
Chapter 5 – Modeling Congestion Control Algorithms

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 137

5 Modeling Alternate Congestion Control Mechanisms
The fundamental design of the Internet protocol suite [3] assumes that network elements, such as
routers, are relatively simple – receiving, buffering and forwarding packets among connected
links and dropping packets when buffers are insufficient to accommodate arriving packets.
Under this assumption, computers connected to the Internet must implement decision algorithms
to pace the rate at which packets are injected into the network. Such decision algorithms, known
typically as congestion control mechanisms, are implemented independently by each source with
the goal of achieving a satisfactory network-wide outcome and a fair distribution of resources to
all active sources. In the current state-of-the-practice, congestion control mechanisms are
implemented as part of the transmission control protocol (TCP) [8-10] that operates within every
computer attached to the global Internet. While TCP congestion control procedures have proven
quite successful [2] at achieving desired properties, numerous researchers [46-51, 64] have
postulated potential changes in relationships among bandwidth and propagation delay as the
speed of network links increases toward 10s and 100s of gigabits per second (Gbps). Under such
envisioned circumstances, researchers predict that TCP congestion control procedures will prove
insufficient, leading to substantial underutilization in network resources and preventing end users
from achieving high transfer rates, potentially reaching or surpassing 1 Gbps. These predictions
have stimulated researchers to propose alternate congestion control mechanisms [52-61] that
might achieve higher network utilization and better user performance as network speeds
increase.

 As part of proposing alternate congestion control mechanisms, researchers typically
model, simulate and implement prototypes and then explore how candidate congestion control
mechanisms might affect the Internet and its users. Given the increasing number of proposals,
interest is growing [62-68] in developing procedures to fairly and effectively evaluate the
properties of the proposals. A similar motive underlies the work reported in the current study,
where our approach is to simulate proposed congestion control mechanisms within a reasonably
large network that can support O(105) active flows simultaneously. To illustrate our
methodology, we have chosen to investigate six proposed alternate congestion control
mechanisms [52-54, 58, 60-61], which have been simulated and studied empirically at smaller
scales.

In this chapter of our study, we introduce the basic concepts underlying TCP congestion
control and we explain the changes to those procedures that are proposed by six different
research teams. Other research teams [55-57, 59] have also proposed changes to TCP congestion
control procedures. We chose to examine only six proposals in order to limit our study, which
focuses on methods for conducting evaluations rather than on an exhaustive consideration of all
published proposals. We selected five specific proposals because a recent study by Li, Leith and
Shorten [67] reports empirical results from prototype implementations included within Linux.
This enables us to validate our simulations of the proposals against the reported empirical
measurements. We chose a sixth alternate congestion control mechanism, Compound TCP [58],
or CTCP, because it has been proposed by researchers at Microsoft and, thus, may be available
in the future within a large number of computers attached to the Internet. Further, there are some
recent empirical results [66] against which we can validate our model of CTCP. The
methodology we define in our study can be applied to additional proposals for alternate
congestion control mechanisms.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 138

The remainder of this chapter is organized into five major topics. We begin (in Sec. 5.1)
by introducing TCP congestion control and then (in Sec. 5.2) define the procedures adopted by
six, selected, alternate proposals for congestion control in the Internet. Next (in Sec. 5.3), we
describe how we model congestion control procedures within MesoNet. In Sec. 5.4, we describe
the test configuration used to verify that we correctly model each congestion control mechanism.
We then present simulation results showing evolution of congestion windows over time for each
congestion control mechanism that we model. The information reported in this section sets the
stage for us to consider (in Chapters 6 through 9) whether proposed alternate congestion control
procedures might change macroscopic network behavior or user experience.

5.1 TCP Congestion Control
 A typical TCP flow evolves through three phases: connection, transfer and close. For purposes
of congestion control, we limit our discussion to the connection and transfer phases. Fig. 5-1
gives a high-level view of these two phases. During the connection phase, a source attempts to
establish contact with an intended receiver. Inability to establish contact results in a connection
failure, which prevents data from flowing between source and receiver; thus, connection
establishment procedures provide one form of congestion control implemented by TCP. During
the transfer phase, a source sends data (in the form of segments) on the flow until the required
number has been received successfully. A receiver signals receipt of data segments by sending
acknowledgments (ACKs) to the source. By sending duplicate acknowledgments, a receiver may
also indicate failure to receive specific segments, which the source must then retransmit. Further,
a sender may fail to receive acknowledgments, which requires the sender to raise a timeout and
to retransmit unacknowledged data. During the transfer phase, congestion control procedures
determine when a source may send data segments to a receiver. The resulting series of segments
is known as a flow.

Figure 5-1. Main Phases and Congestion Control Procedures in the Life of a TCP Flow (The Six Alternative
Congestion Control Mechanisms in this Study Change the Congestion Avoidance Regime Only)

TCP flows consist of a series of data segments (or packets) sent from a source to a
receiver, along with a corresponding stream of acknowledgment packets flowing in the reverse
direction. At any given time, a source may send a prescribed number of packets (known as the
congestion window, or cwnd) prior to receiving an acknowledgment. Thus, the size of the cwnd
controls the rate of packet transmission on a flow. Using TCP congestion control procedures, a
source increases a flow’s cwnd exponentially from a small initial value until either a loss is
detected or until the cwnd reaches a threshold, known as the initial slow-start threshold, or sst. If
the sst is reached, the source subsequently increases the cwnd more slowly, at a linear rate. If a
packet is lost, then the cwnd is reduced in half and then increased linearly until another packet is
lost after which the cwnd is reduced in half again and so on. The resulting saw-tooth pattern in

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 139

the cwnd (see Fig. 5-7) induces a corresponding variation in the rate of transmission on a flow.
TCP congestion control procedures require that sources use dynamic measurement of losses on a
path to discover how many packets per second may be transmitted on a given flow. In addition,
as we show later, these dynamic measurements allow TCP sources to adapt flow transmission
rate as path characteristics change. The main goal of TCP congestion control is to allow all flows
transiting shared paths to obtain an equal (fair) share of any available transmission capacity,
while also allowing flows to increase or decrease transmission rate to achieve full utilization of
path capacity. In particular, when flows are added to a path already supporting several flows in
equilibrium with fair transmission rates, TCP congestion control procedures aim to achieve a
new equilibrium, where all flows achieve fair (but lower) transmission rates. Similarly, when
flows are dropped from a path in equilibrium, TCP congestion control aims to achieve a new
equilibrium where all flows achieve fair (but higher) transmission rates. We define the
responsiveness of TCP congestion control procedures as the time taken to achieve a new
equilibrium by dynamically adjusting the congestion windows on flows sharing a common
network path.

Dynamic adjustment of the congestion window happens only during the transfer phase,
which includes two regimes: slow start and congestion avoidance. Slow start occurs when a
source is uncertain about the transmission rate that might be achieved on a TCP flow. For this
reason, after establishing a connection, a source begins the transfer phase using slow-start
procedures. A source also adopts slow-start procedures after a timeout. Slow-start begins by
sending data at a slow rate but then increases that rate quickly (e.g., exponentially) as ACKs
arrive from the receiver. Once a source has a better idea about an achievable transmission rate,
slow-start procedures are abandoned in favor of congestion avoidance procedures, which attempt
to increase the sending rate more slowly (e.g., linearly). Thus, congestion control procedures
during the transfer phase have three basic purposes: (1) find an achievable transfer rate on a
flow; (2) maintain the achievable transfer rate if possible; (3) attempt to increase the achievable
transfer rate. Proposals for revising TCP congestion control procedures target mainly congestion
avoidance procedures within the transfer phase.

Below, we describe the procedures used in our model for connection establishment and
slow start. Then we outline our model of standard (i.e., Reno) TCP congestion avoidance
procedures. Subsequently, in Sec. 5.2, we describe our model of congestion avoidance
procedures for each of the six alternate congestion control mechanisms that we simulate.

5.1.1 Connection Phase
Typically, establishing a TCP connection (or flow) requires a three-way handshake involving a
connection-request (SYN) segment sent from a source to a receiver, followed by a connection-
confirm (SYN+ACK) segment sent from a receiver to a source and then ending with an ACK
segment sent from a source to a receiver. Our model simulates connection establishment as a
two-way handshake – SYN followed by SYN+ACK – because TCP allows ACKs to be
piggybacked on data (DT) segments. This implies that the first DT sent from a source to receiver
during the transfer phase may also double as the final segment of connection establishment.

Of course, congestion may lead to lost SYN or SYN+ACK segments, so a source must
implement error detection and recovery procedures, which typically involve retransmitting SYN
segments. In our model, we simulate such procedures while adopting default parameters
typically used in TCP implementations within the Microsoft Windows® family of operating
systems. We take this decision because many computers connected to the Internet use the

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 140

Microsoft implementation of TCP. Fig. 5-2 illustrates schematically our connection
establishment model, showing one possible scenario leading to connection failure.

