

NISTIR 7297-C

FS-TST 2.0: Forensic Software

Testing Support Tools
Code Review Report

January 2006

Paul E. Black
Information Technology Laboratory

National Institute of Standards And Technology
Gaithersburg, MD 20899

NIST
Technology Administration

U.S. Department of Commerce

Page ii of 28

Page iii of 28

Abstract

This NIST Internal Report deals with Release 2.0 of a software package, Forensic
Software Testing Support Tools (FS-TST 2.0), developed to aid the testing of disk
imaging tools typically used in forensic investigations. The package includes programs
that initialize disk drives, detect changes in disk content, and compare pairs of disks. This
Internal Report consists of three parts.

Part A, Test Plan, Test Design Specifications, and Test Case Specification, is a
companion document. It covers the planning, design, and specification of testing of FS-
TST 2.0. The setup of disk drives and the testing is to be performed in the Linux1
environment; however, some tests will require interaction with the MS-DOS operating
system.

Part B, Test Summary Report, is an additional companion document. It reports the result
of testing the FS-TST 2.0 package according to Part A. Two programs might have had
slightly more convenient behavior in erroneous cases, but no anomalies were found in
testing.

This document is Part C, Code Review Report. It covers the planning and specification of
reviewing all the source code in the package and reports the results of the code reviews.
Nothing was found in the code reviews that should cause invalid results, that is, that
should lead to an imaging tool with systematic errors being incorrectly passed as
adhering to the assertions.

The intended audience for this document should be familiar with the Linux operating
system, computer operation, and computer hardware components such as hard drives.

Keywords: Code review; computer forensic tool; disk imaging; software testing; testing
support tools; FS-TST.

Acknowledgement

The following people participated in the code reviews in addition to the author: Eric
Dalci (ED), James R. Lyle (JRL), Serban Gavrila (SG), Steve Mead (SM), and Kelsey
Rider (KR).

1 Certain trade names and company products are mentioned in the text or identified. In no
case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

Page iv of 28

Table of Contents

1 INTRODUCTION...1

2 SCOPE..1
2.1 Items to Be Verified..2
2.2 Summary of features to be verified ..3

2.2.1 Common features .. 3
2.2.2 Specific features.. 3

2.3 Transmittal of Items Reviewed ...4

3 ANOMALIES...6

4 VALIDATION METHODOLOGY...6
4.1 Assumptions ..7
4.2 Test and Review Approach ...7

5 Technical Background..8

6 References...9

7 Interpretation of Code Review Results..9
7.1 Code Review Results Summary Key..9
7.2 Summaries of First Review ...10
7.3 Summaries of Second and Third Reviews – Current Code..............................23

Appendix A Error Checklist for Code Review ..27
A.1 Acknowledgements..27
A.2 Error Checklist..28

Page 1 of 28

1 INTRODUCTION

The Computer Forensics Tool Testing (CFTT) project at the National Institute of
Standards and Technology (NIST), an agency of the United States Department of
Commerce, provides a measure of confidence in the software tools used in computer
forensic investigations. CFTT focuses on a class of tools called disk-imaging tools that
copy or “image” hard disk drives. Forensic Software Testing Support Tools version 2.0
(FS-TST) is a software package that supports the testing of disk imaging tools. FS-TST
includes 10 tools that perform hard disk initialization, faulty disk simulation, hard disk
comparisons, extraction of information from a hard disk, and copying of disks or disk
partitions.

These tools are required for testing disk imaging and software write-block tools. Being
of general utility, these tools will be included in the test plans for deleted file recovery
and other tools. This package of tools was originally written for the Microsoft MS-DOS
operating system. The current version has been ported to compile and run on Unix
systems, too. Since most of the tools need to deal with arcane details of the FAT file
system, there was a complete code review.

This document covers the planning and specification of reviewing all the source code in
the FS-TST package. It also reports the results of the code reviews.

A portion of this work was funded by the National Institute of Justice (NIJ) through an
interagency agreement with the NIST Office of Law Enforcement Standards.

2 SCOPE

This covers tools to test programs that deal with hard disk drives at the application level.
This does not deal directly with device drivers or other low-level hardware or software.
Although some internal checks are made, the tools assume the presence of a valid FAT
file system. The primary aim is to examine if the FS-TST tools correspond to their build
specifications, rather than a comprehensive examination of whether the tools, used
according to the test plan, adequately examine disk imaging tools. The secondary aim is
to examine if the code is written so it is likely to reveal any latent errors in the code or
any malformations in the file system. The code should err on the side of incorrectly
reporting problems, instead of incorrectly reporting that all is well.

The expected operating environment is an MS-DOS or Unix operating system. The disk
drives are FAT file systems.

In this Part C, the objects of examination are source code. This code is presumed to be
the origin of the executable code whose testing is documented in Parts A and B. The
compilation process is excluded. In plain English, we reviewed the source code for
correctness, we tested the object code for behavior, and we presumed that the compilation
process was faithful.

Page 2 of 28

2.1 Items to Be Verified
This document uses the Computer Science sense of some terms. The verb “test” means to
run a program. “Review” means to examine the source code of a program. “Validate”
means to test or review to gain confidence that the program will behave as needed.
Finally, “verify” means review to show that a program will satisfy its specification.2

There are several items to be reviewed. Each item is one source code file. All files,
except zbios.c and zbios.h, correspond to executable programs with the same name.
They can be grouped into four categories: programs to set something up, programs to
document a test, programs to measure the result of a test, and other utilities and programs.

