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5 Modeling Alternate Congestion Control Mechanisms 
The fundamental design of the Internet protocol suite [3] assumes that network elements, such as 
routers, are relatively simple – receiving, buffering and forwarding packets among connected 
links and dropping packets when buffers are insufficient to accommodate arriving packets. 
Under this assumption, computers connected to the Internet must implement decision algorithms 
to pace the rate at which packets are injected into the network. Such decision algorithms, known 
typically as congestion control mechanisms, are implemented independently by each source with 
the goal of achieving a satisfactory network-wide outcome and a fair distribution of resources to 
all active sources. In the current state-of-the-practice, congestion control mechanisms are 
implemented as part of the transmission control protocol (TCP) [8-10] that operates within every 
computer attached to the global Internet. While TCP congestion control procedures have proven 
quite successful [2] at achieving desired properties, numerous researchers [46-51, 64] have 
postulated potential changes in relationships among bandwidth and propagation delay as the 
speed of network links increases toward 10s and 100s of gigabits per second (Gbps). Under such 
envisioned circumstances, researchers predict that TCP congestion control procedures will prove 
insufficient, leading to substantial underutilization in network resources and preventing end users 
from achieving high transfer rates, potentially reaching or surpassing 1 Gbps. These predictions 
have stimulated researchers to propose alternate congestion control mechanisms [52-61] that 
might achieve higher network utilization and better user performance as network speeds 
increase. 

 As part of proposing alternate congestion control mechanisms, researchers typically 
model, simulate and implement prototypes and then explore how candidate congestion control 
mechanisms might affect the Internet and its users. Given the increasing number of proposals, 
interest is growing [62-68] in developing procedures to fairly and effectively evaluate the 
properties of the proposals. A similar motive underlies the work reported in the current study, 
where our approach is to simulate proposed congestion control mechanisms within a reasonably 
large network that can support O(105) active flows simultaneously. To illustrate our 
methodology, we have chosen to investigate six proposed alternate congestion control 
mechanisms [52-54, 58, 60-61], which have been simulated and studied empirically at smaller 
scales. 

In this chapter of our study, we introduce the basic concepts underlying TCP congestion 
control and we explain the changes to those procedures that are proposed by six different 
research teams. Other research teams [55-57, 59] have also proposed changes to TCP congestion 
control procedures. We chose to examine only six proposals in order to limit our study, which 
focuses on methods for conducting evaluations rather than on an exhaustive consideration of all 
published proposals. We selected five specific proposals because a recent study by Li, Leith and 
Shorten [67] reports empirical results from prototype implementations included within Linux. 
This enables us to validate our simulations of the proposals against the reported empirical 
measurements. We chose a sixth alternate congestion control mechanism, Compound TCP [58], 
or CTCP, because it has been proposed by researchers at Microsoft and, thus, may be available 
in the future within a large number of computers attached to the Internet. Further, there are some 
recent empirical results [66] against which we can validate our model of CTCP. The 
methodology we define in our study can be applied to additional proposals for alternate 
congestion control mechanisms. 
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The remainder of this chapter is organized into five major topics. We begin (in Sec. 5.1) 
by introducing TCP congestion control and then (in Sec. 5.2) define the procedures adopted by 
six, selected, alternate proposals for congestion control in the Internet. Next (in Sec. 5.3), we 
describe how we model congestion control procedures within MesoNet. In Sec. 5.4, we describe 
the test configuration used to verify that we correctly model each congestion control mechanism. 
We then present simulation results showing evolution of congestion windows over time for each 
congestion control mechanism that we model. The information reported in this section sets the 
stage for us to consider (in Chapters 6 through 9) whether proposed alternate congestion control 
procedures might change macroscopic network behavior or user experience. 

5.1 TCP Congestion Control  
 A typical TCP flow evolves through three phases: connection, transfer and close. For purposes 
of congestion control, we limit our discussion to the connection and transfer phases. Fig. 5-1 
gives a high-level view of these two phases. During the connection phase, a source attempts to 
establish contact with an intended receiver. Inability to establish contact results in a connection 
failure, which prevents data from flowing between source and receiver; thus, connection 
establishment procedures provide one form of congestion control implemented by TCP. During 
the transfer phase, a source sends data (in the form of segments) on the flow until the required 
number has been received successfully. A receiver signals receipt of data segments by sending 
acknowledgments (ACKs) to the source. By sending duplicate acknowledgments, a receiver may 
also indicate failure to receive specific segments, which the source must then retransmit. Further, 
a sender may fail to receive acknowledgments, which requires the sender to raise a timeout and 
to retransmit unacknowledged data. During the transfer phase, congestion control procedures 
determine when a source may send data segments to a receiver. The resulting series of segments 
is known as a flow. 

 

Figure 5-1. Main Phases and Congestion Control Procedures in the Life of a TCP Flow (The Six Alternative 
Congestion Control Mechanisms in this Study Change the Congestion Avoidance Regime Only) 

TCP flows consist of a series of data segments (or packets) sent from a source to a 
receiver, along with a corresponding stream of acknowledgment packets flowing in the reverse 
direction. At any given time, a source may send a prescribed number of packets (known as the 
congestion window, or cwnd) prior to receiving an acknowledgment. Thus, the size of the cwnd 
controls the rate of packet transmission on a flow. Using TCP congestion control procedures, a 
source increases a flow’s cwnd exponentially from a small initial value until either a loss is 
detected or until the cwnd reaches a threshold, known as the initial slow-start threshold, or sst. If 
the sst is reached, the source subsequently increases the cwnd more slowly, at a linear rate. If a 
packet is lost, then the cwnd is reduced in half and then increased linearly until another packet is 
lost after which the cwnd is reduced in half again and so on. The resulting saw-tooth pattern in 
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the cwnd (see Fig. 5-7) induces a corresponding variation in the rate of transmission on a flow. 
TCP congestion control procedures require that sources use dynamic measurement of losses on a 
path to discover how many packets per second may be transmitted on a given flow. In addition, 
as we show later, these dynamic measurements allow TCP sources to adapt flow transmission 
rate as path characteristics change. The main goal of TCP congestion control is to allow all flows 
transiting shared paths to obtain an equal (fair) share of any available transmission capacity, 
while also allowing flows to increase or decrease transmission rate to achieve full utilization of 
path capacity. In particular, when flows are added to a path already supporting several flows in 
equilibrium with fair transmission rates, TCP congestion control procedures aim to achieve a 
new equilibrium, where all flows achieve fair (but lower) transmission rates. Similarly, when 
flows are dropped from a path in equilibrium, TCP congestion control aims to achieve a new 
equilibrium where all flows achieve fair (but higher) transmission rates. We define the 
responsiveness of TCP congestion control procedures as the time taken to achieve a new 
equilibrium by dynamically adjusting the congestion windows on flows sharing a common 
network path.   

Dynamic adjustment of the congestion window happens only during the transfer phase, 
which includes two regimes: slow start and congestion avoidance. Slow start occurs when a 
source is uncertain about the transmission rate that might be achieved on a TCP flow. For this 
reason, after establishing a connection, a source begins the transfer phase using slow-start 
procedures. A source also adopts slow-start procedures after a timeout. Slow-start begins by 
sending data at a slow rate but then increases that rate quickly (e.g., exponentially) as ACKs 
arrive from the receiver. Once a source has a better idea about an achievable transmission rate, 
slow-start procedures are abandoned in favor of congestion avoidance procedures, which attempt 
to increase the sending rate more slowly (e.g., linearly). Thus, congestion control procedures 
during the transfer phase have three basic purposes: (1) find an achievable transfer rate on a 
flow; (2) maintain the achievable transfer rate if possible; (3) attempt to increase the achievable 
transfer rate. Proposals for revising TCP congestion control procedures target mainly congestion 
avoidance procedures within the transfer phase. 

Below, we describe the procedures used in our model for connection establishment and 
slow start. Then we outline our model of standard (i.e., Reno) TCP congestion avoidance 
procedures. Subsequently, in Sec. 5.2, we describe our model of congestion avoidance 
procedures for each of the six alternate congestion control mechanisms that we simulate. 

5.1.1 Connection Phase 
Typically, establishing a TCP connection (or flow) requires a three-way handshake involving a 
connection-request (SYN) segment sent from a source to a receiver, followed by a connection-
confirm (SYN+ACK) segment sent from a receiver to a source and then ending with an ACK 
segment sent from a source to a receiver. Our model simulates connection establishment as a 
two-way handshake – SYN followed by SYN+ACK – because TCP allows ACKs to be 
piggybacked on data (DT) segments. This implies that the first DT sent from a source to receiver 
during the transfer phase may also double as the final segment of connection establishment. 

