
Chapter 8 – Comparing Congestion Control
 Regimes in a Heterogeneous Network

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 316

8 Comparing Congestion Control Regimes in a
 Heterogeneous Network
In this chapter, we investigate effects on macroscopic behavior and user experience when
deploying various congestion control algorithms in a simulated, heterogeneous network,
i.e., a network that includes flows operating under normal TCP congestion control
procedures together with flows operating under one of seven proposed alternate
congestion control algorithms, as identified in Table 8-1. Mixing alternate congestion
control regimes together with standard TCP will enable us to investigate the influence of
alternate congestion avoidance algorithms on the performance of TCP flows. We also
introduce additional flow sizes to represent downloading movies and software updates
(e.g., service packs). These file sizes augment the Web objects and document downloads
used in previous experiments (Chapters 6 and 7). Here, we adopt a small-scale network,
similar to that used in Chapter 7, because earlier experiments suggested that a small-scale
network yields significant information while requiring fewer resources. Reducing
computational cost allows us to repeat our experiments first with a large initial slow-start
threshold and then with a small initial slow-start threshold. We take this step in light of
the apparent significance of the initial slow-start threshold, as uncovered in earlier
experiments.

Table 8-1. Alternate Congestion Control Regimes Compared

Identifier Label Name of Congestion Avoidance Algorithm
1 BIC Binary Increase Congestion Control
2 CTCP Compound Transmission Control Protocol

3 FAST Fast Active-Queue Management Scalable
Transmission Control Protocol

4 FAST-AT FAST with -tuning Enabled

5 HSTCP High-Speed Transmission Control Protocol
6 HTCP Hamilton Transmission Control Protocol
7 Scalable Scalable Transmission Control Protocol

We exposed our simulated network to a range of congestion conditions, but we

reduced overall congestion by an order of magnitude from previous experiments. We
made this reduction in order to investigate behavior of the alternate congestion control
algorithms under little to modest congestion, which should reveal any differences in user
experience when large files are sent over fast paths between sources and receivers with
high-speed network interfaces. In fact, we classified flows into groups based on four
dimensions: (1) congestion control algorithm used; (2) characteristics of the network path
transited; (3) minimum interface speed of the source and receiver pair; and (4) size of the
transferred file. Such classification enabled us to compare relative performance among
congestion control algorithms for specific flow groups. We collected and compared data
representing the distribution of goodput for users of flows in each flow group.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 317

We organize what follows into six sections. Sec. 8.1 describes the experiment
design, including robustness factors, fixed factors, conditions simulated and responses
measured. In describing the design, we explain how we controlled the generation of flows
in each group. Sec. 8.1 also gives the domain view of the simulated conditions. Sec. 8.2
details resource requirements for simulating the experiments and outlines how we
collected and summarized experiment data. Sec. 8.3 explains the data analysis approach
we used to investigate experiment responses. Sec. 8.4 presents the results from both sets
of experiments, that is, with a large and a small initial slow-start threshold. Sec. 8.5
discusses key findings from the results. We conclude in Sec. 8.6.

8.1 Experiment Design
We conducted these experiments within the same fixed, heterogeneous topology (see Fig.
6-1) used in previous experiments. As discussed below, we employed nine robustness
factors, which define the range over which our findings apply. We fixed the remaining
model parameters and then created a design template to simulate 32 conditions. We
repeated the 32 simulated conditions a second time after lowering the initial slow-start
threshold, so the simulations yielded two sets of results. By mixing flows using alternate
congestion control algorithms together with flows using standard TCP, we can examine
the relative influence of the various alternate algorithms on normal TCP flows. Such
information could be useful because the Internet is unlikely to cutover all at once to an
alternate congestion control algorithm, but rather will experience a transition period
during which TCP flows will coexist with flows using alternate algorithms.

8.1.1 Robustness Factors and Fixed Factors
Table 8-2 specifies the robustness factors and values we used for this experiment.
Robustness factors included the most significant factors identified from our sensitivity
analysis (see Chapter 4): network speed (x1), propagation delay (x2), number of sources
(x9), think time (x4), file sizes (x5) and buffer sizes (x3). We introduced a new factor
(x6) to control distribution of files sizes. In order to sample flows in each possible flow
group, we included a factor controlling the network interface speed of sources and
receivers (x7). Finally, to simulate a network in transition, we included a factor (x8)
determining the proportion of sources adopting the alternate congestion control algorithm
(the remainder of sources adopted standard TCP congestion control procedures).

Table 8-2. Robustness Factors Adopted for Comparing Congestion Control Mechanisms

Identifier Definition PLUS (+1) Value Minus (-1) Value
x1 Network Speed 1600 packets/ms 800 packets/ms

x2 Propagation Delay Multiplier 2 1
x3 Buffer Size Scaling Factor 1 0.5
x4 Think Time 7500 ms 5000 ms
x5 Average File Size for Web Objects 150 packets 100 packets
x6 Distribution for Sizing Large Files 2 1
x7 Probability of Fast Source .7 .3

x8 Probability of Alternate
Congestion-Control Algorithm .7 .3

x9 Multiplier on Base Number of
Sources (U) 3 2

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 318

The parameter values for x6 indicate which of two distributions to select for the
probability of various file sizes. The distribution details are given in Table 8-3. A file that
is not a document (D), service pack (SP) or movie (M) is a normal Web object (WO), so
the sum of Fp, Sp and Mp can fall below, but must not exceed, one. The size of each Web
object was drawn from a Pareto distribution with an average size of x5 and a shape
parameter = 1.5. The average size for the other file types were multipliers applied to the
size selected for a Web object. Table 8-4 gives the details.

Table 8-3. Probability Distributions for Files of Various Sizes (Residual Files are Web Objects)

Parameter Definition if x6 = 2 if x6 = 1

Fp Probability file is a Document 4 x 10-2 2 x 10-2

Sp Probability file is a Service Pack 4 x 10-3 2 x 10-3

Mp Probability file is a Movie 4 x 10-4 4 x 10-4

Table 8-4. Fixed Parameters for Sizing Files

Parameter Definition Value

Shape parameter for Pareto distribution of file sizes 1.5

Fx Average Document size = x5 x Fx packets 10

Sx Average Service Pack size = x5 x Sx packets 103

Mx Average Movie size = x5 x Mx packets 104

The probabilities shown in Table 8-3 were used to determine the size of files sent

on flows, subject to constraints (explained below) intended to ensure a minimum and
maximum number of flows were active simultaneously in the network for each flow
group. Table 8-5 shows the dimensions used to classify flow groups.

Table 8-5. Four Dimensions Defining Flow Groups

Path Class Interface Speed (min.) File Type Control Algorithm
VERY FAST FAST Document BIC

FAST NORMAL Movie CTCP
TYPICAL Service Pack FAST

Web Object FAST-AT
HSTCP
HTCP

Scalable

TCP Reno

One dimension of a flow group concerns path class, as described earlier in Table

6-2. A given network flow may traverse a path between a pair of (so-called D-class)
access routers directly connected to backbone routers, which would yield a very fast (VF)
path. Other flows may transit combinations of D-class routers and fast (so-called F-class)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 319

access routers, which yield fast (F) paths. Any flows traversing at least one normal (so-
called N-class) access router would travel on a typical (T) path. A second dimension of a
flow group considers the speed with which a source-receiver pair connects to the
network. A flow can operate no faster than the minimum speed of the source and
receiver, which may connect at a normal speed (e.g., 100 Mbps) or fast speed (e.g., 1
Gbps). If both source and receiver have fast network connections, then the interface
speed is fast (F); otherwise, the interface speed is normal (N). A third dimension of a
flow group is file type, which denotes file size. Flows with smaller files (e.g., Web
objects) usually achieve lower goodputs because a larger portion of the flow lifetime is
spent establishing the maximum transfer rate. In fact, sufficiently short files may end
before a flow even reaches the maximum achievable transfer rate on a path. The fourth
dimension of a flow group identifies the congestion control algorithm used by the source
that originates the flow. Since each simulation had a mix of TCP sources and alternate
sources, the fourth dimension in a given experiment execution took on two values: TCP
Reno and one of the remaining congestion control algorithms. Flows, originated by TCP
Reno sources and alternate sources, fell into one of 24 flow groups, depending on the
values for the remaining three dimensions: path class, interface speed and file type. Table
8-6 identifies these 24 flow groups.

Table 8-6. Flow Group Identifiers Assigned Based on Three-Dimensional Classification

 Web ObjectNORMALTYPICAL24

Web ObjectFASTTYPICAL23

Web ObjectNORMALFAST22

Web ObjectFASTFAST21

Web ObjectNORMALVERY FAST20

Web ObjectFASTVERY FAST19

DocumentNORMALTYPICAL18

DocumentFASTTYPICAL17

DocumentNORMALFAST16

DocumentFASTFAST15

DocumentNORMALVERY FAST14

DocumentFASTVERY FAST13

Service PackNORMALTYPICAL12

Service PackFASTTYPICAL11

Service PackNORMALFAST10

Service PackFASTFAST9

Service PackNORMALVERY FAST8

Service PackFASTVERY FAST7

MovieNORMALTYPICAL6

MovieFASTTYPICAL5

MovieNORMALFAST4

MovieFASTFAST3

MovieNORMALVERY FAST2

MovieFASTVERY FAST1

File TypeInterface SpeedPath ClassIdentifier

Web ObjectNORMALTYPICAL24

Web ObjectFASTTYPICAL23

Web ObjectNORMALFAST22

Web ObjectFASTFAST21

Web ObjectNORMALVERY FAST20

Web ObjectFASTVERY FAST19

DocumentNORMALTYPICAL18

DocumentFASTTYPICAL17

DocumentNORMALFAST16

DocumentFASTFAST15

DocumentNORMALVERY FAST14

DocumentFASTVERY FAST13

Service PackNORMALTYPICAL12

Service PackFASTTYPICAL11

Service PackNORMALFAST10

Service PackFASTFAST9

Service PackNORMALVERY FAST8

Service PackFASTVERY FAST7

MovieNORMALTYPICAL6

MovieFASTTYPICAL5

MovieNORMALFAST4

MovieFASTFAST3

MovieNORMALVERY FAST2

MovieFASTVERY FAST1

File TypeInterface SpeedPath ClassIdentifier

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 320

8.1.1.1 Constraints on Flows of Large Size. Applying probabilities associated with factor
x6 (distribution for sizing larger files) could lead to two undesirable consequences: too
few samples on very fast paths and too many samples on typical paths. If the probabilities
of very large files, e.g., movies and service packs, were sufficiently small, then a given
experiment may generate few or no large files for some rarer combinations of flow traits,
e.g., flows with fast interface speeds traveling over very fast paths. On the other hand, the
probabilities of very large files may also cause a simulated network to be swamped with
many large files that take much time to transfer on flows with normal interface speeds
traversing typical paths. In such cases, large files flowing over slow paths can accumulate
in the network because each of the file transfers takes a long time to complete and the
more such flows in the network, the longer each takes to complete.1

The problem of too few samples might be addressed by simulating longer network
evolution, but the processing cost for the additional simulated time could prove
prohibitive. The problem of too many samples cannot be solved by simulating longer
network evolution; in fact, simulating longer evolution would increase accumulation of
large files being transferred on flows transiting slow paths. For these reasons, we decided
to place constraints on the generation of file types with large sizes. The aim of these
constraints was to ensure a sufficient number of flow samples in each flow group, while
not overwhelming the network with flows that accumulate in any particular group.

In short, using factor x6 we computed a target maximum number of active flows
for each file type, other than Web objects, i.e., for movies, service packs and documents.
Based on relevant factors (x7 and x8) we also computed a target minimum number of
active flows for each type. During simulation, each originating flow was assigned a
preliminary file type of Web object. A file size was drawn from a Pareto distribution with
a specified average (x5) and shape (). A check was then made to see if the minimum
number of movies was active on flows with matching path class, interface speed and
congestion control algorithm. If not, then the flow was assigned a file type of movie and
the file size was increased by the appropriate multiplier taken from Table 8-4; otherwise,
a similar check was made for service pack and then, if necessary, document. If the
minimum number of flows was active in all three possible flow groups (designated by a
specific path class, interface speed and congestion control algorithm in combination with
one of the larger file types), then a file type was selected based on the specified
probability distribution (x6). If the target maximum number of flows was already active
for the selected file type, then the flow remained a Web object; otherwise, the flow size
was increased by the appropriate multiplier.

Computing the target maximum number of active flows for specific file types is
straightforward. For example, given the total number (s) of sources in a simulation we
computed the target number of active document flows as follows.

(1)

1 In a real network the problem of too many large flows over specific paths could be ameliorated by users
aborting flows observed to be running too slowly or taking too long. This would not be true for unattended
flows, such as appear in typical peer-to-peer applications. The simulations used in these experiments
include only unattended flows, so one cannot rely on users to abort slow flows. Note that MesoNet does
include the possibility of user-attended flows in addition to unattended flows.

sDCMAX max ceil s Fp×() 1000,()≡

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 321

Here, Fp is taken from x6 (and related Table 8-3) and 1000 is a selected minimum for the
maximum number of active document transfers desired in the simulation. Ensuring a
minimum maximum enables accumulation of sufficient samples when the specified
probability of document transfers is low. Similar computations can be made for movies
(2) and service packs (3). Note that since these file types are larger than documents,
smaller minimum maximums were chosen to prevent very large files from accumulating
in the network.

(2)

(3)

Computing the minimum number of active flows in each flow group is somewhat
more complicated. We began by selecting a target minimum for flows of each file type.
We specified the target minimum as a percentage (10 % here) of the target maximum. In
order to obtain sufficient samples in each flow group, we allocated the target minimum
across flows based on path class, interface speed and congestion control algorithm. Table
8-7 illustrates how the target minimums were computed for document flow groups.

 Table 8-7. Computing Target Minimums for Document Transfers with Combinations of Flow Traits

Path Class
Interface

Speed
Control

Algorithm
Minimum Number of Documents Being Sent

Per Flow Group
VERY FAST FAST TCP Reno

VERY FAST NORMAL TCP Reno

VERY FAST FAST Alternate

VERY FAST NORMAL Alternate

FAST FAST TCP Reno

FAST NORMAL TCP Reno

FAST FAST Alternate

FAST NORMAL Alternate

TYPICAL FAST TCP Reno

TYPICAL NORMAL TCP Reno

TYPICAL FAST Alternate

TYPICAL NORMAL Alternate

The computations in each row of Table 8-7 have a similar pattern. The target
minimum number of active document transfers is 10 % of the target maximum (sDCMAX),

sMV MAX max ceil s Mp×() 10,()≡

sSPMAX max ceil s Sp×() 100,()≡

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 322

but multiplied by: (a) the probability that a flow transits a given path class2, e.g.,
Prob(DDflow), (b) the probability a flow connects with a particular interface speed (x7 or
1-x7) and (c) the probability a flow uses a specified congestion control algorithm (x8 or
1-x8). Similar computations can be made for movies and service packs.

In cases where the probability of a specific file type is very small, the ceil function
on the calculations in Table 8-7 (coupled with the target maximum) ensures that the
minimum number of active flows for any flow group cannot go below one. In this way,
samples can always be collected for each flow group as long as the probability assigned
to each file type does not equal zero.