Set up
1. diskwipe.c

Tag every sector of a hard disk with a unique pattern. Each sector has its location in
the first 26 bytes3. Remaining bytes are filled with a selected value.

2. corrupt.c
Change one byte of a hard disk.

Document
3. logcase.c

Write information about the test run, e.g. tester, date, and disk names, to a log file.
4. logsetup.c

Write details of the hard disk to a log file.
5. partab.c

Write details of the partition tables of a file system to a log file.

Measure
6. diskcmp.c

Compare two disks.
7. partcmp.c

Compare two partitions.
8. adjcmp.c

Compare two disks by partitions, allowing for cylinder alignment.

Utility
9. zbios.c

Common utility routines to read a disk, traverse a partition, etc. This is a library, not a
stand-alone program.

10. zbios.h
Common macros and values. This is not a stand-alone program.

2 Verification compares the program to what was requested: building the program right. Validation
compares the program to what was needed: building the right program. For reasons ranging from mistakes
to poor communication to changing needs, what was requested might not be the same as what is needed.
3 Some older documentation states that the LBA is written into an 11-character field, and the 25th byte (byte
number 24 counting from 0) is the null (end) byte. The current code writes a 12-character field (bytes 13-
24), and the null byte is the 26th byte (byte number 25).

Page 3 of 28

11. diskchg.c
Change or examine the content of any sector.

12. seccmp.c
Compare two sectors.

2.2 Summary of features to be verified
The features to be verified are explained in detail in FS-TST: Forensic Software Testing
Support Tools: Requirements, Design Notes and User Manual [FST-RDU-20],
particularly Sect. 2.

This section concisely describes what each program should do. Sect. 2.2.1 describes
requirements for common functionality shared by most of the programs. Sect. 2.2.2 lists
specific requirements for each program.

2.2.1 Common features
Most of the programs share common functionality. For example, most of them are
required to log descriptive information about any disk drives they use. Rather than
describe these common requirements with each program, they are described here once.

Every time a program that is required to log execution is executed, it must record names
and versions of source files, when compiled, when executed, command line, test case
identifier, etc. In addition, the program must have options to start a new log file or
append to an existing one and to print a summary of command line operands and options.

Each hard disk drive used by a program is described in the program log file. A program
required to log disks must record the type of BIOS access, the disk geometry, and, for
IDE disk drives, other available information.

A program required to log partition tables must record starting and ending addresses,
length, bootable flag, and partition type.

A program that compares a source disk, partition, or block of sectors to a similar
destination assumes the source and destination were initialized by diskwipe. The program
summarizes corresponding sectors (sectors compared, sectors matching, sectors differing,
and the total number of bytes that differ) and records size information, if the source and
destination are different sizes. If the destination is larger, it categorizes excess sectors as
zero fill, diskwipe style fill, and other, and records the first few sectors of each category.

Except as noted, all programs must report I/O errors. They must also report invalid
command line parameters or options.

2.2.2 Specific features
DISKWIPE
This program writes unique content to each disk sector. The first 26 (0-25) bytes of each
sector is a string with both the C/H/S and LBA address of the sector. The remaining bytes
are set to a specified fill byte value.

Page 4 of 28

CORRUPT
Corrupt changes a single byte of an image file.

ADJCMP
Adjcmp compares two disks where the partitions copied to the destination are adjusted so
that the copy is aligned on a cylinder boundary. It assigns each sector to a contiguous
block of sectors, called a chunk, records the location of each chuck, categorizes each
chunk, and allows the correspondence of source to destination chunks to be specified. For
destination chunks without corresponding source chunks, it categorizes the sectors of the
chunk as zero fill, diskwipe style fill, or other, and reports the first few sectors. It
summarizes information about the number and type of boot tracks, partitions, unallocated
chunks, and destination chunks without corresponding source chunks.

DISKCMP
Diskcmp compares two disks to evaluate the accuracy of a disk duplication operation.

PARTCMP
Partcmp compares two partitions to evaluate the accuracy of a partition duplication
operation.

LOGCASE
Logcase creates a log file with basic information about the test case.

LOGSETUP
Logsetup logs information about the setup of a source disk.

PARTAB
Partab prints the partition table for a hard drive.

DISKCHG
Diskchg sets up a hard disk to help test other support programs. Diskchg can set a single
byte to a given value, fill an entire sector with zero (0x00) bytes, or fill a sector in
diskwipe style. Diskchg can also be used to examine the contents of a given sector.

SECCMP
Seccmp compares two disk sectors. If the sectors are not diskwipe style filled or zero
filled, log any differences. Diskwipe style filled sectors or zero filled sectors are logged
but not compared.

2.3 Transmittal of Items Reviewed
Two versions of code were reviewed. The older source code was reviewed first. The
following transmittal is the newer, current code.

