Nanomechanical Characterization and Metrology for Low-k / ULK Materials

HYSITRON

Ude Hangen

Hysitron Inc.

Outline

- Introduction
- Nanomechanical measurement methods
- Results
 - Nanoindentation
 - Creep
 - Nanoscratch to characterize interfacial Adhesion
 - Wedge indentation to characterize interfacial Adhesion
- Summary
- Concluding Remarks

Introduction

Courtesy of 2007 ITRS **Dielectric potential solutions** 4.0 Calculated based on delay time Effective Dielectric Constant; keff using typical critical path **ITRS2006** 2.87-3.27 3.5 Estimated by typical low-k materials and ILD structures 2.60-2.94 3.0 2.14-2.50 1.95-2.27 2.5 Delay time improvement by 30% eme 2.0 1.5 Manufacturable solutions Red Brick Wall (Solutions are NOT known) are known 1.0 18 19 20 07 08 09 12 16 17 10 13 15 14

Year of 1st Shipment

Metrology Challenges

 Mechanical Strength Modulus Hardness Fracture

- 2. Interfacial Adhesion Delamination
- 3. Pore size distribution

Low-k Materials	Continuous Improvement	Qualivication/Pr e-Production	Development Underway
CVD-OSG	2.8≤k≤3.2	2.4≤k≤2.7	2.0≤k≤2.3
Spin-on Polymer	k=2.6	k=2.3	k=2.0
Spin-on MSQ	NA	2.4≤k≤2.7	2.0≤k≤2.3

Introduction

	Items	Method		
1.	Dielectric Constant	Hg Probe		
2.	Young's Modulus	Nanoindentation		
3.	Hardness	Nanoindentation		
4.	Structure	XPS, FT-IR		
5.	Pore Size	Small Angle X-ray Scattering		
6.	Thermal Stability	TDS, TG-DTA		
7.	Moisture Absorption	TDS		
8.	Thermal Conductivity	3ω method		
9.	Leakage Current	Hg Probe, AI Dot		
10.	Process Compatibility	Dielectric Constant, FT-IR, Damage		
11.	Adhesion to substrate	Scratch; Wedge Indentation		
	 Solvent, Etching, Ashing, CMP 			

HYSITRON

Introduction

CMP performance depends strongly on the mechanical property of the low-k material

Introduction

- What: Porous **Organosilicate glasses (OSG)** low-k materials containing nanometer-size pores prepared by PE-CVD using diethoxy-methylsilane DEMS as a precursor at 250°C with Helium and oxygen gas as carrier gas and oxidizer.
- Why: Mechanical properties are critical The pore introduction degrades the mechanical strength of the low-k films and results in serious damages to ULSI interconnects such as the film de-lamination during CMP and/or cracking due to the thermal stress from packaging mold resin.
- How: Nanomechanical measurements using Hysitron's Triboindenter to characterize the Hardness, Modulus, Fracture Toughness, Adhesion, Elevated Temperature Behavior, and Wear Behavior.

Low-k materials

OSG #	Cap layer	Porosity	k
OSG45	No	45%	2.3
OSG7	No	7%	2.98

Hysitron TriboIndenter

- Berkovich, Conical probe
- Hardness, Reduced Modulus, and Fracture Toughness
- Elevated Temperature
- Creep
- nanoScratch
- nanoWear
- Acoustic Emission with a cube corner probe
- Conical probe Creep and Scratch
- nanoECR Electrical Measurements

HYSITRON

OSG45

Nanoindentation

OSG45

OSG7

HYSITRON

200.0

100.0

0.0

0.772

-0.847

-2.467

Nanoindentation

Kc is the fracture toughness, E is the Young's $K_c = \alpha \left[\frac{E}{H}\right]^{\frac{1}{2}} \left|\frac{P}{\frac{3}{c^2}}\right|$ Refine fracture toughness, E is the Young's Modulus, H is the hardness, P is the peak applied load, c is the length of the radial cracks, and α is an empirical constant taken as 0.016 for a Berkovich tip

	E (GPa)	H (GPa)	P (mN)	c (µm)	K _c (MN/m ^{3/2})
OSG45	7.1	0.34	6	1.78	0.14
OSG7	22	1.8	8	1.16	0.35