8.1.1.2 Fixed Experiment Factors. We specified fixed values for model input parameters
that were not chosen as robustness factors3. Table 8-8 shows the values specified for
fixed network parameters. Most of these parameters remain the same as in previous
experiments. The fixed network parameters defined speeds for POP routers and various
access routers relative to the speed of backbone routers and also determined the speed (in
packets per millisecond) for basic and fast sources and receivers. One change from
previous experiments involves the buffer sizing algorithm. In the current experiment,
buffers are sized using only the conventional computation (RTT x C). Variations in buffer
sizes were controlled by factor x3, which specified a multiplier used to retain (x3 = 1) or
halve (x3 = 0.5) the computed buffer size.

Table 8-8. Fixed Network Parameters

Parameter Definition Value

BBspeedup Backbone router speed = x1xBBspeedup 2
R2 POP routers speed = x1/R2 4
R3 Access routers speed = x1/R2/R3 10
Bdirect Directly connected access router speed = x1/R2/R3xBdirect 10
Bfast Fast access router speed = x1/R2/R3xBfast 2

Hbase Speed of basic sources (packets/ms) 8
Hfast Speed of fast sources (packets/ms) 80

QszAlg Algorithm to size buffers (in packets) RTT x C

Table 8-9 gives fixed values assigned to parameters influencing the number and

distribution of sources and receivers. The basic unit of sources allocated under routers is
100 (implying a base unit of 400 for receivers), which corresponds to our decision to
simulate a small network. The base unit of sources (and receivers) is multiplied by the
value for factor x9 to determine the actual number of base units for a given simulated
condition. The next six parameters in Table 8-9 controlled placement of sources and
receivers under specific access routers throughout the simulated topology. The
probabilities listed were chosen to stimulate flow patterns consistent with a Web-centric
network. Specifically, the probabilities for placing sources and receivers led to the

2 A method for computing such probabilities was explained in Sec. 3.2.4.
3 Recall that the values of robustness factors establish the range of variation over which any experiment
conclusions can be said to hold.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 323

distribution4 shown in Table 8-10, where most sources were placed under fast access
routers and a preponderance of receivers were placed under normal access routers. This
led to a distribution of flows across flow classes with the approximate probabilities listed
in Table 8-11. About 94 % of flows transited at least one N-class access router, with
those flows partitioned as follows: 55 % transited FN paths, 32 % crossed NN paths and
7 % traversed DN paths.

Table 8-9. Fixed Source and Receiver Parameters
Parameter Definition Value

Bsources Basic unit for sources per access router 100

P(Ns) Probability source under normal access router 0.1

P(Nsf) Probability source under fast access router 0.6

P(Nsd) Probability source under directly connected access router 0.3

P(Nr) Probability receiver under normal access router 0.6

P(Nrf) Probability receiver under fast access router 0.2

P(Nrd) Probability receiver under directly connected access router 0.2

sstINT Initial slow-start threshold (packets) 231/2 or 100

Table 8-10. Proportion of Sources and Receivers Placed under Specific Router Classes

Table 8-11. Approximate Probability of Flows Transiting Specific Path Classes

Path Class Flow Probability

Very Fast 1.070 x 10-3

Fast 61.479 x 10-3

Typical 937.451 x 10-3

Table 8-9 also indicates the values specified for the initial slow-start threshold. In
this experiment, we selected two different values: one very large and one rather modest.
We ran two sets of simulations encompassing all robustness conditions, as limited by the
experiment design described below in Sec. 8.1.2. For the first set of simulations we used
a large initial slow-start threshold. In this case, we invoked limited slow-start where the
congestion window increased exponentially up to 100 packets and then logarithmically
after that. We then repeated the same simulations but with a small initial slow-start

4 A method for computing the distribution of sources and receivers and also the probability of flows in
various flow classes was explained in Sec. 3.2.4.

9036Normal
858Fast
26Directly Connected

% Receivers% SourcesAccess Router Class

9036Normal
858Fast
26Directly Connected

% Receivers% SourcesAccess Router Class

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 324

threshold. Repeating the simulations allowed us to assess differences among congestion
control algorithms depending upon differences in initial slow-start thresholds.

The remaining fixed parameters relate to simulation control, as defined in Table
8-12. We set a simulation time step of one millisecond and chose to make measurements
every 200 time steps. For each simulation run we collected 18 x 103 measurements, which
equates to simulating network evolution for (18 x 103 intervals x .2 intervals/s =) 3600 s –
or one hour. Differing somewhat from previous experiments, we defined individual
random number streams for particular aspects of randomness within the simulation. We
took this step to ensure that the experiments provided similar conditions for comparable
aspects of the model when simulating different alternative congestion control algorithms.
Table 8-12 gives the seeds used to initialize each random number seed. All seven seeds
can be adjusted at one time by assigning a different value to parameter RandOffset.

Table 8-12. Fixed Simulation Control Parameters

Parameter Definition Value

M Measurement Interval Size in Time Steps 200
MI Number of Measurement Intervals Simulated 18000

MB Number of Measurement Intervals Buffered 1500

TSD Duration of Each Time Step in Seconds 0.001
RandOffset Random Number Seed Offset 0

CCseed Random Number Seed used to assign
congestion-control algorithms to sources 100000

TTseed Random Number Seed used to assign think
times between flows 200000

HSseed Random Number Seed used to assign network
interface speeds to sources and receivers 300000

UPseed Random Number Seed used to determine when a
source becomes active initially 400000

WOseed Random Number Seed used to assign basic file
sizes for web objects 500000

FTseed Random Number Seed used to assign file types
(web object, document, service pack, movie)

600000

RSseed Random Number Seed used to assign receiver
for each flow started by a source 700000

8.1.2 Orthogonal Fractional Factorial Design of Robustness
 Conditions
Given nine robustness factors, a full factorial two-level experiment requires (29 =) 512
simulations. Comparing seven congestion control algorithms under 512 conditions would
require (7 x 512 =) 3584 simulation runs. Repeating the experiments with a different
initial slow-start threshold would double the number of simulation runs to 7168. We
estimated that running all these simulations, even for a small network, would require
about 150 days given the 48 processors available for our experiments. We decided to
constrain our simulation cost to be no more than 10 days, which implied that we could

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 325

run only 32 conditions for each congestion control algorithm under each of two initial
slow-start thresholds. This led us to select a 29-4 orthogonal fractional factorial
experiment design, as shown in Table 8-13. This is a resolution IV experiment design
[89], which means that main effects are not confounded with each other or with any two-
factor interactions, though some two-factor interactions may be confounded with each
other. Given previous experiments, MesoNet simulations appear to be driven by main
effects, so a resolution IV design should prove adequate for our purposes.

Table 8-13. Two-Factor 29-4 Orthogonal Fractional Factorial Design Template

To generate the experiment conditions, shown in Table 8-14, we combined the
design template (from Table 8-13) with the robustness-factor values (from Tables 8-2 and
8-3). We repeated these same 32 conditions for each combination of seven alternate
congestion control algorithms and two initial slow-start thresholds to yield (32 x 7 x 2 =)
448 individual simulation runs.

8.1.3 Domain View of Robustness Conditions
Changes in network speed and network size influence the domain view of our simulated
network. Table 8-15 shows the simulated router speeds for this experiment, which are
about an order of magnitude below speeds that might be seen in contemporary networks.
Restricting Bsources (base number of sources) to be 100 scales the number of potentially

Factor-> x1 x2 x3 x4 x5 x6 x7 x8 x9
Condition -- -- -- -- -- -- -- -- --

1 -1 -1 -1 -1 -1 +1 +1 +1 +1
2 +1 -1 -1 -1 -1 +1 -1 -1 -1
3 -1 +1 -1 -1 -1 -1 +1 -1 -1
4 +1 +1 -1 -1 -1 -1 -1 +1 +1
5 -1 -1 +1 -1 -1 -1 -1 +1 -1
6 +1 -1 +1 -1 -1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1 +1 -1 -1 +1
8 +1 +1 +1 -1 -1 +1 +1 +1 -1
9 -1 -1 -1 +1 -1 -1 -1 -1 +1
10 +1 -1 -1 +1 -1 -1 +1 +1 -1
11 -1 +1 -1 +1 -1 +1 -1 +1 -1
12 +1 +1 -1 +1 -1 +1 +1 -1 +1
13 -1 -1 +1 +1 -1 +1 +1 -1 -1
14 +1 -1 +1 +1 -1 +1 -1 +1 +1
15 -1 +1 +1 +1 -1 -1 +1 +1 +1
16 +1 +1 +1 +1 -1 -1 -1 -1 -1
17 -1 -1 -1 -1 +1 -1 -1 -1 -1
18 +1 -1 -1 -1 +1 -1 +1 +1 +1
19 -1 +1 -1 -1 +1 +1 -1 +1 +1
20 +1 +1 -1 -1 +1 +1 +1 -1 -1
21 -1 -1 +1 -1 +1 +1 +1 -1 +1
22 +1 -1 +1 -1 +1 +1 -1 +1 -1
23 -1 +1 +1 -1 +1 -1 +1 +1 -1
24 +1 +1 +1 -1 +1 -1 -1 -1 +1
25 -1 -1 -1 +1 +1 +1 +1 1 -1
26 +1 -1 -1 +1 +1 +1 -1 -1 +1
27 -1 +1 -1 +1 +1 -1 +1 -1 +1
28 +1 +1 -1 +1 +1 -1 -1 +1 -1
29 -1 -1 +1 +1 +1 -1 -1 +1 +1
30 +1 -1 +1 +1 +1 -1 +1 -1 -1
31 -1 +1 +1 +1 +1 +1 -1 -1 -1
32 +1 +1 +1 +1 +1 +1 +1 +1 +1

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 326

active flows to a level that matches the simulated network speeds. Table 8-16 shows the
number of sources for each level of factor x9. The number of receivers is four times the
number of sources.

Table 8-14. The 32 Simulated Conditions used to compare Each Combination of Congestion Control

Algorithm and Initial-Slow Start Threshold

We used the same topology as in previous experiments and we simulated the
same propagation delays (shown in Table 8-16). Buffer sizing was influenced by three
factors: network speed (x1), propagation delay (x2) and buffer-size adjustment (x3).
Table 8-17 characterizes buffer sizes for each router level under both values for factor x3.

Fig. 8-1 plots the retransmission rates for each of the 32 simulated conditions
under a large initial slow-start threshold, while Fig. 8-2 plots retransmission rates under a

Factor-> x1 x2 x3 x4 x5 x6 x7 x8 x9
Condition -- -- -- -- -- -- -- -- --

1 800 1 0.5 5000 100 0.04/0.004/0.0004 0.7 0.7 3
2 1600 1 0.5 5000 100 0.04/0.004/0.0004 0.3 0.3 2
3 800 2 0.5 5000 100 0.02/0.002/0.0002 0.7 0.3 2
4 1600 2 0.5 5000 100 0.02/0.002/0.0002 0.3 0.7 3
5 800 1 1 5000 100 0.02/0.002/0.0002 0.3 0.7 2
6 1600 1 1 5000 100 0.02/0.002/0.0002 0.7 0.3 3
7 800 2 1 5000 100 0.04/0.004/0.0004 0.3 0.3 3
8 1600 2 1 5000 100 0.04/0.004/0.0004 0.7 0.7 2
9 800 1 0.5 7500 100 0.02/0.002/0.0002 0.3 0.3 3
10 1600 1 0.5 7500 100 0.02/0.002/0.0002 0.7 0.7 2
11 800 2 0.5 7500 100 0.04/0.004/0.0004 0.3 0.7 2
12 1600 2 0.5 7500 100 0.04/0.004/0.0004 0.7 0.3 3
13 800 1 1 7500 100 0.04/0.004/0.0004 0.7 0.3 2
14 1600 1 1 7500 100 0.04/0.004/0.0004 0.3 0.7 3
15 800 2 1 7500 100 0.02/0.002/0.0002 0.7 0.7 3
16 1600 2 1 7500 100 0.02/0.002/0.0002 0.3 0.3 2
17 800 1 0.5 5000 150 0.02/0.002/0.0002 0.3 0.3 2
18 1600 1 0.5 5000 150 0.02/0.002/0.0002 0.7 0.7 3
19 800 2 0.5 5000 150 0.04/0.004/0.0004 0.3 0.7 3
20 1600 2 0.5 5000 150 0.04/0.004/0.0004 0.7 0.3 2
21 800 1 1 5000 150 0.04/0.004/0.0004 0.7 0.3 3
22 1600 1 1 5000 150 0.04/0.004/0.0004 0.3 0.7 2
23 800 2 1 5000 150 0.02/0.002/0.0002 0.7 0.7 2
24 1600 2 1 5000 150 0.02/0.002/0.0002 0.3 0.3 3
25 800 1 0.5 7500 150 0.04/0.004/0.0004 0.7 0.7 2
26 1600 1 0.5 7500 150 0.04/0.004/0.0004 0.3 0.3 3
27 800 2 0.5 7500 150 0.02/0.002/0.0002 0.7 0.3 3
28 1600 2 0.5 7500 150 0.02/0.002/0.0002 0.3 0.7 2
29 800 1 1 7500 150 0.02/0.002/0.0002 0.3 0.7 3
30 1600 1 1 7500 150 0.02/0.002/0.0002 0.7 0.3 2
31 800 2 1 7500 150 0.04/0.004/0.0004 0.3 0.3 2
32 1600 2 1 7500 150 0.04/0.004/0.0004 0.7 0.7 3

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 327

small threshold. In each figure, the x axis is ordered by increasing retransmission rate.
Overall, the simulated conditions exhibited about two orders of magnitude reduction in
congestion when compared with previous experiments: recall Figs. 6-5 and 7-1.

Table 8-15. Simulated Router Speeds

Table 8-16. Number of Simulated Sources

PLUS (+1) Minus (-1)
26.085 x 103 17.355 x 103

Table 8-17. Simulated Propagation Delays (ms)

Table 8-18. Characterization of Simulated Buffer Sizes (packets)

Router

x3 = 1.0 x3 = 0.5
Min Avg Max Min Avg Max

Backbone 65.105 x 103 146.487 x 103 260.422 x 103 32.553 x 103 73.244 x 103 130.211 x 103

POP 8.138 x 103 18.311 x 103 32.553 x 103 4.096 x 103 9.155 x 103 16.276 x 103

Access 1.294 x 103 2.912 x 103 5.176 x 103 647 1.456 x 103 2.588 x 103

Using visual guidance, as shown on Figs. 8-1 and 8-2, we divided congestion

conditions into six categories moving from little congestion (C1) to relatively high
congestion (C6). The range of congestion conditions is similar under either large (Fig. 8-
1) or small (Fig. 8-2) initial slow-start threshold. Using a high initial slow-start threshold
appeared to increase overall congestion slightly, ranging from a low of 2 retransmissions
per 104 packets to a high of about 25 per 103. For a small initial slow-start threshold the
range goes from 4 in 106 to about 22 per 103. The number of conditions we placed in

2.4 Gbps4.8 GbpsDirectly Connected Access

720 Mbps960 MbpsFast Access
240 Mbps480 MbpsNormal Access
2.4 Gbps4.8 GbpsPOP

19.2 Gbps38.4 GbpsBackbone
Minus (-1)PLUS (+1)Router

2.4 Gbps4.8 GbpsDirectly Connected Access

720 Mbps960 MbpsFast Access
240 Mbps480 MbpsNormal Access
2.4 Gbps4.8 GbpsPOP

19.2 Gbps38.4 GbpsBackbone
Minus (-1)PLUS (+1)Router

100416Minus (-1)
2008112PLUS (+1)
MaxAvgMin

100416Minus (-1)
2008112PLUS (+1)
MaxAvgMin

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 328

particular categories varies slightly between the two figures. In addition, the order of the
conditions varies somewhat between the two figures. Eight conditions changed categories
when moving from a large to a small initial slow-start threshold. Seven of those
conditions moved to a less congested category. Overall, however, the relative congestion
generated by the same condition under either of the two initial slow-start thresholds
appears similar.