Page 5 of 28

Some files were “DOS” style, in which lines end with a “carriage return” character
(hexadecimal 0x0D), and some files were “Unix” style, in which lines did not end with a
carriage return. Although this difference may not be visible, it affects the SHA11 value.
 adjcmp.c Linux Version 1.4 Created 03/25/05
 size: 36,600 bytes [sic]
 SHA1: c0a9a8570d96903d090e53c9dd9630c6ce29afeb
 File has no “carriage return” characters
 corrupt.c Linux Version 1.2 Created 02/18/05
 size: 6142 bytes
 SHA1: 1dfbd8ea8368e2d81dbed91efc11989ec558f567
 File has no “carriage return” characters
 diskchg.c Linux Version 1.4 Created 03/15/05
 size: 22,665 bytes
 SHA1: 6724716b1cd3cc8681d974fb892fc55cdd87b5c9
 Every line ends with a “carriage return” character
 diskcmp.c Linux Version 1.2 Created 02/18/05
 size: 11,866 bytes
 SHA1: 0d4cb943a2fda059907d1a74b7372ce20366b86b
 Every line ends with a “carriage return” character
 diskwipe.c Linux Version 1.4 Created 03/18/05
 size: 8992 bytes
 SHA1: 78062f811075853d783b0744400b4d975b1941bf
 Every line ends with a “carriage return” character
 logcase.c Linux Version 1.2 Created 02/18/05
 size: 2909 bytes
 SHA1: 7dbda9fa9fc7c31db06967528e7d0fda96638005
 Every line ends with a “carriage return” character
 logsetup.c Linux Version 1.2 Created 02/18/05
 size: 2964 bytes
 SHA1: 4d49b67feb49dd81d2df8e4aa09a8576d245c42b
 Every line ends with a “carriage return” character
 partab.c Linux Version 1.4 Created 03/21/05
 size: 4909 bytes
 SHA1: 548eeec28250347afe2fc96800df94d70dd8b635
 Every line ends with a “carriage return” character
 partcmp.c Linux Version 1.3 Created 03/15/05
 size: 18,619 bytes
 SHA1: 248702ba1c619ce4c60f3e3e12cd0a1cbee355f9
 File has no “carriage return” characters
 seccmp.c Linux Version 1.3 Created 03/18/05
 size: 13,183 bytes
 SHA1: d2f7d2aebf7b7ff624f7069ec04873c794206049
 File has no “carriage return” characters
 zbios.c Linux Version 1.5 Created 03/21/05

1 The Secure Hash Algorithm (SHA1), developed by NIST, along with the NSA, for use with the Digital
Signature Standard (DSS) is specified in the Secure Hash Standard [SHS].

Page 6 of 28

 size: 25,803 bytes
 SHA1: 5e88a03d2212e3dea7320fc30adb6f44ab57a2d1
 File has no “carriage return” characters
 zbios.h Linux Version 1.1 Created 02/10/05
 size: 6923 bytes
 SHA1: 68b8d436a2fd41d539baa1c585c20c3168fcd108
 File has no “carriage return” characters

Supplier: Dr. James R. Lyle
 National Institute of Standards and Technology
 By email 14 April 2005
Address: james.lyle@nist.gov
 100 Bureau Dr.
 Gaithersburg, MD 20899

3 ANOMALIES
The reviewers found no anomalies in the final code review.

4 VALIDATION METHODOLOGY

The 10 tools in the package constitute almost 4,500 lines of C code. Most of the tools
need to deal with arcane details of the FAT file system to accomplish their functions. The
FS-TST package was originally written for the Microsoft MS-DOS operating system. The
current version has been ported to compile and run on Unix. The many changes to code
dealing with details of the FAT file system handling, the user interface, and other
functions of the tools motivated a complete retest of the package. To increase confidence
in the reliability of the code, there was also a complete code review.

The package was initially tested and the code reviewed soon after the porting to Unix.
Because of the many code changes motivated by the result of the tests and reviews, the
entire package was retested and reviewed again.

The FS-TST tools have features to test behavior to great precision. The tools have
additional analysis features to help track down unexpected behaviors in the test
procedures or a tool under test. In particular, diskwipe tags every sector with a unique
identifier based on its location (so-called “toe tagging”) and fills the rest of the sector
with a specified value. This allows other tools in the package to check with high
assurance that copied data ends up in the right place. If the data is not imaged as
expected, such tagging helps track down what happened. A less precise procedure, like
comparing the hash values of entire disks, would only establish that the contents are not
as expected.

mailto:james.lyle@nist.gov

Page 7 of 28

4.1 Assumptions
The code review assumes the libraries, compiler, operating system, hardware, etc. have
no pernicious flaws and are well-behaved. Considering the general lack of significant or
systematic flaws in those components and absence of errors found in the extensive
executions in testing phase, documented in Parts A and B, the assumption is justified.

The tools assume there is no subtle bit shifting within a sector or bit substitution across
sectors. Otherwise there may be a possibility that the sector “toe tagging” and filling
scheme might not be sufficient to detect that data is not in the right place or changed.

4.2 Test and Review Approach
No testing methodology can hope to be complete for programs of more than minimal
complexity. An extreme example would be a tool with a so-called “Trojan horse”, i.e. a
piece of code to perform a very unexpected function, say, incorrectly image a disk only if
the computer's date is Sunday, 6 April 2014. Code inspection can catch such problems.

Testing and review together are likely to find simple errors, but will they find complex,
subtle, or non-localized errors? Researchers have found support [DLP Hints] [Offutt]
[KWG Interact] for the “fault-coupling hypothesis”: tests for simple faults are likely to
find complex faults, too. Thus, there is support that checking for simple errors suffices.