SOURCE RECEIVER

SYN

X
SYN

3 secs

X SYN+ACK
6 secs

SYN

X
12 secs

ConnectionFailure

InitiateConnection

Timeout

Timeout

Timeout

Figure 5-2. TCP Connection Establishment Procedures Leading to Connection Failure

During connection establishment a source first sends a SYN segment and waits for a

period of time (3 s in Fig. 5-2) for a SYN+ACK. If no SYN+ACK segment arrives, the source
sends a second SYN and waits for a longer period of time (6 s in Fig. 5-2). If no SYN+ACK
segment arrives, the source sends a third SYN and waits for a longer period of time (12 s in Fig.
5-2). This cycle repeats until the maximum number of SYNs (3 in Fig. 5-2) has been sent or until
a SYN+ACK segment arrives. If no SYN+ACK segment arrives after the maximum number of
SYNs is sent, then (as shown in Fig. 5-2) TCP raises a connection-failure signal. For the
parameters we adopt, connection failures occur after 21 s without receipt of a SYN+ACK after
the first SYN is sent. Arrival of a SYN+ACK segment during this timeout period (as illustrated
in Fig. 5-3) results in successful connection establishment. Fig. 5-2 and Fig. 5-3 show several
losses that can require retransmission of SYN and SYN+ACK segments.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 141

Figure 5-3. TCP Connection Establishment Procedures Leading to Initiation of the Transfer Phase

Our model of connection establishment procedures uses the variables identified and

defined in Table 5-1.

Table 5-1. Definition of Symbols Used to Model Connection Establishment Procedures

Initiation of the connection phase entails the following steps by a source.

(1)

Symbol Definition

synINT Timeout interval (sec) for initial SYN

synMAX Maximum number of SYNs to send

synSENT Number of SYNs that have been sent

synTO Timeout (sec) for current SYN

time Current time

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 142

Upon a timeout, a source implements the following procedures, which amount to an exponential
back-off in the timeout period until the maximum number of SYN segments have been sent.

(2)

If a SYN+ACK segment is received prior to connection failure, then the source initiates the
transfer phase, which is discussed next in two parts: slow start and congestion avoidance.

(3)

5.1.2 Transfer Phase – Slow Start
During the transfer phase a TCP flow establishes and adjusts a congestion window (cwnd) and
slow start threshold (sst), which requires introducing and defining some additional symbols, as
shown in Table 5-2. Our model permits two forms of slow-start: (a) standard TCP slow start or
(b) limited slow start [7]. We explain each of these in turn.

Table 5-2. Definition of Symbols Used to Model Slow-Start Procedures

5.1.2.1 Standard Slow Start. Upon entering slow start, a TCP flow adopts a small value (cwndINT)
for the congestion window (cwnd). During standard slow start, a flow then increases cwnd
exponentially as ACKs are received until reaching an initial slow-start threshold (sstINT). After
the congestion window reaches sstINT (or upon a loss) the flow enters a congestion avoidance
regime. In our model, a flow initiates slow start with the following procedures.

Symbol Definition

cwnd Current congestion window in number of packets

cwndINT Initial congestion window (we use cwndINT = 2 packets)

sst Current slow‐start threshold in number of packets

sstMAX
Threshold (in packets) to switch from exponential to
logarithmic increase (varies with experiment)

sstINT
Threshold (in packets) to terminate initial slow start (varies
with experiment)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 143

(4)

5.1.2.2 Limited Slow Start. During limited slow start, a flow increases cwnd exponentially as
ACKs are received until reaching a maximum slow-start threshold (sstMAX). After the congestion
window reaches sstMAX the flow increases cwnd logarithmically with each ACK received until
reaching sstINT. After the congestion window reaches sstINT (or upon a loss) the flow enters a
congestion avoidance regime.

Our model distinguishes standard slow start from limited slow start based on the
relationship between sstMAX and sstINT. Limited slow-start procedures are used if sstMAX < sstINT.
Otherwise, standard slow-start procedures are used. These conventions are specified through the
combination of configuration parameters for sstMAX and sstINT, initialization procedures (4) and
the following procedures upon receiving an ACK.

(5)

5.1.2.3 Setting Slow-Start Threshold. The literature indicates no widespread agreement on what
value should be chosen for sstINT. Some authors [6] recommend setting sstINT to an arbitrarily
large value, which implies that initial slow start will continue until a flow experiences its first
loss or timeout. Other authors [10] recommend setting sstINT to a small value, which means that
slow start might terminate before a flow has determined its available bandwidth, so the
maximum available bandwidth might not be achieved before the flow terminates (depending on
the number of data segments in the flow). Mark Carson (personal communication, November 12,
2008) indicated that Linux sets sstINT selectively based upon properties maintained by the device
driver for the network interface. In addition, some [4] suggest using the advertised receiver
window (rwnd) returned from a receiver to set sstINT. The rwnd indicates the number of packets
that fit in a receiver’s buffer.

Given such varying suggestions, we included sstINT as a configuration parameter of our
model. This allows sstINT to be set to large and small values, as desired. Our model does not
support setting sstINT variably based on properties of the network interface. Our model does not
simulate a receiver’s rwnd, so setting sstINT based on that value is not supported.

5.1.3 Transfer Phase – Congestion Avoidance
In our model of TCP Reno, congestion avoidance, which begins once cwnd > sst, increases the
congestion window linearly, at the rate of one packet per round-trip time. The increase accrues
fractionally as ACKs are received. When the receiver signals a loss, the congestion window is
cut in half. Upon a timeout, the slow-start threshold is set to half the congestion window and the
congestion window is set to its initial value. Below we specify the procedures used by a source to
increase cwnd on receipt of each ACK, to decrease cwnd upon each signaled loss and to decrease
cwnd and sst at each timeout. (As explained in Sec. 5.2, alternative congestion control
procedures replace the standard TCP increase and decrease procedures.)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 144

5.1.3.1 Increase Congestion Window after Acknowledgment. For each ACK received within each
round-trip time up until a loss or timeout, a TCP source increases its congestion window by a
fraction, using the following procedures.

(6)

An actual TCP implementation will use cwnd as part of a decision function to determine its send
window (swnd). The decision function is swnd = min(cwnd, rwnd). Since our model does not
simulate rwnd, a source’s swnd is always equal to its cwnd. This means the sending rate of
sources in our model will be constrained by network congestion rather than by local policies
within receivers.

5.1.3.2 Decrease Congestion Window after Signaled Loss. When a receiver signals a loss within
a given round-trip time, a TCP source reduces its cwnd by half. In real TCP implementations, a
loss is signaled by receiving three consecutive, duplicate ACKs. This convention was designed
to accommodate cases where DTs are delivered out of order by the network. Reordering DTs can
lead to duplicate ACKs even though a DT was not lost, so a TCP source defers any decision that
a DT was lost until three duplicate ACKs arrive in sequence. Modern router vendors strive to
ensure that packets are not reordered on a given flow [41-43], but some researchers [38-39, 45]
have reported cases where packets are reordered within a router. Our simulation model permits
packets to be lost, but not reordered. For this reason, our sources detect explicit losses upon
receiving a single duplicate ACK, which we model as a negative acknowledgment (NAK).

Sources in our model reduce a flow’s cwnd once in a round-trip time when a loss is
signaled by a receiver. The reduction rule follows.

(7)

The sst is reset to the cwnd so that the flow continues in congestion avoidance rather than
reentering slow start.

5.1.3.3 Decrease Slow-Start Threshold and Reset Congestion Window after Timeout. A source
encounters a timeout when no ACKs or NAKs have been received on a flow for the duration of a
retransmission timeout (RTO). The RTO for a flow is maintained to be no less than twice and no
greater than 32 times round-trip propagation delay between a source and receiver. Regardless of
congestion control mechanism, our model implements a single set of procedures for maintaining
and increasing RTO. Upon initiation of a flow’s transfer phase, RTO is set to twice the round-
trip propagation delay. Upon receipt of an ACK or NAK, a flow’s RTO is set to the maximum of
1.5 times the measured, smoothed round-trip time (SRTT) or twice the round-trip propagation
delay. With each timeout the RTO is doubled, which leads to an exponential back-off, up to the
maximum RTO.

 Occurrence of a timeout indicates a significant interruption in the path between a source
and receiver. For this reason, our model adopts a conservative strategy in responding to timeouts.
The sst is reduced using the reduction rules required by the specific congestion control

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 145

mechanism in use for the flow. In addition, the cwnd is reset to its initial value. This implies that
the flow will reenter slow start and then use rapid increase procedures until cwnd > sst.
Subsequently, the flow returns to congestion avoidance procedures. Our model for TCP Reno
uses the following timeout procedures.