Of course, congestion may lead to lost SYN or SYN+ACK segments, so a source must 
implement error detection and recovery procedures, which typically involve retransmitting SYN 
segments. In our model, we simulate such procedures while adopting default parameters 
typically used in TCP implementations within the Microsoft Windows® family of operating 
systems. We take this decision because many computers connected to the Internet use the 
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Microsoft implementation of TCP. Fig. 5-2 illustrates schematically our connection 
establishment model, showing one possible scenario leading to connection failure. 
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Figure 5-2. TCP Connection Establishment Procedures Leading to Connection Failure 
 
 
During connection establishment a source first sends a SYN segment and waits for a 

period of time (3 s in Fig. 5-2) for a SYN+ACK. If no SYN+ACK segment arrives, the source 
sends a second SYN and waits for a longer period of time (6 s in Fig. 5-2). If no SYN+ACK 
segment arrives, the source sends a third SYN and waits for a longer period of time (12 s in Fig. 
5-2). This cycle repeats until the maximum number of SYNs (3 in Fig. 5-2) has been sent or until 
a SYN+ACK segment arrives. If no SYN+ACK segment arrives after the maximum number of 
SYNs is sent, then (as shown in Fig. 5-2) TCP raises a connection-failure signal. For the 
parameters we adopt, connection failures occur after 21 s without receipt of a SYN+ACK after 
the first SYN is sent. Arrival of a SYN+ACK segment during this timeout period (as illustrated 
in Fig. 5-3) results in successful connection establishment. Fig. 5-2 and Fig. 5-3 show several 
losses that can require retransmission of SYN and SYN+ACK segments. 
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Figure 5-3. TCP Connection Establishment Procedures Leading to Initiation of the Transfer Phase 
 
Our model of connection establishment procedures uses the variables identified and 

defined in Table 5-1.  
 

Table 5-1. Definition of Symbols Used to Model Connection Establishment Procedures 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initiation of the connection phase entails the following steps by a source. 
 

 
 

 
(1) 

 
 

Symbol  Definition 

synINT  Timeout interval (sec) for initial SYN 

synMAX  Maximum number of SYNs to send 

synSENT  Number of SYNs that have been sent 

synTO  Timeout (sec) for current SYN 

time  Current time 
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Upon a timeout, a source implements the following procedures, which amount to an exponential 
back-off in the timeout period until the maximum number of SYN segments have been sent. 

 
 

 
(2) 

 
 

 

 
If a SYN+ACK segment is received prior to connection failure, then the source initiates the 
transfer phase, which is discussed next in two parts: slow start and congestion avoidance. 

(3) 

5.1.2 Transfer Phase – Slow Start 
During the transfer phase a TCP flow establishes and adjusts a congestion window (cwnd) and 
slow start threshold (sst), which requires introducing and defining some additional symbols, as 
shown in Table 5-2. Our model permits two forms of slow-start: (a) standard TCP slow start or 
(b) limited slow start [7]. We explain each of these in turn. 

 
Table 5-2. Definition of Symbols Used to Model Slow-Start Procedures 

 
 
 
 
 
 
 
 
 

 

 

 

 

5.1.2.1 Standard Slow Start. Upon entering slow start, a TCP flow adopts a small value (cwndINT) 
for the congestion window (cwnd). During standard slow start, a flow then increases cwnd 
exponentially as ACKs are received until reaching an initial slow-start threshold (sstINT). After 
the congestion window reaches sstINT (or upon a loss) the flow enters a congestion avoidance 
regime. In our model, a flow initiates slow start with the following procedures. 

Symbol  Definition 

cwnd  Current congestion window in  number of packets 

cwndINT  Initial congestion window (we use cwndINT = 2 packets) 

sst  Current slow‐start threshold in number of packets 

sstMAX 
Threshold (in packets) to switch from exponential to 
logarithmic increase (varies with experiment) 

sstINT 
Threshold (in packets) to terminate initial slow start (varies 
with experiment) 
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(4) 

 
 
5.1.2.2 Limited Slow Start. During limited slow start, a flow increases cwnd exponentially as 
ACKs are received until reaching a maximum slow-start threshold (sstMAX). After the congestion 
window reaches sstMAX the flow increases cwnd logarithmically with each ACK received until 
reaching sstINT. After the congestion window reaches sstINT (or upon a loss) the flow enters a 
congestion avoidance regime. 

Our model distinguishes standard slow start from limited slow start based on the 
relationship between sstMAX and sstINT. Limited slow-start procedures are used if sstMAX < sstINT. 
Otherwise, standard slow-start procedures are used. These conventions are specified through the 
combination of configuration parameters for sstMAX and sstINT, initialization procedures (4) and 
the following procedures upon receiving an ACK.  

(5) 

 
 

 

5.1.2.3 Setting Slow-Start Threshold. The literature indicates no widespread agreement on what 
value should be chosen for sstINT. Some authors [6] recommend setting sstINT to an arbitrarily 
large value, which implies that initial slow start will continue until a flow experiences its first 
loss or timeout. Other authors [10] recommend setting sstINT to a small value, which means that 
slow start might terminate before a flow has determined its available bandwidth, so the 
maximum available bandwidth might not be achieved before the flow terminates (depending on 
the number of data segments in the flow). Mark Carson (personal communication, November 12, 
2008) indicated that Linux sets sstINT selectively based upon properties maintained by the device 
driver for the network interface. In addition, some [4] suggest using the advertised receiver 
window (rwnd) returned from a receiver to set sstINT. The rwnd indicates the number of packets 
that fit in a receiver’s buffer. 

Given such varying suggestions, we included sstINT as a configuration parameter of our 
model. This allows sstINT to be set to large and small values, as desired. Our model does not 
support setting sstINT variably based on properties of the network interface. Our model does not 
simulate a receiver’s rwnd, so setting sstINT based on that value is not supported. 

5.1.3 Transfer Phase – Congestion Avoidance 
In our model of TCP Reno, congestion avoidance, which begins once cwnd > sst, increases the 
congestion window linearly, at the rate of one packet per round-trip time. The increase accrues 
fractionally as ACKs are received. When the receiver signals a loss, the congestion window is 
cut in half. Upon a timeout, the slow-start threshold is set to half the congestion window and the 
congestion window is set to its initial value. Below we specify the procedures used by a source to 
increase cwnd on receipt of each ACK, to decrease cwnd upon each signaled loss and to decrease 
cwnd and sst at each timeout. (As explained in Sec. 5.2, alternative congestion control 
procedures replace the standard TCP increase and decrease procedures.) 
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5.1.3.1 Increase Congestion Window after Acknowledgment. For each ACK received within each 
round-trip time up until a loss or timeout, a TCP source increases its congestion window by a 
fraction, using the following procedures. 

 
(6) 

 

An actual TCP implementation will use cwnd as part of a decision function to determine its send 
window (swnd). The decision function is swnd = min(cwnd, rwnd). Since our model does not 
simulate rwnd, a source’s swnd is always equal to its cwnd. This means the sending rate of 
sources in our model will be constrained by network congestion rather than by local policies 
within receivers. 
 
5.1.3.2 Decrease Congestion Window after Signaled Loss. When a receiver signals a loss within 
a given round-trip time, a TCP source reduces its cwnd by half. In real TCP implementations, a 
loss is signaled by receiving three consecutive, duplicate ACKs. This convention was designed 
to accommodate cases where DTs are delivered out of order by the network. Reordering DTs can 
lead to duplicate ACKs even though a DT was not lost, so a TCP source defers any decision that 
a DT was lost until three duplicate ACKs arrive in sequence. Modern router vendors strive to 
ensure that packets are not reordered on a given flow [41-43], but some researchers [38-39, 45] 
have reported cases where packets are reordered within a router. Our simulation model permits 
packets to be lost, but not reordered. For this reason, our sources detect explicit losses upon 
receiving a single duplicate ACK, which we model as a negative acknowledgment (NAK). 

Sources in our model reduce a flow’s cwnd once in a round-trip time when a loss is 
signaled by a receiver. The reduction rule follows. 

 
 

(7) 
 
 
The sst is reset to the cwnd so that the flow continues in congestion avoidance rather than 
reentering slow start. 
     
5.1.3.3 Decrease Slow-Start Threshold and Reset Congestion Window after Timeout. A source 
encounters a timeout when no ACKs or NAKs have been received on a flow for the duration of a 
retransmission timeout (RTO). The RTO for a flow is maintained to be no less than twice and no 
greater than 32 times round-trip propagation delay between a source and receiver. Regardless of 
congestion control mechanism, our model implements a single set of procedures for maintaining 
and increasing RTO. Upon initiation of a flow’s transfer phase, RTO is set to twice the round-
trip propagation delay. Upon receipt of an ACK or NAK, a flow’s RTO is set to the maximum of 
1.5 times the measured, smoothed round-trip time (SRTT) or twice the round-trip propagation 
delay. With each timeout the RTO is doubled, which leads to an exponential back-off, up to the 
maximum RTO. 

 Occurrence of a timeout indicates a significant interruption in the path between a source 
and receiver. For this reason, our model adopts a conservative strategy in responding to timeouts. 
The sst is reduced using the reduction rules required by the specific congestion control 
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mechanism in use for the flow. In addition, the cwnd is reset to its initial value. This implies that 
the flow will reenter slow start and then use rapid increase procedures until cwnd > sst. 
Subsequently, the flow returns to congestion avoidance procedures. Our model for TCP Reno 
uses the following timeout procedures. 
 