Figure 8-1. Conditions Ordered from Least to Most Congested (High Initial Slow-Start Threshold)

Figure 8-2. Conditions Ordered from Least to Most Congested (Low Initial Slow-Start Threshold)

0

0.005

0.01

0.015

0.02

0.025

0.03

16 8 24 32 28 12 4 20 14 6 30 22 15 2 10 31 23 26 11 3 7 13 5 18 27 9 29 25 17 1 19 21

Condition

R
et

ra
ns

m
is

si
on

 R
at

e

Min = 2 in 10,000 Max = 2.5 in 100
C1 C2 C3 C4 C5 C6

0

0.005

0.01

0.015

0.02

0.025

0.03

16 8 24 32 28 12 4 20 14 6 30 22 15 2 10 31 23 26 11 3 7 13 5 18 27 9 29 25 17 1 19 21

Condition

R
et

ra
ns

m
is

si
on

 R
at

e

Min = 2 in 10,000 Max = 2.5 in 100
C1 C2 C3 C4 C5 C6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

16 8 24 12 32 28 4 14 30 20 6 22 15 2 10 31 23 11 3 26 7 13 5 18 27 9 29 25 17 1 19 21

Condition

Re
tra

ns
m

is
si

on
 R

at
e

Min = 4 in 1,0000,000 Max = 2.2 in 100
C1 C2 C3 C4 C5 C6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

16 8 24 12 32 28 4 14 30 20 6 22 15 2 10 31 23 11 3 26 7 13 5 18 27 9 29 25 17 1 19 21

Condition

Re
tra

ns
m

is
si

on
 R

at
e

Min = 4 in 1,0000,000 Max = 2.2 in 100
C1 C2 C3 C4 C5 C6

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 329

To further explore the nature of congestion under the conditions simulated for this
experiment, we examined six time series under each value of initial slow-start threshold.
We chose one condition from each congestion class and we selected conditions that
appeared in the same class under both initial slow-start thresholds. Fig. 8-3 plots related
time series given a high initial slow-start threshold. Congestion increases with the
following conditions: 4, 22, 26, 5, 29 and 1. The y axis indicates the number of flows in a
particular state: connecting (gold) or active (red). Active flows may be operating in initial
slow start (green), normal congestion avoidance (brown) or alternate congestion
avoidance (blue). In these particular plots, CTCP flows were operating in the network
along with flows using standard TCP congestion control procedures. The discussion
considers only the relative distances between the curves on the graphs, so inability to read
the axes will be immaterial. The number of active flows is generally on the order of 103.

Figure 8-3. Distribution of Flow States for Six Conditions (High Initial Slow-Start Threshold) –
Connecting Flows (gold) and Active Flows (red) – with Active Flows subdivided by Congestion Control
Phase: Initial Slow Start (green), Normal Congestion Avoidance (brown) and Alternate Congestion
Avoidance (blue)

Under the least congested condition (4), most active flows operate in initial slow-
start because few losses occur. A small number of flows with larger file sizes experience
sporadic losses and operate under normal or alternate congestion control procedures
depending upon whether the related source implements alternate procedures and on the
value of the congestion window compared against the low-window threshold. As
congestion increases with condition, the relative number of active flows in initial slow-
start decreases and the relative number under normal congestion control procedures
increases. That is, the green and brown lines come closer together. The number of flows
under alternate congestion control procedures (blue) shifts up or down slightly depending
on whether a particular condition has 70 % of the sources equipped with an alternate
congestion control algorithm or only 30 % so equipped.

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 4 Condition 22

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 26

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 5

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

3500

Time

Fl
ow

s Condition 1
Condition 29

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 4 Condition 22

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 26

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

Condition 5

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

3500

Time

Fl
ow

s Condition 1
Condition 29

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 330

Fig. 8-4 plots the same conditions as Fig. 8-3 but under a small initial slow-start
threshold. Comparison of the figures reveals the fundamental influence of the value of
initial slow-start threshold on the distribution of flow states. First, note that except for the
most highly congested condition relatively fewer flows operate in initial slow-start. This
stands to reason because flows must transition from initial slow-start once the threshold is
reached, so relatively more flows will move to alternate or normal congestion avoidance
mode. As congestion increases, the proportion of flows in initial slow-start converges
with the proportion of flows in normal congestion control mode. The proportion of flows
under alternate congestion control procedures shifts up or down slightly depending on
whether a particular condition has more or fewer sources equipped with alternate
congestion control procedures. This comparison further demonstrates that the same
conditions produce similar congestion patterns no matter whether the initial slow-start
threshold is large or small.

Figure 8-4. Distribution of Flow States for Six Conditions (Low Initial Slow-Start Threshold) –
Connecting Flows (gold) and Active Flows (red) – with Active Flows subdivided by Congestion Control
Phase: Initial Slow Start (green), Normal Congestion Avoidance (brown) and Alternate Congestion
Avoidance (blue)

8.1.4 Responses Measured
As in previous experiments we measured responses in two categories: macroscopic
behavior of the network and user experience. In the current experiment, however, we
selected somewhat different responses in each category. Table 8-19 enumerates responses
(y1 to y16) characterizing macroscopic behavior. We grouped the 16 responses into five
subsets (color coded in Table 8-19) measuring: number of flows in a given state (blue);
network-wide throughput in packets and flows (green); congestion window size and
dynamics (yellow); congestion and delay (red); and proportion of completed flows by file
type (orange). We used these responses to assess whether adopting a particular alternate
congestion control algorithm alters global behavior in the simulated network.

 Measuring user experience for the current experiment became more complicated
than was the case for earlier experiments. First, in the current experiment we measured

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

3500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

CTCP Condition 4 CTCP Condition 22 CTCP Condition 26

CTCP Condition 5

CTCP Condition 1

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

Time

Fl
ow

s

CTCP Condition 29

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time
Fl

ow
s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

3500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

CTCP Condition 4 CTCP Condition 22 CTCP Condition 26

CTCP Condition 5

CTCP Condition 1

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

Time

Fl
ow

s

CTCP Condition 29

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time
Fl

ow
s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

3500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

CTCP Condition 4 CTCP Condition 22 CTCP Condition 26

CTCP Condition 5

CTCP Condition 1

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

500

1000

1500

2000

2500

3000

Time

Fl
ow

s

CTCP Condition 29

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time

Fl
ow

s

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104 1.6 .104 1.8 .104
0

200

400

600

800

1000

1200

1400

1600

Time
Fl

ow
s

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 331

user experience separately for each of the 24 flow groups identified in Table 8-6. Second,
we measured 14 responses for each flow group. Table 8-20 specifies the responses –
y1(u) to y14(u) – for a given flow group where all flows in that group use an alternate
congestion control algorithm. We separately measured the same 14 responses in each
flow group where all flows in that group use standard TCP congestion control
procedures. Table 8-20 also lists this second set of 14 responses – y15(u) to y28(u).
Isolating goodput on TCP flows enables us to investigate the relative influence of various
alternate congestion control algorithms on the goodput of competing TCP flows. In
summary, we collected 28 responses for goodput in each flow group. The first 14
responses considered only flows using alternate congestion control procedures and the
second 14 responses considered only flows using TCP congestion control procedures.
Classifying responses with respect to flow group and congestion control procedures
allowed us to compare flows with similar traits against each other with respect to user
experience. The classification also enabled us to compare user experience on flows with
similar traits where one set of flows used alternate congestion control procedures and one
set used TCP congestion control. Among the 14 responses for each flow group we
characterized the distribution with four summary statistics (average, standard deviation,
minimum and maximum) as well as nine distributional statistics (deciles) and we
captured the number of flows (samples) used to create the statistics.

Table 8-19. Measured Responses Characterizing Macroscopic Network Behavior - colors indicate
related responses: flow state (blue), network throughput (green), congestion window (yellow), losses and
delay (red), and flows by file type (orange)

Response Definition
y1 Average number of active flows
y2 Average number of flows in initial slow-start
y3 Average number of flows using normal congestion avoidance
y4 Average number of flows using alternate congestion avoidance
y5 Average number of flows attempting to connect
y6 Average aggregate packets output by the network every measurement interval
y7 Average number of flows completed per measurement interval
y8 Average size in packets of congestion window per flow
y9 Average number of congestion window increases per flow per measurement interval

y10 Average retransmission rate measured as proportion of packets resent
y11 Average smoothed round-trip time (ms)
y12 Aggregate number of flows completed
y13 Proportion of completed flows that were Web objects
y14 Proportion of completed flows that were document downloads
y15 Proportion of completed flows that were service-pack downloads
y16 Proportion of completed flows that were movie downloads

8.2 Experiment Execution and Data Collection
Table 8-21 compares processing and memory requirements for simulating the network
when the initial slow-start threshold was high versus low. The processing time and
memory demands were comparable in both cases. The demands were slightly lower when
the initial slow-start threshold was low. This appears to reflect the fact that network-wide

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 332

congestion was somewhat lower when the initial slow-start threshold was not extremely
high. Table 8-22 gives evidence corroborating this hypothesis. Notice that about 7 million
more flows were completed in the 224 simulated hours (about 30 x 103 flows per hour)
when the initial slow-start threshold was set low. Also notice that completing those flows
required about 42 billion fewer packets. This result is consistent with lower congestion
when the initial slow-start threshold was set to the lower value.

Table 8-20. Measured Responses Characterizing User Experience for Each Flow Group, inlcuding
Flows using an Alternate Congestion Control Algorithm, y1(u) – y14(u), and Competing TCP Flows,
y15(u) – y18(u)

90th Percentile in goodputy14(u)
80th Percentile in goodputy13(u)
70th Percentile in goodputy12(u)
60th Percentile in goodputy11(u)
50th Percentile in goodputy10(u)
40th Percentile in goodputy9(u)
30th Percentile in goodputy8(u)
20th Percentile in goodputy7(u)
10th Percentile in goodputy6(u)
Maximum goodputy5(u)
Minimum goodputy4(u)
Standard deviation in goodputy3(u)
Average goodputy2(u)

Total number of flows in group
that used alternate congestion
avoidance

y1(u)

DefinitionResponse

90th Percentile in goodputy14(u)
80th Percentile in goodputy13(u)
70th Percentile in goodputy12(u)
60th Percentile in goodputy11(u)
50th Percentile in goodputy10(u)
40th Percentile in goodputy9(u)
30th Percentile in goodputy8(u)
20th Percentile in goodputy7(u)
10th Percentile in goodputy6(u)
Maximum goodputy5(u)
Minimum goodputy4(u)
Standard deviation in goodputy3(u)
Average goodputy2(u)

Total number of flows in group
that used alternate congestion
avoidance

y1(u)

DefinitionResponse

90th Percentile in goodputy28(u)
80th Percentile in goodputy27(u)
70th Percentile in goodputy26(u)
60th Percentile in goodputy25(u)
50th Percentile in goodputy24(u)
40th Percentile in goodputy23(u)
30th Percentile in goodputy22(u)
20th Percentile in goodputy21(u)
10th Percentile in goodputy20(u)
Maximum goodputy19(u)
Minimum goodputy18(u)
Standard deviation in goodputy17(u)
Average goodputy16(u)

Total number of flows in group
that used standard TCP
congestion avoidance

y15(u)

90th Percentile in goodputy28(u)
80th Percentile in goodputy27(u)
70th Percentile in goodputy26(u)
60th Percentile in goodputy25(u)
50th Percentile in goodputy24(u)
40th Percentile in goodputy23(u)
30th Percentile in goodputy22(u)
20th Percentile in goodputy21(u)
10th Percentile in goodputy20(u)
Maximum goodputy19(u)
Minimum goodputy18(u)
Standard deviation in goodputy17(u)
Average goodputy16(u)

Total number of flows in group
that used standard TCP
congestion avoidance

y15(u)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 333

8.2.1 Computing Macroscopic Responses
We computed macroscopic responses in two general forms. In one form we counted
events for each run over the simulated period (one hour). Specifically, for responses y12
through y16 we counted the number of completed flows and categorized each completed
flow by file type. Then we computed the proportion of completed files by type (y13 to
y16) as the ratio of the count by type to total flows completed.

Table 8-21. Comparing Resource Requirements for Simulating One Hour of Network Operation
under 32 Conditions with High and Low Initial Slow-Start Thresholds

Small Network with High
Initial Slow-Start

Threshold

Small Network with Low
Initial Slow-Start

Threshold
CPU hours
(224 Runs) 5.857 x 103 5.639 x 103

Avg. CPU hours
(per run) 26.15 25.17

Min. CPU hours
(one run) 12.58 12.51

Max. CPU hours
(one run) 43.97 40.94

Avg. Memory
Usage (Mbytes) 196.56 194.46

Table 8-22. Comparing Flows Completed and Data Packets Sent when Simulating One Hour of
Network Operation under 32 Conditions with High and Low Initial Slow-Start Thresholds

Small Network with High
Initial Slow-Start Threshold

Small Network with Low
Initial Slow-Start Threshold

Statistic Flows Completed Data Packets Sent Flows Completed Data Packets Sent

Avg. Per Condition 11.466 x 106 3.414 x 109 11.495 x 106 3.225 x 109

Min. Per Condition 7.258 x 106 2.139 x 109 7.263 x 106 2.055 x 109

Max. Per Condition 17.391 x 106 5.048 x 109 17.432 x 106 4.832 x 109

Total all Runs 2.568 x 109 764,740 x 109 2.575 x 109 722.466 x 109

For each of the responses y1 through y11 we computed average values from a
time series of 9000 measurements. Figure 8-5 illustrates an example of such a
computation for response y10, average retransmission rate. This example was taken from
simulated condition 1 in the case where CTCP was the alternate congestion control
algorithm and where the initial slow-start threshold was high. Notice that we discarded
the first half of the time series, which avoided startup transients. We computed the mean
of the second half of the time series; in this case the mean retransmission rate was 0.018.

We organized all responses measuring macroscopic network behavior into a table,
where each row contained the 16 responses under a given condition and alternate
congestion control algorithm. Table 8-23 depicts the response format in the case when the
initial slow-start threshold is high. We created a similar table for responses obtained

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 334

under a low initial slow-start threshold. These two tables served as the input data for our
analysis of macroscopic behavior.