(8)

5.1.3.4 Combined Effects of Slow Start and Congestion Avoidance. To appreciate the combined
effects of slow start and congestion avoidance, as implemented in our model of TCP Reno, we
consider some schematic graphs of the temporal changes of the cwnd for hypothetical flows. Fig.
5-4 depicts changes in cwnd assuming the use of standard slow start, with both sstMAX and sstINT
set to 128 packets. The cwnd increases exponentially in slow start until it reaches sstINT.
Subsequently, congestion avoidance commences and the cwnd increases linearly. Just after the
cwnd reaches 150 (time 30 s), a loss occurs and the cwnd is reduced to 75. The cwnd then
increases linearly until it reaches 100 (time 55 s). At about time 63 s the source experiences a
timeout and the cwnd is reduced to its initial value (2). At the same time sst is set to 50 (half the
value of the cwnd when the timeout occurred). As ACKs resume the cwnd increases
exponentially (in slow start) to 50 (the value of sst) after which the flow returns to congestion
avoidance and the cwnd increases linearly.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Time

C
W

N
D

exp (Slow Start)

Congestion
Avoidance

Loss

Congestion
Avoidance

Timeout

exp (Slow Start)

Congestion
Avoidance

Figure 5-4. Sample Change in Congestion Window (packets) over Time (secs) under Standard Slow Start and
Congestion Avoidance

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 146

Fig. 5-5 displays the same scenario as Fig. 5-4, with the exception that standard slow start
is replaced by limited slow start, with sstMAX = 16 and sstINT = 128. Here, the cwnd increases
exponentially until reaching 16 and then increases logarithmically until reaching 128.
Subsequently, cwnd increases linearly in congestion avoidance until a loss occurs, just after the
cwnd reaches 150 packets (about time 42 s). After the loss, the cwnd drops in half (to 75) and
then increases linearly until reaching 100. At about time 80 s the source experiences a timeout
and the cwnd is reduced to 2, while sst is reset to 50 (half the value of the cwnd when the timeout
occurred). When ACKs resume the cwnd increases exponentially to 16 and then logarithmically
to 50 (the value of sst) from which the cwnd increases linearly as the flow returns to congestion
avoidance.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Time

C
W

N
D

exp (Slow Start)

Congestion
Avoidance

Loss

Congestion
Avoidance

Timeout

exp (Slow Start)

Congestion
Avoidance

log (Slow Start)
log (Slow Start)

Figure 5-5. Sample Change in Congestion Window (packets) over Time (secs) under Limited Slow Start and
Congestion Avoidance

5.2 Congestion Avoidance Procedures for Six Alternate Congestion
Control Mechanisms
In this section, we describe congestion avoidance procedures defined by six proposed alternate
congestion control mechanisms: Binary Increase Congestion control (BIC) [61], Compound TCP
(CTCP) [58], Fast Active Queue Management (AQM) Scalable TCP (FAST) [60], High-Speed
TCP (HSTCP) [52], Hamilton TCP (H-TCP) [54] and Scalable TCP [53]. For each congestion
control mechanism, we specify increase procedures taken upon receipt of an ACK, decrease
procedures used upon explicit notification of a loss and timeout procedures. In addition, three of
the congestion control mechanisms (CTCP, FAST and H-TCP) require periodic actions, which
we also specify.

All but two (FAST and H-TCP) of the alternate congestion control mechanisms define a
threshold, such that when the congestion window is below the threshold then normal TCP
congestion avoidance procedures are used. This means that the alternate congestion avoidance
procedures will be invoked only when a flow’s congestion window surpasses the threshold.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 147

Further, whenever a congestion window passes and then falls below the threshold, normal TCP
congestion avoidance procedures will be resumed. Alternate procedures will be reactivated when
the congestion window again passes the threshold. H-TCP also uses an activation threshold, but
defined in terms of elapsed time since the most recent loss on a flow. FAST does not use a
threshold, so the alternate congestion avoidance procedures are always applied for FAST flows.
When appropriate, we specify the threshold values associated with each alternate congestion
control mechanism.

5.2.1 BIC
The congestion avoidance procedures used by BIC aim to make aggressive increases in the cwnd
when the current cwnd is far from a target and smaller increases as the current cwnd nears the
target. BIC determines the target by conducting a binary search within some range around the
current cwnd. When the target falls beyond the search range, BIC increases the cwnd additively
by a fixed increment and then reinitiates the binary search within the new range. Implementing
this behavior requires rather complex logic, so BIC procedures for congestion avoidance tend to
be somewhat elaborate. The resulting cwnd evolution for BIC reflects its complexity –
reproducing a function that appears to change in a pattern resembling a human heartbeat.

Table 5-3. Symbols and Definitions Used to Model BIC Congestion Avoidance Procedures

Symbol Definition

B Multiplicative back‐off factor for loss (BIC parameter = 0.8)

BB Parameter for computing increase in congestion window (BIC parameter B = 4)

B Candidate numerator for increase in congestion window

LWB Low‐window threshold (LWB = 14 packets) for applying BIC procedures

MINB Variable to track minimum value for computing BIC target window

MAXB Variable to track maximum value for computing BIC target window

PREVB Variable to track previous MAXB

B Parameter for computing increase in congestion window (BIC parameter = 20)

SMAXB Threshold to begin rapid increase in congestion window (BIC parameter Smax = 32)

SSB Boolean indicating whether the flow is in BIC slow start (true) or not (false)

SSTB BIC slow‐start target

SSWB BIC slow‐start congestion window

TGTB BIC target window (BIC variable w1)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 148

Specifying BIC congestion avoidance procedures requires some additional symbols, as identified
and defined in Table 5-3. Where applicable, the table denotes parameter values used within our
model. We adopt parameter values matching default values reported in the empirical study by Li,
Leith and Shorten [67] of prototype implementations for congestion control mechanisms.

A given BIC flow uses normal TCP congestion avoidance procedures or the alternate
BIC procedures, defined below, depending on the relationship between cwnd size and a low-
window parameter (LWB = 14 packets).

5.2.1.1 Increase Procedures. The window increase procedures (9) used by BIC differ depending
upon whether the current cwnd is below or beyond a previously determined maximum cwnd. As
the cwnd passes the previously determined maximum, BIC invokes slow-start procedures (these
differ from TCP slow start) that increase the cwnd until the cwnd approaches a new maximum
(set to twice the previous maximum). As the cwnd nears the new maximum, BIC slow-start
procedures are abandoned and the cwnd is increased using a binary search. Once the new
maximum is exceeded, then BIC reenters its slow-start procedures. Thus, during congestion
avoidance, BIC increase procedures alternate between BIC slow-start and binary search.

(9)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 149

with

(10)

During the BIC binary search, the cwnd is increased more quickly when further from the
current midpoint and less quickly as it nears the midpoint. The rules controlling the increase
pattern are encoded within a function (10).

5.2.1.2 Decrease Procedures. Upon notification of a loss (11), BIC sets the maximum cwnd for
the binary search to the current cwnd and then multiplicatively decreases the congestion window.
If the loss followed closely behind a previous loss, then BIC also multiplicatively decreases the
maximum cwnd used for the binary search. In addition, BIC abandons its slow-start procedures
to ensure a new binary search commences within the reduced range.

(11)

5.2.1.3 Timeout Procedures. For BIC timeout procedures (12) we adopt logic similar to that used
for a loss, except that the sst is set to half the cwnd and the cwnd is set to its initial value
(cwndINT). This ensures that standard (or limited) slow-start is used until the flow’s cwnd reaches
the new sst. After that, BIC congestion avoidance procedures resume.

(12)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 150

5.2.2 CTCP
Compound TCP, or CTCP, augments the congestion window with a second component, called
the delay window (dwnd). (See Table 5-4 for a complete listing of symbols and parameter
settings used to specify CTCP behavior.) The dwnd is added to the cwnd to establish the actual
send window used for CTCP flows. CTCP defines rules for increasing dwnd aggressively when a
flow is underutilizing the available transmission rate and also defines rules for reducing dwnd as
a flow’s transmission rate nears the available bandwidth. Upon detection of congestion, either
through explicit losses or timeouts, CTCP reduces the delay window toward zero.

Table 5-4. Symbols and Definitions Used to Model CTCP Congestion Avoidance Procedures

CTCP procedures update the dwnd periodically, typically once per round-trip time. As a

flow’s transmission rate nears equilibrium around some estimated available bandwidth, CTCP
tends to cause the send window to oscillate by exponentially increasing the dwnd when the
estimated number of packets queued for a flow falls below a threshold (C = 30) and then linearly
decreasing dwnd when the estimated number of queued packets exceeds the threshold. On the
other hand, when the transmission rate is increasing on a flow, CTCP exponentially increases the
dwnd without exerting a countervailing linear decrease. Consequently, the CTCP send window
can reach a large size relatively quickly when a transmission path exhibits no congestion.

Symbol Definition

C Window increase (C = 0.125) weight for CTCP

AC Actual throughput (cwnd/SRTTC) experienced on CTCP flow

C Window decrease (C = 0.5) weight for CTCP

CDC Boolean denoting whether early congestion has been detected (true) or not (false)

C CTCP gamma threshold (C = 30) for detecting early congestion

DC Difference between expected and actual throughput experienced on CTCP flow

dwnd CTCP delay window

EC Expected throughput (cwnd/minRTTC) on CTCP flow

C CTCP zeta parameter (C = 0.1) defining reduction speed in delay window

kC Exponent (kC = 0.8) for CTCP window‐increase procedures

LWC Low‐window threshold (LWC = 41) for applying CTCP procedures

minRTTC Minimum round‐trip time experienced on CTCP flow

SRTTC Average Smoothed Round‐Trip Time experienced on CTCP flow

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 151

As shown below (13), CTCP uses normal TCP congestion avoidance procedures for
adjusting the cwnd whenever the cwnd is below a threshold (LWC = 41 packets). This means that
the dwnd is used only when the cwnd is sufficiently large.