Generally each program was reviewed separately, from the more fundamental programs
to the more independent. Diskwipe was reviewed first, since many of the other programs
depend on sectors being tagged in “diskwipe style” and since it used basic zbios.c
routines. Diskcmp was reviewed next, since it used additional zbios.c routines. Partab
was third, because it was the simplest use of the complex partition table access code.
Most reviewers attended these first reviews to learn about the code and to learn a
consistent review style. Routines in zbios.c and code in zbios.h were reviewed with the
first program that used them. Reviews were kept to about an hour or an hour and a half.

After the first, complete code review, many small changes were made to the code. Rather
than completely review all the code again, we used the Unix diff program to compare
the new code with the reviewed code and display lines that were changed. For the second
code review, just these changes were examined and justified.

The third code review examined string null termination concerns noted in the second
review. The programs use many string initializations like
 char log_name[NAME_LENGTH] = "cmplog.txt";
In traditional C, only the first 11 characters are initialized. In ANSI C, remaining
characters are initialized to zero (null). This review assumes ANSI C.

Page 8 of 28

5 Technical Background

Hard disk drives consist of one or more round, flat plates or disks. When there is more
than one disk, the disks are stacked on the same axis with a little space between them.
Information is stored on the surfaces of the disks. The information is written and read by
heads while the disks turn under them. A set of heads, one for each surface, is moved in
and out from the edge to center together. (Some disks have more than one set of heads,
spaced around the circumference, so all data can be accessed in less than one rotation.)

One head corresponds to one surface of one disk. As a disk turns, a stationary head traces
a ring-shaped region of the disk surface, called a track, which passes under it. The set of
tracks for all the heads at a particular radius from the axis form a hollow cylinder of
surfaces. Thus a cylinder corresponds to the distance of the heads from the axis of
rotation. For operational convenience, a track is divided into arcs. Each arc is called a
sector.

Any piece of data in the disk drive may be addressed by its cylinder (distance from the
center), head (surface), and sector (location around the disk) numbers. The three
coordinates, “cylinder, head, and sector”, are sometimes shortened to c/h/s. The number
of cylinders (possible discrete locations from the axis to the edge), heads (surfaces), and
sectors (per track) is called the geometry of a disk drive.

As disks increased in size, the maximum number of sectors per track exceeded software
capabilities. For these disks to work with older software, the disk drive electronics might
report a geometry different than the physical geometry. For instance, it might report twice
the number of heads and half the number of sectors per track. A request for an even
numbered head was translated into the second half of a track.

As disk drive capacity grew even more, even those translations were inadequate. The
electronics within disk drives also grew in complexity to include sophisticated
capabilities, such as caching, prefetching, and buffering. These changes increasingly
distort the relation between the c/h/s passed to a disk drive and how long the drive took to
read or write a sector. Newer drives put more sectors in tracks near the edge, which are
physically longer, than tracks closer to the center. Such differing numbers of sectors per
track cannot even be represented directly in the c/h/s paradigm. Increasingly, disk drive
capacity is simply reported as the total number of sectors, a Logical Block Address
(LBA), and the sectors are accessed sequentially. All mapping between the sector number
and the distance from the center (cylinder), surface (head), and position within the track
(sector) is left to the drive itself.

Software in the operating system, interfaces, and file system design limit the reported
sizes to 1024 cylinders, 16 heads, and 63 sectors. These maxima may be reported even
when a larger, correct LBA sector number is reported.

Page 9 of 28

6 References

[DITS] “Disk Imaging Tool Specification.” Version 3.1.6, National Institute of Standards
and Technology, October 2001.

[dACBP Prac] Jorge Rady de Almeida Jr., João Batista Camargo Jr., Bruno Abrantes
Basseto, and Sérgio Miranda Paz, “Best Practices in Code Inspection for Safety-Critical
Software”, IEEE Software, 20(3):56-63, May/June 2003.

[DLP Hints] Richard A. De Millo, Richard J. Lipton and Frederick G. Sayward, “Hints
on Test Data Selection: Help for the Practicing Programmer”, IEEE Computer, 11(4):34-
41, April 1978.

[IEEE Std 829] IEEE Std 829-1998, “Standard for Software Test Documentation,”
Institute of Electronic and Electrical Engineers, 1998.

[FST-RDU-20] “FS-TST: Forensic Software Testing Support Tools. Requirements,
Design Notes, and User Manual.” Version 2.0, National Institute of Standards and
Technology, September 2004.

[KWG Interact] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo, Jr.,
“Software Fault Interactions and Implications for Software Testing”, IEEE Transactions
on Software Engineering, 30(6):418-421, June 2004.

[Offutt] A. Jefferson Offutt, “Investigations of the Software Testing Coupling Effect”,
ACM Trans. on Software Engineering Methodology, 1(1):3-18, January 1992.

[SHS] “Secure Hash Standard (SHS)”, FIPS Publication 180, National Institute of
Standards and Technology, May 1993.

7 Interpretation of Code Review Results
This section summarizes of the actual results of the code reviews. Because of a mistake in
formatting the code for printing, long lines were wrapped, and lines numbers given here
may be larger than the actual line number in the code.

7.1 Code Review Results Summary Key

Table 7-1 describes each section of a code review report summary.

Table 7-1 Description of Code Review Report Summary

Heading Description
Code review number and name of software reviewed.
Case Summary Details of the code being reviewed.
Reviewers Name or initials of person(s) reviewing the code.