Modulus, k-value and Porosity

SiCOH – low –K exposed to H/He-plasma

HYSITRON

K. Vanstreels and A. M. Urbanowicz J. Vac. Sci. Technol. B, Vol. 28, No. 1, Jan/Feb 2010

=> For a known material Modulus would be enough to measure

Elevated Temperatures

OSG45

Creep

$$E_i = \frac{h_{in} \cdot P_i}{A_i} \frac{1}{h_i} \qquad \qquad \eta_i = t_i \cdot E_i = \frac{h_{in} \cdot P_i}{A_i} \frac{t_i}{h_i}$$

	h _o (nm)	h ₁ (nm)	h ₂ (nm)	t ₁ (s)	t ₂ (s)	t ₁ /h ₁ (s/nm)	t ₂ /h ₂ (s/nm)	
OSG45	152.76	6.49	8.73	1.53	31.56	0.236	3.62	Lower viscosity
OSG7	135.36	1.38	2.37	0.66	14.23	0.478	6.00	Higher viscosity

Adhesion Measurement

Adhesion Measurement: HYSITRON nanoScratch

Normal Displacement : N [nm]Normal Force: N_F[μ N]Lateral Displacement: L[μ m]Lateral Force: L_F[μ N]

HYSITRON

Friction Coefficient LF/NF=200/750=0.267

OSG45

HYSITRON

Image Scan Size: 10.000 µm

Friction Coefficient LF/NF=400/3000=**0.133**

OSG7

OSG45

The critical loads from the 2 mN ramping force scratch tests on Sample OSG45 using a 1 µm conical probe

Test #	Critical Load (µN)
1	705
2	843
3	894
4	738
Ave:	795
Std Dev:	88

HYSITRON

OSG7

The critical loads from the 5 mN ramping force scratch tests on Sample OSG7.4 using a 1 μm conical probe

Test #	Critical Load (µN)
1	2904
2	2917
3	2926
4	2967
Ave:	2929
Std Dev:	27

Reference load for CMP processing down force

Compressive Buckling and

Crack Front Curvature

f''(x)

 $[1+(f'(x))^2]^{3/2}$

-6.50 Log of Film Thickness, log(t)

-6.00

-6.75

Hertzian Elastic Contact

The stiffness for two samples of different Reduced Modulus leads to a typical stiffness for a given force:

HYSITRON.

The contact force during imaging is constant; the tip radius is constant The stiffness therefore relates directly to the Red. Modulus of the sample

Indentation Analysis

Average Stress

$$\sigma_o = E_f \frac{V_o}{V_c}$$

Modulus Mapping ('SEMless')

Interfacial Toughness

Results

HYSITRON

Results are consistent with those reported in literature 4PBT. MSQ porosity less than 40%, $G_c = 1.7$ to 2.4 J/m² CVD deposited Organosilicate glass, $G_c = 4.7$ to 7 J/m² Guyer et al., JMR (2006); Lin et al., ActaMater (2007)

Outlook

nanoIndentation & nanoScratch

Design &FEM Modeling: Reduced Modulus Hardness (Yield Strength) T-dependence Creep & Relaxation Adhesion **Process Control:** Indentation: Porosity Densifications **Collapsing Pores** Sensitive to Film Thickness Scratch: Adhesion Wedge Indentation: Adhesion

HYSITRON

...=> Lot of information that is easy to measure.

Concluding Remarks

- Nanomechanical measurements provided by Hysitron's Triboindenter can quantitatively evaluate various properties of low-k films.
- Test can be performed with no sample preparation, high throughput and a controlled particle generation
- Mechanical tests are reproducible.
- The measured properties can be related to core functional properties: H&M↔Porosity↔k-value; Critical force during Scratch↔interfacial adhesion; Wedge indentation: Balance of Energy release rate ↔adhesion.
- Nanomechanical tests can be performed on narrow structures – scribe lines or test structures

THANK YOU!

Acknowledgements:

- 1. Han Li and Joost Vlassak; Havard University; ULK film samples
- 2. S.X. Song, Ryan Stromberg; Hysitron Inc.; Measurements and Analysis of Low-K
- 3. Kong Boon Yeap and Ehrenfried Zschech; Fraunhofer IZFP-Dresden; Wedge indentation