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Some History of Microscopy 

Occhiolino “Little Eyes” – 16th Century 

 First microscope was the optical microscope 

 Compound microscopes end of 16 century 

 Galileo Galilei's compound microscope in 1625 

 Occhiolino “Little Eyes” 
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18th century microscopes 

Musée des Arts et Métiers, Paris http:/www.eatechnology.com 

Wikipedia 



Some History of Microscopy: Scanning Tunneling 

Microscope a “Quantum” Microscope 

 Invented by Gerd Binnig and Heinrich Rohrer in 1981 

 Nobel Prize in Physics in 1986 with Ersnt Ruska (electron microscope) 
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Quantum Mechanical Tunneling 

Distance 

Current 

 2 dI e

from Wikipedia 



Scanning Tunneling Microscopy 

A “Quantum” Microscope 

STM is an electron probe, sensitive to the energy resolved 

local density of electron states (LDOS) – seeing in “color” 
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Evolution of Cryogenic Scanning Tunneling 

Microscopes 
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 Exponential tunneling transmission selects out the last 

atom on the probe tip 

 

 Allows to “see”, “feel”, and “hear” in the nanometer 

scale world 



Evolution of Cryogenic Scanning Tunneling 

Microscopes 

 Desire stability and higher energy resolution  

 Resolution limited by the thermal Fermi-Dirac 

distribution ~ 3kBT 

 Solution: Go to lower temperatures 

 Not so easy! 
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1990 

1981 

2004 

2010 

T = 4 K 
T = 295 K 

T = 0.6 K 

T = 10 mK 



Competing Requirements to Achieve High 

Resolution at Low Temperatures 

 Tunneling current changes by x10 with 1 Å change 

 < 1 picometer displacement fluctuation is required 

 Isolate from the environment to achieve small 

fluctuations 

Poor thermal transport 

 

 Bond strongly to environment to achieve good thermal 

contact  

Poor isolation 

 Solution is to do both! 
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Developing High-Energy Resolution SPM 

Measurements 
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Processing Lab 

ULTSPM Lab at NIST 

Stage 1 

Stage 2 

Stage 3 

Vibration Isolation 



Developing High-Energy Resolution SPM 

Measurements 

 Refrigeration to 10 mK using 3He-4He mixture 

 

10 

Magnet

IVC

UHV

≈700 mK

STILL

Shield ≈50 mK

ICP

Shield

STM

Silver rods

Mixing

Chamber

≈10 mK
3He dilute

3He rich

STILL

3He Pumping

Station

3He

Pump

4LHe

1K pot

3He

Z3 Z1

Z2

E3 E1

E2

E4

E5

Comp

3He-4He Gas Handling System

(GHS)

1.5 K 

4 K 

700 m K 

50 mK 

10 m K 

Vladimir Shvarts 

Zuyu Zhao 
Y. J. Song et al. RSI (2010) 



Developing High-Energy Resolution SPM 

Measurements 
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Young Jae Song 

Alexander F. Otte 

Young Kuk 

Joseph A. Stroscio 



Developing High-Energy Resolution SPM 

Measurements 

 Excellent performance down to lowest temperatures 

 JT is better than 1K pot 

 Z noise < 1 pm Hz1/2 

 I noise < 100 fA Hz1/2 
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Y. J. Song et al. RSI (2010) 

Er atoms on CuN 

8 nm 

Graphene/SiC 

5 nm 

T=13 mK 
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From Honeycombs to the Dirac Hamiltonian 

Graphene – Light-like Electrons 
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Savage, N., "Researchers pencil in graphene 

transistors." IEEE Spec. 45, 13 (2008). 

From Pencil Drawings to High Speed Transistors to iPAD? 

Or Galaxy Tab? 