(8) 
 

 

5.1.3.4 Combined Effects of Slow Start and Congestion Avoidance.  To appreciate the combined 
effects of slow start and congestion avoidance, as implemented in our model of TCP Reno, we 
consider some schematic graphs of the temporal changes of the cwnd for hypothetical flows. Fig. 
5-4 depicts changes in cwnd assuming the use of standard slow start, with both sstMAX and sstINT 
set to 128 packets. The cwnd increases exponentially in slow start until it reaches sstINT. 
Subsequently, congestion avoidance commences and the cwnd increases linearly. Just after the 
cwnd reaches 150 (time 30 s), a loss occurs and the cwnd is reduced to 75. The cwnd then 
increases linearly until it reaches 100 (time 55 s). At about time 63 s the source experiences a 
timeout and the cwnd is reduced to its initial value (2). At the same time sst is set to 50 (half the 
value of the cwnd when the timeout occurred). As ACKs resume the cwnd increases 
exponentially (in slow start) to 50 (the value of sst) after which the flow returns to congestion 
avoidance and the cwnd increases linearly.  
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Figure 5-4. Sample Change in Congestion Window (packets) over Time (secs) under Standard Slow Start and 
Congestion Avoidance 
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Fig. 5-5 displays the same scenario as Fig. 5-4, with the exception that standard slow start 
is replaced by limited slow start, with  sstMAX = 16 and sstINT = 128. Here, the cwnd increases 
exponentially until reaching 16 and then increases logarithmically until reaching 128. 
Subsequently, cwnd increases linearly in congestion avoidance until a loss occurs, just after the 
cwnd reaches 150 packets (about time 42 s). After the loss, the cwnd drops in half (to 75) and 
then increases linearly until reaching 100. At about time 80 s the source experiences a timeout 
and the cwnd is reduced to 2, while sst is reset to 50 (half the value of the cwnd when the timeout 
occurred). When ACKs resume the cwnd increases exponentially to 16 and then logarithmically 
to 50 (the value of sst) from which the cwnd increases linearly as the flow returns to congestion 
avoidance. 
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Figure 5-5. Sample Change in Congestion Window (packets) over Time (secs) under Limited Slow Start and 
Congestion Avoidance 

5.2 Congestion Avoidance Procedures for Six Alternate Congestion 
Control Mechanisms 
In this section, we describe congestion avoidance procedures defined by six proposed alternate 
congestion control mechanisms: Binary Increase Congestion control (BIC) [61], Compound TCP 
(CTCP) [58], Fast Active Queue Management (AQM) Scalable TCP (FAST) [60], High-Speed 
TCP (HSTCP) [52], Hamilton TCP (H-TCP) [54] and Scalable TCP [53]. For each congestion 
control mechanism, we specify increase procedures taken upon receipt of an ACK, decrease 
procedures used upon explicit notification of a loss and timeout procedures. In addition, three of 
the congestion control mechanisms (CTCP, FAST and H-TCP) require periodic actions, which 
we also specify. 

All but two (FAST and H-TCP) of the alternate congestion control mechanisms define a 
threshold, such that when the congestion window is below the threshold then normal TCP 
congestion avoidance procedures are used. This means that the alternate congestion avoidance 
procedures will be invoked only when a flow’s congestion window surpasses the threshold. 
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Further, whenever a congestion window passes and then falls below the threshold, normal TCP 
congestion avoidance procedures will be resumed. Alternate procedures will be reactivated when 
the congestion window again passes the threshold. H-TCP also uses an activation threshold, but 
defined in terms of elapsed time since the most recent loss on a flow. FAST does not use a 
threshold, so the alternate congestion avoidance procedures are always applied for FAST flows. 
When appropriate, we specify the threshold values associated with each alternate congestion 
control mechanism. 

5.2.1 BIC 
The congestion avoidance procedures used by BIC aim to make aggressive increases in the cwnd 
when the current cwnd is far from a target and smaller increases as the current cwnd nears the 
target. BIC determines the target by conducting a binary search within some range around the 
current cwnd. When the target falls beyond the search range, BIC increases the cwnd additively 
by a fixed increment and then reinitiates the binary search within the new range. Implementing 
this behavior requires rather complex logic, so BIC procedures for congestion avoidance tend to 
be somewhat elaborate. The resulting cwnd evolution for BIC reflects its complexity – 
reproducing a function that appears to change in a pattern resembling a human heartbeat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-3. Symbols and Definitions Used to Model BIC Congestion Avoidance Procedures 

Symbol  Definition 

B  Multiplicative back‐off factor for loss (BIC parameter  = 0.8)

BB  Parameter for computing increase in congestion window (BIC parameter B = 4) 

B  Candidate numerator for increase in congestion window 

LWB  Low‐window threshold ( LWB = 14 packets) for applying BIC procedures 

MINB  Variable to track minimum value for computing BIC target window  

MAXB  Variable to track maximum value for computing BIC target window 

PREVB  Variable to track previous MAXB 

B  Parameter for computing increase in congestion window (BIC parameter   = 20)

SMAXB  Threshold to begin rapid increase in congestion window (BIC parameter Smax = 32)

SSB  Boolean indicating whether the flow is in BIC slow start (true) or not (false) 

SSTB  BIC slow‐start target 

SSWB  BIC slow‐start congestion window 

TGTB  BIC target window (BIC variable w1)



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 148 

Specifying BIC congestion avoidance procedures requires some additional symbols, as identified 
and defined in Table 5-3. Where applicable, the table denotes parameter values used within our 
model. We adopt parameter values matching default values reported in the empirical study by Li, 
Leith and Shorten [67] of prototype implementations for congestion control mechanisms. 

A given BIC flow uses normal TCP congestion avoidance procedures or the alternate 
BIC procedures, defined below, depending on the relationship between cwnd size and a low-
window parameter (LWB = 14 packets). 

 
  

 
 
 
5.2.1.1 Increase Procedures. The window increase procedures (9) used by BIC differ depending 
upon whether the current cwnd is below or beyond a previously determined maximum cwnd. As 
the cwnd passes the previously determined maximum, BIC invokes slow-start procedures (these 
differ from TCP slow start) that increase the cwnd until the cwnd approaches a new maximum 
(set to twice the previous maximum). As the cwnd nears the new maximum, BIC slow-start 
procedures are abandoned and the cwnd is increased using a binary search. Once the new 
maximum is exceeded, then BIC reenters its slow-start procedures. Thus, during congestion 
avoidance, BIC increase procedures alternate between BIC slow-start and binary search. 

 
(9) 
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with 

 
 

(10) 
 
 
 
 
 
 

During the BIC binary search, the cwnd is increased more quickly when further from the 
current midpoint and less quickly as it nears the midpoint. The rules controlling the increase 
pattern are encoded within a function (10). 

 
5.2.1.2 Decrease Procedures. Upon notification of a loss (11), BIC sets the maximum cwnd for 
the binary search to the current cwnd and then multiplicatively decreases the congestion window. 
If the loss followed closely behind a previous loss, then BIC also multiplicatively decreases the 
maximum cwnd used for the binary search. In addition, BIC abandons its slow-start procedures 
to ensure a new binary search commences within the reduced range. 
 
 

(11) 
 
 
 
 
 
 
 
 
 
5.2.1.3 Timeout Procedures. For BIC timeout procedures (12) we adopt logic similar to that used 
for a loss, except that the sst is set to half the cwnd and the cwnd is set to its initial value 
(cwndINT). This ensures that standard (or limited) slow-start is used until the flow’s cwnd reaches 
the new sst. After that, BIC congestion avoidance procedures resume. 
 

(12) 
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5.2.2 CTCP 
Compound TCP, or CTCP, augments the congestion window with a second component, called 
the delay window (dwnd). (See Table 5-4 for a complete listing of symbols and parameter 
settings used to specify CTCP behavior.) The dwnd is added to the cwnd to establish the actual 
send window used for CTCP flows. CTCP defines rules for increasing dwnd aggressively when a 
flow is underutilizing the available transmission rate and also defines rules for reducing dwnd as 
a flow’s transmission rate nears the available bandwidth. Upon detection of congestion, either 
through explicit losses or timeouts, CTCP reduces the delay window toward zero. 
 

Table 5-4.  Symbols and Definitions Used to Model CTCP Congestion Avoidance Procedures 

  
CTCP procedures update the dwnd periodically, typically once per round-trip time. As a 

flow’s transmission rate nears equilibrium around some estimated available bandwidth, CTCP 
tends to cause the send window to oscillate by exponentially increasing the dwnd when the 
estimated number of packets queued for a flow falls below a threshold ( C = 30) and then linearly 
decreasing dwnd when the estimated number of queued packets exceeds the threshold. On the 
other hand, when the transmission rate is increasing on a flow, CTCP exponentially increases the 
dwnd without exerting a countervailing linear decrease. Consequently, the CTCP send window 
can reach a large size relatively quickly when a transmission path exhibits no congestion. 