Figure 8-5. Illustration of Technique to Compute Means for Responses y1 to y11 - example for
Retransmission Rate (y10), measured as the proportion of packets resent, vs. Time (200 ms intervals) under
Condition 1 – CTCP – High Initial Slow-Start

Table 8-23. Data Format Summarizing Responses y1 to y16 for All Algorithms and Conditions

0 5000 1 .104 1.5 .104 2 .104
0

0.01

0.02

0.03

0.04

0.05

0.06

Time

R
et

ra
ns

m
is

sio
n

Ra
te

discard first
30 mins.

retain second
30 mins.

mean = 0.018

0 5000 1 .104 1.5 .104 2 .104
0

0.01

0.02

0.03

0.04

0.05

0.06

Time

R
et

ra
ns

m
is

sio
n

Ra
te

discard first
30 mins.

retain second
30 mins.

mean = 0.018

…………………

0.0000380.000650…1534.1821975.804317

0.0000400.001054…2213.2572674.573327

0.0000610.001414…901.66191067.06627

0.0000180.000207…1471.6842764.4117

…………………

0.0000470.001101…2215.6452541.456321

0.0000360.000654…1522.0751863.727311

…………………

0.0000590.001426…896.27931049.26721

0.0000210.000242…1475.2762821.01411

y16y15…y2y1RunAlgorithm

…………………

0.0000380.000650…1534.1821975.804317

0.0000400.001054…2213.2572674.573327

0.0000610.001414…901.66191067.06627

0.0000180.000207…1471.6842764.4117

…………………

0.0000470.001101…2215.6452541.456321

0.0000360.000654…1522.0751863.727311

…………………

0.0000590.001426…896.27931049.26721

0.0000210.000242…1475.2762821.01411

y16y15…y2y1RunAlgorithm

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 335

8.2.2 Computing User Experience Responses
We captured user experience directly during each simulation run. The general technique
was to set a threshold for a minimum number of samples prior to reporting distributional
information. At each measurement interval we computed and reported distributional
information for each flow group where the number of samples exceeded the threshold. At
the end of the simulation we also reported distributional information for residual flows,
regardless of the sample threshold. As a result of this technique we generated one output
file per flow group. The format of each output file is similar to Table 8-24.

Table 8-24. Data Format Summarizing User Experience for One Flow Group – example for CTCP
Flow Group 16 (Fast Path, Normal Interface Speed, Document) under Condition 1

Given information such as shown in Table 8-24, we summed the number of
samples (N) and computed a weighted average for each of the 13 remaining statistics. For
a given simulation run (specified by condition and alternate congestion control
algorithm), we performed this computation for each of the 24 flow groups under the
alternate congestion control algorithm and under normal TCP congestion control
procedures. Thus, we summarized 48 output files (24 flow groups x two congestion
control algorithms) under each simulated condition (32 x 48 = 1536 files across all
conditions) for each specified alternate congestion control algorithm (7 x 1536 = 10752
files across all conditions and congestion control algorithms).

Table 8-25. Data Format Summarizing User Experience for One Flow Group under All Algorithms
and Conditions

850.6

817.0

…

849.1

773.4

60th%

1040.9

1012.5

…

1052.5

950.2

70th%

1336.6

1298.5

…

1304.2

1174.5

80th%

1842.0690.7563.1463.7359.9243.86998.222.1759.9908.869618000

1737.7676.6554.7454.2349.7235.94977.245.4754.0888.3100017454

………………………………

1873.0694.0584.7476.5384.5255.45674.682.9734.5916.410001497

1636.6643.1546.8467.8363.8233.86126.773.2667.7831.21001736

90th%50th%40th%30th%20th%10th%maxminstdevmeanNTime

850.6

817.0

…

849.1

773.4

60th%

1040.9

1012.5

…

1052.5

950.2

70th%

1336.6

1298.5

…

1304.2

1174.5

80th%

1842.0690.7563.1463.7359.9243.86998.222.1759.9908.869618000

1737.7676.6554.7454.2349.7235.94977.245.4754.0888.3100017454

………………………………

1873.0694.0584.7476.5384.5255.45674.682.9734.5916.410001497

1636.6643.1546.8467.8363.8233.86126.773.2667.7831.21001736

90th%50th%40th%30th%20th%10th%maxminstdevmeanNTime

…………………

1582.9711088.954…800.1247954317

2111.1221422.419…1023.45815661327

3312.3462264.218…1596.6651366627

1660.0031156.298…886.5272370317

…………………

2063.6761408.86…1003.38815776321

1687.491167.37…856.8137934311

…………………

3258.242270.871…1621.7451380021

1618.3621133.338…846.062324911

y28(u)y27(u)…y2(u)y1(u)RunAlgorithm

…………………

1582.9711088.954…800.1247954317

2111.1221422.419…1023.45815661327

3312.3462264.218…1596.6651366627

1660.0031156.298…886.5272370317

…………………

2063.6761408.86…1003.38815776321

1687.491167.37…856.8137934311

…………………

3258.242270.871…1621.7451380021

1618.3621133.338…846.062324911

y28(u)y27(u)…y2(u)y1(u)RunAlgorithm

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 336

For a given flow group, we concatenated the 14 responses on flows using
alternate congestion control together with the 14 responses on flows using TCP
congestion control and appended identifiers for the alternate algorithm and the condition
to produce a 30 cell row for each combination, as illustrated in Table 8-25. Thus, we
summarized user-experience responses into 24 files: one per flow group. Where needed
to make data analysis more convenient, we concatenated all flow groups into a single file,
adding a cell to each row to identify the flow group associated with the data. A single
concatenated file contained (24 x 7 x 32 =) 5376 rows, one for each combination of flow
group, alternate congestion control algorithm and simulated condition.

8.3 Data Analysis Approach
Most of the data analyses conducted for this experiment focused on user experience.
Before explaining the techniques we applied to analyze user experience, we provide a
brief summary of the single technique we applied to analyze macroscopic responses.

8.3.1 Analyzing Macroscopic Behavior
We considered each of the 16 macroscopic responses (recall Table 8-19) using a detailed
analysis of the individual responses, as explained previously in Sec. 6.3.2. Here, we
provide only a brief summary of the technique. Fig. 8-6 shows a sample plot displaying
the analysis of retransmission rate (response y10) across all seven congestion control
algorithms under the 32 conditions given a high initial slow-start threshold.

Figure 8-6. Detailed Analysis of Retransmission Rate (proportion of packets resent) under High
Initial Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis
gives conditions ordered by increasing range of residuals; non-blue columns indicate statistically
significant outliers, either high (green) or low (red)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 337

For each condition, we computed the mean response and then reformulated the
response for each algorithm as residuals around the condition mean by subtracting the
response from the condition mean. We then sorted the conditions from the least to
greatest extreme (by magnitude of the) residual and plotted the residuals (y axis) along
with the factor settings associated with the related conditions (x axis). Below the factor
settings we identified the algorithm exhibiting the most extreme residual. We also
indicated the order of magnitude and percentage difference in the extreme residual from
the mean. We applied a Grubbs’ test to determine if the extreme residual represented a
statistically significant difference from the mean. If the difference was statistically
significant on the positive side, then we colored the column green. If significant on the
negative side, we colored the column red. Otherwise, the column remains blue.

8.3.2 Analyzing User Experience
We analyzed user experience with respect to the 24 flow classes identified in Table 8-6.
In each class, we considered the experience of normal TCP users and also the experience
of users under a competing alternate congestion control algorithm. We measured user
experience as goodput (i.e., packets received per unit of time, excluding retransmissions).
While we collected distributional data for each flow group (recall Table 8-20), the
analyses described in this section focus solely on mean goodput for users under alternate
congestion control – y2(u) – and under standard TCP congestion control – y16(u).

We captured the average goodputs – y2(u) and y16(u) – in a tabular form, where
goodputs are reported to the nearest packet per second (pps). From the table we extracted
various graphs that compare goodputs of all congestion control algorithms for specific
flow classes. For example, Fig. 8-7 shows two typical plots we used.

Figure 8-7. Average Goodput (packets per second and as proportion of interface speed) for Flows
Using Alternate Congestion Control Algorithm – y2(u) – and Competing Flows Using TCP – y16(u) –
when Transferring Movies on a Very Fast Path with a Fast Interface Speed Given a Low Initial
Slow-Start Threshold. Leftmost bar graph plots raw average goodput (packets per second), while
rightmost bar graph plots average goodput as a proportion of the maximum achievable transmission speed.

VF-F
Legend

VF-FVF-FVF-F
LegendLegend

VF-FVF-F

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 338

The legend in Fig. 8-7 shows the bar color associated with a particular alternate
congestion control algorithm. When plotted in bar graphs we plot the algorithms by
increasing identifier from 1 (BIC) to 7 (Scalable). Each bar graph is labeled with the path
class (VF in Fig. 8-7) and interface speed (F in Fig. 8-7). The bar graphs in Fig. 8-7 plot
average goodput when transferring movies over very fast paths with a fast interface speed
(maximum of 80 x 103 pps) given a low initial slow-start threshold. The leftmost graph
gives the raw average goodput (y axis) for each congestion control algorithm (one bar
each). The first set of seven bars represents the goodput achieved on flows using a
specific alternate congestion control algorithm. The second set of seven bars represents
goodput achieved on flows using normal TCP congestion control but operating in a
network where some flows use a specified, competing alternate congestion control
algorithm. The rightmost graph is formulated in the same fashion except that the y axis
expresses goodput as a fraction of the maximum achievable transfer rate (80 x 103 pps
here). The leftmost graph illustrates differences in goodput among the various algorithms
and also identifies differences in goodput between the alternate algorithms and normal
TCP. The rightmost graph shows the degree to which the various flows were able to
achieve the maximum available goodputs.

To investigate causes of variation in goodputs, we employed principal
components analyses (PCA) on the average goodput data – y2(u) and y16(u) – for each of
the seven alternative congestion control algorithms under all 32 conditions. For each
given algorithm a and condition c we collected 24 observations for y2(u) (one per flow
group) and 24 for y16(u) (one per flow group) into a 48-dimension vector: (x1, x2, …,
x48)a,c for a total of (32 x 7 =) 224 vector instances. We then conducted a PCA, as
described earlier in Sec. 4.5, which yielded plots such as shown in Fig. 8-8.

Figure 8-8. Principal Components Analysis of Goodputs given High Slow-Start Threshold – three
subplots give the weight vectors for the first three PCs and one bargraph indicates the proportion of
variance explained by each of the first three PCs, as well as the variance explained by a combination of the
first three PCs

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 339

As Fig. 8-8 demonstrates nearly all variation in the data could be accounted for by
the first three principal components (PC). We plotted pairs of PCs against one another in
biplots to investigate whether specific factors caused similarity among goodputs. Fig. 8-9
gives an example of one such plot of PC1 (x axis) vs. PC 2 (y axis). The legend
associates each congestion control algorithm with a particular colored symbol. Fig. 8-9
clearly shows three groups of observations (circled). Two of the groups divide into two
subgroups. As explained below in Sec. 8.4.2, we analyzed factors in common among
observations in each group to provide information about the causes of these groupings.

P
C

2

PC1

Legend
BIC
CTCP
FAST

FAST-AT
HSTCP

HTCP
SCALABLE

 Figure 8-9. Illustration of Biplot of PC1 vs. PC2 and Related Clustering

To compare goodputs provided on normal TCP flows against goodputs provided
on flows using alternate congestion control algorithms, we adopted two main techniques.
First, we created plots of y2(u) vs. y16(u) for all 32 conditions for a given flow group and
alternate congestion control algorithm. For example, Fig. 8-10 shows such a plot for
algorithm 3 (FAST) when transferring movies over very fast paths with a fast interface
speed given a high initial slow-start threshold. The figure in red (0.96632) above the plot
is the computed correlation between y2(u) and y16(u). Points below the diagonal indicate
cases where flows using the alternate congestion control regime achieved higher average
goodput, while points above the diagonal indicate cases where TCP flows achieved
higher average goodput. A strong positive correlation indicates that the trend in goodputs
for all flows was linear with respect to condition.

As a second technique to compare goodput of TCP flows vs. goodput of flows
using alternate congestion control algorithms, we plotted bar graphs for each condition
and flow group, where each bar spans two points for each algorithm. One point represents
y2(u)/1000 and one represents y16(u)/1000. If the y2(u) value is higher, then the bar is
colored green. If the y16(u) value is higher, the bar is colored red. Fig. 8-11 shows a
sample of such a bar graph. The bar for algorithm 4 (FAST-AT) is colored red, which
shows that for this condition and flow group TCP flows achieved about 5000 pps higher

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 340

(40 p/ms – 35 p/ms = 5 p/ms) average goodput than FAST-AT flows. The specific
condition (21; most congested) is reported in the lower left corner of the plot.

Figure 8-10. Scatter Plot of y16(u)/100 vs. y2(u)/100 for Movies Transferred over a Very Fast Path
with Fast Interface Speed Given a High Initial Slow-Start Threshold; FAST Alternate Congestion
Control Algorithm

Figure 8-11. Bar Graph for Movies Transferred over a Very Fast Path with Fast Interface Speed
given a High Initial Slow-Start Threshold during Condition 21 (Most Congested) – each bar is formed
by plotting y16(u)/1000 and y2(u)/1000 for a Specific Alternate Congestion Control Algorithm (plotted
from 1 to 7 left to right) – if a bar is red then y16(u)/1000 is plotted at the top of the bar and y2(u)/1000 is
plotted at the bottom of the bar; otherwise (green bar) y2(u)/1000 is plotted at the top of the bar and
y16(u)/1000 is plotted at the bottom of the bar – y axis gives goodput (packets/ms)

In addition to analyzing absolute differences in goodput among the alternate
congestion control algorithms and between the alternates and normal TCP congestion
control, we also analyzed the relative differences. To compare relative differences we
adopted a rank analysis. For each given flow group and condition we compared the y2(u)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 341

values among the seven alternate congestion control algorithms and ranked them from
highest (7) to lowest (1). After ranking on all flow groups and conditions, we produced a
rank matrix for each alternate congestion control algorithm. Fig. 8-12 shows an example
of such a rank matrix. We generated similar matrices based on ranking y16(u) values
among the seven alternate congestion control algorithms. The y16(u)-based ranking
indicates relative goodputs achieved by TCP flows when operating concurrently with
specific alternate congestion control algorithms.

Figure 8-12. Rank Matrix for Algorithm 7 (Scalable TCP) – High Initial Slow-Start Threshold. Rank
(7 high) in each cell denotes ordering of y2(u) for each condition (y axis) and flow group (x axis) –
conditions are sorted from least (16) to most (21) congested and flow groups are ordered by file size –
movies (M), service packs (SP), documents (D) and Web objects (WO) – and by path class – very fast
(VF), fast (F), and typical (T) – within each file size and by interface speed – fast (F) or normal (N) –
within each path class. Green ranks had goodput values above the condition mean, while red ranks had
goodput values below the condition mean. Filled cells indicate the goodput was most extreme: either high
(7 green) or low (1 red).