Page 10 of 28

Heading Description
Review Date Date(s) of the review.
Anomalies This part has one subsection for each file with anomalies,

that is, items that may be worthy of note. The file name is
given at the beginning of each section. Each subsection has
one or more notes.

Each note has the relevant line number(s) and the motivation
for the note. The relevant code may be included. There may
be a clarify comment. The last line of each note is in italic
and is the assessment of the impact on testing forensic tools.

A blank line separates notes.

Review Highlights This part has one subsection for each file reviewed. The file
name is given at the beginning of each section. Each
subsection has one or more notes.

Each note has the relevant line number(s) and the motivation
for the note. The relevant code may be included. There may
be a clarify comment.

A blank line separates notes.

Results A determination of whether the code reviewed should satisfy
its requirements.

7.2 Summaries of First Review

Code Review 1 – diskwipe and some related code from zbios
Case Summary Review diskwipe.c, zbios.h, and some functions in zbios.c

needed for diskwipe, lines 333-506: log_open(),
log_close(), log_disk(), and feedback()

diskwipe.c
 no version number; modified Aug 27 14:33 2004
zbios.h
 Version 3.1 Created 10/11/01 at 12:40:24
zbios.c
 Version 3.2 created 08/26/03 at 15:36:03

Reviewers PEB, ED, SG, SM, KR
Review Date 16 December 2004
Anomalies diskwipe.c

Line 161 improperly initialized variable: from
 should not cause invalid result

Lines 162 & 163 parameter ("AA") doesn't match format (%x)

Page 11 of 28

 should not cause invalid result

Lines 268 & 269 incorrect message if some errors occurred
 should not cause invalid result

zbios.c

Line 426 cylinder format should be %05, not %04
 should not cause invalid result

Review Highlights diskwipe.c

Lines 65 & 66 cryptic variable names: hpc and spt. Add
comment.

Line 68 variable set, but used only in unreachable code: b.

Line 74 constant (32256) should be in zbios.h and should be
derived, i.e., 512*63.

Line 84 possible divide by 0 (npc).

Lines 104 - 107 unreachable code: not_ok always 0. If the code
is changed so it is reachable, b may not be initialized (line 105).

Line 142 (and zbios.h line 64) length of name of drive should be
a macro in zbios.h.

Possible buffer overflows if users enter really long strings, e.g.,
lines 172, 190, 198, 238, and 242.

User can set multiple log files (e.g. lines 177, 179, and 191) and
there is only a warning (lines 225 - 227).

Line 205 user may enter negative number of heads.

Line 266 (or 271) main() should return status.

zbios.h

Line 70 field set, but not used: geometry_is_real.

Lines 159-162 macros expected near the beginning of the file.

Page 12 of 28

zbios.c

Line 344 for consistency, p[3] and p[4] should be commented.

Line 354 typo in comment: ... then use the[n] name ...

Lines 437 - 439 if the disk doesn't have 63 sectors, there will be
big problems. Check should be more visible (or removed). "63"
should be a macro in zbios.h.

Line 441 use macros: DRIVE_IS_IDE or DRIVE_IS_SCSI.

Line 494 possible divide by 0 (ns) if from == to.

Results Diskwipe should satisfy its requirements

Code Review 2 – rest of diskwipe-related code from zbios
Case Summary Review rest of functions in zbios.c needed for diskwipe, lines

64-101: print_rw_error() and mysync(), lines 131-261:
probe_serial_model(), lines 507-597: disk_write() and
disk_read(), and lines 636-679: open_disk()

zbios.c
 Version 3.2 created 08/26/03 at 15:36:03

Reviewers PEB, ED, SG, JRL, SM, KR
Review Date 20 December 2004
Anomalies zbios.c

Line 673 probe_serial_model() failure not handled. In event of
an error, field fd may be negative (e.g. line 156) which is "true".
 should not cause invalid result

Line 675 drive format should be %s, not %x.
 should not cause invalid result

Review Highlights zbios.c

Line 67 Use perror() instead of print_rw_error().

Line 68/80 No switch default.

Line 91 Use print_rw_error() instead of switch.
 EROFS not in print_rw_error()

Line 149 Allocate separate, more local buffers.

Lines 170-172 Use access macros from zbios.h for d.

Page 13 of 28

Lines 186-188 and 216-218 Use memset().

Line 204 Explain impact on testing, e.g., "could not get serial
number".

Lines 240-243 Use strncpy() instead of save/set
null/strcpy/restore.

Lines 254 and 257 Possible buffer overflow; use strncpy().

Lines 518 and 566 Repeated computation. Make C/H/S to LBA
conversion a macro.

Line 529 Formats should be %llu.

Line 536 Manifest constant. Use macro for 63*512.

Line 540 Typo. Start sentence with capital, i.e., "An ...

Line 577 Missing code. Print C/H/S (like line 529).

Lines 648-653 Unused variables, b, cylinders, heads, sectors,
and ec.

Line 673, and associated requirement #3 in [FST-RDU-20],
Sect. 2.1.2, may not be needed in a Unix environment.