Symbol  Definition 

C  Window  increase ( C = 0.125) weight for CTCP 

AC  Actual throughput (cwnd/SRTTC) experienced on CTCP flow 

C  Window  decrease ( C = 0.5) weight for CTCP 

CDC  Boolean denoting whether early congestion has been detected (true) or not (false) 

C  CTCP gamma threshold ( C = 30) for detecting early congestion 

DC  Difference between expected and actual throughput experienced on CTCP flow 

dwnd  CTCP delay window 

EC  Expected throughput (cwnd/minRTTC) on CTCP flow 

C  CTCP zeta parameter ( C  = 0.1) defining reduction speed in delay window 

kC  Exponent (kC  = 0.8) for  CTCP window‐increase procedures 

LWC  Low‐window threshold ( LWC = 41) for applying CTCP procedures 

minRTTC  Minimum round‐trip time experienced on CTCP flow 

SRTTC  Average Smoothed Round‐Trip Time experienced on CTCP flow 
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As shown below (13), CTCP uses normal TCP congestion avoidance procedures for 
adjusting the cwnd whenever the cwnd is below a threshold (LWC = 41 packets). This means that 
the dwnd is used only when the cwnd is sufficiently large. 
 

(13) 
 
 
 
5.2.2.1 Increase Procedures. CTCP increases (14) the cwnd fractionally with each ACK received 
in a round-trip time without a loss. The increased cwnd is then added to the current dwnd. As 
with other congestion avoidance procedures, CTCP suspends increases after a loss in a round-trip 
time until an ACK arrives associated with a subsequent round-trip. The increase procedures 
adopted by CTCP consider both the cwnd and the dwnd, as follows. 
 

 
(14) 

 
 
5.2.2.2 Decrease Procedures. Upon a loss, CTCP decreases the cwnd by half and then notes that 
congestion was detected. As with other congestion avoidance procedures, the sst is reset to the 
cwnd in order to ensure the flow remains in congestion avoidance. During the next periodic 
update cycle, CTCP will act on the loss notification by reducing the dwnd. Equation (15) 
specifies the precise decrease procedures used by CTCP upon an explicit loss. 
 

(15) 
 
 
 
 
5.2.2.3 Timeout Procedures. Given a timeout, CTCP adopts the same procedures used by TCP 
and then augments those procedures by resetting dwnd to zero and noting that congestion was 
detected. The precise procedures follow. 
 
 

(16) 
 
 
 
 
 
5.2.2.4 Periodic Procedures. The remaining CTCP procedures are used periodically, every 
round-trip time, to update the dwnd. The update procedures (17) depend upon a number of 
parameters. We adopt the recommended settings for those parameters, as shown in Table 5-4. 
 
 
 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 152 

 
 
 

(17) 
 
 
 
 
 
 
 
  
 

5.2.3 FAST 
FAST TCP adopts a fundamentally different approach from the other congestion control 
mechanisms considered in this study. First, FAST aims to achieve an equilibrium cwnd that does 
not change during the life of a flow, while other congestion control mechanisms lead to an 
oscillating cwnd. Second, FAST updates the cwnd based mainly on measured changes in queuing 
delay, using loss signals only when congestion prevents reaching a lossless equilibrium. Third, 
FAST does not resort to standard TCP congestion avoidance procedures; instead, FAST uses its 
own procedures at all times during congestion avoidance. FAST adopts these approaches based 
on the idea that queuing delay can be measured quite frequently and thus accurately, while 
packet losses are rare events that provide insufficient information to estimate loss probability on 
a given flow. 

Explaining FAST congestion avoidance procedures requires numerous parameters and 
variables, listed and defined in Table 5-5. In addition to procedures associated with cwnd 
increase on ACKs and decrease on losses and timeouts, FAST requires a periodic procedure to 
determine a target cwnd (TcwndF). FAST also defines optional, periodic procedures for tuning a 
parameter ( F), which determines how many packets a flow attempts to keep queued between a 
source and receiver. These optional, -tuning procedures require two periodic processes: one to 
estimate flow throughput and one to adjust F based on changes in flow throughput. 
 
5.2.3.1 Increase Procedures. FAST uses periodic procedures (explained below in Sec. 5.2.3.4) to 
determine a target congestion window (TcwndF) and then increases or decreases cwnd as needed 
to reach TcwndF. FAST does not move cwnd to TcwndF in one step, but instead paces the rate of 
increase to reflect that expected number of ACKs arriving on a given flow within each round-trip 
time. Our model uses the following procedures (18) for adjusting cwnd with each arriving ACK. 
 

(18) 
 
 
 
5.2.3.2 Decrease Procedures. Upon an explicit loss for FAST, we reduce (19) cwnd by half and 
assign the reduced value to both the TcwndF and the sst. These actions provide a new, lower 
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basis from which FAST can begin increasing the cwnd and also ensure that the flow remains in 
congestion avoidance. 
 

(19) 
 
 
 

Table 5-5. Symbols and Definitions Used to Model FAST Congestion Avoidance Procedures 
 

Symbol  Definition 

acksRTTF  Count of ACKs received on FAST flow during the most recent  SRTTF 

F  Current   parameter 

ADF  Default   parameter setting (ADF = 200) when  ‐tuning disabled 

ATF  Boolean indicating whether ‐tuning is enabled (true) or disabled (false)   

A1F  First  parameter setting (A1F = 8 packets) 

A2F  Second  parameter setting (A2F = 20 packets) 

A3F  Third  parameter setting (A3F = 200 packets) 

BkF  Current average throughput on FAST flow 

F  Weight ( F  = 0.5) of recent information when updating TcwndF 

minRTTF  Minimum round‐trip time experienced on FAST flow 

M0M1F  Set   = A2F when  = A1F and throughput passes M0M1F (= 1500 ppms) 

M1M0F  Set   = A1F when  = A2F and throughput passes M1M0F (= 1250 ppms) 

M1M2F  Set   = A3F when  = A2F and throughput passes M1M2F (= 15,000 ppms) 

M2M1F  Set   = A2F when  = A3F and throughput passes M2M1F (= 12,500 ppms) 

SRTTF  Average Smoothed Round‐Trip Time experienced on FAST flow 

TF  Weight (TF  = 0.5) to assign to most recent throughput sample when computing  BkF 

TcwndF  Current target congestion window 

UAF  Periodicity (UAH  = 200 s) for updating   parameter when  ‐tuning enabled 

UWF  Periodicity (UWH  = 20 ms) for updating TcwndF 
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5.2.3.3 Timeout Procedures. For a FAST timeout, we adopt procedures (20) analogous to those 
used with other congestion control mechanisms. We set the sst to half the cwnd and then set 
cwnd and TcwndF to the initial congestion window (cwndINT) and recommence slow start. 
 

(20) 
 
 
 
 
5.2.3.4 Periodic Procedures. FAST defines one mandatory periodic process (21) to update the 
target congestion window (TcwndF) for the flow every UWF (= 20 ms, here). A parameter ( F) 
determines how much weight is placed on the previous cwnd and how much weight is given to 
recent information. FAST procedures prevent the new target cwnd from being more than twice 
the current cwnd. 
 

(21) 
 
 
The F parameter may be fixed or tuned. If -tuning is enabled, the following procedures (22) are 
executed every UAF (= 200 s, here). 
 

(22) 
 
 
 
 
The various parameters associated with -tuning are defined in Table 5-5. Estimated flow 
throughput (BkF) is a variable used in the -tuning procedures. To estimate BkF, the following 
procedures (23) are used each round-trip time. 
 
 

(23) 
 

5.2.4 HSTCP 
High Speed TCP (HSTCP) modifies standard TCP congestion control procedures in order to 
achieve high transmission rates (e.g., 10 Gbps) when network conditions permit, while 
maintaining comparable performance to standard TCP when a network path exhibits moderate to 
heavy congestion. HSTCP retains the fundamental additive-increase and multiplicative-decrease 
(AIMD) strategy adopted by standard TCP, but HSTCP alters the AIMD parameters to become a 
function of congestion window size. The altered AIMD functions result in more aggressive 
increases and less aggressive decreases at larger window sizes. Below a low-window threshold 
(LWHS) HSTCP adopts standard TCP congestion-avoidance procedures. 
 

(24) 
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Table 5-6 identifies and defines symbols used below when explaining HSTCP congestion-
avoidance procedures. 
 

Table 5-6. Symbols and Definitions Used to Model HSTCP Congestion Avoidance Procedures 

 
5.2.4.1 Increase Procedures. HSTCP increases the cwnd additively upon receiving each ACK in 
a round-trip time until a loss is detected. The increase procedures (25) appear quite similar to 
standard TCP increase procedures, except that the numerator for the increase is a function of 
cwnd size. 
 