The matrix in Fig. 8-12 contains (24 flow groups x 32 conditions =) 768 cells, one
per flow group per condition. Here the matrix reports the ranking of algorithm 7
(Scalable TCP) with respect to other alternate congestion control algorithms for response
y2(u) – average goodput on flows using an alternate algorithm instead of standard TCP.
To determine the rank for a given condition and flow group we order the algorithms from
lowest to highest average goodput, y2(u), and then assign a integer from 1 (lowest) to 7
(highest). We also compute the mean of the seven goodputs. The rank is colored green
when the value if y2(u) is above (red when below) the mean for the same condition and

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 342

flow group. If the value of y2(u) is most distance from the mean the rank is filled – green
for highest (7) and red for lowest (1). A quick glance at Fig. 8-12 reveals that Scalable
TCP appears to provide best goodput for larger files (movies and service packs) and
worst goodput for smaller files (documents and Web objects). Given a complete set of 14
matrices, one per algorithm ranking y2(u) values and one per algorithm ranking y16(u)
values, we also computed the average (and standard deviation) of the ranking for each
algorithm with respect to each file type. The resulting tables (Tables 8-31 and 8-32)
allowed us to succinctly compare relative ranking among the algorithms.

8.4 Results
Here, we present selected simulation results in three categories: (1) macroscopic network
behavior, (2) absolute user experience and (3) relative user experience. Within each
category, we first give relevant data under a high initial slow-start threshold followed by
data under a low initial slow-start threshold. We present only data that reveals behavioral
similarities and differences of interest.

8.4.1 Macroscopic Network Behavior
In general, the data analyses reported in this section do not reveal much in the way of
statistically significant changes in macroscopic network behavior. This appears due
mainly to a general lack of congestion throughout these experiments. In addition, we
consider both FAST (algorithm 3) and FAST-AT (algorithm 4) together in these
analyses, which reduces the statistical significance of either algorithm considered alone
because both algorithms share some traits (as described previously in Chapter 7). Despite
this, we could discern patterns in macroscopic network behavior with respect to some
responses. In most cases, the patterns detected echo patterns seen in previous
experiments, where simulated congestion tended to be much higher under most
conditions. Here, we report the patterns we found informative.

8.4.1.1 High Initial Slow-start Threshold. Fig. 8-13 gives a detailed analysis of the
average number of active flows under the 32 simulated conditions. Notice that in most
conditions either algorithm 7 (Scalable TCP) or 3 (FAST) shows a higher number of
active flows than other algorithms. This suggests that these algorithms have some number
of flows that take longer to complete. Algorithm 3 exhibits the extreme value under
conditions with highest congestion. This suggests that under those conditions, some
FAST flows exhibit the oscillatory behavior identified in previous experiments (recall
Chapter 6), which induces excessive losses and lowers goodput on affected flows. In
previous experiments (see Chapter 5), Scalable TCP was found to provide significant
unfairness when new flows attempt to gain bandwidth from already established flows.
This occurs because Scalable TCP flows occupy significant buffer space and reduce their
congestion window little on each loss, which causes affected new flows to experience a
larger proportion of losses, and lower goodputs. The reader should keep these ideas in
mind as additional responses are presented.

Fig. 8-14, which shows the average number of flows attempting to connect,
supports the analysis from the preceding paragraph. Under conditions with higher
congestion, algorithm 3 (FAST) or 4 (FAST-AT) exhibits more flows attempting to
connect. Under most other conditions, Scalable (algorithm 7) exhibits a larger number of

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 343

flows attempting to connect. These behavioral differences arise as SYN packets suffer a
lower rate of successful delivery, which forces affected flows to take longer to connect.
Figure 8-15 further corroborates this picture by revealing that FAST completes fewer
flows per interval under higher congestion and that Scalable completes fewer flows per
interval under most other conditions.

Figure 8-13. Average Number of Active Flows under High Initial Slow-Start Threshold – y axis gives
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range
of residuals

Fig. 8-16 adds more supporting evidence. Notice that FAST and FAST-AT

(algorithms 3 and 4) exhibit higher retransmission rates under conditions with higher
congestion and Scalable (algorithm 7) exhibits higher retransmission rates under most
other conditions. Fig. 8-17 shows that under most conditions, Scalable leads to higher
average smoothed round-trip times, which supports the observation that Scalable tends to
have higher buffer occupancy than other algorithms. Fig. 8-18 confirms that over an
entire simulated hour, Scalable and FAST tend to complete the fewest flows. Similarly,
Fig. 8-19 shows that under most conditions Scalable completes a higher proportion of
flows that are small (i.e., Web objects). In the remaining conditions, either FAST or
FAST-AT completes a higher proportion of flows that are Web objects. Recall that when
the maximum number of flows with a given file size are already active, then newly
arriving flows remain Web objects. Therefore, completing a higher proportion of flows
that are Web objects implies that some larger flows (movies, service packs and
documents) take longer to complete.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 344

Figure 8-14. Average Number of Connecting Flows under High Initial Slow-Start Threshold – y axis
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing
range of residuals

Figure 8-15. Average Rate of Flow Completion (flows per 200 ms) under High Initial Slow-Start
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions
ordered by increasing range of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 345

Figure 8-16. Average Flow Retransmission Rate (proportion of packets resent) under High Initial
Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis gives
conditions ordered by increasing range of residuals

Figure 8-17. Average Smoothed Round-Trip Time (ms) under High Initial Slow-Start Threshold – y
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by
increasing range of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 346

Figure 8-18. Aggregate Flows Completed under High Initial Slow-Start Threshold – y axis gives
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range
of residuals

Figure 8-19. Web Objects as Proportion of Flows Completed under High Initial Slow-Start
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions
ordered by increasing range of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 347

Figure 8-20 shows the propensity of CTCP (algorithm 2) to generate larger
congestion window sizes on average under conditions of low congestion. This behavior
was identified in previous experiments (see Chapters 6 and 7).

Figure 8-20. Average Flow Congestion Window Size (packets) under High Initial Slow-Start
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions
ordered by increasing range of residuals – green columns indicate high statistically significant outliers

8.4.1.2 Low Initial Slow-start Threshold. Setting the initial slow-start threshold to a small
value did not much alter the macroscopic behavior reported in the last section. To support
this observation we give plots analogous to those shown in Fig. 8-13 to 8-20. In some
cases, explained below, we did discern differences. Fig. 8-21 gives a detailed analysis of
the average number of active flows under the 32 simulated conditions. As above (Sec.
8.4.1.1), in most conditions, either algorithm 7 (Scalable) or 3 (FAST) shows a higher
number of active flows than other algorithms. Fig. 8-22 reveals that FAST and FAST-AT
still exhibit a higher number of connecting flows under conditions of higher congestion.
Comparing Fig. 8-22 with Fig. 8-24 also shows that Scalable TCP (algorithm 7) no
longer exhibits a higher number of connecting flows in many conditions. This appears
attributable to lowering the initial slow-start threshold. Previously, Scalable TCP and
TCP Reno flows increased transmission rate to the maximum achievable using the same
limited slow-start mechanism. This enabled flows to become established and presented
difficulties for new flows to connect and to gain an equal congestion window size against
established Scalable TCP flows. Lowering the initial slow-start threshold to 100 packets
caused both standard TCP and Scalable to enter congestion avoidance (linear increase for

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 348

standard TCP; delayed exponential increase for Scalable). During the first two seconds of
a flow, Scalable TCP increases its congestion window more slowly than limited slow-
start. Thus, under a lower initial slow-start threshold, new (Scalable TCP) flows
increased transmission rate more slowly and thus fewer packets (including SYN packets)
were lost. This is supported by Fig. 8-24, which shows that Scalable TCP exhibits the
highest retransmission rate in only five conditions (instead of 12 conditions as shown in
Fig. 8-16).

Fig. 8-23 shows that lowering the initial slow-start threshold allows Scalable TCP
to improve its flow completion rate (relative to Fig. 8-15). This occurs for the same
reasons the retransmission rate is improved. Figs. 8-23 and 8-24 also show that FAST and
FAST-AT continue to exhibit lower flow completion rates and higher retransmission
rates under the more congested conditions.

Despite a lower initial slow-start threshold, Scalable TCP exhibits higher buffer
occupancy (see Fig. 8-25) than other algorithms under 16 conditions. This effect is
somewhat diminished over Fig. 8-17, where Scalable TCP had highest buffer utilization
in 20 conditions. Given the delayed increase (compared to limited slow start) in
congestion window for Scalable TCP, the high buffer utilization likely arises from large
files. Fig. 8-26 shows that FAST (FAST-AT) and Scalable TCP still tend to complete
fewer files in aggregate than other algorithms, though the effect is somewhat diminished
for Scalable (relative to Fig. 8-18). The lower flow completion totals for FAST (FAST-
AT) appear under the most congested conditions.

Figure 8-21. Average Number of Active Flows under Low Initial Slow-Start Threshold – y axis gives
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range
of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 349

 Figure 8-22. Average Number of Connecting Flows under Low Initial Slow-Start Threshold – y axis
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing
range of residuals

Figure 8-23. Average Rate of Flow Completion (flows per 200 ms) under Low Initial Slow-Start
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions
ordered by increasing range of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 350

Figure 8-24. Average Flow Retransmission Rate (proportion of packets resent) under Low Initial
Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis gives
conditions ordered by increasing range of residuals

Figure 8-25. Average Smoothed Round-Trip Time (ms) under Low Initial Slow-Start Threshold – y
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by
increasing range of residuals

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 351

Figure 8-26. Aggregate Flows Completed under Low Initial Slow-Start Threshold – y axis gives
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range
of residuals

Fig. 8-27 shows that Scalable TCP completes a higher proportion of flows with
small size (i.e., Web objects). This mirrors the result shown earlier in Fig. 8-19. Note,
however, Fig. 8-27 reports that FAST (and FAST-AT) tend to complete a smaller
proportion of flows with small size. This implies that FAST completes a higher
proportion of flows with larger file size. As we demonstrate below (Sec. 8.4.2.2), this
occurs because FAST increases transmission rate (after reaching the initial slow-start
threshold) to the maximum available much more quickly than other algorithms.

Finally, Fig. 8-28 displays the previously demonstrated propensity of CTCP
(algorithm 2) to increase congestion window to large sizes under low congestion. Given
that a lower initial slow-start threshold leads to somewhat lower overall congestion
(compared with a high threshold), one expects CTCP to stand out more in Fig. 8-28 than
in Fig. 8-20. Comparing the two figures verifies this expectation.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 352

Figure 8-27. Web Objects as Proportion of Flows Completed under Low Initial Slow-Start Threshold
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by
increasing range of residuals

Figure 8-28. Average Flow Congestion Window Size (packets) under Low Initial Slow-Start
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions
ordered by increasing range of residuals – columns in green indicate statistically significant high outliers

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 353

8.4.2 Absolute User Experience
This section investigates absolute differences in user experience, which we measure as
goodput in packets per second. We consider differences in goodput among users of the
various alternate congestion control algorithms, as well as differences in goodput among
TCP users competing with alternate congestion control algorithms. First, we compare
these user experiences given a high initial slow-start threshold and then we compare them
given a low initial slow-start threshold.

Table 8-26. Average Goodput (pps) per Flow Group under Each Alternate Congestion Control
Algorithm (High Initial Slow-Start Threshold)

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 53650 50696 50299 50325 53212 49826 54638

N 7869 7846 7859 7819 7857 7834 7807

F
F 8056 6451 7145 6738 7765 6295 9572

N 4789 4291 5095 4426 4694 4359 5420

T
F 4843 4295 5069 4424 4698 3753 5439

N 3878 3448 4253 3527 3749 3162 4446

SP

VF
F 24911 25410 25555 25727 24675 25274 24694

N 7262 7313 7340 7346 7242 7295 7168

F
F 6655 6073 6563 6722 6472 5830 6935

N 4679 4456 4934 5002 4563 4328 4801

T
F 4870 4421 5075 5142 4617 4094 5164

N 4053 3789 4364 4398 3876 3513 4225

D

VF
F 2008 2099 2088 2078 2025 2084 1989

N 1800 1833 1833 1830 1787 1834 1782

F
F 1189 1213 1175 1203 1201 1220 1174

N 1124 1149 1113 1140 1138 1162 1111

T
F 1308 1315 1291 1310 1313 1330 1293

N 1254 1264 1240 1259 1261 1281 1240

WO

VF
F 366 390 378 360 427 428 378

N 384 395 395 394 382 394 379

F
F 255 261 250 256 258 263 252

N 250 256 245 251 253 258 247

T
F 308 313 301 306 312 318 306

N 303 307 296 300 307 312 300

8.4.2.1 High Initial Slow-start Threshold. Table 8-26 summarizes the average goodput –
response y2(u) – experienced by users in each of the 24 flow classes (dimensioned by file
size, path quality and interface speed) under each of the seven alternate congestion
control algorithms. Table 8-27 provides a similar summary of the average goodput –
response y16(u) – experienced by TCP users in each of the 24 flow classes when
competing with flows in each of the seven alternate congestion control algorithms. Since
the tables are somewhat dense with numbers, we present this information in the form of
bar graphs (Fig. 8-29 through 8-32) – one figure per file size: movie, service pack,
document and Web object. (The legend for the bar graphs is shown in Fig. 8-7.) The top

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 354

row of graphs in each figure displays the average goodput in packets per second (pps),
while the bottom row of graphs displays average goodput as a proportion of the
maximum interface speed. When examined vertically, the first two columns of graphs
consider flows transiting very fast (VF) paths, the second two columns consider flows
transiting fast (F) paths and the final two columns consider flows transiting typical (T)
paths. Within a given path class, the first vertical sub-column reports goodput for flows
with fast (F) interface speeds (80 x 103 pps), while the second vertical sub-column reports
goodput for flows with normal (N) interface speeds (8 x 103 pps). Each graph is labeled
with the relevant path class and interface speed (e.g., VF-F).

Table 8-27. Average Goodput (pps) per Flow Group on TCP Flows Competing with Each Alternate
Congestion Control Algorithm (High Initial Slow-Start Threshold)

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 44610 47731 47899 48628 44397 47110 43551

N 7575 7800 7811 7819 7504 7731 7206

F
F 4730 5032 4843 5138 4770 5072 4339

N 3146 3768 3300 3514 3301 3670 3047

T
F 3184 3108 2956 2970 3099 3327 2994

N 2664 2971 2478 2727 2557 2852 2459

SP

VF
F 23697 24837 24991 25068 23441 24667 23687

N 7149 7275 7302 7307 7136 7286 6946

F
F 5210 5582 5301 5504 5425 5709 5119

N 3837 4159 3894 3998 3970 4144 3732

T
F 3724 3908 3722 3772 3796 3919 3695

N 3205 3366 3182 3224 3268 3410 3163

D

VF
F 1961 1996 2025 2027 1919 2037 1978

N 1783 1822 1819 1818 1776 1829 1765

F
F 1173 1205 1141 1178 1195 1221 1148

N 1109 1142 1079 1108 1128 1152 1089

T
F 1277 1305 1240 1264 1300 1328 1263

N 1228 1256 1193 1212 1251 1278 1213

WO

VF
F 394 378 359 458 382 431 358

N 378 386 385 388 377 387 373

F
F 254 260 248 254 257 262 250

N 249 255 243 249 253 257 246

T
F 306 312 298 303 311 317 304

N 302 307 293 298 306 312 299

Figs. 8-29 to 8-32 reveal some obvious points. First, differences in goodput

among alternate algorithms appear more evident with the largest files (movies). Second,
differences in goodput between TCP flows and competing alternate flows appear with
larger files (movies and service packs) and on paths with the most congestion (Fast and
Typical). In general, differences in goodput can originate from four sources: (1) the
maximum transfer rate, (2) how fast a flow reaches the maximum rate, (3) file size and
(4) how a flow responds to losses. Here, we ensure that all flows move toward maximum

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 355

transfer rate at the same speed (by using limited slow-start until the first packet loss). We
devote each figure to only one file size. This means that any goodput differences in each
figure (for Figs. 8-28 to 8-32) can result only from loss processing. In other words, how
much does a flow slow its transmission rate after a loss and how quickly does it recover?
We expect all alternate congestion control algorithms to improve over TCP Reno with
respect to processing losses, so we expect differences to appear on congested paths and
on larger flows which exhibit a larger probability of loss/recovery events. Flows
transmitting small files should not experience as many loss/recovery cycles as flows
transmitting large files. Similarly, flows crossing uncongested paths should not
experience as many loss/recovery cycles as flows transiting congested paths.