(13)

5.2.2.1 Increase Procedures. CTCP increases (14) the cwnd fractionally with each ACK received
in a round-trip time without a loss. The increased cwnd is then added to the current dwnd. As
with other congestion avoidance procedures, CTCP suspends increases after a loss in a round-trip
time until an ACK arrives associated with a subsequent round-trip. The increase procedures
adopted by CTCP consider both the cwnd and the dwnd, as follows.

(14)

5.2.2.2 Decrease Procedures. Upon a loss, CTCP decreases the cwnd by half and then notes that
congestion was detected. As with other congestion avoidance procedures, the sst is reset to the
cwnd in order to ensure the flow remains in congestion avoidance. During the next periodic
update cycle, CTCP will act on the loss notification by reducing the dwnd. Equation (15)
specifies the precise decrease procedures used by CTCP upon an explicit loss.

(15)

5.2.2.3 Timeout Procedures. Given a timeout, CTCP adopts the same procedures used by TCP
and then augments those procedures by resetting dwnd to zero and noting that congestion was
detected. The precise procedures follow.

(16)

5.2.2.4 Periodic Procedures. The remaining CTCP procedures are used periodically, every
round-trip time, to update the dwnd. The update procedures (17) depend upon a number of
parameters. We adopt the recommended settings for those parameters, as shown in Table 5-4.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 152

(17)

5.2.3 FAST
FAST TCP adopts a fundamentally different approach from the other congestion control
mechanisms considered in this study. First, FAST aims to achieve an equilibrium cwnd that does
not change during the life of a flow, while other congestion control mechanisms lead to an
oscillating cwnd. Second, FAST updates the cwnd based mainly on measured changes in queuing
delay, using loss signals only when congestion prevents reaching a lossless equilibrium. Third,
FAST does not resort to standard TCP congestion avoidance procedures; instead, FAST uses its
own procedures at all times during congestion avoidance. FAST adopts these approaches based
on the idea that queuing delay can be measured quite frequently and thus accurately, while
packet losses are rare events that provide insufficient information to estimate loss probability on
a given flow.

Explaining FAST congestion avoidance procedures requires numerous parameters and
variables, listed and defined in Table 5-5. In addition to procedures associated with cwnd
increase on ACKs and decrease on losses and timeouts, FAST requires a periodic procedure to
determine a target cwnd (TcwndF). FAST also defines optional, periodic procedures for tuning a
parameter (F), which determines how many packets a flow attempts to keep queued between a
source and receiver. These optional, -tuning procedures require two periodic processes: one to
estimate flow throughput and one to adjust F based on changes in flow throughput.

5.2.3.1 Increase Procedures. FAST uses periodic procedures (explained below in Sec. 5.2.3.4) to
determine a target congestion window (TcwndF) and then increases or decreases cwnd as needed
to reach TcwndF. FAST does not move cwnd to TcwndF in one step, but instead paces the rate of
increase to reflect that expected number of ACKs arriving on a given flow within each round-trip
time. Our model uses the following procedures (18) for adjusting cwnd with each arriving ACK.

(18)

5.2.3.2 Decrease Procedures. Upon an explicit loss for FAST, we reduce (19) cwnd by half and
assign the reduced value to both the TcwndF and the sst. These actions provide a new, lower

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 153

basis from which FAST can begin increasing the cwnd and also ensure that the flow remains in
congestion avoidance.

(19)

Table 5-5. Symbols and Definitions Used to Model FAST Congestion Avoidance Procedures

Symbol Definition

acksRTTF Count of ACKs received on FAST flow during the most recent SRTTF

F Current parameter

ADF Default parameter setting (ADF = 200) when ‐tuning disabled

ATF Boolean indicating whether ‐tuning is enabled (true) or disabled (false)

A1F First parameter setting (A1F = 8 packets)

A2F Second parameter setting (A2F = 20 packets)

A3F Third parameter setting (A3F = 200 packets)

BkF Current average throughput on FAST flow

F Weight (F = 0.5) of recent information when updating TcwndF

minRTTF Minimum round‐trip time experienced on FAST flow

M0M1F Set = A2F when = A1F and throughput passes M0M1F (= 1500 ppms)

M1M0F Set = A1F when = A2F and throughput passes M1M0F (= 1250 ppms)

M1M2F Set = A3F when = A2F and throughput passes M1M2F (= 15,000 ppms)

M2M1F Set = A2F when = A3F and throughput passes M2M1F (= 12,500 ppms)

SRTTF Average Smoothed Round‐Trip Time experienced on FAST flow

TF Weight (TF = 0.5) to assign to most recent throughput sample when computing BkF

TcwndF Current target congestion window

UAF Periodicity (UAH = 200 s) for updating parameter when ‐tuning enabled

UWF Periodicity (UWH = 20 ms) for updating TcwndF

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 154

5.2.3.3 Timeout Procedures. For a FAST timeout, we adopt procedures (20) analogous to those
used with other congestion control mechanisms. We set the sst to half the cwnd and then set
cwnd and TcwndF to the initial congestion window (cwndINT) and recommence slow start.

(20)

5.2.3.4 Periodic Procedures. FAST defines one mandatory periodic process (21) to update the
target congestion window (TcwndF) for the flow every UWF (= 20 ms, here). A parameter (F)
determines how much weight is placed on the previous cwnd and how much weight is given to
recent information. FAST procedures prevent the new target cwnd from being more than twice
the current cwnd.

(21)

The F parameter may be fixed or tuned. If -tuning is enabled, the following procedures (22) are
executed every UAF (= 200 s, here).

(22)

The various parameters associated with -tuning are defined in Table 5-5. Estimated flow
throughput (BkF) is a variable used in the -tuning procedures. To estimate BkF, the following
procedures (23) are used each round-trip time.

(23)

5.2.4 HSTCP
High Speed TCP (HSTCP) modifies standard TCP congestion control procedures in order to
achieve high transmission rates (e.g., 10 Gbps) when network conditions permit, while
maintaining comparable performance to standard TCP when a network path exhibits moderate to
heavy congestion. HSTCP retains the fundamental additive-increase and multiplicative-decrease
(AIMD) strategy adopted by standard TCP, but HSTCP alters the AIMD parameters to become a
function of congestion window size. The altered AIMD functions result in more aggressive
increases and less aggressive decreases at larger window sizes. Below a low-window threshold
(LWHS) HSTCP adopts standard TCP congestion-avoidance procedures.

(24)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 155

Table 5-6 identifies and defines symbols used below when explaining HSTCP congestion-
avoidance procedures.

Table 5-6. Symbols and Definitions Used to Model HSTCP Congestion Avoidance Procedures

5.2.4.1 Increase Procedures. HSTCP increases the cwnd additively upon receiving each ACK in
a round-trip time until a loss is detected. The increase procedures (25) appear quite similar to
standard TCP increase procedures, except that the numerator for the increase is a function of
cwnd size.

(25)

Function f (c), defined below (26), returns the increase numerator that will yield the desired
packet drop rate for a given window c. Function f (c) uses a subsidiary function, g (c), defined
below (27). Function g (c) is also used to determine the multiplicative-decrease parameter
applied on losses and timeouts.

(26)

(27)

5.2.4.2 Decrease Procedures. Upon detecting an explicit loss, HSTCP reduces the cwnd by a
multiplicative factor that is a function of the cwnd. The specific procedures, which use function
g (c), are given below.

(28)

5.2.4.3 Timeout Procedures. For a timeout (29), HSTCP sets sst to the reduced cwnd and then
resets the cwnd to its initial value. This enables slow-start procedures up to the new sst, after
which congestion avoidance resumes.

Symbol Definition

HWHS High‐window threshold (HWHS = 83,000) for HSTCP procedures

LWHS Low‐window threshold (LWHS = 31) for applying HSTCP procedures

RHS Decrease congestion window by this percentage (RHS = 0.1) after loss above LWHS

0.5

0.5

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 156

(29)

5.2.5 H-TCP
H-TCP differs from other congestion avoidance procedures in two main aspects. First, H-TCP
determines the numerator of the cwnd increase as a function of elapsed time since the most
recent packet loss. The increase is scaled by the round-trip time experienced on a path in order to
compensate for differences in feedback delay. The motive is to give larger increases in cwnd
during periods of low network congestion, so a flow could reach higher transmission rates more
quickly on uncongested, high-bandwidth, long-delay paths. H-TCP adopts standard TCP increase
procedures for a specified time after each loss. Second, H-TCP implements an adaptive back-off
procedure to determine the multiplicative decrease in cwnd after a loss. The back-off factor is
varied based on estimating the queuing delay on a path. The motive is to prevent senders from
backing off too much after packet losses. H-TCP adopts standard TCP decrease procedures when
flow throughput has changed by more than a specified amount since the most recent loss. To
monitor changes in flow throughput, H-TCP requires a periodic process to measure average
throughput. Table 5-7 identifies and defines parameters and variables used below to explain H-
TCP congestion avoidance procedures.