 

(25) 
 
Function f (c), defined below (26), returns the increase numerator that will yield the desired 
packet drop rate for a given window c. Function f (c) uses a subsidiary function, g (c), defined 
below (27). Function g (c) is also used to determine the multiplicative-decrease parameter 
applied on losses and timeouts. 
 
 

(26) 
 
 
 
 

(27) 
 
5.2.4.2 Decrease Procedures. Upon detecting an explicit loss, HSTCP reduces the cwnd by a 
multiplicative factor that is a function of the cwnd. The specific procedures, which use function 
g (c), are given below. 

 
(28) 

 
 
 
5.2.4.3 Timeout Procedures. For a timeout (29), HSTCP sets sst to the reduced cwnd and then 
resets the cwnd to its initial value. This enables slow-start procedures up to the new sst, after 
which congestion avoidance resumes. 
 

Symbol  Definition 

HWHS  High‐window threshold ( HWHS = 83,000) for HSTCP procedures 

LWHS  Low‐window threshold ( LWHS = 31) for applying HSTCP procedures 

RHS  Decrease congestion window by this percentage ( RHS  = 0.1) after loss above  LWHS 

0.5 

0.5 
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(29) 

 
 
 

5.2.5 H-TCP 
H-TCP differs from other congestion avoidance procedures in two main aspects. First, H-TCP 
determines the numerator of the cwnd increase as a function of elapsed time since the most 
recent packet loss. The increase is scaled by the round-trip time experienced on a path in order to 
compensate for differences in feedback delay. The motive is to give larger increases in cwnd 
during periods of low network congestion, so a flow could reach higher transmission rates more 
quickly on uncongested, high-bandwidth, long-delay paths. H-TCP adopts standard TCP increase 
procedures for a specified time after each loss. Second, H-TCP implements an adaptive back-off 
procedure to determine the multiplicative decrease in cwnd after a loss. The back-off factor is 
varied based on estimating the queuing delay on a path. The motive is to prevent senders from 
backing off too much after packet losses. H-TCP adopts standard TCP decrease procedures when 
flow throughput has changed by more than a specified amount since the most recent loss. To 
monitor changes in flow throughput, H-TCP requires a periodic process to measure average 
throughput. Table 5-7 identifies and defines parameters and variables used below to explain H-
TCP congestion avoidance procedures. 
 

Table 5-7. Symbols and Definitions Used to Model H-TCP Congestion Avoidance Procedures 
Symbol  Definition 

acksRTTH  Count of ACKs received on H‐TCP flow during the most recent  UH 

H  Most recent computed percentage (initially  H = 0.5) cwnd residual on a loss  

Bk1H  Average throughput on H‐TCP flow at time of most recent loss 

BkH  Current average throughput on H‐TCP flow 

H  Time elapsed since the most recent loss 

BH  Percentage throughput increase ( BH = 0.2) for selecting  

LH  Use normal TCP procedures until  H  >  LH, where  LH = 1 s 

GH  Maximum percentage (GH  = 0.8) cwnd reduction on a loss 

maxRTTH  Maximum round‐trip time experienced on H‐TCP flow 

minRTTH  Minimum round‐trip time experienced on H‐TCP flow 

TH  Weight (TH  = 0.5) to assign to most recent throughput sample when computing  BkH 

UH  Periodicity (UH  = 250 ms) for updating throughput estimate for H‐TCP flow 
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5.2.5.1 Increase Procedures. For each ACK received without a loss in a round-trip time, H-TCP 
increases cwnd by a fraction of the cwnd. The numerator of the increase fraction is a function 
(30) of the most recently computed multiplicative-decrease parameter ( H) and the elapsed time 
( H) since the most recent loss. 
 

(30) 
 
Function f ( H) returns (31) one if standard TCP increase procedures are in effect; otherwise it 
returns a value exhibiting a quadratic increase with increasing H. The quadratic increase (32) is 
scaled by the minimum round-trip time measured on the flow. 
 

(31) 
 
 
 

(32) 
 
5.2.5.2 Decrease Procedures. Upon an explicit loss, H-TCP reduces (33) the cwnd by a fraction, 
computed as a function (34) of changing throughput. In addition, H-TCP records the average 
flow throughput at the time of the loss. 
 

(33) 
 
 
 
Given default parameters, the H-TCP algorithm varies the back-off fraction between 0.5 and 0.8. 
The lower value (larger reduction) is adopted whenever measured throughput (BkH) has changed 
by a significant percentage ( BH) since the most recent loss, which suggests that the flow is 
undergoing some disturbance or transition. Less significant change in throughput indicates that 
the flow is nearer to stability. Stable flows are reduced by a fraction reflecting the estimated 
queuing delay as a proportion of estimated propagation delay. The residual cwnd is capped by 
parameter GH (= 0.8). 
 

(34) 
   
 
 
5.2.5.3 Timeout Procedures. For a timeout, we adopt procedures (35) that mirror the rules H-
TCP uses for an explicit loss with significant change in flow throughput. This amounts to 
reducing the sst to half the cwnd, recording the flow’s average throughput and setting H = 0.5. 
We also reset the cwnd to its initial value, which reinitiates slow start. 
 

(35) 
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5.2.5.4 Periodic Procedures. To support recording and monitoring of flow throughput, H-TCP 
requires a periodic process (36) to estimate average throughput. In our model, estimated 
throughput is updated every UH (= 250 ms, here).  

 
 

(36) 
 

 

5.2.6 SCALABLE TCP 
Scalable TCP adopts a simple, fixed-increase rule aimed at allowing a flow to increase its 
congestion window more quickly than would be the case with standard TCP. In addition, 
Scalable TCP defines a decrease rule that limits a flow to a fixed multiplicative decrease that is 
recommended to be much less than the 50% decrease used by standard TCP. The Scalable TCP 
rules are defined in an additive-increase, multiplicative-decrease (AIMD) form, but the rules 
actually amount to a multiplicative-increase, multiplicative-decrease (MIMD) regime. 
Researchers have found [1] that MIMD algorithms are not guaranteed to converge to fair 
bandwidth sharing in drop-tail networks, such as the Internet. Empirical measurements by Li, 
Leith and Shorten [67] have also shown that failure to converge is a property of Scalable TCP. 
Below, we describe Scalable TCP procedures for increase on ACK, decrease on explicit loss and 
decrease on timeout. Our description uses the symbols and definitions shown in Table 5-8. 
 

 Table 5-8. Symbols and Definitions Used to Model Scalable TCP Congestion Avoidance Procedures 

 
Scalable TCP includes (37) a low-window threshold (LWS) that ensures standard TCP 

procedures for congestion avoidance are followed when the cwnd is small. Scalable TCP 
congestion avoidance procedures are used only when the cwnd is above the threshold. 
 

(37) 
 
 
 
5.2.6.1 Increase Procedures. Upon receiving each ACK within a round-trip time without a 
congestion signal Scalable TCP increases (38) the cwnd by a fixed value S (= 0.01). 
 

(38) 
 

Symbol  Definition 

S  Increase ( S  = 0.01) applied by Scalable TCP on each ACK 

S  Percentage residual cwnd ( S  = 0.875) applied by Scalable TCP on each loss 

LWS  Low‐window threshold (LWS = 16 packets) for applying Scalable TCP procedures 
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5.2.6.2 Decrease Procedures. Upon receiving an explicit loss notification, Scalable TCP reduces 
(39) the cwnd by a fixed percentage. Here, the reduction amounts to (1 - S =) 0.125. We also set 
sst to the new, lower cwnd to ensure the flow remains in congestion avoidance. 
 

(39) 
 
 
 
5.2.6.3 Timeout Procedures. For a timeout we define procedures (40) that require Scalable TCP 
to set the sst to the reduced cwnd and then reset the cwnd to its initial value. This means that, like 
the other congestion control mechanisms we model, Scalable TCP will reenter slow start until 
the cwnd passes the sst and then return to congestion avoidance. 
 

(40) 
 
 
 
 

5.3 Modeling the Transfer Phase in MesoNet 

The section explains the key ideas underlying our model for the transfer phase of a flow. We 
begin by explaining how our model simulates data transfer procedures in general and then 
concentrate separately on slow start and congestion avoidance. Previously in Sec. 5.2, we 
explained the detailed slow-start and congestion avoidance procedures for individual congestion 
control mechanisms. Here, we focus on the common approach used by MesoNet to model the 
transfer phase across all congestion control mechanisms.  

5.3.1 General Data Transfer Procedures 
We adopt a simplified model of data transfer procedures in order to simulate fundamental aspects 
of congestion control without incurring the detailed complexity of TCP implementations. A 
simplified model permits simulating reasonably large, fast networks for suitable time durations 
on standard computing hardware without incurring excessive costs in processing time and 
memory use. Our simplified model retains key properties that enable us to compare and contrast 
various congestion control mechanisms under a wide range of network conditions. 