Figure 8-29. Average Goodput on Movies (High Initial Slow-Start Threshold) (Top row shows raw
goodput in pps and bottom row shows goodput as a proportion of interface speed)

Though Figs. 8-29 to 8-32 reveal some modest differences in goodput among

flows groups based on congestion control algorithm, we suspected that more significant
goodput variations in the data would be explained by differences in experiment
conditions. To investigate, we conducted a principal components analysis (PCA) of the
average goodput data across all flow groups. Fig. 8-33 plots the resulting information,
which reveals three main groups: (1) a group where network speed is low (factor x1 = -
1), (2) a group where network speed is high (factor x1 = +1) and propagation delay is
high (factor x2 = +1) and (3) a group where network speed is high and propagation delay
is low (factor x2 = -1). Each of the latter two groups could be divided into two subgroups
based on average file size: (a) smaller (x5 = -1) and (b) larger (x5 = +1). No distinct
collection of congestion control algorithms appears anywhere in Fig. 8-33. This suggests
that most of the variation in the data under a high initial slow-start threshold arises from
network speed, propagation delay and file size. The congestion control algorithm has

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 356

only a minor opportunity to affect goodput because network conditions are mainly
uncongested and flows experience relatively few loss/recovery cycles.

Figure 8-30. Average Goodput on Service Packs (High Initial Slow-Start Threshold) (Top row shows
raw goodput in pps and bottom row shows goodput as a proportion of interface speed)

Figure 8-31. Average Goodput on Documents (High Initial Slow-Start Threshold) (Top row shows raw
goodput in pps and bottom row shows goodput as a proportion of interface speed)

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 357

Figure 8-32. Average Goodput on Web Objects (High Initial Slow-Start Threshold) (Top row shows
raw goodput in pps and bottom row shows goodput as a proportion of interface speed)

Figure 8-33. Principal Component 1 (x axis) vs. Principal Component 2 (y axis) from Average
Goodput Data (High Initial Slow-Start Threshold)

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 358

Given that most differences in goodput arise from differences in network
conditions, we can still analyze the modest goodput differences that can be attributed to
congestion control algorithms. Fig. 8-34 gives seven scatter plots, each showing TCP
goodput (y axis) vs. goodput (x axis) on an alternate (as labeled) congestion control
algorithm for movies transferred on very fast paths with a fast interface speed. Each point
represents one of the 32 simulated conditions. The diagonal would represent the case
where TCP flows and alternate flows achieved identical goodput for the same condition.
Points falling below the diagonal indicate flows using the alternate algorithm had higher
goodput; points falling above indicate TCP flows had higher goodput. Each plot is also
labeled (in red) with the computed correlation between goodput on TCP flows and
alternate flows.

Figure 8-34. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Movies Transferred on Very Fast Paths with Fast Interfaces (High Initial
Slow-Start Threshold)

Fig. 8-34 reveals that under many conditions, Scalable TCP, HSTCP and BIC
flows achieve significantly higher goodputs than competing TCP flows when sending
movies over very fast paths with fast interfaces. This mirrors the information shown in
Fig. 8-29, which plots average goodputs, and shows that Scalable, HSTCP and BIC flows
achieve higher goodputs at the expense of competing TCP flows.

Fig. 8-35 shows the specific conditions under which goodput on Scalable, HSTCP
and BIC flows exceed goodput on TCP flows. Each bar graph in Fig. 8-35 represents all
seven alternate congestion control algorithms under a specific condition (shown in the
lower left-hand corner of each plot). The algorithms are rendered from leftmost bar to
rightmost bar ordered by algorithm identifier (1-7). Each bar plots the magnitude of the
difference in average goodput for TCP flows – y16(u) – versus competing alternate flows

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 359

– y2(u). If the bar is red, y16(u) is greater; if the bar is green, y2(u) is greater. The 32 bar
graphs are sorted from least to most congestion.

Figure 8-35. 32 Bar Graphs (one for each Simulated Condition) plotting Goodput (pps/1000) on TCP
Flows vs. Non-TCP Flows for Movies Transferred on Very Fast Paths with Fast Interfaces
(High Initial Slow-Start Threshold) (Each graph contains seven bars, one per congestion control
algorithm, ordered left to right by algorithm identifier. Each bar plots the magnitude of the difference in
average goodput for TCP flows – y16(u) – versus competing alternate flows – y2(u). If the bar is red,
y16(u) is greater; if the bar is green, y2(u) is greater. The 32 bar graphs are sorted from least to most
congestion by condition, as indicated in the lower left-hand corner of each plot.)

Fig. 8-35 reveals scant differences in goodput between TCP flows and alternate
flows under the 16 least congested conditions. Differences in goodput between alternate
flows and TCP flows increase with increasing congestion for BIC, HSTCP and Scalable.
This reveals that aspects of loss/recovery processing implemented by BIC, HSTCP and
Scalable penalize TCP flows. As discussed previously, in Chapter 6, Scalable TCP (along
with BIC and HSTCP) reduce congestion window size much less than TCP flows in
response to a single loss, so once a Scalable flow establishes a large congestion window
and related buffer space along a path, it could take many loss events to significantly
reduce the flow’s transmission rate. TCP flows, on the other hand, reduce the congestion
window by half on each loss and thus TCP flows reduce transmission rate much faster
than Scalable TCP flows.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 360

Figure 8-36. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Service Packs Transferred on Very Fast Paths with Fast Interfaces (High
Initial Slow-Start Threshold)

Figure 8-37. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Documents Transferred on Very Fast Paths with Fast Interfaces (High
Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 361

The effects shown in Figs. 8-34 and 8-35 do not appear for smaller file sizes
transmitted over very fast paths and fast interfaces. This is shown in Fig. 8-36 (for service
packs) and Fig. 8-37 (for documents). Careful examination of Fig. 8-36 suggests a small
tendency for BIC, HSTCP and Scalable to discriminate against TCP flows. The tendency
exists for the reasons discussed above (with respect to movies), but the tendency is much
muted because flows sending service packs have fewer opportunities to invoke
loss/recovery processing. For this reason, the tendency for BIC, HSTCP and Scalable
TCP to discriminate against TCP flows fades with file size (as shown in Fig. 8-37).

Table 8-28. Average Goodput (pps) per Flow Group under Each Alternate Congestion Control
Algorithm (Low Initial Slow-Start Threshold)

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 36750 44935 55246 55557 34448 31385 34904

N 7736 7780 7921 7913 7537 7569 7429

F
F 7912 6851 7169 6790 7499 6543 8336

N 5142 4507 5144 4470 4840 4514 5297

T
F 5217 4516 5185 4664 4840 4317 5444

N 4270 3844 4229 3931 4013 3710 4531

SP

VF
F 13318 15578 29337 29315 10790 8897 9933

N 6493 6765 7533 7526 5872 5759 5482

F
F 4869 4672 6832 7023 4196 4024 4018

N 3974 3796 5066 5139 3519 3488 3383

T
F 4275 4045 5332 5364 3800 3504 3821

N 3767 3580 4493 4519 3392 3215 3368

D

VF
F 1669 1682 2464 2406 1623 1589 1562

N 1607 1653 2008 2009 1553 1546 1524

F
F 987 1016 1300 1329 965 956 934

N 959 997 1219 1241 939 934 911

T
F 1147 1174 1403 1418 1126 1119 1108

N 1120 1148 1336 1352 1102 1095 1083

WO

VF
F 431 391 423 405 384 395 392

N 405 408 415 419 399 407 396

F
F 253 258 261 265 255 258 251

N 249 254 255 260 252 254 247

T
F 310 316 313 316 314 317 311

N 305 311 307 310 309 312 306

8.4.2.2 Low Initial Slow-start Threshold. Table 8-28 summarizes the average goodput –
response y2(u) – experienced by users in each of the 24 flow classes (dimensioned by file
size, path class and interface speed) under each of the seven alternate congestion control
algorithms. Table 8-29 provides a similar summary of the average goodput – response
y16(u) – experienced by TCP users in each of the 24 flow classes when competing with
flows in each of the seven alternate congestion control algorithms. Since the tables are
somewhat dense with numbers, we present this information in the form of bar graphs
(Figs. 8-38 through 8-41) – one figure per file size: movie, service pack, document and
Web object. (These figures are laid out in the same fashion as Figs. 8-29 through 8-32.)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 362

Tables 8-28 and 8-29, as well as Figs. 8-38 to 8-40, show a marked increase in

goodput differences among flows using alternate congestion control algorithms and
between flows using alternate congestion control algorithms and flows using TCP. These
increased differences must arise from reducing the initial slow-start threshold to a low
value, as all other aspects of the simulations remained the same.

Table 8-29. Average Goodput (pps) per Flow Group on TCP Flows Competing with Each Alternate
Congestion Control Algorithm (Low Initial Slow-Start Threshold)

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 16053 16621 16951 16774 16279 16833 16228

N 7014 7068 7065 7080 6968 6958 6857

F
F 4532 4821 4246 4330 4651 4859 4253

N 3286 3756 3383 3282 3542 3468 3406

T
F 3380 3822 3098 3158 3662 3580 3451

N 2963 3298 2780 2832 3125 3240 3028

SP

VF
F 6484 6531 6563 6494 6498 6636 6456

N 4838 4939 4950 4959 4847 4888 4771

F
F 2872 2936 2709 2762 2886 3037 2818

N 2569 2717 2520 2523 2642 2704 2589

T
F 2811 2916 2562 2627 2872 2941 2861

N 2592 2738 2391 2444 2668 2730 2652

D

VF
F 1504 1528 1521 1521 1493 1561 1520

N 1509 1516 1518 1514 1504 1524 1500

F
F 919 941 899 913 939 950 920

N 897 920 873 892 914 929 897

T
F 1076 1098 1031 1043 1098 1113 1084

N 1054 1076 1009 1023 1077 1091 1063

WO

VF
F 379 404 389 396 396 392 385

N 396 397 397 397 388 396 388

F
F 250 255 246 250 254 258 250

N 246 251 242 246 250 253 246

T
F 307 312 298 301 312 316 310

N 303 308 294 297 308 312 305

Figs. 8-38 to 8-41 reveal some obvious points. First, flows using alternate

congestion control algorithms often achieve much higher goodputs than flows using TCP
congestion control. The differences increase with file size and with interface speed. For
the smallest size (Web objects, Fig. 8-41) there is no appreciable goodput difference
among flows. Second, FAST and FAST-AT flows achieve markedly higher goodputs
than flows using the other alternate congestion control protocols. The ability of FAST
flows to achieve higher goodputs must arise from differences in congestion window
increase procedures after a flow reaches the initial slow-start threshold. Third, the
tendency of Scalable TCP, BIC and HSTCP flows to discriminate against TCP flows

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 363

when competing on congested paths, though muted, is still evident, especially for the
largest files (movies).

Figure 8-38. Average Goodput on Movies (Low Initial Slow-Start Threshold) (Top row shows raw
goodput in pps and bottom row shows goodput as a proportion of interface speed)

Figure 8-39. Average Goodput on Service Packs (Low Initial Slow-Start Threshold) (Top row shows
raw goodput in pps and bottom row shows goodput as a proportion of interface speed)

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 364

Figure 8-40. Average Goodput on Documents (Low Initial Slow-Start Threshold) (Top row shows raw
goodput in pps and bottom row shows goodput as a proportion of interface speed)

Figure 8-41. Average Goodput on Web Objects (Low Initial Slow-Start Threshold) (Top row shows
raw goodput in pps and bottom row shows goodput as a proportion of interface speed)

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 365

Though Figs. 8-38 to 8-40 reveal strong differences in goodput for flow groups
using FAST and FAST-AT, we wanted to investigate to what extent differences in
experiment conditions drove differences in goodput. To investigate this question, we
conducted a principal components analysis (PCA) of the average goodput data across all
flow groups. Fig. 8-42 plots the resulting information (a biplot of the first two principal
components), which reveals two main groups of points: (1) goodput when network speed
was lower (x1 = -1) and (2) goodput when network speed was higher (x1 = +1). This is as
expected: higher network speeds enable higher goodputs. Fig. 8-42 also reveals
differences with respect to congestion control algorithm. Note that goodputs for flows
using algorithm 3 (FAST) and algorithm 4 (FAST-AT) tend toward the right-hand side of
the plot and there is a rightmost grouping of points associated with FAST and FAST-
AT.5 These points represent cases when network speed is high and propagation delay is
low (x2 = -1). This suggests that FAST and FAST-AT can achieve significantly higher
goodputs than other congestion control algorithms under such conditions.

Figure 8-42. Principal Component 1 (x axis) vs. Principal Component 2 (y axis) for Average Goodput
Data (Low Initial Slow-Start Threshold)

5 Though the data included goodput for TCP flows, differences in goodput among TCP flows was far
overshadowed by differences in goodput for algorithm 3 (FAST) and algorithm 4 (FAST-AT) flows
compared to flows using other alternate congestion control algorithms.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 366

Fig. 8-43 gives seven scatter plots, each showing TCP goodput (y axis) vs.
goodput on an alternate (as labeled) congestion control algorithm for movies transferred
on very fast paths with a fast interface speed. Comparing Fig. 8-43 with Fig. 8-34, which
gives the same information under high initial slow-start threshold, shows marked
differences. Under low initial slow-start threshold, all seven alternate congestion control
protocols provide much better goodput than achieved on TCP flows. This result can be
attributed directly to the adoption of a low initial slow-start threshold. After reaching a
congestion window size of 100 packets, the increase functions of the congestion
avoidance regime of each protocol are activated. The TCP congestion avoidance regime
leads to linear increase in transmission rate, while the congestion avoidance regimes in
the other protocols lead to greater than linear increase. The precise increase rate depends
upon the specific algorithm. Fig. 8-44 shows the degree to which goodput on flows using
each alternate congestion control algorithm exceeds goodput on TCP flows for each
condition when movies are transferred on very fast paths with a fast interface speed.