Table 5-7. Symbols and Definitions Used to Model H-TCP Congestion Avoidance Procedures
Symbol Definition

acksRTTH Count of ACKs received on H‐TCP flow during the most recent UH

H Most recent computed percentage (initially H = 0.5) cwnd residual on a loss

Bk1H Average throughput on H‐TCP flow at time of most recent loss

BkH Current average throughput on H‐TCP flow

H Time elapsed since the most recent loss

BH Percentage throughput increase (BH = 0.2) for selecting

LH Use normal TCP procedures until H > LH, where LH = 1 s

GH Maximum percentage (GH = 0.8) cwnd reduction on a loss

maxRTTH Maximum round‐trip time experienced on H‐TCP flow

minRTTH Minimum round‐trip time experienced on H‐TCP flow

TH Weight (TH = 0.5) to assign to most recent throughput sample when computing BkH

UH Periodicity (UH = 250 ms) for updating throughput estimate for H‐TCP flow

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 157

5.2.5.1 Increase Procedures. For each ACK received without a loss in a round-trip time, H-TCP
increases cwnd by a fraction of the cwnd. The numerator of the increase fraction is a function
(30) of the most recently computed multiplicative-decrease parameter (H) and the elapsed time
(H) since the most recent loss.

(30)

Function f (H) returns (31) one if standard TCP increase procedures are in effect; otherwise it
returns a value exhibiting a quadratic increase with increasing H. The quadratic increase (32) is
scaled by the minimum round-trip time measured on the flow.

(31)

(32)

5.2.5.2 Decrease Procedures. Upon an explicit loss, H-TCP reduces (33) the cwnd by a fraction,
computed as a function (34) of changing throughput. In addition, H-TCP records the average
flow throughput at the time of the loss.

(33)

Given default parameters, the H-TCP algorithm varies the back-off fraction between 0.5 and 0.8.
The lower value (larger reduction) is adopted whenever measured throughput (BkH) has changed
by a significant percentage (BH) since the most recent loss, which suggests that the flow is
undergoing some disturbance or transition. Less significant change in throughput indicates that
the flow is nearer to stability. Stable flows are reduced by a fraction reflecting the estimated
queuing delay as a proportion of estimated propagation delay. The residual cwnd is capped by
parameter GH (= 0.8).

(34)

5.2.5.3 Timeout Procedures. For a timeout, we adopt procedures (35) that mirror the rules H-
TCP uses for an explicit loss with significant change in flow throughput. This amounts to
reducing the sst to half the cwnd, recording the flow’s average throughput and setting H = 0.5.
We also reset the cwnd to its initial value, which reinitiates slow start.

(35)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 158

5.2.5.4 Periodic Procedures. To support recording and monitoring of flow throughput, H-TCP
requires a periodic process (36) to estimate average throughput. In our model, estimated
throughput is updated every UH (= 250 ms, here).

(36)

5.2.6 SCALABLE TCP
Scalable TCP adopts a simple, fixed-increase rule aimed at allowing a flow to increase its
congestion window more quickly than would be the case with standard TCP. In addition,
Scalable TCP defines a decrease rule that limits a flow to a fixed multiplicative decrease that is
recommended to be much less than the 50% decrease used by standard TCP. The Scalable TCP
rules are defined in an additive-increase, multiplicative-decrease (AIMD) form, but the rules
actually amount to a multiplicative-increase, multiplicative-decrease (MIMD) regime.
Researchers have found [1] that MIMD algorithms are not guaranteed to converge to fair
bandwidth sharing in drop-tail networks, such as the Internet. Empirical measurements by Li,
Leith and Shorten [67] have also shown that failure to converge is a property of Scalable TCP.
Below, we describe Scalable TCP procedures for increase on ACK, decrease on explicit loss and
decrease on timeout. Our description uses the symbols and definitions shown in Table 5-8.

 Table 5-8. Symbols and Definitions Used to Model Scalable TCP Congestion Avoidance Procedures

Scalable TCP includes (37) a low-window threshold (LWS) that ensures standard TCP

procedures for congestion avoidance are followed when the cwnd is small. Scalable TCP
congestion avoidance procedures are used only when the cwnd is above the threshold.

(37)

5.2.6.1 Increase Procedures. Upon receiving each ACK within a round-trip time without a
congestion signal Scalable TCP increases (38) the cwnd by a fixed value S (= 0.01).

(38)

Symbol Definition

S Increase (S = 0.01) applied by Scalable TCP on each ACK

S Percentage residual cwnd (S = 0.875) applied by Scalable TCP on each loss

LWS Low‐window threshold (LWS = 16 packets) for applying Scalable TCP procedures

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 159

5.2.6.2 Decrease Procedures. Upon receiving an explicit loss notification, Scalable TCP reduces
(39) the cwnd by a fixed percentage. Here, the reduction amounts to (1 - S =) 0.125. We also set
sst to the new, lower cwnd to ensure the flow remains in congestion avoidance.

(39)

5.2.6.3 Timeout Procedures. For a timeout we define procedures (40) that require Scalable TCP
to set the sst to the reduced cwnd and then reset the cwnd to its initial value. This means that, like
the other congestion control mechanisms we model, Scalable TCP will reenter slow start until
the cwnd passes the sst and then return to congestion avoidance.

(40)

5.3 Modeling the Transfer Phase in MesoNet

The section explains the key ideas underlying our model for the transfer phase of a flow. We
begin by explaining how our model simulates data transfer procedures in general and then
concentrate separately on slow start and congestion avoidance. Previously in Sec. 5.2, we
explained the detailed slow-start and congestion avoidance procedures for individual congestion
control mechanisms. Here, we focus on the common approach used by MesoNet to model the
transfer phase across all congestion control mechanisms.

5.3.1 General Data Transfer Procedures
We adopt a simplified model of data transfer procedures in order to simulate fundamental aspects
of congestion control without incurring the detailed complexity of TCP implementations. A
simplified model permits simulating reasonably large, fast networks for suitable time durations
on standard computing hardware without incurring excessive costs in processing time and
memory use. Our simplified model retains key properties that enable us to compare and contrast
various congestion control mechanisms under a wide range of network conditions.

During the data transfer phase for each flow, a simulated source transfers a randomly
selected number (flowDTs) of DT segments. Each DT segment is assigned a sequence number;
the first segment is number one and the sequence number increases by one for each subsequent
segment. A flow’s receiver, then, expects to receive DT segments in sequence, where each
segment has a sequence number one greater than the most recently received segment. When the
sequence number is as expected, the receiver sends an ACK back to the source. When the
sequence number is higher than expected, the receiver sends a NAK back to the source. The
ACK or NAK is numbered with the next expected sequence number. This simplification, which
ignores the possibility for reordered segments, is feasible because MesoNet allows packets to be
discarded but does not permit packet reordering. Absent reordering, our model of data transfer
procedures may omit features such as duplicate ACKs and selective ACKs.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 160

A source in our model expects to receive a stream of ACKs and NAKs from a flow’s
receiver. Since a receiver sends an ACK or NAK only upon receiving a DT segment, a source
can simply count each received ACK and NAK as evidence that one DT segment has been
delivered successfully to the receiver. When the source has received one ACK or NAK for each
segment comprising the flow, then the data transfer is finished and the source can terminate the
flow. Of course, each NAK received by a source also causes the number of DT segments sent on
the flow to increase by one (a retransmission) because the NAK indicates that one DT segment
was lost and, thus, was not counted as successfully delivered. Receiving a NAK also stimulates a
source to take remedial action. In our model, receipt of a NAK activates a source’s loss
procedures on a flow.

ACK and NAK segments may also be lost on a flow. This means that each lost ACK or
NAK will not be counted by the source. For this reason, each lost ACK and NAK will also
increase by one (a retransmission) the number of DT segments that must be sent by the source in
order to receive a sufficient number of ACKs and NAKs. Further, if no ACKs or NAKs are
received by a source for a retransmission timeout (RTO) period, then a source must also take
remedial action. In our model, expiration of a RTO activates a source’s timeout procedures on a
flow.

Whenever a NAK is received or a timeout occurs, a source notes the next sequence
number that it intends to send on the flow. This enables the source to ignore window increase
and decrease procedures for all subsequent ACKs and NAKs that arrive with lower sequence
numbers. This technique ensures that window increase procedures are abandoned in a round-trip
time after a loss or timeout. The technique also ensures that window decrease procedures are
activated only once within a round-trip time.

The remaining elements of our general data transfer model concern controlling the ability
of a source to transmit a DT. A source maintains a flow cwnd using the procedures described
earlier (Sec. 5.2). A source also knows the sequence number (nextSeq) for the next DT segment
it intends to send and the highest sequence number (highSeq) received in an ACK or NAK. With
this information, a source can compute (41) the number of unacknowledged DT segments
(unAckedDTs) and thus the number of DT segments it is permitted to send (unsentDTs).

(41)

Equation 41 reveals the self-clocking nature of TCP flows. Two conditions enable a source to
send a DT segment: arrival of an ACK or NAK or increase in the congestion window. In our
model, a timeout causes highSeq to be set to nextSeq, which means that unsentDTs will equal
cwnd. Recall that we also reset cwnd to its initial value upon a timeout.

 One last detail must be explained. The procedures in equation 41 can cause extra DTs to
be sent at the end of a flow. To prevent this, our model computes (42) the difference
(residualDTs) between the number of DTs (flowDTs) comprising a flow and unacknowledged
DTs (unAckedDTs). The number of DTs that can be sent (unsentDTs) is then set to the minimum
of the segments allowed by the congestion window or the segments required to complete the
flow.