During the data transfer phase for each flow, a simulated source transfers a randomly 
selected number (flowDTs) of DT segments. Each DT segment is assigned a sequence number; 
the first segment is number one and the sequence number increases by one for each subsequent 
segment. A flow’s receiver, then, expects to receive DT segments in sequence, where each 
segment has a sequence number one greater than the most recently received segment. When the 
sequence number is as expected, the receiver sends an ACK back to the source. When the 
sequence number is higher than expected, the receiver sends a NAK back to the source. The 
ACK or NAK is numbered with the next expected sequence number. This simplification, which 
ignores the possibility for reordered segments, is feasible because MesoNet allows packets to be 
discarded but does not permit packet reordering. Absent reordering, our model of data transfer 
procedures may omit features such as duplicate ACKs and selective ACKs. 
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A source in our model expects to receive a stream of ACKs and NAKs from a flow’s 
receiver. Since a receiver sends an ACK or NAK only upon receiving a DT segment, a source 
can simply count each received ACK and NAK as evidence that one DT segment has been 
delivered successfully to the receiver. When the source has received one ACK or NAK for each 
segment comprising the flow, then the data transfer is finished and the source can terminate the 
flow. Of course, each NAK received by a source also causes the number of DT segments sent on 
the flow to increase by one (a retransmission) because the NAK indicates that one DT segment 
was lost and, thus, was not counted as successfully delivered. Receiving a NAK also stimulates a 
source to take remedial action. In our model, receipt of a NAK activates a source’s loss 
procedures on a flow. 

ACK and NAK segments may also be lost on a flow. This means that each lost ACK or 
NAK will not be counted by the source. For this reason, each lost ACK and NAK will also 
increase by one (a retransmission) the number of DT segments that must be sent by the source in 
order to receive a sufficient number of ACKs and NAKs. Further, if no ACKs or NAKs are 
received by a source for a retransmission timeout (RTO) period, then a source must also take 
remedial action. In our model, expiration of a RTO activates a source’s timeout procedures on a 
flow. 

Whenever a NAK is received or a timeout occurs, a source notes the next sequence 
number that it intends to send on the flow. This enables the source to ignore window increase 
and decrease procedures for all subsequent ACKs and NAKs that arrive with lower sequence 
numbers. This technique ensures that window increase procedures are abandoned in a round-trip 
time after a loss or timeout. The technique also ensures that window decrease procedures are 
activated only once within a round-trip time. 

The remaining elements of our general data transfer model concern controlling the ability 
of a source to transmit a DT. A source maintains a flow cwnd using the procedures described 
earlier (Sec. 5.2). A source also knows the sequence number (nextSeq) for the next DT segment 
it intends to send and the highest sequence number (highSeq) received in an ACK or NAK. With 
this information, a source can compute (41) the number of unacknowledged DT segments 
(unAckedDTs) and thus the number of DT segments it is permitted to send (unsentDTs). 
 

(41) 
 
 
Equation 41 reveals the self-clocking nature of TCP flows. Two conditions enable a source to 
send a DT segment: arrival of an ACK or NAK or increase in the congestion window. In our 
model, a timeout causes highSeq to be set to nextSeq, which means that unsentDTs will equal 
cwnd.  Recall that we also reset cwnd to its initial value upon a timeout. 

 One last detail must be explained. The procedures in equation 41 can cause extra DTs to 
be sent at the end of a flow. To prevent this, our model computes (42) the difference 
(residualDTs) between the number of DTs (flowDTs) comprising a flow and unacknowledged 
DTs (unAckedDTs). The number of DTs that can be sent (unsentDTs) is then set to the minimum 
of the segments allowed by the congestion window or the segments required to complete the 
flow. 
 

  (42) 
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Data transfer procedures are distributed across elements of MesoNet. Sources manage 
sending of DT segments and also react to flow timeouts. Access routers process incoming ACKs 
and NAKs on behalf of sources and also process incoming DTs on behalf of receivers. When 
processing incoming ACKs and NAKs an access router updates the cwnd as required by the 
congestion control mechanism in use on the related flow. When processing incoming DTs an 
access router determines whether a receiver needs to send an ACK or NAK and then queues that 
assignment for the receiver. 

5.3.2 Slow Start 
Slow-start procedures are invoked within a simulated access router upon receipt of an ACK 
whenever the cwnd is below the sst. If the cwnd is below sstMAX, then standard slow-start 
procedures are used to increase the cwnd at an exponential rate; otherwise, limited slow-start 
procedures are used to increase the cwnd at a logarithmic pace. 

5.3.3 Congestion Avoidance 
Congestion avoidance procedures are invoked within a simulated access router upon receipt of 
any qualified NAK, and for qualified ACKs where the cwnd equals or exceeds the sst. Selected 
congestion control mechanisms also require periodic procedures, which our model implements 
within simulated access routers. We implement timeout procedures within simulated sources. 
   
5.3.3.1 Acknowledgement Procedures. MesoNet assigns one congestion control mechanism to 
each simulated source, which represents a computer attached to the network and running a 
particular version of TCP. This means that the particular congestion control mechanism in 
operation on a simulated flow will be determined by the congestion control mechanism used by 
the flow’s source. Upon receipt of a qualified ACK a simulated access router selects the 
appropriate window increase procedures for the flow as a function of the congestion control 
mechanism (tcpType) used by the simulated source. Qualified ACKs include all ACKs received 
within a round-trip time prior to a congestion signal. 
 
5.3.3.2 Negative Acknowledgement Procedures. Upon receipt of a qualified NAK a simulated 
access router selects the appropriate window decrease procedures for the flow as a function of 
the tcpType used by the simulated source. Qualified NAKs include the first NAK received within 
any given round-trip time for a flow. 
 
5.3.3.3 Periodic Procedures. In general, MesoNet activates periodic procedures only after a flow 
passes initial slow start. Periodic procedures that estimate throughput are always active during a 
flow’s transfer phase. MesoNet implements periodic procedures in a somewhat approximate 
form. Specifically, periodic procedures are invoked within a simulated access router only when 
an ACK or NAK has been received and provided that sufficient time has elapsed. Further, the 
timer is reset only after invoking the related procedures. Thus, MesoNet does not invoke periodic 
procedures on a precisely rigid schedule, as might be stimulated by a timer. Periodic procedures 
can be invoked regardless of whether an ACK or NAK is qualified to stimulate increase or 
decrease procedures for a flow. 
 
5.3.3.4 Timeout Procedures. MesoNet invokes timeout procedures within a simulated source 
when a flow’s RTO expires. A source’s RTO is reset within a simulated access router whenever 
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any ACK or NAK arrives for the source. Upon expiration of the RTO, a source selects the 
appropriate timeout procedures for the flow as a function of the source’s tcpType. 
 
5.4 Verifying Simulated Congestion Control Mechanisms 
To verify the behavior of congestion control mechanisms simulated within MesoNet, we defined 
a test configuration similar to that used in the Li, Leith and Shorten study [67] of congestion 
control mechanisms implemented in Linux. We also adopted parameters used in that study and 
then simulated similar scenarios and recorded temporal changes in the congestion window. 
Below, we give our simulated cwnd graphs and compare the behavior of our simulated 
congestion control mechanisms to findings reported by Li, Leith and Shorten. First, we describe 
the test configuration adopted to produce the reported cwnd graphs. 

We defined a dumbbell topology, shown in Fig. 5-6, similar to the dumbbell topology 
used by Li, Leith and Shorten. The topology in Fig. 5-6 is annotated with key parameter values 
used to generate the results presented below. The topology consists of two sources that attach to 
the same access router. Each source can transmit DTs to one of a pair of receivers that attach to 
the second access router in the topology. Li, Leith and Shorten place a dummynet router between 
the sources and receivers and use that router to control propagation delay, bottleneck speed and 
buffer provisioning on the network path between the sources and receivers. Our simulations use 
MesoNet facilities to control path characteristics. 
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Router
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Router
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Backbone
Router
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Source #1 Source #2 Receiver #1 Receiver #2
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Figure 5-6. Simulated Dumbbell Topology for MesoNet Verification Experiments 
   
Access Router #1, highlighted in red in Fig. 5-6, simulates the bottleneck bandwidth for 

the path. Here, the bottleneck speed is set to 21 p/ms (packets/millisecond), which amounts to 21 
p/ms x 1000 ms/sec x 12000 bits/packet = 252 million bits per second (Mbps), assuming 1500-
byte packets. This approximates a 250 Mbps bottleneck link used in the empirical study. Note 
that the sources, receivers and backbone routers are configured with speeds exceeding the 
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bottleneck access routers. The sources and receivers are capable of transmitting at 960 Mbps, 
which is close to 1 billion bits per second (Gbps). Similarly the backbone routers can transmit at 
984 Mbps. 

The propagation delay of the network path in Fig. 5-6 is controlled by the one-way 
propagation delay of the backbone link. Round-trip propagation delay will be twice the one-way 
propagation delay. For our simulations with the dumbbell topology we used three different one-
way delays (21 ms, 81 ms and 162 ms) to match the short (42 ms), medium (162 ms) and long 
(324 ms) round-trip propagation delays used by Li, Leith and Shorten.  