Figure 8-43. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Movies Transferred on Very Fast Paths with Fast Interfaces (Low Initial
Slow-Start Threshold)

Fig. 8-44 confirms the results in Fig. 8-43 and also reveals that flows using FAST
and FAST-AT achieve higher goodput advantage over TCP flows, though the advantage
diminishes somewhat with increasing congestion. This means that, in congestion
avoidance, FAST increases transmission rate faster than the other congestion control
algorithms. From Fig. 8-44 one can also discern that CTCP increases transmission rate
second fastest. Thus, when given a low initial slow-start threshold and transferring large
files at high speeds over paths with little congestion, the congestion avoidance increase
procedures of the alternate protocols reach maximum transfer rate far more quickly than
possible using the linear increase procedures of TCP. This general pattern also holds for

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 367

service packs (see Figs. 8-45 and 8-46) and documents (see Figs. 8-47 and 8-48). Note
that for these smaller file sizes FAST and FAST-AT still achieve much higher goodputs
than normal TCP, though the degree to which the other alternate congestion control
algorithms outperform TCP is much diminished.

Figure 8-44. 32 Bar Graphs (one for each simulated condition) plotting Goodput (pps/1000) on TCP
Flows vs. Non-TCP Flows for Movies Transferred on Very Fast Paths with Fast Interfaces (Low
Initial Slow-Start Threshold) (Each graph contains seven bars, one per congestion control algorithm,
ordered left to right by algorithm identifier. Each bar plots the magnitude of the difference in average
goodput for TCP flows – y16(u) – versus competing alternate flows – y2(u).)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 368

Figure 8-45. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low
Initial Slow-Start Threshold)

Figure 8-46. 32 Bar Graphs plotting Goodput (pps/1000) on TCP Flows vs. Non-TCP Flows for
Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low Initial Slow-Start
Threshold) (Each graph contains seven bars, one per congestion control algorithm, ordered left to right by
algorithm identifier. Each bar plots the magnitude of the difference in average goodput for TCP flows –
y16(u) – versus competing alternate flows – y2(u).)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 369

Figure 8-47. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x
axes give y2u/100 pps) for Documents Transferred on Very Fast Paths with Fast Interfaces (Low
Initial Slow-Start Threshold)

Figure 8-48. 32 Bar Graphs plotting Goodput (pps/1000) on TCP Flows vs. Non-TCP Flows for
Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low Initial Slow-Start
Threshold) (Each graph contains seven bars, one per congestion control algorithm, ordered left to right by
algorithm identifier. Each bar plots the magnitude of the difference in average goodput for TCP flows –
y16(u) – versus competing alternate flows – y2(u). If the bar is red, y16(u) is greater; if the bar is green,
y2(u) is greater. The 32 bar graphs are sorted from least to most congestion by condition, as indicated in the
lower left-hand corner of each plot.)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 370

8.4.2.3 Summary of Differences in Goodput. Table 8-30 gives a summary of goodput
differences as percentages for each of the 24 flow groups measured. Differences under
high initial slow-start threshold (HIGH INITIAL SSTHRESH) are reported in three
columns: (1) AMONG ALTs gives the range of percentage difference on average
goodput, y2(u), between flows using the alternate congestion control algorithms with the
highest and lowest average goodput; (2) AMONG TCPs gives the range of percentage
difference on average goodput, y16(u), between TCP flows with the highest and lowest
average goodput when competing with alternate congestion control algorithms; (3) ALTs
> TCPs gives the percentage increase in average goodput, y2(u) vs. y16(u), for flows
using alternate congestion control algorithms over competing TCP flows (note that in one
case, given in red, TCP flows achieved higher average goodput). A similar set of three
columns reports goodput differences under low initial slow-start threshold (LOW
INITIAL SSTHRESH).

Table 8-30. Range of Goodput Differences (%) for Flow Groups under High and Low Initial Slow-
Start Threshold (Differences are shown: among Alternate Congestion Control Algorithms, among TCP
Flows Competing with Alternate Algorithms and between Alternate Algorithms and TCP Flows)

LOW INITIAL SSTHRESHHIGH INITIAL SSTHRESH

<26<3<165F
T

<25<3<155N

245<144N

255<145F
F

<425<25<5N

<3811-1516F
VF

WO

1182027<4N

12722253F
T

12625<275N

<2530<274F
F

10125<24<3N

20540<165F
VF

D

30133020720N

35133520620F
T

35735151015N

55104015812F
F

2043015<3N

60370364F
VF

SP

251520301730N

301520301130F
T

301216212021N

381233351635F
F

93638<1N

60545111110F
VF

M

ALTs >
TCPs

AMONG
TCPs

AMONG
ALTs

ALTs >
TCPs

AMONG
TCPs

AMONG
ALTsInterfacePathFile

RANGE OF GOODPUT DIFFERENCES (%)

LOW INITIAL SSTHRESHHIGH INITIAL SSTHRESH

<26<3<165F
T

<25<3<155N

245<144N

255<145F
F

<425<25<5N

<3811-1516F
VF

WO

1182027<4N

12722253F
T

12625<275N

<2530<274F
F

10125<24<3N

20540<165F
VF

D

30133020720N

35133520620F
T

35735151015N

55104015812F
F

2043015<3N

60370364F
VF

SP

251520301730N

301520301130F
T

301216212021N

381233351635F
F

93638<1N

60545111110F
VF

M

ALTs >
TCPs

AMONG
TCPs

AMONG
ALTs

ALTs >
TCPs

AMONG
TCPs

AMONG
ALTsInterfacePathFile

RANGE OF GOODPUT DIFFERENCES (%)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 371

Under high initial slow-start threshold, all congestion control algorithms
(including TCP) increase transmission rate to the available maximum using the same
algorithm (limited slow-start, here), so variations in goodput result solely from
differences in loss/recovery procedures among the algorithms. This means that such
differences arise mainly during congestion and when transferring large files, which are
likely to have more packets lost because there are more packets in the files. Under low
initial slow-start threshold, TCP increases transmission rate linearly after entering
congestion avoidance, while the alternate congestion control algorithms increase
transmission rate more steeply. FAST and FAST-AT increase transmission rate quickest
and CTCP second quickest. The advantage of a steep increase in transmission rate
appears most evident for large files when transferred over fast paths experiencing little
congestion. This advantage for smaller files exists mainly for FAST and FAST-AT.

Table 8-30 shows that the largest differences in average goodput occur among
flows using various alternate congestion control algorithms (AMONG ALTs) and
between flows using alternate algorithms and competing TCP flows (ALTs > TCP).
Lesser differences in average goodput appear among TCP flows when competing with
flows using alternate algorithms (AMONG TCPs). To more completely analyze
differences in average goodput, we can consider the relative ranking of each alternate
algorithm with respect to goodput achieved by flows using the algorithm and by TCP
flows competing with the algorithm. We turn to this topic next.

8.4.3 Relative User Experience
In this section, we set aside absolute differences in average goodput and consider instead
relative differences. For each simulated condition, we ranked from high (7) to low (1) the
average goodput – y2(u) – provided by the seven alternate congestion control algorithms
and we also computed the average goodput across all seven algorithms. We took similar
steps with respect to average goodput – y16(u) – among TCP flows competing with the
alternate algorithms. Armed with this information, we generated seven pairs of rank6
matrices. One member of each pair relates to y2(u) and the other member to y16(u). (See
Fig. 8-12 for a sample rank matrix). Each matrix contains (32 conditions x 24 flow groups
=) 768 cells, where each cell contains the rank (of average goodput among the seven
competing algorithms) for the congestion control algorithm associated with the matrix. If
the rank in a cell is rendered in green, then the goodput associated with the rank was
above the average goodput for all algorithms. If red, then the goodput was below the
relevant average. When a highest ranked (7) cell was farther from the average goodput
than the lowest ranked (1) cell, then the cell is filled in green. In the reverse case, the
lowest ranked cell is filled in red.

The columns in each matrix are divided into four vertical sections that each relate
to a specific file size (movie, service pack, document and Web object). Each section
contains three pairs of flow groups (labeled on the x axis) ordered by path class (very
fast, fast and typical). Within each flow-group pair the ordering is by interface speed (fast
and normal). The matrix rows are ordered by condition (labeled on the y axis) from least
(top) to most (bottom) congested. In the results below, we reproduce matrices related to

6 The reader should keep in mind the fact that ranking forces an ordering among the congestion control
algorithms without distinction to the magnitude of those differences. Absolute differences in average
goodput were the subject of the preceding section (8.4.2).

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 372

high and low initial slow-start threshold. Half of the matrices show the rank in goodput
for each alternate congestion control algorithm when compared against the others. The
remaining matrices show the rank in goodput for TCP flows competing with each
alternate congestion control algorithm when compared against TCP flows competing with
the others. We reproduce these matrices to show any patterns that occur.

In addition to showing the matrices, we computed the average rank for each
congestion control algorithm for each file size. Similarly, we computed the average rank
for TCP flows competing with each congestion control algorithm for each file size. We
also determined the standard deviation in rank for each alternate congestion control
algorithm, across all files sizes and considering both y2(u) and y16(u). We report these
averages and standard deviations in summary tables (Tables 8-31 and 8-32). We use the
information from the summary tables to generate scatter plots of average rank (x axis) vs.
standard deviation in rank (y axis), which reveal differences in relative user experience
among the seven alternate congestion control algorithms.

Figure 8-49. Goodput Rank Matrix – y2(u) – BIC (High Initial Slow-Start Threshold) Rank (7 high)
in each cell denotes ordering of y2(u) for each condition (y axis) and flow group (x axis) – conditions are
sorted from least (16) to most (21) congested and flow groups are ordered by file size – movies (M),
service packs (SP), documents (D) and Web objects (WO) – and by path class – very fast (VF), fast (F),
and typical (T) – within each file size and by interface speed – fast (F) or normal (N) – within each path
class.

8.4.3.1 High Initial Slow-start Threshold. Figs. 8-49 through 8-55 show the ranking
matrices for y2(u) under a high initial slow-start threshold. The related matrices for
y16(u) are given in Figs. 8-56 through 8-62. Table 8-31 summarizes the rankings.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 373

Figure 8-50. Goodput Rank Matrix – y2(u) – CTCP (High Initial Slow-Start Threshold)

Figure 8-51. Goodput Rank Matrix – y2(u) – FAST (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 374

Figure 8-52. Goodput Rank Matrix – y2(u) – FAST-AT (High Initial Slow-Start Threshold)

Figure 8-53. Goodput Rank Matrix – y2(u) – HSTCP (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 375

Figure 8-54. Goodput Rank Matrix – y2(u) – HTCP (High Initial Slow-Start Threshold)

Figure 8-55. Goodput Rank Matrix – y2(u) – Scalable TCP (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 376

Figure 8-56. TCP Goodput Rank Matrix – y16(u) – BIC (High Initial Slow-Start Threshold)

Figure 8-57. TCP Goodput Rank Matrix – y16(u) – CTCP (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 377

Figure 8-58. TCP Goodput Rank Matrix – y16(u) – FAST (High Initial Slow-Start Threshold)

Figure 8-59. TCP Goodput Rank Matrix – y16(u) – FAST-AT (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 378

Figure 8-60. TCP Goodput Rank Matrix – y16(u) – HSTCP (High Initial Slow-Start Threshold)

Figure 8-61. TCP Goodput Rank Matrix – y16(u) – HTCP (High Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 379

Figure 8-62. TCP Goodput Rank Matrix – y16(u) – Scalable TCP (High Initial Slow-Start Threshold)

Table 8-31. Summary Average and Standard Deviation in Goodput and TCP Goodput Rank for All
Congestion Control Algorithms (High Initial Slow-Start Threshold)

The matrices and summary table give some impressions regarding relative
goodput for flows operating under various congestion control algorithms as well as for

1.191.370.340.640.770.980.53Std.

3.164.633.904.353.694.633.66Avg.y2(u)
& y16(u)

2.565.303.914.283.405.153.39Avg.

2.455.664.044.162.845.373.44WO

2.395.704.154.132.965.203.46D

2.515.293.834.263.785.253.09SP

2.914.533.614.594.014.783.57M

y16(u)

3.753.963.884.423.974.103.92Avg.

2.405.684.104.103.035.323.37WO

2.555.183.844.683.404.943.42D

4.612.423.265.584.983.014.15SP

5.442.594.323.324.463.144.73M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC

1.191.370.340.640.770.980.53Std.

3.164.633.904.353.694.633.66Avg.y2(u)
& y16(u)

2.565.303.914.283.405.153.39Avg.

2.455.664.044.162.845.373.44WO

2.395.704.154.132.965.203.46D

2.515.293.834.263.785.253.09SP

2.914.533.614.594.014.783.57M

y16(u)

3.753.963.884.423.974.103.92Avg.

2.405.684.104.103.035.323.37WO

2.555.183.844.683.404.943.42D

4.612.423.265.584.983.014.15SP

5.442.594.323.324.463.144.73M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 380

competing TCP flows. Keep in mind that these observations relate only to a high initial
slow-start threshold, so the main differences must be attributable to how congestion
control algorithms react to losses. First, HTCP and CTCP, followed by FAST-AT, appear
to interfere least with goodput on competing TCP flows. On a loss, these protocols reduce
congestion window to the same extent as TCP. Of course, so does FAST. FAST-AT can
be less aggressive than FAST when recovering from congestion because the parameter
can be driven down, which causes FAST-AT to recover less forcefully. More aggressive
recovery by FAST can induce higher losses from which TCP flows recover with a linear
increase in congestion window. Second, Scalable TCP provides significant goodput on
large files but interferes with TCP flows. BIC shows traits similar to Scalable but with
lower magnitude. HSTCP provides moderate goodputs and interferes only moderately
with TCP flows. HTCP and CTCP provide relatively high goodputs on smaller files,
while not interfering much with TCP flows. HTCP interferes less with TCP flows than
does CTCP, but HTCP also provides substantially lower relative goodput on larger files.

Figure 8-63. Goodput Rank Matrix – y2(u) – BIC (Low Initial Slow-Start Threshold)

8.4.3.2 Low Initial Slow-start Threshold. When the initial slow-start threshold is low,
differences in relative goodput appear not only due to loss/recovery processing but also
due to the rate at which flows discover the maximum available transmission rate. For this
reason, all alternate congestion control protocols provide substantially better goodput
than standard TCP. Despite this fact, appropriate analyses can still discern differences in
relative goodput among alternate congestion control protocols as well as among
competing TCP flows. Figs. 8-63 through 8-69 show the ranking matrices for y2(u) under

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 381

a low initial slow-start threshold. The related matrices for y16(u) are given in Figs. 8-70
through 8-76. Table 8-32 summarizes the rankings.