Results Diskwipe should satisfy its requirements

Code Review 3 – diskcmp and related code from zbios
Case Summary Review diskcmp.c, zbios.h, and functions in zbios.c needed for

diskcmp, lines 263-332: create_range_list(),
add_to_range(), and print_range_list(), and lines 680-
704: lba_to_chs() and read_lba()

diskcmp.c
 no version number; modified Aug 27 14:34 2004
zbios.h
 Version 3.1 Created 10/11/01 at 12:40:24
zbios.c
 Version 3.2 created 08/26/03 at 15:36:03

Reviewers PEB, ED, SG, JRL, SM, KR
Review Date 6 January 2005
Anomalies diskcmp.c

Line 72 fossil code (-log name) in help message
 should not cause invalid result

Page 14 of 28

Lines 140 & 142 sscanf failure not checked
 should not cause invalid result

zbios.c

Line 270 malloc failure not checked
 should not cause invalid result

Review Highlights diskcmp.c

Line 67, etc. options follow operands; not typical style

Lines 79, 80, 117, & 119 hard coded string lengths (12 and 80)

Possible buffer overflow in strcpy if user enters really long
strings, e.g., lines 145, 146, 171, & 179. Use strncpy.

Lines 84 & 85 disk_control_ptr type defined, but not used

Line 93 &ff byte_diffs may overflow?

Lines 148 - 158 old, commented out code. Remove.

Line 243 &ff source read error masks destination read error

Lines 260, 321, & 325 manifest constant (512). Should be in
zbios.h.

Lines 323, 328, & 332 manifest constant (30). Should be in
zbios.h and commented.

Line 326 manifest constant (480). Should be derived and
commented.

zbios.c

Common code in lines 296-298 and 302-304.

add_to_range assumes offsets are increasing. Add comment.

Line 692 comment is misleading: read_lba reads an entire track.
Change to "Read the track containing sector "lba" of ..."

Line 701 Comment why sector is set to 1.

Page 15 of 28

Does read_lba really read the sector desired? (And not, say,
sector 1of each track instead?)
 Yes. read_lba reads an entire track along with that sector, but
 then sets b to the area of the buffer that has the sector. Tests
 confirm that it reads the right sector.

read_lba converts lba to CHS, then calls disk_read, which
converts it, back to lba. It might be clearer to use CHS directly?

Results Diskcmp should satisfy its requirements

Code Review 4 – partab and related code from zbios
Case Summary Review partab.c, zbios.h, and functions in zbios.c needed for

partab, lines 705-907: get_sub_part(), get_partition_
table(), and print_partition_table()

partab.c
 Version 3.1 Created 10/11/01 at 12:40:24

Reviewers PEB, ED, SG, SM
Review Date 12 January 2005
Anomalies zbios.c

Lines 103-130 function trim() unused - probably doesn't work
 should not cause invalid result

Line 723 malloc() return not checked
 should not cause invalid result

Lines 756 & 807 Is type 0x0F an extended partition?
 should not cause invalid result

Lines 726-748 and 786-798 casts to off_t in one but not in other
 should not cause invalid result

Review Highlights partab.c

Lines 80, 89, & 90 hard coded string lengths (12 and 80)

Possible buffer overflow in strcpy if user enters really long
strings, e.g., lines 101, 115, & 120. Use strncpy.

Line 81 comment what log_ means

Line 86 disk_control_ptr type defined, but not used

Lines 94 and 102-105 old, commented out code. Remove.

Line 128 move closer to line 136, where status is used

Page 16 of 28

zbios.c

Lines 722 & 781 common, manifest constants (510 and
0xAA55). Comment, make into macros or function (e.g.,
is_partition_table()).

Lines 726-748 and 786-798 (unpack buffer to pte_rec) common
code

Line 785 assign to status unused. Check status or cast to void.

Lines 755, 756, 806, 807 use pt[i].type instead of re-accessing
buffer

Line 723 poor variable name. If you're using or changing this
code, you really must mind your p's and q's.
 Suggestion: rename 'q' to 'head' or 'listHead'.

Line 853 poor variable name.
 Suggestion: rename 'j' to be 'partitionNo' or 'partNum'.

Lines 864 & 884 redundant code: type_code != 'X' Remove.

Lines 866-874 and 885-895 (print partition) common code

Results Partab should satisfy its requirements

Code Review 5 – corrupt
Case Summary Review corrupt.c

corrupt.c
 Version 3.1 Created 10/11/01 at 12:40:26

Reviewers SM, JRL, SG
Review Date 21 January 2005
Anomalies No anomalies found
Review Highlights corrupt.c

Line 104 potential overflow, if more than 79 character comment

Lines 119/120 comment on which operand has the file name
does not match the code (p[4] vs. p[3])

Lines 120 and 122 the error code from a failed open() is not
printed
 Suggestion: use perror() or something

Page 17 of 28

Lines 160, etc. if an incorrect offset is entered (3535g), are there
 any checks?
Answer: both the command line and the value used by the
program are logged, so we can see it.

Line 155 error printed to stdout. Should go to stderr?

Results Corrupt should satisfy its requirements

Code Review 6 – logcase
Case Summary Review logcase.c

logcase.c
 Version 3.1 Created 10/11/01 at 12:40:26

Reviewers SM, JRL, SG
Review Date 21 January 2005
Anomalies No anomalies found
Review Highlights logcase.c

Line 78 Code allows for missing (or null) media (p[6] length >
0), but help and number of operands check require it. Fossil
code?