 (42)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 161

Data transfer procedures are distributed across elements of MesoNet. Sources manage
sending of DT segments and also react to flow timeouts. Access routers process incoming ACKs
and NAKs on behalf of sources and also process incoming DTs on behalf of receivers. When
processing incoming ACKs and NAKs an access router updates the cwnd as required by the
congestion control mechanism in use on the related flow. When processing incoming DTs an
access router determines whether a receiver needs to send an ACK or NAK and then queues that
assignment for the receiver.

5.3.2 Slow Start
Slow-start procedures are invoked within a simulated access router upon receipt of an ACK
whenever the cwnd is below the sst. If the cwnd is below sstMAX, then standard slow-start
procedures are used to increase the cwnd at an exponential rate; otherwise, limited slow-start
procedures are used to increase the cwnd at a logarithmic pace.

5.3.3 Congestion Avoidance
Congestion avoidance procedures are invoked within a simulated access router upon receipt of
any qualified NAK, and for qualified ACKs where the cwnd equals or exceeds the sst. Selected
congestion control mechanisms also require periodic procedures, which our model implements
within simulated access routers. We implement timeout procedures within simulated sources.

5.3.3.1 Acknowledgement Procedures. MesoNet assigns one congestion control mechanism to
each simulated source, which represents a computer attached to the network and running a
particular version of TCP. This means that the particular congestion control mechanism in
operation on a simulated flow will be determined by the congestion control mechanism used by
the flow’s source. Upon receipt of a qualified ACK a simulated access router selects the
appropriate window increase procedures for the flow as a function of the congestion control
mechanism (tcpType) used by the simulated source. Qualified ACKs include all ACKs received
within a round-trip time prior to a congestion signal.

5.3.3.2 Negative Acknowledgement Procedures. Upon receipt of a qualified NAK a simulated
access router selects the appropriate window decrease procedures for the flow as a function of
the tcpType used by the simulated source. Qualified NAKs include the first NAK received within
any given round-trip time for a flow.

5.3.3.3 Periodic Procedures. In general, MesoNet activates periodic procedures only after a flow
passes initial slow start. Periodic procedures that estimate throughput are always active during a
flow’s transfer phase. MesoNet implements periodic procedures in a somewhat approximate
form. Specifically, periodic procedures are invoked within a simulated access router only when
an ACK or NAK has been received and provided that sufficient time has elapsed. Further, the
timer is reset only after invoking the related procedures. Thus, MesoNet does not invoke periodic
procedures on a precisely rigid schedule, as might be stimulated by a timer. Periodic procedures
can be invoked regardless of whether an ACK or NAK is qualified to stimulate increase or
decrease procedures for a flow.

5.3.3.4 Timeout Procedures. MesoNet invokes timeout procedures within a simulated source
when a flow’s RTO expires. A source’s RTO is reset within a simulated access router whenever

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 162

any ACK or NAK arrives for the source. Upon expiration of the RTO, a source selects the
appropriate timeout procedures for the flow as a function of the source’s tcpType.

5.4 Verifying Simulated Congestion Control Mechanisms
To verify the behavior of congestion control mechanisms simulated within MesoNet, we defined
a test configuration similar to that used in the Li, Leith and Shorten study [67] of congestion
control mechanisms implemented in Linux. We also adopted parameters used in that study and
then simulated similar scenarios and recorded temporal changes in the congestion window.
Below, we give our simulated cwnd graphs and compare the behavior of our simulated
congestion control mechanisms to findings reported by Li, Leith and Shorten. First, we describe
the test configuration adopted to produce the reported cwnd graphs.

We defined a dumbbell topology, shown in Fig. 5-6, similar to the dumbbell topology
used by Li, Leith and Shorten. The topology in Fig. 5-6 is annotated with key parameter values
used to generate the results presented below. The topology consists of two sources that attach to
the same access router. Each source can transmit DTs to one of a pair of receivers that attach to
the second access router in the topology. Li, Leith and Shorten place a dummynet router between
the sources and receivers and use that router to control propagation delay, bottleneck speed and
buffer provisioning on the network path between the sources and receivers. Our simulations use
MesoNet facilities to control path characteristics.

Access
Router

#1

Access
Router

#2

Backbone
Router

#1

Backbone
Router

#2

Source #1 Source #2 Receiver #1 Receiver #2

Speed = 21 p/ms/direction
Buffers = 20% x Bandwidth x Delay

Speed = 82 p/ms

Speed = 21 p/ms/direction
Buffers = 20% x Bandwidth x Delay

Speed = 80 p/ms

Speed = 82 p/ms

Speed = 80 p/ms Speed = 80 p/ms Speed = 80 p/ms

One-way Propagation Delay

Short = 21 ms
Medium = 81 ms
Long = 162 ms

Figure 5-6. Simulated Dumbbell Topology for MesoNet Verification Experiments

Access Router #1, highlighted in red in Fig. 5-6, simulates the bottleneck bandwidth for

the path. Here, the bottleneck speed is set to 21 p/ms (packets/millisecond), which amounts to 21
p/ms x 1000 ms/sec x 12000 bits/packet = 252 million bits per second (Mbps), assuming 1500-
byte packets. This approximates a 250 Mbps bottleneck link used in the empirical study. Note
that the sources, receivers and backbone routers are configured with speeds exceeding the

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 163

bottleneck access routers. The sources and receivers are capable of transmitting at 960 Mbps,
which is close to 1 billion bits per second (Gbps). Similarly the backbone routers can transmit at
984 Mbps.

The propagation delay of the network path in Fig. 5-6 is controlled by the one-way
propagation delay of the backbone link. Round-trip propagation delay will be twice the one-way
propagation delay. For our simulations with the dumbbell topology we used three different one-
way delays (21 ms, 81 ms and 162 ms) to match the short (42 ms), medium (162 ms) and long
(324 ms) round-trip propagation delays used by Li, Leith and Shorten.

We configured MesoNet to provision buffers for each router sufficient to accommodate
the bandwidth-delay product. MesoNet also includes a parameter that can adjust the number of
provisioned buffers. Here, we reduce the buffers to be 20 % of the number required by the
bandwidth-delay product. This matches the buffer provisioning used for several scenarios
reported in the study by Li, Leith and Shorten.

Given the topology and parameters from Fig. 5-6, we simulated congestion control
mechanisms under a scenario lasting 1000 s, where one source begins sending data immediately
and the second source delays (250 s) and then starts to send data. For each congestion control
mechanism we use limited slow-start, with sstMAX = 100 and sstINT = 232/2.We repeat the scenario
three times for each congestion control mechanism, varying the round-trip propagation delay
(rtt) from short, to medium, to long with each repetition. We record and graph (on the y axis) the
time-varying cwnd (in packets) for each scenario. The maximum value (in packets) of the y axis
on each graph scales with rtt: 1200 at 42 ms, 4500 for 162 ms and 9000 for 324 ms. The x axis in
all graphs is denominated in 100 ms units. All graphs also include the average overall cwnd
when one flow is transmitting and when both flows are transmitting. When both flows are
transmitting, each graph also displays the average cwnd for each flow.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 798 avg. cwnd = 804

avg. red cwnd = 409

avg. blue cwnd = 395

Figure 5-7. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 42 ms)

5.4.1 Standard TCP Congestion Control Model
Fig. 5-7 graphs cwnd evolution for standard TCP congestion control under a short propagation
delay. The graph shows the expected behavior of the TCP cwnd, which (after initial slow start

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 164

ends with a loss just after the cwnd passes 1100) oscillates in a saw-tooth pattern between a cwnd
of 550 and 1050 (average about 800). The bandwidth-delay product is (42 ms x 21p/ms =) 882
packets, so an average cwnd of 800 seems appropriate. After the second flow begins (at time 250
s) it takes between 50 and 100 s for the cwnd of the two flows to converge to a similar value
(average around 400 packets). Convergence to a similar cwnd means the two flows will receive
fairly equal average throughputs. This property of convergence to fairness is a hallmark trait of
TCP congestion control.