Figure 8-64. Goodput Rank Matrix – y2(u) – CTCP (Low Initial Slow-Start Threshold)

Figure 8-65. Goodput Rank Matrix – y2(u) – FAST (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 382

Figure 8-66. Goodput Rank Matrix – y2(u) – FAST-AT (Low Initial Slow-Start Threshold)

Figure 8-67. Goodput Rank Matrix – y2(u) – HSTCP (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 383

Figure 8-68. Goodput Rank Matrix – y2(u) – HTCP (Low Initial Slow-Start Threshold)

Figure 8-69. Goodput Rank Matrix – y2(u) – Scalable TCP (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 384

Figure 8-70. TCP Goodput Rank Matrix – y16(u) – BIC (Low Initial Slow-Start Threshold)

Figure 8-71. TCP Goodput Rank Matrix – y16(u) – CTCP (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 385

Figure 8-72. TCP Goodput Rank Matrix – y16(u) – FAST (Low Initial Slow-Start Threshold)

Figure 8-73. TCP Goodput Rank Matrix – y16(u) – FAST-AT (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 386

Figure 8-74. TCP Goodput Rank Matrix – y16(u) – HSTCP (Low Initial Slow-Start Threshold)

Figure 8-75. TCP Goodput Rank Matrix – y16(u) – HTCP (Low Initial Slow-Start Threshold)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 387

Figure 8-76. TCP Goodput Rank Matrix – y16(u) – Scalable TCP (Low Initial Slow-Start Threshold)

Table 8-32. Summary Average and Standard Deviation in Goodput and TCP Goodput Rank for All
Congestion Control Algorithms (Low Initial Slow-Start Threshold)

Figs. 8-63 through 8-76 and Table 8-32 reveal the key differences in relative
goodput, under low initial slow-start threshold, among flows using alternate congestion

0.971.470.751.471.600.550.59Std.

3.213.873.754.604.234.643.71Avg.y2(u)
& y16(u)

3.755.044.393.412.845.043.52Avg.

3.565.354.513.502.405.183.50WO

3.795.474.523.292.545.113.28D

3.975.024.233.202.894.983.71SP

3.684.324.323.643.544.903.61M

y16(u)

2.662.703.115.795.614.243.89Avg.

2.554.283.545.584.684.632.74WO

1.612.212.796.706.114.743.85D

2.161.942.666.586.423.894.36SP

4.322.363.464.315.243.704.60M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC

0.971.470.751.471.600.550.59Std.

3.213.873.754.604.234.643.71Avg.y2(u)
& y16(u)

3.755.044.393.412.845.043.52Avg.

3.565.354.513.502.405.183.50WO

3.795.474.523.292.545.113.28D

3.975.024.233.202.894.983.71SP

3.684.324.323.643.544.903.61M

y16(u)

2.662.703.115.795.614.243.89Avg.

2.554.283.545.584.684.632.74WO

1.612.212.796.706.114.743.85D

2.161.942.666.586.423.894.36SP

4.322.363.464.315.243.704.60M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 388

control protocols and also among competing TCP flows. First, FAST and FAST-AT
provide highest relative goodputs due largely to very quick increase in transmission rate
after reaching the initial slow-start threshold. On the other hand, the quick increase can
lead to losses, from which TCP flows recover linearly. Thus, FAST interferes most with
TCP flows. FAST-AT interferes somewhat less than FAST because, under sustained
congestion, FAST-AT flows do not increase transmission rate as quickly as FAST flows.
Second, Scalable TCP and BIC flows still interfere significantly with TCP flows – the
reasons are as discussed earlier. In addition, Scalable flows see significant goodput only
on the largest files. This occurs because Scalable TCP increases transmission rate steeply
only after some period of delay. The largest files last long enough for Scalable TCP to
reach the steep increase in transmission rate. Third, CTCP and HTCP are least disruptive
to the throughput of competing TCP flows. CTCP still does better than HTCP in
providing goodput on flows running alternate congestion control procedures. Contrasts in
relative goodput between flows using alternate congestion control and TCP flows account
for the large standard deviations in rank exhibited by FAST, FAST-AT and HTCP.

Figure 8-77. Average (x axis) vs. Standard Deviation (y axis) in Goodput Rank (High Initial Slow-
Start Threshold)

8.4.3.3 Summary of Differences in Relative Goodput. To summarize differences in
relative goodputs we plot the average goodput rank (x axis) against the standard deviation
in goodput rank (y axis) under high (Fig. 8-77) and low (Fig. 8-78) initial slow-start
thresholds for each alternate congestion control regime. The average and standard
deviations consider goodput rank on flows using an alternate congestion control regime
and also on competing TCP flows. In such a plot, the ideal congestion control regime
would appear in the lower right-hand corner – high average rank in goodput applied
evenly to all competing flows. Where alternate congestion control regimes provide

HTCP

CTCP

FAST-AT

Average Goodput Rank for All Flows

FAST

HSTCP

BIC

SCALABLE

HTCP

CTCP

FAST-AT

Average Goodput Rank for All Flows

FAST

HSTCP

BIC

SCALABLE

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 389

equally high average rankings, one should prefer the regime with lower standard
deviation in rank.

Figure 8-78. Average vs. Standard Deviation in Goodput Rank (Low Initial Slow-Start Threshold)

Fig. 8-77 and 8-78 show CTCP to be best with respect to relative goodput rank.
CTCP provides the highest average rank (over 4.5) and the lowest standard deviation
among high ranking alternatives (e.g., HTCP in Fig. 8-77 and FAST-AT in Fig. 8-78).
Further, Scalable TCP is worst with respect to relative goodput rank and BIC is second
worst. HSTCP ranks in the middle. HTCP ranks well with respect to average goodput
under large initial slow-start threshold, but ranks significantly less well under low initial
slow-start threshold. Further, HTCP exhibits a high standard deviation, interfering
relatively little with TCP flows, while underperforming other alternate congestion control
algorithms with respect to large files. The relative performance of FAST-AT might be
considered second best, though due to its rapid increase in transmission rate (under low
initial slow-start threshold) FAST-AT can induce losses in TCP flows, which recover
only linearly. FAST induces more losses in TCP flows than FAST-AT, and also benefits
from the same (as FAST-AT) rapid increase in transmission rate when the initial slow-
start threshold is low.

8.5 Findings
This experiment considered a range of files sizes (movies, service packs, documents and
Web objects) being transferred across a relatively uncongested network, where some (fast
and typical) paths experienced more congestion than others (very fast paths) and where
some flows could achieve a maximum rate of 80 x 103 pps, while others were constrained
(by the interface speed of a sender or receiver) to at most 8 x 103 pps. Flows using TCP
congestion control were mixed with flows using one of seven alternate congestion control

HTCP

CTCP

FAST-AT

Average Goodput Rank for All Flows

FAST

HSTCP

BIC

SCALABLE

HTCP

CTCP

FAST-AT

Average Goodput Rank for All Flows

FAST

HSTCP

BIC

SCALABLE

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 390

algorithms. In general, under these conditions, goodput experienced on flows is
influenced by three main factors (when ignoring network speed and delay): (1)
quickeness with which the maximum transfer rate is achieved, (2) file size and (3) packet
losses and related recovery procedures. The 32 conditions simulated in this experiment
were run twice: once with a high and once with a low initial slow-start threshold. Under a
high threshold, all flows used the same algorithm (limited slow-start) to find the
maximum transfer rate. In such cases, only file size and packet loss/recovery procedures
served to distinguish goodput among the various algorithms investigated. Under a low
threshold, flows discovered the maximum transfer rate using techniques associated with
the specific algorithms. In such cases, the quickness with which a flow could reach
maximum transfer rate is the largest factor distinguishing among goodput.

8.5.1 Finding #1
Under low congestion, choice of initial slow-start threshold significantly influenced
goodput differences between TCP flows and flows running alternate congestion control
algorithms. Given a high threshold, all flows discovered the maximum available
transmission rate using the same slow-start algorithm. In such cases, goodput differences
between TCP flows and flows running alternate algorithms were diminished greatly,
depending only on differences associated with loss/recovery procedures. Loss/recovery
procedures played a larger role with bigger files (more packets mean more losses) and in
congested areas and conditions (more simultaneous flows lead to more losses). Given a
low threshold, all alternate algorithms yielded superior performance to standard TCP due
to TCP’s linear rate of increase in transmission toward the maximum rate. FAST and
FAST-AT, which showed the quickest increase to the maximum transmission rate,
benefited most from a low initial slow-start threshold and exhibited significantly higher
goodputs (than the other algorithms) for all but the smallest files. CTCP achieved the
second fastest pace of increase to maximum rate.

8.5.2 Finding #2
With increasing losses, due to large file size or path congestion, goodputs were
distinguished mainly by loss/recovery procedures. Scalable TCP, BIC and HSTCP do not
decrease their transmission rate as much as the other algorithms when a loss is detected.
This means that already established flows continue to transmit at higher rates, inducing
losses in newer flows, and also in ongoing TCP flows, which cut their transmission rate
in half on each loss. Thus, under congested conditions, Scalable TCP, BIC and HSTCP
interfered most with competing TCP flows. On the other hand, FAST, FAST-AT, CTCP
and HTCP reduce transmission rate by half on a loss, which mirrors the reduction of TCP
flows. Of course, FAST (and sometimes FAST-AT) subsequently increases transmission
rate quickly to recover from the loss, while CTCP increases transmission rate second
most quickly. HTCP delays for one second without another packet loss before increasing
transmission rate more than linearly, so HTCP lagged somewhat in recovering from
losses.

The ability of FAST to rapidly increase transmission rate on loss recovery was
somewhat of a double-edged sword. Increased rate of transmission by competing FAST
flows could induce additional losses in TCP flows, which recover at only a linear rate.
Thus, under such circumstances, FAST could interfere markedly with TCP flows. FAST-

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 391

AT includes the ability to reduce the parameter, so when congestion is significant
FAST-AT flows recover less aggressively than FAST flows. For this reason, FAST-AT
interfered somewhat less with standard TCP flows.

8.5.3 Finding #3
Overall, CTCP provided the best balance in relative goodput achieved on all flows.
CTCP interfered little (but HTCP interfered least) with TCP flows and proved second
best (after FAST/FAST-AT) at providing goodput to flows using alternate congestion
control procedures. FAST-AT disrupted TCP flows somewhat more than HTCP and
CTCP, while providing nearly the best goodput to flows using alternate procedures.

8.5.4 Finding #4
As seen in earlier experiments, this experiment showed that use of some alternate
congestion control protocols altered selected macroscopic characteristics of the network.
Here, however, the characteristic changes were, in general, not statistically significant.
We attribute this to two main factors: (1) overall congestion levels were kept much lower
than in previous experiments (e.g., Chapters 6 and 7) and (2) FAST and FAST-AT, which
have similar characteristics, where not separated in the analyses, which (as discussed in
Chapter 7) tended to reduce the statistical significance that might be attributed to either
algorithm considered without the other. In general, the current experiments confirmed (as
seen previously in Chapters 6 and 7) that FAST and FAST-AT tend to increase
retransmission rate under higher congestion. Thus, more flows are pending in the
connecting state and fewer flows complete per unit of time. In addition, Scalable TCP
tends to increase buffer occupancy throughout the network. As discussed in Sec. 8.4.1,
this can also lead to higher losses and increased retransmission rates, to more flows
pending in the connecting state and to fewer flows completing per unit time. At lower
congestion levels, Scalable TCP performed worse on these metrics than FAST. At higher
congestion levels, FAST performed worse. Finally, we found again in this experiment
that CTCP can exhibit a much higher average congestion window size than other
congestion control algorithms. The increase appears more prominent under lower levels
of congestion.

8.6 Conclusions
In this section, we described an experiment to investigate effects on macroscopic
behavior and user experience when deploying various congestion control algorithms in a
simulated, heterogeneous network, i.e., a network that includes flows operating under
normal TCP congestion control procedures together with flows operating under one of
seven alternate congestion control algorithms. Mixing each alternate congestion control
regime together with standard TCP enabled us to investigate the influence of alternate
congestion avoidance algorithms on the performance of TCP flows, as might prove
important during a period of transition from TCP toward adoption of an alternate
congestion control regime. Under half of the test conditions more flows operated with
TCP, as might be typical in earlier stages of transition to an alternate congestion control
regime, while under the remaining test conditions more flows operated with an alternate
congestion control regime, as might be typical in later stages of transition. We also
introduced additional flow sizes to represent downloading movies and software service

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 392

packs. These file sizes augmented the Web objects and document downloads used in
previous experiments. We adopted a small-scale network because earlier experiments
suggested that a small network yields significant information while requiring fewer
resources. Reducing computational cost allowed us to repeat our experiments first with a
high initial slow-start threshold and then with a low initial slow-start threshold. We took
this step in light of the apparent significance of the initial slow-start threshold, as
uncovered in earlier experiments (Chapters 6 and 7).

 We demonstrated that, under the conditions simulated, and setting aside network
speed and delay, goodput experienced on flows is influenced by three main factors: (1)
quickness with which the maximum transfer rate is achieved, (2) file size and (3) packet
losses and related recovery procedures. We showed that adopting a high initial slow-start
threshold throughout the network allowed all flows to reach maximum transfer rate at the
same speed, which substantially reduced goodput differences among TCP flows and
flows using alternate congestion control algorithms. With a high threshold, only
loss/recovery procedures distinguished goodput among congestion control algorithms.
We found that on a loss, Scalable TCP, BIC and HSTCP reduced transmission rate less
than other algorithms, causing Scalable TCP, BIC and HSTCP to interfere more with
TCP flows under congested conditions. While CTCP, FAST and FAST-AT (and
sometimes HTCP) halved their transmission rate on a loss, FAST (and sometimes FAST-
AT) where able to increase transmission rate at the quickest pace, followed by CTCP.
The pace of increase of HTCP was much less. Under heavy congestion, FAST-AT was
less aggressive in recovering from losses than was FAST.

We showed that under a low initial slow-start threshold all of the alternate
congestion control algorithms reached the maximum transmission rate much more
quickly than TCP, which was limited to a linear rate of increase. FAST (and FAST-AT)
increased transmission rate most quickly, followed by CTCP. Scalable TCP increased
transmission rate least quickly during a flow’s initial period before achieving a steep rate
of increase, so under a low initial slow-start threshold, Scalable achieved substantial
goodputs only on large files. Differences in the speed of increase in transmission rate
among the other congestion control algorithms (BIC, HSTCP and HTCP) did not appear
significant. We found that CTCP gave the best balance in goodput among all flows, but
FAST and FAST-AT flows achieved the highest goodputs when all flows used a low
initial slow-start threshold.

We were also able to confirm some network-wide results from earlier
experiments, where FAST and FAST-AT exhibited higher retransmission rates, more
pending flow connections and fewer flows completing. In addition, we found that, under
high initial slow-start threshold, Scalable TCP could also exhibit such undesirable
network-wide properties.

In the next section, we revisit the results from this section by rerunning the
experiment on a larger (10 times more sources) and faster (10 times higher capacity)
network. The substantial increase in computational requirements arising from this
increase in network size and speed will limit us to consider only one setting for initial
slow-start threshold. We chose the high initial slow-start threshold in order to focus on
differences in loss/recovery processing. We expect that the larger network will
experience substantially less congestion under most conditions. Given the findings from
the current section, we suspect a less congested network, where all flows use a high

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 393

initial slow-start threshold, will yield a narrowing of differences in goodput among the
alternate congestion control algorithms. Fewer losses should mean that the algorithms
have fewer opportunities to invoke their loss/recovery behaviors.

