### Spatial frequency spectrum of SOI thickness variation



# Effect of SOI processes on thickness variation



Optimization of implantation/splitting

Soitec

Replacement of CMP by annealing in inert ambient

#### White Light Pupil Plane Interference Microscopy (Advanced Film Capability)



X. Colonna de Lega and P. de Groot, Proc. of SPIE 6995; pp. 1-9, 2008

#### Scanning White Light Interference Microscopy ICT – index corrected topography



For each pixel for 10x10µm field an interferogramm is collected and compared with the library of signals. Thickness, height is determined by the best fit.

P. de Groot and X. Colonna de Lega, Proc. of SPIE 7064, pp. 1-6, 2008

#### SOI thickness map



# Thickness measurement open questions

Lack of metrology in 10nm – 1µm spatial domain

Lack of traceable SOI thickness standards

Accuracy of ellipsometric models





# Outline

- □ Introduction
- □ Layer Thickness Measurements for FD SOI
- □ Electrical characterization of SOI layers
- □ LPD inspection challenge
- □ Preferential Chemical Etching of Structural Defects
- Conclusions



## Introduction to the Pseudo-MOSFET : $\Psi$ -MOS



# The Pseudo-MOSFET Measurement



## Quantitative $\Psi$ -MOS. Two interface model.

All extracted parameters can be influenced by top surface (strong Dit), which gets closer when the film gets thinner !



Thin films require models which take into account top surface Dit (fitting parameter):

- Threshold : N.Bresson's model [N. Bresson & al., ECS Proc Vol. 2005-03, pp. 317-324]
- Dit : H.Hovel's model [H.J. Hovel; SSE vol.47; pp. 1311-1333; 2003]

Soitec

#### Quantitative $\Psi$ -MOS. Two interface model.



#### Three interface model. Effect of BOX thickness.



Soitec

## Advantages & limits of the technique

- Very inexpensive technique compared to device processing
- Very fast mobility / Dit measurement technique
- > Good screening technique (sensitive to defects)
- > Acceptable R&r (<10%)</p>

#### But :

# $\odot$

- Sensitivit limit of Dit ~ few e11 cm<sup>-2</sup>eV<sup>-1</sup>
- Thin layer measurements require surface passivation
- Complex modeling with fitting parameter to account for thickness effects
- Gives effective mobility, which is difficult to compare with "device" mobility

Technique is very powerful tool if used for comparative studies or SPC, but difficult to obtain quantitative parameters



## Mobility Enhancement by Material and Strain Engineering



# Outline

- □ Introduction
- □ Layer Thickness Measurements for FD SOI
- □ Electrical characterization of SOI layers
- □ LPD inspection challenge
- □ Preferential Chemical Etching of Structural Defects
- Conclusions



