

Metrology for 3D Devices: Plasma-FIB for High Throughput Sectioning of Large Dimensions

 $\nabla \times B = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial h}{\partial t}$

N.S. Smith¹, P.P. Tesch¹, N.P. Martin¹ and R.W. Boswell^{1,2}

¹Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, Oregon 97123, USA ²Research School of Physical Sciences and Engineering Australian National University, Oliphant Building 60, Mills Road, Canberra, ACT 0200, Australia

E-mail: n.smith@oregon-physics.com

Overview

- State-of-the-Art FIB
- Limitations for Large Volume/High Current FIB Milling
- Inductively Coupled Plasma Ion Source Technology
- Plasma-FIB Performance
- Plasma-FIB for Large Volume Cross-Sectioning and other Milling Applications
- Conclusions and the Possible Future for Plasma FIB's

Conventional Ga+FIB/SEM

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial D}{\partial t}$

Ga+ LMIS-FIB

Imaging resolution - 2.5nm at 1pA (30keV)

 1pA-100nA at 10nm-10um, 30keV Ga+ IC failure analysis Circuit edit TEM lamella preparation Lithographic Mask Repair Small volume micromachining

State-of-the-Art LMIS-FIB Columns

- Tomahawk
- Orsay/Zeiss Cobra

FEI

 $\nabla \times \vec{B} = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

(X E = -

đt

Extraction Electrode Condenser Lens Variable Beam Defining Aperture Mass Selection Aperture

Beam Scanning and Stigmation

Objective Lens

State-of-the-Art (for the last 40 years)

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

Beam Current (pA)

٠

Balancing Source Image and Aberrations for Best Spot Size

Assuming ions enter optics at the same energy as they exit

Gallium FIB Spot Size

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

Beam Current: 100nA

Small Volume Sample Prep. for Sub-surface Analysis and Metrology

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial L}{\partial t}$

~10 um wide TEM lamella 1000um³ of material milled 30-60minute preparation time ~10um cross-section of IC. 500um³ removed (stairstep crater) 10-15 minutes preparation time

High Resolution Focused Ion Beams: FIB and Its Applications J. Orloff, M. Utlaut and L. Swanson

Kluwer Academic/Plenum Publishers ISBN 0-306-47350-X

Non-Lithographic Milling Techniques

 $\nabla \times \vec{B} = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

Alternative Ion Source

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial L}{\partial t}$

Point source (50nm diameter) Low angular intensity (15uA/sr)

Plasma Ion Source Broad Area Source (10-100um diameter) High Angular Intensity (5-10mA/sr)

- **DC Plasma sources have dominated for the last 50 years** (SIMS, ISS, High energy particle accelerators)
 - Limited brightness, stability and lifetime due to cathode erosion.
 - Broad Energy spread.

Inductively Coupled Plasmas

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{OE}{\partial t}$

 $/ \times E = -$

ICP-OES (also ICP-MS)

- No cathode no source electrodes being sputtered
- High power density possible

DS4G Ion Thruster (ANU / ESA)

Lifetimes of >10⁴ hours required 10x more fuel efficient than SMART-1 plasma thruster

ICP reactor – wafer etch/dep. GEC ICP Reference Cell

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

7×E =-

OREGON

PHYSICS

High Brightness Ion Beams

Ion Extraction

A drive frequency is chosen to accelerate electrons but not ions $-\underline{low thermal ion energy}, (E_i)$

No cathode – no sputtering and *high power densities* are possible without compromising life span

- <u>high plasma density</u>, (n_i)

Xe⁺ FIB for Large Volume Micromachining

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

7×E =-

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

Through Silicon Vias (TSV's)

150x100x100um stair-step

1000 nA – 25 mins. 100 nA polish – 10 mins. 50 pA image ~50 nm

OREGON

PHYSICS High Brightness Ion Beams

(v's 15hrs for 50nA Ga)

 $\nabla \times \vec{B} = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

/×E=-

OREGON

PHYSICS

High Brightness Ion Beams

FIB-FIB (Plasma-Gallium) built to study large area tomographic analysis.

100 x 100um x 0.1um thick slices (500nA) 10 seconds/slice

TSV structure, courtesy of Dr. Bender (vias developed at IMEC, while developing their fabrication process)

Wedge Cut

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$

đt

Wedge Cuts: 120x15x15um rows 100nA Xe+ 20 minutes

Top Down Bias Cut

 $\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial L}{\partial t}$

• Sample imaged with Gallium FIB (normal incidence)

Molybdenum deposited on surface, but more susceptible to curtaining

Coarse Mill: 150x150umx40um - 1uA Xe⁺ (18 mins) **Polish Mill:** 150x150x10um – 200nA Xe⁺ (22mins)

Conclusions

- Application space for ICP ion source. FIB
 - Large area FIB cross-sectioning.
 - Micromachining (custom apertures, machining steps for micro-mechanical devices)
 - Low Energy amorphous layer removal

SIMS

- Faster low energy depth profiling.
- Higher resolution imaging.

ICP performance has not reached it limits.

- 50nm imaging resolution to date, but sub-20nm resolution 30keV/1pA Xe⁺ beams are possible with today's source technology.
- R&D over the next couple of years will certainly result in gains in source brightness and possibly energy spread.
 8-10x gain in plasma density and 2.5x reduction in energy spread is the present target.