Results Logcase should satisfy its requirements

Code Review 7 – logsetup
Case Summary Review logsetup.c

logsetup.c
 Version 3.1 Created 10/11/01 at 12:40:26

Reviewers SM, JRL, SG
Review Date 21 January 2005
Anomalies No anomalies found
Review Highlights logsetup.c

No validation of user input (disk, host, operator, OS, etc.). No
suggestion.

Line 70 no check for fopen() failure.

Lines 64 and 75 Program requires 5 or more operands, but only
logs the first 5. Also documentation and usage statement (line
48) refer to exactly 4.
 Suggestion: change line 64 to "if (np != 4)" and remove option
printing (line 75). Or change documentation, help message, and
log all options.

Results Logsetup should satisfy its requirements

Page 18 of 28

Code Review 8 – partcmp
Case Summary Review partcmp.c

partcmp.c
 Version 3.1 Created 10/11/01 at 12:40:25

Reviewers PEB, ED, KR
Review Date 21 January 2005
Anomalies partcmp.c

Line 122 type 0x0F is an extended partition type
 may compare the wrong partitions

Line 480 no check for error reading destination
 may incorrectly classify excess destination sectors

Review Highlights partcmp.c

Line 175 no check for scanf failure
 Also: second % is useless

Lines 222, 223, and 280 hard coded string lengths (12 and 80)

Possible buffer overflow in strcpy if user enters really long
strings, e.g., lines 330, 337, 344, and 345. Use strncpy.

Line 230 comment that "static" is needed to run in some
environments

Line 260 log_diffs cannot be set true
 Could be a problem if the code breaks, then someone enables
it for diagnostics. Suggestion: remove log_diffs and all code
that is dead because of it. At least add a comment.

Line 274 z_r could be zf_r (zero-filled range list) for consistency

Lines 299, 301, 320, and 321 no check for sscanf failure

Lines 394 and 395 fill bytes not logged

Line 338 report the unknown operand, to help the user

Line 423 no distinction between source and destination error

Line 428, etc. unclear whether 1 means success or failure

Line 464 use %llu for dst_n

Page 19 of 28

Line 492 manifest constant (30). Suggestion: make it a macro in
zbios.h.

Lines 478-511 common code with diskcmp.

Results Partcmp should satisfy its requirements

Code Review 9 – diskchg
Case Summary Review diskchg

diskchg.c
 Version 3.1 Created 10/11/01 at 12:40:26

Reviewers SM, JRL, SG
Review Date 25 January 2005
Anomalies No anomalies found
Review Highlights diskchg.c

Lines 97-101 use perror() instead

Lines 117-122 dead code: rw_err cannot be negative, possibly a
fossil?

Lines 235 and 240 Confusing code: decode_disk_addr() called
twice.
 Suggestion: comment that the first call decodes WHICH
sector on the disk is written and the second call decodes WHAT
is to be written there (that is, the sector the content says it came
from).

Line 335, 376, 471 etc. possible overflow. use strncpy to fill the
log_name

Line 339 lba is an inappropriate variable name, as it is an offset

Line 495 manifest constant (512). #Define it?

Results Diskchg should satisfy its requirements

Code Review 10 – adjcmp
Case Summary Review adjcmp.c

adjcmp.c
 Version 3.1 Created 10/11/01 at 12:40:24

Reviewers PEB, ED, KR
Review Date 25 & 27 January 2005
Anomalies adjcmp.c

Line 655 possible overflow: min should be off_t and initialize to

Page 20 of 28

MAX_OFF_T
 may give incorrect results for very big disks

Lines 734 & 758 possible array overrun
 may give incorrect results for disks with more than about 24
regions

Review Highlights adjcmp.c

Duplicate code (lines 147-261): refactor scan_region() and use
in diskcmp.c and partcmp.c.

Line 194 dead code
 should report read error before exiting

Duplicate code (lines 296-369): refactor and use in diskcmp.c
and partcmp.c.

Lines 319 and 326 error returned, but not used (line 572)

Line 319 source read error masks destination read error

Line 328, etc. manifest constants 512, 30, 480

Line 398 error returned, but not used (line 998)

Lines 409, etc. poor variable names, suggestions:
 nm - matchingSectors
 uml - dml (destination match list)
 ml - sml (source match list)
 num - unmatchedDestRegions

Lines 415 and 416 possible array overrun. Manifest constant
(50). Is it related to manifest constant (25) in lines 808 and 816?

Line 433 misspelled "chunk"

Line 445 if source has fewer regions, dest 0 printed several times
 Suggestion: note which source sectors are not matched (-2?).
 Related: line 497 no way to say source doesn't match any dest

Line 454 indicate that default is No

Lines 455, 477, and 497 possible array overflow
 use %10s

Lines 465 and 496 confusing prompt. Suggestion:

Page 21 of 28

 Enter matching destination region (or -1 to list)

Line 478 scanf()/while(){...scanf()} cleaner as
 for(;;){scanf(); if ... break; ...}

Lines 477 and 497 possible array overrun: no check for valid
destination region

Lines 480 and 482 confusing output. Suggestion:
Assigned/unassigned or Free/matched

Line 504 confusing output. Say that it is reassigned.

Lines 617-625 fossil code

Line 647 misleading comment: "Find the lowest partition ..."