# SOI defectivity according to ITRS

| Table FEP10 Starting Materials Technology Requ                                    | irements       |  |               |  |                    |  |                 |  |                    |  |              |        |               |               |               |     |              |
|-----------------------------------------------------------------------------------|----------------|--|---------------|--|--------------------|--|-----------------|--|--------------------|--|--------------|--------|---------------|---------------|---------------|-----|--------------|
| Year of Production                                                                | 2009           |  | 2010          |  | 2011               |  | 2012            |  | 2013               |  | 2014         | 2015   | 2016          | 2017          | 2018          |     | 2019         |
| DRAM ½ Pitch (nm) (contacted)                                                     | 52             |  | 45            |  | 40                 |  | 36              |  | 32                 |  | 28           | 25     | 23            | 20            | 18            | -   | 16           |
| MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)                                     | 54             |  | 45            |  | 38                 |  | 32              |  | 27                 |  | 24           | 21     | 19            | 17            | 15            |     | 13           |
| MPU Physical Gate Length (nm)                                                     | 29             |  | 27            |  | 24                 |  | 22              |  | 20                 |  | 18           | 17     | 15            | 14            | 13            |     | 12           |
| DRAM Total Chip Area (mm <sup>2</sup> )                                           | 61             |  | 47            |  | 49                 |  | 39              |  | 31                 |  | 49           | 39     | 31            | 49            | 39            |     | 31           |
| DRAM Active Transistor Area (mm <sup>2</sup> )                                    | 19.2           |  | 14.5          |  | 21.2               |  | 16.8            |  | 13.3               |  | 21.2         | 16.8   | 13.3          | 21.2          | 16.8          |     | 13.3         |
| MPU High-Performance Total Chip Area(mm <sup>2</sup> )                            | 260            |  | 184           |  | 260                |  | 184             |  | 260                |  | 206          | 164    | 260           | 206           | 164           |     | 260          |
| MPU High-Performance Active Transistor Area(mm <sup>2</sup> )                     | 34.7           |  | 25.4          |  | 37.2               |  | 27.3            |  | 40.2               |  | 32.3         | 25.9   | <br>41.7      | 33.5          | 26.9          |     | 43.2         |
| General Characteristics * (99% Chip Yield)                                        |                |  |               |  |                    |  |                 |  |                    |  |              |        |               |               |               |     |              |
| Maximum Substrate Diameter (mm)—High-volume Production**                          | 300            |  | 300           |  | 300                |  | 300             |  | 300                |  | 450          | 450    | <br>450       | 450           | 450           |     | 450          |
| Edge exclusion (mm)                                                               | 2              |  | 2             |  | 2                  |  | 2               |  | 2                  |  | 2            | 2      | 2             | 2             | 2             |     | 2            |
| Front surface particle size (nm), latex sphere equivalent (A)                     | ≥65            |  | ≥45           |  | ≥45                |  | ≥45             |  | ≥32                |  | ≥32          | ≥32    | ≥22           | ≥22           | ≥22           |     | ≥16          |
| Particles (cm <sup>-2</sup> )***                                                  | ≤0.18          |  | ≤0.18         |  | ≤0.18              |  | <b>≤0.18</b>    |  | ≤0.18              |  | <b>≤0.18</b> | ≤0.18  | ≤0.18         | ≤0.18         | ≤0.18         |     | <b>≤0.18</b> |
| Particles (#hvf)****                                                              | ≤126           |  | ≤126          |  | ≤126               |  | ≤126            |  | ≤126               |  | ≤286         | ≤286   | ≤286          | ≤286          | ≤286          |     | ≤286         |
| Site flatness (nm), SFQR 26mm x 8 mm Site Size                                    | ≤52            |  | ≤45           |  | ≤40                |  | ≤36             |  | <u>≤32</u>         |  | ≤28          | ≤25    | ≤23           | ≤20           | ≤18           |     | ≤16          |
| Nanotopography, p-v (nm), 2 mm dia. analysis area (I)                             | ≤13            |  | ≤11           |  | ≤10                |  | ≤9              |  | ≤8                 |  | ≤7           | ≤6     | ≤6            | ≦5            | ≤4            |     | ≤4           |
| Epitaxial Wafer * (99% Chip Yield)                                                |                |  |               |  |                    |  |                 |  |                    |  |              |        |               |               |               |     |              |
| Large structural epi defects (DRAM) (cm <sup>-2</sup> ) (B)***                    | ≤0.016         |  | ≤0.016        |  | ≤0.016             |  | ≤0.016          |  | ≤0.016             |  | ≤0.016       | ≤0.016 | ≤0.016        | ≤0.016        | ≤0.016        | -   | ≤0.016       |
| Large structural epi defects (MPU) (cm <sup>-2</sup> ) (B)***                     | ≤0.004         |  | ≤0.004        |  | ≤0.004             |  | <b>≤0.004</b>   |  | ≤0.004             |  | ≤0.004       | ≤0.004 | <u>≤0.004</u> | ≤0.004        | <b>≤0.004</b> |     | ≤0.004       |
| Small structural epi defects (DRAM) (cm <sup>-2</sup> ) (C)***                    | ≤0.033         |  | ≤0.033        |  | ≤0.033             |  | ≤0.033          |  | ≤0.033             |  | ≤0.033       | ≤0.033 | ≤0.033        | ≤0.033        | ≤0.033        |     | ≤0.033       |
| Small structural epi defects (MPU) (cm <sup>2</sup> ) (C)***                      | <b>≤0.008</b>  |  | ≤0.008        |  | ≤0.008             |  | <b>≤0.008</b>   |  | ≤0.008             |  | ≤0.008       | ≤0.008 | <b>≤0.008</b> | <b>≤0.008</b> | <b>≤0.008</b> |     | ≤0.008       |
| Silicon-On-Insulator (SOI) Wafer * (99% Chip Yield)                               |                |  |               |  |                    |  | •               |  |                    |  |              |        |               |               |               |     |              |
| Edge exclusion (mm)*****                                                          | 2              |  | 2             |  | 2                  |  | 2               |  | 2                  |  | 2            | 2      | 2             | 2             | 2             |     | 2            |
| Starting silicon layer thickness                                                  | 54.92          |  | 50.76         |  | 46.74              |  | 42.65           |  | 40.60              |  | 29 56        | 25.52  | 22.49         | 24.45         | Noto: Table   | out | rice may be  |
| (Partially Depleted) (tolerance ± 5%, 3ø) (nm) (D)                                | 5405           |  | 50-70         |  | 40-71              |  | 43-05           |  | 40-00              |  | 30-30        | 33-32  | 33-40         | 51-45         | Note. Table   | enu | nes may be   |
| Starting silicon layer thickness                                                  |                |  | 17.32         |  | 16-21              |  | 16-20           |  | 45.49              |  | 14.17        | 14.16  | 13.16         | 13.15         | 13.15         |     | 13.14        |
| (Fully Depleted) (tolerance ± 5%, 3ø) (nm) (E)                                    |                |  | 11-32         |  | 10-21              |  | 10-20           |  | 19-19              |  | 1411         | 1410   | 13-10         | 13-13         | 13-13         |     | 13-14        |
| Buried oxide (BOX) thickness                                                      |                |  | 40-66         |  | 36-60              |  | 34-56           |  | 30-50              |  | 28-46        | 26-42  | 24-38         | 22-36         | 20-32         |     | 18-30        |
| (Fully Depleted) (tolerance ± 5%, 3ø) (nm) (F)                                    |                |  |               |  |                    |  |                 |  |                    |  |              |        |               |               |               |     |              |
| DLASOL Large area SOI wafer defects (DRAM) (cm <sup>-2</sup> ) (G)***             | ≤ <b>0.016</b> |  | ≤0.016        |  | ≤ <b>0.016</b>     |  | ≤ <b>0.016</b>  |  | <b>≤0.016</b>      |  | ≤0.016       | ≤0.016 | ≤0.016        | ≤0.016        | ≤0.016        |     | ≤0.016       |
| DLASOL Large area SOI wafer defects (MPU) (cm <sup>-2</sup> ) (G)***              | <b>≤0.004</b>  |  | <b>≤0.004</b> |  | ≤ <del>0.004</del> |  | ≤ <b>0.00</b> 4 |  | ≦ <del>0.004</del> |  | ≤0.004       | ≤0.004 | ≤0.004        | ≤0.004        | ≤0.004        |     | ≤0.004       |
| D <sub>SASOL</sub> Small area SOI wafer defects (DRAM) (cm <sup>-2</sup> ) (H)*** | ≤0.262         |  | ≤0.262        |  | <b>≤0.238</b>      |  | <b>≤0.238</b>   |  | ≤0.238             |  | ≤0.238       | ≤0.238 | ≤0.238        | ≤0.238        | ≤0.238        |     | ≤0.238       |
| D <sub>SASOL</sub> Small area SOI wafer defects (MPU) (cm <sup>-2</sup> ) (H)***  | ≤0.145         |  | ≤0.145        |  | <b>≤0.135</b>      |  | <b>≤0.135</b>   |  | ≤0.125             |  | ≤0.125       | ≤0.125 | ≤0.121        | ≤0.121        | ≤0.121        |     | ≤0.116       |