We configured MesoNet to provision buffers for each router sufficient to accommodate 
the bandwidth-delay product. MesoNet also includes a parameter that can adjust the number of 
provisioned buffers. Here, we reduce the buffers to be 20 % of the number required by the 
bandwidth-delay product. This matches the buffer provisioning used for several scenarios 
reported in the study by Li, Leith and Shorten. 

Given the topology and parameters from Fig. 5-6, we simulated congestion control 
mechanisms under a scenario lasting 1000 s, where one source begins sending data immediately 
and the second source delays (250 s) and then starts to send data. For each congestion control 
mechanism we use limited slow-start, with sstMAX = 100 and sstINT = 232/2.We repeat the scenario 
three times for each congestion control mechanism, varying the round-trip propagation delay 
(rtt) from short, to medium, to long with each repetition. We record and graph (on the y axis) the 
time-varying cwnd (in packets) for each scenario. The maximum value (in packets) of the y axis 
on each graph scales with rtt: 1200 at 42 ms, 4500 for 162 ms and 9000 for 324 ms. The x axis in 
all graphs is denominated in 100 ms units. All graphs also include the average overall cwnd 
when one flow is transmitting and when both flows are transmitting. When both flows are 
transmitting, each graph also displays the average cwnd for each flow.  
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Figure 5-7. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 42 ms) 

5.4.1 Standard TCP Congestion Control Model 
Fig. 5-7 graphs cwnd evolution for standard TCP congestion control under a short propagation 
delay. The graph shows the expected behavior of the TCP cwnd, which (after initial slow start 
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ends with a loss just after the cwnd passes 1100) oscillates in a saw-tooth pattern between a cwnd 
of 550 and 1050 (average about 800). The bandwidth-delay product is (42 ms x 21p/ms =) 882 
packets, so an average cwnd of 800 seems appropriate. After the second flow begins (at time 250 
s) it takes between 50 and 100 s for the cwnd of the two flows to converge to a similar value 
(average around 400 packets). Convergence to a similar cwnd means the two flows will receive 
fairly equal average throughputs. This property of convergence to fairness is a hallmark trait of 
TCP congestion control. 

The next scenario, displayed in Fig. 5-8, begins to show why many researchers believe 
standard TCP congestion control procedures are ill-suited to high-speed, long-delay 
environments. Here, the 162 ms round-trip propagation delay (rtt) suggests a cwnd of (162 ms x 
21p/ms =) 3402 packets. The first flow reaches (and then exceeds) that value during slow start, 
which ends with a loss (at cwnd = 4200) early in the flow. After the loss, TCP reduces the cwnd 
in half (to 2100) and then TCP enters its congestion avoidance regime. Increasing the cwnd with 
standard TCP congestion avoidance procedures requires about 150 s for the flow to reach its 
peak window. Thus, absent other activities, the single flow would oscillate in throughput over 
periods of about 150 s. 
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Figure 5-8. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 162 ms) 

 
Once the second flow commences, the cwnd of the two flows begin to converge; 

however, the lengthy propagation delay slows the increase in cwnd and the rate of convergence. 
In fact, the two flows in Fig. 5-8 have not fully converged even after 750 s. The situation 
becomes worse when rtt becomes even longer, as shown in Fig. 5-9. Further, increasing the 
network speed would increase the bandwidth-delay product and worsen the delay in recovering 
from packet losses and converging to fair throughputs. 
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Figure 5-9. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 324 ms) 

5.4.2 Behavior of BIC Congestion Control Model 
Next, we subject BIC congestion control to the same three scenarios under which we simulated 
standard TCP. The resulting cwnd evolutions are shown in Figs. 5-10 through 5-12. The graphs 
display the heartbeat-like pattern of BIC cwnd evolution, as seen in the empirical study by Li, 
Leith and Shorten. Note that BIC congestion avoidance shows small improvement in 
convergence time for scenarios with short and medium propagation delays. At the long 
propagation delay, BIC exhibits significantly less fairness in bandwidth allocation than standard 
TCP. These findings are consistent with findings by Li, Leith and Shorten. 
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Figure 5-10. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 42 ms) 
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Figure 5-11. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 162 ms) 
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Figure 5-12. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 324 ms) 

5.4.3 Behavior of CTCP Congestion Control Model 
The empirical study by Li, Leith and Shorten did not include CTCP, so in verifying the behavior 
of CTCP we must compare our simulations to results from a later empirical study by Leith, 
Andrew, Quetchenbach, Shorten and Lavi [66]. Unfortunately, the later study did not use the 
same parameters and scenarios used by Li, Leith and Shorten. For that reason, comparing our 
CTCP simulation results to empirical results is not quite as direct as for the other congestion 
control mechanisms. We can compare the pattern of cwnd evolutions between the simulations 
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and the empirical results of Leith, Andrew, Quetchenbach, Shorten and Lavi and we can 
compare their CTCP-related findings with the findings from our simulation. 

Figs. 5-13 through 5-15 show cwnd evolution for CTCP under our scenario with short, 
medium and long rtt. CTCP exhibits a distinctive pattern of cwnd evolution, which becomes 
evident once the second flow starts in Fig. 5-13 and 5-14. This pattern is also evident in one of 
the CTCP cwnd graphs shown by Leith, Andrew, Quetchenbach, Shorten and Lavi. They also 
report that the time taken by CTCP to recover from a loss, as well as the convergence time when 
a second flow begins, is similar to standard TCP. Further, they find that convergence time scales 
linearly with bandwidth-delay product. The MesoNet simulation of CTCP exhibits the same 
properties, as shown in the cwnd graphs below. 
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Figure 5-13. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 42 ms) 
 
Leith, Andrew, Quetchenbach, Shorten and Lavi report that CTCP exhibits similar rtt 

fairness to TCP Reno, but when buffers are smaller CTCP has slightly better rtt fairness. 
MesoNet simulations also show a similar fairness between CTCP and standard TCP, but CTCP 
had a slight edge in rtt fairness for the case of medium propagation delay (rtt = 162 ms). Leith, 
Andrew, Quetchenbach, Shorten and Lavi find that link utilizations can be low and 
responsiveness can be sluggish for CTCP. The potential sluggishness of CTCP responsiveness is 
also evident in Figs. 5-14 and 5-15. In Sec. 5.4.8, we report more about fairness, as well as link 
and buffer utilization, among all congestion control mechanisms that we simulated.  

5.4.4 Behavior of FAST Congestion Control Model 
The FAST congestion control algorithm includes –tuning as an option, which complicates the 
verification of the FAST simulation within MesoNet. Li, Leith and Shorten [67] report results for 
FAST with –tuning enabled. The designers of FAST indicate [60] that –tuning is no longer 
used routinely within FAST implementations. Instead, the designers suggest fixing F to a value 
suitable for expected network conditions. Of course, the designers recognize that fixing F is not 
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a general solution and list –tuning as an open issue. In some empirical studies, the designers of 
FAST set F = 200. We report simulation results for FAST under three different configurations: 
–tuning enabled (Figs. 5-16 through 5-18), F = 80 (Figs. 5-19 through 5-21) and F = 200 (Figs. 

5-22 through 5-24). 
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Figure 5-14. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 162 ms) 
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Figure 5-15. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 324 ms) 

 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 169 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 809 avg. cwnd = 725

avg. red  cwnd =  295
avg. blue cwnd =  430

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 809 avg. cwnd = 725

avg. red  cwnd =  295
avg. blue cwnd =  430

 
Figure 5-16. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( –tuning enabled, rtt = 42 
ms) 
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Figure 5-17. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( –tuning enabled, rtt = 162 
ms) 

 
Li, Leith and Shorten report two main findings regarding FAST with –tuning enabled. 

First, FAST can converge to fair bandwidth allocation and then diverge to unfair allocation. The 
MesoNet simulation shows this trait in Figs. 5-16 to 5-18. Second, when the network path has 
insufficient buffers to sustain F/2 queued packets per flow, then cwnd oscillates as FAST floods 
the buffers with too many packets, leading to substantial packet losses. The FAST designers 
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report this same tendency to oscillate when buffers are insufficient. The MesoNet simulation 
shows this oscillatory behavior in Fig. 5-16, for each flow prior to reaching equilibrium, which 
becomes possible once –tuning reduces F from its initial value (200) to 20. Fig. 5-22 also 
shows this oscillatory behavior for F = 200, which prevents either flow from ever achieving 
equilibrium. 
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Figure 5-18. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( –tuning enabled, rtt = 324 
ms) 
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Figure 5-19. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 80, rtt = 42 ms) 
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Li, Leith and Shorten also report that FAST has the fastest convergence time among the 

congestion control mechanisms compared. Of course, they note the issue of divergence must be 
taken into account. For all MesoNet simulations where FAST converges to equilibrium the 
convergence time is very fast. 
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Figure 5-20. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 80, rtt = 162 ms) 
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Figure 5-21. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 80, rtt = 324 ms) 
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Figure 5-22. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 200, rtt = 42 ms) 
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Figure 5-23. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 200, rtt = 162 ms) 

 
MesoNet simulations achieved closest convergence among cwnd for competing flows 

with F = 80, which was the value we determined as best for the simulated network conditions. 
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We simulated with F = 200 to match values used by the designers of FAST in some empirical 
studies. Where buffers were sufficient, MesoNet simulations also achieved close convergence 
with this larger F. 
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Figure 5-24. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows ( F = 200, rtt = 324 ms) 

5.4.5 Behavior of HSTCP Congestion Control Model 
The MesoNet simulation results for HSTCP, shown in Figs. 5-25 to 5-27, agree with results from 
the study by Li, Leith and Shorten. HSTCP flows converge to fairness, but this requires 
significant time, which increases with increasing rtt. 

