Atom Probe Tomography: Semiconducting Materials

Dresden Fraunhofer Cluster Nanoanalysis

Atom Probe Tomography: Introduction

APT is performed on LEAP 3000XSi[™]

Agenda

Atom Probe Tomography: S/D Hall mobility-Dopant redistribution

Hall mobility of carriers, $\mu = |V_H|/R_s IB = 1/(qN_sR_s)$ I – Current B – magnetic field q - elementary charge V_H – Hall voltage N_s – sheet concentration R_s – sheet resistivity B-Ge dopped Si substrate:

Three different annealing conditions

	#49	#50	#34
Implant (cm ⁻²)	3 x 10 ¹⁵	3 x 10 ¹⁵	3 x 10 ¹⁵
SIMS (cm ⁻²)	2,0 x 10 ¹⁵	1,9 x 10 ¹⁵	1,9 x 10 ¹⁵
R _s (Ohm)	273	199	168
N _s (cm ⁻²)	6,6 x 10 ¹⁴	8,5 x 10 ¹⁴	9,9 x 10 ¹⁴
μ (cm ² V ¹ s ⁻¹)	34,9	36,8	37,6

Atom Probe Tomography : S/D USJ- B/C-Cluster implants

A significant amount of the boron & carbon are clustered in the surface near region APT provides information regarding cluster density, composition and size

Agenda

Agenda

Atom Probe Tomography : **BEoL RRAM-MIM Capacitor**

BEOL Integration of resistive switching HfO₂ MIMs with Si CMOS compatible metal electrodes

Atom Probe Tomography : **BEoL RRAM-MIM Capacitor**

Atom Probe Tomography : another example: DRAM-MIM Capacitor

CNT

Atom Probe Tomography : MIM Capacitor EFTEM-EDX

Atom Probe Tomography : DRAM-MIM Capacitor

- A direct observation of titanium oxide by APT (earlier predicted from XPS)
- Redistribution of TiO₂ both on top and bottom electrodes
- Out diffusion of ZrO_x and TiO₂ on the TiN grains

Atom Probe Tomography : DRAM-MIM Capacitor-Grain boundaries

Atom Probe Tomography : DRAM-MIM Capacitor

Agenda

Atom Probe Tomography : Contact Materials-silicidation of Ti metal

Contacts on the base of TiSi₂ /

Boron redistribution during

The contact resistance is determined by the Schottky-Barrier height, hence by the dopant concentration at the metal-semiconductor

$$R_C \propto \exp\left(\frac{q \Phi_{Bn}}{E_{00}}\right) \qquad E_{00} \propto \sqrt{N}$$

Atom Probe Tomography : Contact Materials-silicidation of Ti metal

Atom Probe Tomography : Contact Materials- VRML

Atom Probe Tomography : Contact Materials-silicidation of Ti metal

Atom Probe Tomography: Contact Materials-silicidation of Ti metal

The samples were prepared in a realistic process window of present device structures

- An intermediate TiSi_x film is formed initially during silicidation
- Boron: low solubility in TiSi₂, high solubility in TiSi_x
- TiSi_x moves towards the TiN during slicidation carrying boron
- Boron precipitates revealed
 - Either TiB₂ (larger precipitates)
 - or TiB (smaller precipitates)
- APT provides further insight into the silicidation process

Atom Probe Tomography : Summary

Acknowlegdements

Measurements & Analysis	APT: Ahmed Shariq, Kirsten Wedderhoff (contact materials) SIMS: Marcel Ogiewa TEM: Sören Jansen, Hui Min Lo, Marcus Mildner
Discussion	Steffen Teichert (Oimonda / FH Jena)
Biscassien	
Samples	Wenke Weinreich(CNT), Clemens Fritz (Qimonda) Heike Rosslau, Wolfgang Urbansky (Infineon Dresden) Christian Walczyk, Thomas Schröder (IHP) Sonja Richter, Steffen Thiem (X-FAB)
Funding	BMBF (project No. 13N9432)

Thank you for your attention! Thank you for your attention!

Interested in APT measurements!

Contact:

Dr. Ahmed Shariq Head, <u>Advanced Atom Probe Lab Dresden</u> Fraunhofer Center of Nanoelectronic Technologies ahmed.shariq@cnt.fraunhofer.de

Dresden Fraunhofer Cluster Nanoanalysis