#### ▶ LLS minimum detection size

**Definition of large vs small area defects in FDSOI** 

# LPD size detection limit



Interference in film stack changes SOI reflectivity Additional scattering from BOX/Si interfaces





# LPD detection limit improvement



limit on SOI upto 60%

To satisfy requirements of ITRS new generation of LPD inspection tools  $_{\rm Soitec}$  needs to be developed

## HF decoration technique for Large Area defects



There is no nondestructive technique which is capable of detection sub 10nm inclusions

# Precipitate metrology options



# Outline

- □ Introduction
- □ Layer Thickness Measurements for FD SOI
- □ Electrical characterization of SOI layers
- □ LPD inspection challenge
- **Preferential Chemical Etching of Structural Defects**
- Conclusions



# Preferential chemical etching



• Different etch rate at defect site and crystal caused by surface potential

• Simplified reactions:

- reaction initiation (oxidizing agents..)

- reaction propagation : (complexing agents..)

For thin layers needs second "highlight" step:Secco/HF for SOI/sSOI $\Rightarrow$  L.Giles et al. (1993), S.Bedell et al. (2005)Secco/H2O2 for sSi/SiGe $\Rightarrow$  G.Rozgonyi et al. (2005)

All best preferential etchants for Si are based on Cr<sup>6+</sup> - toxic

# Preferential chemical etching Cr-free solution

2,3,5,6-tetrachloro-1,4-benzoquinone (p-chloranil) solution in acetonitrile





p-CA in acetonitrile + HF Secco (0.04 M)

 $E_{a} = 32.5 \pm 1.1 \text{ kJ/mol} \qquad E_{a} = 34.1 \pm 1.2 \text{ kJ/mol}$  $\Delta Ea = -1.4 \text{ kJ/mol} (= -4.3 \%) \Delta Ea = -1.2 \text{ kJ/mol} (= -3.5 \%)$ 

#### Non-toxic preferential etching of structural defects in SOI with same selectivity



# Gas phase HCl etching of sSOI



sSOI (20%) 600A/1450A

#### TDD ~ $10^6$ cm<sup>-2</sup>

Three characteristic sizes of the defects

Optical microscope (x500) Nomarski contrast, 430 A of Si removed



A.Abbadie et al, J. Electrochem. Soc., 2007

# Dislocation type descrimination by etching



**Statistical sample > 200 defects** 

# Mechanism of sSi relaxation in low TDD films



 sSi relaxation proceed, above 18nm, by 60° dislocation splitting into Shockley partial surrounding a Stacking Fault

# Conclusions

Development of FD MOSFET technology requires SOI wafers with ultra thin layers. SOI characterization techniques should be adapted to address specific requirements of FDSOI future products:

>Layer thickness measurement techniques have to be expanded in higher spatial frequency domain

>New generation of LPD inspection tools has to be introduced to avoid interference effects

Sensitivity of electrical characterization of BOX interfaces has to be improved

➢New nondestructive techniques for structural characterization of defects in Si with sizes below 10nm have to be developed