5.4.6 Behavior of H-TCP Congestion Control Model 
Figs. 5-28 to 5-30 display the cwnd evolutions produced by the MesoNet simulation of H-TCP, 
which appear quite similar in shape to those reported in the empirical study. H-TCP flows in the 
simulation appear to converge slightly slower than those reported in the empirical study. 
Convergence times for simulated H-TCP are second fastest among the congestion control 
mechanisms simulated. This agrees with results from the study by Li, Leith and Shorten. 

5.4.7 Behavior of Scalable TCP Congestion Control Model 
MesoNet simulation results for Scalable TCP are shown in Figs. 5-31 to 5-33. For the three rtt 
values simulated, Scalable TCP did not converge to a fair allocation of bandwidth. Scalable TCP 
implements what amounts to a multiplicative-increase, multiplicative-decrease (MIMD) 
algorithm, which previous theoretical analysis [1] shows cannot guarantee convergence. Li, Leith 
and Shorten [67] also found that Scalable TCP either does not converge or converges very 
slowly. Scalable TCP flows did not converge to fair bandwidth allocation over the 10-minute 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 174 

duration of the tests used by Li, Leith and Shorten in their empirical study. This agrees with the 
MesoNet simulation results. 
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Figure 5-25. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 42 ms) 
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Figure 5-26. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 162 ms) 
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Figure 5-27. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 324 ms) 
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Figure 5-28. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 42 ms) 
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Figure 5-29. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 162 ms) 
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Figure 5-30. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 324 ms) 
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Figure 5-31. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 42 ms) 
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Figure 5-32. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 162 ms) 
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Figure 5-33. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 324 ms) 

5.4.8 Summary of Behavior of MesoNet Congestion Control Models 
In this section, we provide a summary of the comparative behavior of MesoNet simulations 
across all seven congestion control mechanisms, including the two extra FAST configurations. 
We consider three aspects of performance: link utilization, buffer utilization and fairness. In 
making our comparisons, we use average cwnd as a surrogate for average throughput. We limit 
our numerical analyses to two (rounded) decimal places, so we do not discuss smaller differences 
in performance among the congestion control mechanisms.  

Given a single path with a set of long-lived flows, an ideal congestion control mechanism 
would yield a situation where each flow has the same average cwnd and the sum of the average 
cwnd over all flows equals the bandwidth-delay product (BDP). In such a situation the link is 
fully utilized, buffers are empty and each flow receives fair (i.e., the same) bandwidth. While 
congestion control mechanisms are unlikely to be ideal, we can compare congestion control 
mechanisms by examining relative link and buffer utilizations and fairness.    

Table 5-9 (first row) displays the capacity (in packets) of the network path modeled by 
the dumbbell topology (Fig. 5-6) as a function of rtt. These figures define the throughput limits 
on a path, which caps the maximum link utilization. Once a path contains a sufficient number of 
packets, then some source will always be able to transmit. As an example, given rtt = 42, the 
path will hold 882 packets in aggregate. Average link utilization can be determined by summing 
the average cwnd over all flows on the path and dividing by the BDP. For example, from Fig. 5-7 
we see two TCP flows with average cwnd of 409 and 395 packets, respectively. The average link 
utilization can then be computed as (409 + 395)/882 = 0.91. 

In cases where the aggregate average cwnd exceeds the BDP, then the excess packets 
must be sitting in buffers on the path. Table 5-9 (second row) shows the buffer sizes (20% of 
BDP) as a function of rtt. We can estimate the buffer utilization on a path by subtracting the 
BDP from the aggregate average cwnd and then dividing the residual by the number of buffers 
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on the path. When the residual is < 0, buffers are empty. For example, Fig. 5-31 (rtt = 42 ms) 
shows that Scalable TCP leads to an aggregate average cwnd of (901 + 102 =) 1003 packets, 
giving a residual of (1003 – 882 =) 121 packets in buffers on the path. Thus, buffer utilization is 
(121/176 =) 0.69. In general, given several congestion control mechanisms that yield 100 % link 
utilization, we might prefer the one that leads to lowest buffer utilization. 

 
 

Table 5-9. Capacity (in Packets) of the Dumbbell Topology with Various Round-Trip Times 
 

  rtt = 42 ms rtt = 162 ms rtt = 324 ms

Bandwidth‐Delay Product (packets)  882 3402 6804

Buffers (packets)  176 680 1360

Buffers + Bandwidth‐Delay Product  1058 4082 8164

 
Among several congestion control mechanisms with high link utilization, we might also 

prefer the one allocating bandwidth most fairly. To measure fairness, we use Jain’s fairness 
index [64] but applied to cwnd rather than throughput. We use the following formulation. 
 
 

(41) 
 
 
 
 

Jain’s fairness index ranges between 0 and 1, with a higher value denoting better fairness. 
Table 5-10 gives link and buffer utilizations for each simulated congestion control 

mechanism as a function of rtt. Even at the shortest rtt (= 42 ms), several of the congestion 
control mechanisms fail to achieve full link utilization. For TCP and CTCP this results from slow 
recovery from packet losses. For FAST with –tuning low utilization arises from two factors: 
prior to reaching equilibrium F is too high, which leads to substantial packet losses, and after 
reaching equilibrium F is too low to fully utilize the link. F is too high for FAST with F = 200, 
which leads to packet losses and an oscillating cwnd. 

As rtt increases, all congestion control mechanisms except CTCP and standard TCP 
achieve full link utilization. (CTCP does achieve 100% at rtt = 162 ms, while maintaining an 
average of four buffered packets.) Among the congestion control mechanisms achieving full 
utilization, H-TCP, HSTCP and FAST ( F = 80) lead to relatively low buffer utilizations. BIC 
and Scalable TCP exhibit relatively high buffer utilizations. 

Table 5-11 shows Jain’s fairness index for the simulated congestion control mechanisms 
as a function of rtt. As expected, Scalable TCP shows substantial unfairness. The unfairness of 
BIC and HSTCP increases with rtt. Also as expected, FAST with –tuning leads to unfairness. 
Several congestion control mechanisms (CTCP, FAST with fixed F, and H-TCP) yield fairness 
across all values of rtt. 
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Table 5-10. Link and Buffer Utilizations for Simulated Congestion control Mechanisms 
 

  rtt = 42 ms  rtt = 162 ms rtt = 324 ms

  Link Util.  Buffer Util. Link Util. Buffer Util. Link Util.  Buffer Util.

TCP  0.91  0.00 0.89 0.00 0.89  0.00

BIC  1.00  0.45 1.00 0.51 1.00  0.63

CTCP  0.95  0.00 1.00 0.01 0.92  0.00

FAST   Tuning  0.82  0.00 1.00 0.44 1.00  0.21

FAST  F  = 80  1.00  0.90 1.00 0.21 1.00  0.08

FAST  F  = 200  0.92  0.00 1.00 0.53 1.00  0.29

HSTCP  0.99  0.00 1.00 0.17 1.00  0.28

H‐TCP  1.00  0.31 1.00 0.21 1.00  0.22

Scalable TCP  1.00  0.69 1.00 0.66 1.00  0.66

 
 
Table 5-11. Bandwidth Fairness (Jain’s Index) for Simulated Congestion Control Mechanisms 

 
  rtt = 42 ms rtt = 162 ms rtt = 324 ms 

TCP  1.00 0.96 1.00 

BIC  1.00 0.96 0.77 

CTCP  1.00 1.00 1.00 

FAST   Tuning  0.97 0.88 0.89 

FAST  F  = 80  1.00 1.00 1.00 

FAST  F  = 200  1.00 1.00 1.00 

HSTCP  1.00 0.95 0.85 

H‐TCP  1.00 1.00 0.99 

Scalable TCP  0.61 0.52 0.51 

 
As evident from our simulations, several of the proposed congestion control mechanisms 

approach ideal performance under the limited cases reported here. H-TCP, FAST and HSTCP 
give full link utilizations. H-TCP and HSTCP also tend to limit buffer utilization at full link 
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utilization. FAST limits buffer utilization under some circumstances. H-TCP and FAST with 
fixed F also show good fairness across values of rtt. How will the various congestion control 
mechanisms compare in a larger topology with varying network conditions? We explore this 
question in the next four chapters (6-9). 

 