The next scenario, displayed in Fig. 5-8, begins to show why many researchers believe
standard TCP congestion control procedures are ill-suited to high-speed, long-delay
environments. Here, the 162 ms round-trip propagation delay (rtt) suggests a cwnd of (162 ms x
21p/ms =) 3402 packets. The first flow reaches (and then exceeds) that value during slow start,
which ends with a loss (at cwnd = 4200) early in the flow. After the loss, TCP reduces the cwnd
in half (to 2100) and then TCP enters its congestion avoidance regime. Increasing the cwnd with
standard TCP congestion avoidance procedures requires about 150 s for the flow to reach its
peak window. Thus, absent other activities, the single flow would oscillate in throughput over
periods of about 150 s.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3042

avg. red cwnd = 1844

avg. blue cwnd = 1198

Figure 5-8. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 162 ms)

Once the second flow commences, the cwnd of the two flows begin to converge;

however, the lengthy propagation delay slows the increase in cwnd and the rate of convergence.
In fact, the two flows in Fig. 5-8 have not fully converged even after 750 s. The situation
becomes worse when rtt becomes even longer, as shown in Fig. 5-9. Further, increasing the
network speed would increase the bandwidth-delay product and worsen the delay in recovering
from packet losses and converging to fair throughputs.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 165

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 4325 avg. cwnd = 6085

avg. red cwnd = 3409

avg. blue cwnd = 2676

Figure 5-9. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 324 ms)

5.4.2 Behavior of BIC Congestion Control Model
Next, we subject BIC congestion control to the same three scenarios under which we simulated
standard TCP. The resulting cwnd evolutions are shown in Figs. 5-10 through 5-12. The graphs
display the heartbeat-like pattern of BIC cwnd evolution, as seen in the empirical study by Li,
Leith and Shorten. Note that BIC congestion avoidance shows small improvement in
convergence time for scenarios with short and medium propagation delays. At the long
propagation delay, BIC exhibits significantly less fairness in bandwidth allocation than standard
TCP. These findings are consistent with findings by Li, Leith and Shorten.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 960 avg. cwnd = 962

avg. red cwnd = 500

avg. blue cwnd = 462

Figure 5-10. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 42 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 166

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3607 avg. cwnd = 3747

avg. red cwnd = 2243

avg. blue cwnd = 1504

Figure 5-11. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 162 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6649 avg. cwnd = 7657

avg. red cwnd = 5929
avg. blue cwnd = 1728

Figure 5-12. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 324 ms)

5.4.3 Behavior of CTCP Congestion Control Model
The empirical study by Li, Leith and Shorten did not include CTCP, so in verifying the behavior
of CTCP we must compare our simulations to results from a later empirical study by Leith,
Andrew, Quetchenbach, Shorten and Lavi [66]. Unfortunately, the later study did not use the
same parameters and scenarios used by Li, Leith and Shorten. For that reason, comparing our
CTCP simulation results to empirical results is not quite as direct as for the other congestion
control mechanisms. We can compare the pattern of cwnd evolutions between the simulations

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 167

and the empirical results of Leith, Andrew, Quetchenbach, Shorten and Lavi and we can
compare their CTCP-related findings with the findings from our simulation.

Figs. 5-13 through 5-15 show cwnd evolution for CTCP under our scenario with short,
medium and long rtt. CTCP exhibits a distinctive pattern of cwnd evolution, which becomes
evident once the second flow starts in Fig. 5-13 and 5-14. This pattern is also evident in one of
the CTCP cwnd graphs shown by Leith, Andrew, Quetchenbach, Shorten and Lavi. They also
report that the time taken by CTCP to recover from a loss, as well as the convergence time when
a second flow begins, is similar to standard TCP. Further, they find that convergence time scales
linearly with bandwidth-delay product. The MesoNet simulation of CTCP exhibits the same
properties, as shown in the cwnd graphs below.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 798 avg. cwnd = 836

avg. red cwnd = 419
avg. blue cwnd = 417

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 798 avg. cwnd = 836

avg. red cwnd = 419
avg. blue cwnd = 417

Figure 5-13. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 42 ms)

Leith, Andrew, Quetchenbach, Shorten and Lavi report that CTCP exhibits similar rtt

fairness to TCP Reno, but when buffers are smaller CTCP has slightly better rtt fairness.
MesoNet simulations also show a similar fairness between CTCP and standard TCP, but CTCP
had a slight edge in rtt fairness for the case of medium propagation delay (rtt = 162 ms). Leith,
Andrew, Quetchenbach, Shorten and Lavi find that link utilizations can be low and
responsiveness can be sluggish for CTCP. The potential sluggishness of CTCP responsiveness is
also evident in Figs. 5-14 and 5-15. In Sec. 5.4.8, we report more about fairness, as well as link
and buffer utilization, among all congestion control mechanisms that we simulated.

5.4.4 Behavior of FAST Congestion Control Model
The FAST congestion control algorithm includes –tuning as an option, which complicates the
verification of the FAST simulation within MesoNet. Li, Leith and Shorten [67] report results for
FAST with –tuning enabled. The designers of FAST indicate [60] that –tuning is no longer
used routinely within FAST implementations. Instead, the designers suggest fixing F to a value
suitable for expected network conditions. Of course, the designers recognize that fixing F is not

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 168

a general solution and list –tuning as an open issue. In some empirical studies, the designers of
FAST set F = 200. We report simulation results for FAST under three different configurations:
–tuning enabled (Figs. 5-16 through 5-18), F = 80 (Figs. 5-19 through 5-21) and F = 200 (Figs.

5-22 through 5-24).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3406

avg. red cwnd = 1853
avg. blue cwnd = 1553

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3406

avg. red cwnd = 1853
avg. blue cwnd = 1553

Figure 5-14. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 162 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 4325 avg. cwnd = 6254

avg. red cwnd = 3422
avg. blue cwnd = 2832

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 4325 avg. cwnd = 6254

avg. red cwnd = 3422
avg. blue cwnd = 2832

Figure 5-15. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 324 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 169

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 725

avg. red cwnd = 295
avg. blue cwnd = 430

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 725

avg. red cwnd = 295
avg. blue cwnd = 430

Figure 5-16. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (–tuning enabled, rtt = 42
ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3703

avg. red cwnd = 1164
avg. blue cwnd = 2539

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3703

avg. red cwnd = 1164
avg. blue cwnd = 2539

Figure 5-17. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (–tuning enabled, rtt = 162
ms)

Li, Leith and Shorten report two main findings regarding FAST with –tuning enabled.

First, FAST can converge to fair bandwidth allocation and then diverge to unfair allocation. The
MesoNet simulation shows this trait in Figs. 5-16 to 5-18. Second, when the network path has
insufficient buffers to sustain F/2 queued packets per flow, then cwnd oscillates as FAST floods
the buffers with too many packets, leading to substantial packet losses. The FAST designers

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 170

report this same tendency to oscillate when buffers are insufficient. The MesoNet simulation
shows this oscillatory behavior in Fig. 5-16, for each flow prior to reaching equilibrium, which
becomes possible once –tuning reduces F from its initial value (200) to 20. Fig. 5-22 also
shows this oscillatory behavior for F = 200, which prevents either flow from ever achieving
equilibrium.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6204 avg. cwnd = 7095

avg. red cwnd = 2306
avg. blue cwnd = 4789

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6204 avg. cwnd = 7095

avg. red cwnd = 2306
avg. blue cwnd = 4789

Figure 5-18. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (–tuning enabled, rtt = 324
ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 895 avg. cwnd = 1041

avg. red cwnd = 556
avg. blue cwnd = 485

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 895 avg. cwnd = 1041

avg. red cwnd = 556
avg. blue cwnd = 485

Figure 5-19. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 80, rtt = 42 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 171

Li, Leith and Shorten also report that FAST has the fastest convergence time among the

congestion control mechanisms compared. Of course, they note the issue of divergence must be
taken into account. For all MesoNet simulations where FAST converges to equilibrium the
convergence time is very fast.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3156 avg. cwnd = 3547

avg. red cwnd = 1767
avg. blue cwnd = 1780

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3156 avg. cwnd = 3547

avg. red cwnd = 1767
avg. blue cwnd = 1780

Figure 5-20. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 80, rtt = 162 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 5413 avg. cwnd = 6915

avg. red cwnd = 3483
avg. blue cwnd = 3432

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 5413 avg. cwnd = 6915

avg. red cwnd = 3483
avg. blue cwnd = 3432

Figure 5-21. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 80, rtt = 324 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 172

Figure 5-22. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 200, rtt = 42 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3763

avg. red cwnd = 1818
avg. blue cwnd = 1945

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3763

avg. red cwnd = 1818
avg. blue cwnd = 1945

Figure 5-23. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 200, rtt = 162 ms)

MesoNet simulations achieved closest convergence among cwnd for competing flows

with F = 80, which was the value we determined as best for the simulated network conditions.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 814

avg. red cwnd = 401
avg. blue cwnd = 413

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 814

avg. red cwnd = 401
avg. blue cwnd = 413

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 173

We simulated with F = 200 to match values used by the designers of FAST in some empirical
studies. Where buffers were sufficient, MesoNet simulations also achieved close convergence
with this larger F.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6204 avg. cwnd = 7203

avg. red cwnd = 3540
avg. blue cwnd = 3663

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6204 avg. cwnd = 7203

avg. red cwnd = 3540
avg. blue cwnd = 3663

Figure 5-24. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (F = 200, rtt = 324 ms)

5.4.5 Behavior of HSTCP Congestion Control Model
The MesoNet simulation results for HSTCP, shown in Figs. 5-25 to 5-27, agree with results from
the study by Li, Leith and Shorten. HSTCP flows converge to fairness, but this requires
significant time, which increases with increasing rtt.

5.4.6 Behavior of H-TCP Congestion Control Model
Figs. 5-28 to 5-30 display the cwnd evolutions produced by the MesoNet simulation of H-TCP,
which appear quite similar in shape to those reported in the empirical study. H-TCP flows in the
simulation appear to converge slightly slower than those reported in the empirical study.
Convergence times for simulated H-TCP are second fastest among the congestion control
mechanisms simulated. This agrees with results from the study by Li, Leith and Shorten.