IBM and HRL 

GHz Transistors 

Nature Nanotech. (2010) SKKU, Korea 



New Materials and State Variables 

 Graphene, TIs; Spin and Pseudo-Spin as State Variables 

 

 Electron spin 

 

 Graphene sub-lattice pseudo-spin 

 

 Graphene bilayer – layer pseudo-spin 

 

 Topological Insulator – spin locked to momentum 
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Graphene Dirac Fermions 

Graphene Basics 
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Top View (real space) 

Carbon with 4 valence electrons 

Two atom basis in the unit cell 

 → pseudo-spin 



From Honeycombs to the Dirac Hamiltonian 
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Figure from droid-life.com 
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Figure from P. Kim 

Wallace (1947) 

kx' ky' 

K 
K’ 

Energy is linear with 

momentum massless particles 



From Honeycombs to the Dirac Hamiltonian 

Low Energy Expansion: Dirac Hamiltonian 
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y 
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Real space: 
For behavior away from Dirac point, make an expansion: 

Paul Dirac 
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The Independent Two Valleys 
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Consequences of Dirac Hamiltonian 

Pseudo-spin; reduced 

backscattering 
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kx' ky' 

E 

Klein tunneling; 

transmission through 

potential barriers 

 

 

Katsnelson et al. Nature Physics 2006 
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Geim & Novoselov Nature 2007 

Landau Quantization in Graphene 

 Cyclotron motion in a magnetic field 

 Quantized orbits and energy levels 
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“Standard” Landau level spacing Graphene Landau level spacing 



 10 K@10 T



 1000 K@10 T

Relativistic: 

2sgn( ) 2nE n e c n B

Standard Model: 
 

*
( 1/ 2)n

e
E E B n

m
  

Lev Landau 

1908 - 1968 

B 

 Scattering in the graphene 

landscape 

 Effects of disorder and 

interactions  
 

http://upload.wikimedia.org/wikipedia/en/5/52/Lev_Davidovich_Landau.jpg


Landau Quantization in Graphene 

The Graphene Quartet 
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Four-fold degenerate 

due to spin and valley 

symmetries 

STS provides direct 

measure of energy gaps 

and interaction effects 
 



STS vs Transport Measurements 

STS 
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http://en.wikipedia.org/wiki/Quantum_Hall 

Wide energy spectrum 

Localized states in the 

mobility gaps 

Spatial properties of 

extended and localized 

states 

Energy gaps when 

degeneracies are lifted 

Correlation effects 
 

Transport 

http://en.wikipedia.org/wiki/Quantum_Hall
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Epitaxial Graphene on C-face SiC – Weak Disorder 
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C-Face termination 

Si-Face termination 

SiC SiC 

4 - 100 ML  

1 - 5 ML 

(0001)
 

 

(0001)
 

 

Graphene layers 

n~1012/cm2 

n~1010/cm2 

E 

E 

SiC 

Induction Furnace Method 

J. Hass et al., PRL 100, 1255504 (2008) 
Berger et al., J. Phys. Chem B 108, 19912 (2004) 
Berger et al., Science 312, 1191 (2006) 
de Heer et al., Sol. St. Commun., 143, 92 (2007) 

 



Magnetic Quantization C-face Graphene at 4K 

 Direct measurement of graphene quantization 

 Weak disorder 
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 Quantization obeys 

graphene scaling 

 Full quantization of DOS 

into Landau levels 

 Very sharp LLs 

 High mobility 
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D. L. Miller, et al., Science 324, 924 (2009). 



Resolving the Graphene Quartet 

Tunneling Spectroscopy at ~10 mK 
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Y. J. Song et al. Nature (2010) 



Resolving the Graphene Quartet 

Tunneling Spectroscopy at ~10 mK 
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Y. J. Song et al. Nature (2010) 
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Resolving the Graphene Quartet 

Tunneling Spectroscopy at ~10 mK 
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Y. J. Song et al. Nature (2010) 
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Resolving the Graphene Quartet 

Tunneling Spectroscopy at ~10 mK 
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Y. J. Song et al. Nature (2010) 
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Many Body Effects in Graphene 

Polarizing Landau Levels 
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Many Body Effects in Graphene 

Polarizing Landau Levels 
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Many Body Effects in Graphene 

 Enhanced Exchange Interaction 

 For polarized LL, symmetric spin and antisymmetric 

space wavefunction leads to enhanced exchange 

interaction 
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Pauli Exclusion Principle 

