

IBM Research | Science & Technology

IBM Graphene Nanoelectronics Technologies

C.Y Sung Program Manager IBM T.J. Watson Research Center Science & Technology Strategy Department

- Motivation
- Synthesis (CVD and Epi)
- Device Fabrication and Performance
- Future Applications
- Conclusions

IBM Research Worldwide

Almaden San Jose, California

Watson Yorktown Heights, NY

Zurich Rueschlikon, Switzerland

Tokyo Yamato, Japan

Ten Labs with >4,000 Researchers Around The World

-

Austin Austin, Texas

Haifa Haifa, Israel

India Delhi, India

China Beijing, China

Technical Transition Plan

Fundamental Research

Screen new materials & processes

> IBM Almaden & Yorktown

Advanced Semiconductor R&D

Innovation in integrated device & process technology Albany Nanotech Center

Technology Development

Multi-company co-located joint development

IBM East Fishkill

Manufacturing

Process synchronized fabricators (GDSII compatible)

USA

Frontiers of IT Nanosystem Vision

New systems enable us to reach the greatest potential for our creativity, innovation and ingenuity.

Learning Systems Will Impact Every Sector

NRI Scope and Objectives

NRI Scope :

Discover New Switch Device for Beyond CMOS by 2020

NRI Objectives :

By 2020, discover and reduce to practice via technology transfer to industry non-CMOS devices, technologies and new manufacturing paradigms, which will provide <u>a new scaling path</u> and extend the historical cost / function reduction with increased performance and density for another several orders of magnitude beyond the limits of CMOS.

Motivation

- Synthesis
- Device Fabrication and Performance
- Future Applications
- Conclusions

Carbon on Insulator (COI)

Graphene Attractive Properties:

 •Extraordinary high e- and h+ mobility (20,000 cm2/Vs, >100X of Si) Long carrier mean free paths (~a few μm @ Room Temp.)
 ->Enable High Performance Devices

•Ultra-thin body (one-atom thick) Ideal electrostatics: ->Enable Scaling Paths

•High thermal conductance and high current carrying capability ->Allow Low Power Operations

•Linear energy dispersion and massless ballistics transport ->New Physics for New Devices

Planar structure

-> CMOS Process Compatible

- Motivation
- Synthesis (Epi and CVD)
- Device Fabrication and Performance
- Future Applications
- Conclusions

Epi Graphene on SiC

C.Y Sung | IBM Confidential

Graphene Mono Atomic Layer on 2" SiC Wafer

Graphene Growth on Cu Foils by CVD

Up to 12" Successfully Demonstrated

Roll-Based Producing Graphene Films

Sukang Bae,^{1*} Hyeong Keun Kim,^{3*} Xianfang Xu,⁵ Jayakumar Balakrishnan,⁵ Tian Lei,¹ Young Il Song,⁶ Young Jin Kim,^{1,3} Barbaros Özyilmaz,⁵ Jong-Hyun Ahn^{1,4†}, Byung Hee Hong^{1,2†}, Sumio Iijima^{1,7}

- Motivation
- Synthesis

Device Fabrication and Performance

- Future Applications
- Conclusions

220nm Single Atomic Layer Graphene Transistor on 2" SiC Wafer

- Motivation
- Synthesis
- Device Fabrication and Performance
- Future Applications
- Conclusions

Graphene Logic Devices (Innovative Concepts)

Veselago Lens Switches

θ_c θ_v A a |n|a

Cheianov, Fal'ko & Altshuler, Science (2007)

On/Off via electron focusingSpeed

Graphene Optoelectronics

Graphene Photodetector in 10 Gbit/s 1.55 μm Optical Communication Link

Graphene Sensor and Energy Devices

C.Y Sung | IBM Confidential

Graphene RF Thin Film Sensors

Graphene Thin Film

Digital Contact Lens

Smart Graphene Bandage

Sensitive Sensor for toxic gases and proteins

C.Y Sung | IBM Confidential

Green applications: Photovoltaics/ Supercapacitors

Graphene Energy Devices for Low Weight
High Performance Battery Cells
Supercapacitors.

•Graphene based photovoltaics device create more efficient cell.

- Motivation
- Synthesis
- Device Fabrication and Performance
- Future Applications
- Conclusions

IBM Research | Science & Technology

CARLES A.

Mobile Phones

Electronics Payments

Watches/Calendars

Thin Flexible Light Panel

thin flexible light panel

Tablet Computer

Scientific Background on the Nobel Prize in Physics 2010

Graphene

Compiled by the Class for Physics of the Royal Swedish Academy Science

Communications

Composite Materials

Touch Screens/ Microelectronics

C.Y Sung | IBM Confidential