5.4.7 Behavior of Scalable TCP Congestion Control Model
MesoNet simulation results for Scalable TCP are shown in Figs. 5-31 to 5-33. For the three rtt
values simulated, Scalable TCP did not converge to a fair allocation of bandwidth. Scalable TCP
implements what amounts to a multiplicative-increase, multiplicative-decrease (MIMD)
algorithm, which previous theoretical analysis [1] shows cannot guarantee convergence. Li, Leith
and Shorten [67] also found that Scalable TCP either does not converge or converges very
slowly. Scalable TCP flows did not converge to fair bandwidth allocation over the 10-minute

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 174

duration of the tests used by Li, Leith and Shorten in their empirical study. This agrees with the
MesoNet simulation results.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 891 avg. cwnd = 874

avg. red cwnd = 452
avg. blue cwnd = 422

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 891 avg. cwnd = 874

avg. red cwnd = 452
avg. blue cwnd = 422

Figure 5-25. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 42 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3485 avg. cwnd = 3518

avg. red cwnd = 2170
avg. blue cwnd = 1348

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3485 avg. cwnd = 3518

avg. red cwnd = 2170
avg. blue cwnd = 1348

Figure 5-26. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 162 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 175

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6544 avg. cwnd = 7182

avg. red cwnd = 5127
avg. blue cwnd = 2055

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6544 avg. cwnd = 7182

avg. red cwnd = 5127
avg. blue cwnd = 2055

Figure 5-27. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 324 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 918 avg. cwnd = 937

avg. red cwnd = 485
avg. blue cwnd = 452

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 918 avg. cwnd = 937

avg. red cwnd = 485
avg. blue cwnd = 452

Figure 5-28. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 42 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 176

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3385 avg. cwnd = 3545

avg. red cwnd = 1869
avg. blue cwnd = 1676

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3385 avg. cwnd = 3545

avg. red cwnd = 1869
avg. blue cwnd = 1676

Figure 5-29. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 162 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6211 avg. cwnd = 7102

avg. red cwnd = 3913
avg. blue cwnd = 3189

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6211 avg. cwnd = 7102

avg. red cwnd = 3913
avg. blue cwnd = 3189

Figure 5-30. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 324 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 177

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 1000 avg. cwnd = 1003

avg. red cwnd = 901
avg. blue cwnd = 102

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 1000 avg. cwnd = 1003

avg. red cwnd = 901
avg. blue cwnd = 102

Figure 5-31. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 42 ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red cwnd = 3758
avg. blue cwnd = 94

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red cwnd = 3758
avg. blue cwnd = 94

Figure 5-32. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 162 ms)

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 178

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6874 avg. cwnd = 7700

avg. red cwnd = 7599
avg. blue cwnd = 101

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 6874 avg. cwnd = 7700

avg. red cwnd = 7599
avg. blue cwnd = 101

Figure 5-33. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 324 ms)

5.4.8 Summary of Behavior of MesoNet Congestion Control Models
In this section, we provide a summary of the comparative behavior of MesoNet simulations
across all seven congestion control mechanisms, including the two extra FAST configurations.
We consider three aspects of performance: link utilization, buffer utilization and fairness. In
making our comparisons, we use average cwnd as a surrogate for average throughput. We limit
our numerical analyses to two (rounded) decimal places, so we do not discuss smaller differences
in performance among the congestion control mechanisms.

Given a single path with a set of long-lived flows, an ideal congestion control mechanism
would yield a situation where each flow has the same average cwnd and the sum of the average
cwnd over all flows equals the bandwidth-delay product (BDP). In such a situation the link is
fully utilized, buffers are empty and each flow receives fair (i.e., the same) bandwidth. While
congestion control mechanisms are unlikely to be ideal, we can compare congestion control
mechanisms by examining relative link and buffer utilizations and fairness.

Table 5-9 (first row) displays the capacity (in packets) of the network path modeled by
the dumbbell topology (Fig. 5-6) as a function of rtt. These figures define the throughput limits
on a path, which caps the maximum link utilization. Once a path contains a sufficient number of
packets, then some source will always be able to transmit. As an example, given rtt = 42, the
path will hold 882 packets in aggregate. Average link utilization can be determined by summing
the average cwnd over all flows on the path and dividing by the BDP. For example, from Fig. 5-7
we see two TCP flows with average cwnd of 409 and 395 packets, respectively. The average link
utilization can then be computed as (409 + 395)/882 = 0.91.

In cases where the aggregate average cwnd exceeds the BDP, then the excess packets
must be sitting in buffers on the path. Table 5-9 (second row) shows the buffer sizes (20% of
BDP) as a function of rtt. We can estimate the buffer utilization on a path by subtracting the
BDP from the aggregate average cwnd and then dividing the residual by the number of buffers

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 179

on the path. When the residual is < 0, buffers are empty. For example, Fig. 5-31 (rtt = 42 ms)
shows that Scalable TCP leads to an aggregate average cwnd of (901 + 102 =) 1003 packets,
giving a residual of (1003 – 882 =) 121 packets in buffers on the path. Thus, buffer utilization is
(121/176 =) 0.69. In general, given several congestion control mechanisms that yield 100 % link
utilization, we might prefer the one that leads to lowest buffer utilization.

Table 5-9. Capacity (in Packets) of the Dumbbell Topology with Various Round-Trip Times

 rtt = 42 ms rtt = 162 ms rtt = 324 ms

Bandwidth‐Delay Product (packets) 882 3402 6804

Buffers (packets) 176 680 1360

Buffers + Bandwidth‐Delay Product 1058 4082 8164

Among several congestion control mechanisms with high link utilization, we might also

prefer the one allocating bandwidth most fairly. To measure fairness, we use Jain’s fairness
index [64] but applied to cwnd rather than throughput. We use the following formulation.

(41)

Jain’s fairness index ranges between 0 and 1, with a higher value denoting better fairness.
Table 5-10 gives link and buffer utilizations for each simulated congestion control

mechanism as a function of rtt. Even at the shortest rtt (= 42 ms), several of the congestion
control mechanisms fail to achieve full link utilization. For TCP and CTCP this results from slow
recovery from packet losses. For FAST with –tuning low utilization arises from two factors:
prior to reaching equilibrium F is too high, which leads to substantial packet losses, and after
reaching equilibrium F is too low to fully utilize the link. F is too high for FAST with F = 200,
which leads to packet losses and an oscillating cwnd.

As rtt increases, all congestion control mechanisms except CTCP and standard TCP
achieve full link utilization. (CTCP does achieve 100% at rtt = 162 ms, while maintaining an
average of four buffered packets.) Among the congestion control mechanisms achieving full
utilization, H-TCP, HSTCP and FAST (F = 80) lead to relatively low buffer utilizations. BIC
and Scalable TCP exhibit relatively high buffer utilizations.

Table 5-11 shows Jain’s fairness index for the simulated congestion control mechanisms
as a function of rtt. As expected, Scalable TCP shows substantial unfairness. The unfairness of
BIC and HSTCP increases with rtt. Also as expected, FAST with –tuning leads to unfairness.
Several congestion control mechanisms (CTCP, FAST with fixed F, and H-TCP) yield fairness
across all values of rtt.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 180

Table 5-10. Link and Buffer Utilizations for Simulated Congestion control Mechanisms

 rtt = 42 ms rtt = 162 ms rtt = 324 ms

 Link Util. Buffer Util. Link Util. Buffer Util. Link Util. Buffer Util.

TCP 0.91 0.00 0.89 0.00 0.89 0.00

BIC 1.00 0.45 1.00 0.51 1.00 0.63

CTCP 0.95 0.00 1.00 0.01 0.92 0.00

FAST Tuning 0.82 0.00 1.00 0.44 1.00 0.21

FAST F = 80 1.00 0.90 1.00 0.21 1.00 0.08

FAST F = 200 0.92 0.00 1.00 0.53 1.00 0.29

HSTCP 0.99 0.00 1.00 0.17 1.00 0.28

H‐TCP 1.00 0.31 1.00 0.21 1.00 0.22

Scalable TCP 1.00 0.69 1.00 0.66 1.00 0.66

Table 5-11. Bandwidth Fairness (Jain’s Index) for Simulated Congestion Control Mechanisms

 rtt = 42 ms rtt = 162 ms rtt = 324 ms

TCP 1.00 0.96 1.00

BIC 1.00 0.96 0.77

CTCP 1.00 1.00 1.00

FAST Tuning 0.97 0.88 0.89

FAST F = 80 1.00 1.00 1.00

FAST F = 200 1.00 1.00 1.00

HSTCP 1.00 0.95 0.85

H‐TCP 1.00 1.00 0.99

Scalable TCP 0.61 0.52 0.51

As evident from our simulations, several of the proposed congestion control mechanisms

approach ideal performance under the limited cases reported here. H-TCP, FAST and HSTCP
give full link utilizations. H-TCP and HSTCP also tend to limit buffer utilization at full link

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 181

utilization. FAST limits buffer utilization under some circumstances. H-TCP and FAST with
fixed F also show good fairness across values of rtt. How will the various congestion control
mechanisms compare in a larger topology with varying network conditions? We explore this
question in the next four chapters (6-9).