Wolfgang Pauli 
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Developing SPM Measurements for Devices 

Graphene is Not Ideal in Real Devices 
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Y. Zhang et al. Nature 
(2010) 

K. Novoselov et al. Nature (2005) 



SPM Measurements in Graphene Devices 

Potential Disorder in Graphene/SiO2 
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SiO2 

Graphene 

Impurities 

EF @ Vg2 

EF @ Vg1 

Disorder potential variation 

Vg2  > Vg1 

 

Puddle size @ Vg2 

  

Gate Electrode 

N. M. R. Peres et al. PRB (2006) 

E. H. Hwang et al. PRL (2007) 

J. Martin et al. Nature Phys. (2008), (2009) 

E. Rossi and S. Das Sarma PRL (2009) 

Y. Zhang et al. Nature Phys. (2009) 

Etc…… 

 

 

• Mobility 

• Minimum conductivity 

• Localization… 

How does disorder affect: 



SPM Measurements in Graphene Devices 

Device Fabrication / Experimental Set-up  
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- Mechanically exfoliated graphene    
    on SiO2/ Si substrate 
- Single / bilayer confirmed by 
    Raman spectroscopy 
-  Stencil mask evaporation   

200 μm 

Optical viewing and probe alignment in 

CNST STM 

S. Jung et al. Nature Physics (2010) 



LDOS vs Transport Measurements 

Gate Mapping Tunneling Spectroscopy 
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Vary density with 

applied back gate 

Spatially map density 

fluctuations 

Examine interaction 

effects at EF 
 

Vg = V1 

Gate insulator   
Gate electrode 

Vg = V2 

Map dI/dV(E,Vg) 
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SPM Measurements of Graphene Devices 

Gate Mapping Tunneling Spectroscopy (simulation) 
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SPM Measurements of Graphene Devices 

Gate Mapping Tunneling Spectroscopy in An Electron 

Puddle 
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SPM Measurements of Graphene Devices 

Evolution of Localization in Graphene Devices 

42 

B = 0 T B = 2 T B = 4 T B = 5 T B = 6 T B = 7 T B = 8 T 
LL0 

LL-1 

LL-2 

LL0 

LL1 

LL2 



SPM Measurements of Graphene Devices 

 Graphene Quantum Dot Formation in High Field 

 Coulomb blockade – Groups of four diamonds due to spin and valley 

degeneracy 
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SPM Measurements of Graphene Devices 

Graphene QDs Formed in Disorder Potential 
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SPM Measurements of Graphene Devices 

Graphene QDs Formed in Disorder Potential 
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SPM Measurements of Bilayer Graphene Devices 

STS Allows Direct Measurement of Bilayer Potentials 
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20 nm  

STM topography image Disorder potential 

Electron 

puddle 

Hole  

puddle 

20 nm  

Probing Spatial Distribution of Disorder Potential  
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20 nm  

Single Layer Bilayer 

Electron puddle 

Hole puddle 



SPM Measurements of Bilayer Graphene Devices 

Gate Mapping Allows Direct Measurement of Bilayer Gap 
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 Quantitative determination of bilayer gap 

 Variation on a microscopic scale in both 

magnitude and sign 

G. Rutter et al. Nature Physics (2011) 
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What’s the Next in Atomic Scale Measurement 

Development 

 Coordinated approach to combine new atomic-scale 

measurement methods, synthesis, and device fabrication 

 Atomic scale and macroscale measurements on the same test devices 

 How does microscale properties from substrates/gate insulators, contacts 

etc… determine macroscale performance 

 Develop measurements for new qraphene device concepts, i.e. Veslago lens 

BiSFET device 

 Fabrication and measurement of topological insulators – more Dirac 

 MBE and bulk crystal growth, atomic characterization studies 

 Combined STM, AFM and spin-polarized STM on device geometries 

 New high-throughput STM/AFM/SGM system 

 Multi-terminal STM/STS measurements on devices that combine 

simultaneous transport and atomic characterization measurements to 

optimize device performance 

 Continue to seek collaborations that leverage our capabilities 
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Collaborators 
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Graphene Device Crew 
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