Lines 664 and 684 use shared code to check if partition is
extended

Lines 686 - 690 does this work for 3(?) or more extended
partitions?
 yes

Line 826 fossil code

Lines 838 & 840 no check for scanf failure of fill characters

Lines 855 & 856 fill characters should be logged

Lines 842, 843, 868, and 876 possible buffer overflow

Lines 844 - 854 fossil code

Line 877 print invalid operand so user knows which it is

Line 883 unneeded code

Line 881 return 1 in case of an error (e.g., line 867)

Line 902 partition numbers should be logged
 not useful

Lines 907 and 958 lseek or read failure is reported as no
partition table

Page 22 of 28

Line 916 use %llu instead of %ld (and widen fields?)
Results Adjcmp should satisfy its requirements

Code Review 11 – seccmp
Case Summary Review seccmp.c

seccmp.c
 Version 3.1 Created 10/11/01 at 12:40:25

Reviewers PEB, ED, KR
Review Date 28 January 2005
Anomalies seccmp.c

Lines 149, 150, 156, and 157 printing sector buffer with %s
format
 may print garbage if sector not initialized diskwipe style

Review Highlights seccmp.c

Lines 49 - 207 Share scan_region() or other code from adjcmp.c
instead of having it in-line here.

Line 88 source read error masks dest read error

Lines 105, 106, 109, etc. *different* manifest constant (26)

Lines 105/118 and 106/138 different "characteristic" bytes

Lines 127 - 131 just loop through whole sector to judge if zero-
filled

Line 172 separator too short. Code should be 8+...

Lines 234, 237, 245, and 246 static string buffers

Lines 259, 260, 286, and 293 possible buffer overflow

Line 250 add comment: "needed for DOS environment"

Line 253 should be np < 7
 reviewer error - code is correct

Command line operands 5 and 7 (src and dst fill) are never used

Lines 261 - 268 fossil code

Lines 302 and 303 no check for scanf failure

Page 23 of 28

Line 313 return 1 to indicate error

Line 315 not needed

Lines 321 and 325 no check for open_disk failure

Line 323 time stamp in wrong place?

Lines 339 and 344 improve prompt: "... or ^D to exit"

Line 340 no check for scanf failure

Results Seccmp should satisfy its requirements

7.3 Summaries of Second and Third Reviews – Current Code

The third review assumes ANSI C.

Code Review 1 – adjcmp
Case Summary Review adjcmp.c

 Linux Version 1.4 Created 03/25/05
against
 Version 3.1 created 10/11/01

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights line 426 possible buffer overflow

 scanf ("%s", ans);

lines 435, 448, 853, 861, 902, 910 binary mega- is Mi, so BMB
may be better as MiB (see http://physics.nist.gov/cuu/
Units/binary.html)
 printf ("%2d %c from %llu to %llu len=%llu
%8.2fMB %8.2fBMB\n",

lines 778 and 780 target of %x should be unsigned int, not int
 sscanf (p[5],"%2x",&is_fill);

Results Adjcmp should satisfy its requirements

Code Review 2 – corrupt
Case Summary Review corrupt.c

 Linux Version 1.2 Created 02/18/05
against
 Version 3.1 created 10/11/01

Reviewers PEB

http://physics.nist.gov/cuu/

Page 24 of 28

Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights No problems found
Results Corrupt should satisfy its requirements

Code Review 3 – diskchg
Case Summary Review diskchg.c

 Linux Version 1.4 Created 03/15/05
against
 Version 3.1 created 10/11/01

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights lines 401 and 419 target of %x should be unsigned int, not int

 sscanf (p[i],"%x",&new_char_in);
Results Diskchg should satisfy its requirements

Code Review 4 – diskcmp
Case Summary Review diskcmp.c

 Linux Version 1.2 Created 02/18/05
against
 no version number in code; modified Aug 27 14:34 2004

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights lines 133 and 134 string might not be null terminated

 strncpy(src_drive, p[4], NAME_LENGTH - 1);
Results Diskcmp should satisfy its requirements

Code Review 5 – diskwipe
Case Summary Review diskwipe.c

 Linux Version 1.4 Created 03/18/05
against
 no version number in code; modified Aug 27 14:33 2004

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights lines 40 - 42 comments are wrong

 bytes 0-13 C/H/S address of the sector
 byte 14 blank character
 bytes 15-24 LBA address of the sector
should be

Page 25 of 28

 bytes 0-11 C/H/S address of the sector
 byte 12 blank character
 bytes 13-24 LBA address of the sector
vide
 sprintf ((char *)(&(d->buffer[sector-1][0])),
 "%05llu/%03llu/%02llu %012llu", cylinder, head, sector,
 s);

line 214 possible buffer overflow
 scanf("%s", ans);

Results Diskwipe should satisfy its requirements

Code Review 6 – logcase
Case Summary Review logcase.c

 Linux Version 1.2 Created 02/18/05
against
 Version 3.1 created 10/11/01

Reviewers PEB
Review Date 29 April 2005
Anomalies No anomalies found
Review Highlights No problems found
Results Logcase should satisfy its requirements

Code Review 7 – logsetup
Case Summary Review logsetup.c

 Linux Version 1.2 Created 02/18/05
against
 Version 3.1 created 10/11/01

Reviewers PEB
Review Date 29 April 2005
Anomalies No anomalies found
Review Highlights No problems found
Results Logsetup should satisfy its requirements

Code Review 8 – partab
Case Summary Review partab.c

 Linux Version 1.4 Created 03/21/05
against
 Version 3.1 Created 10/11/01

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found

Page 26 of 28

Review Highlights line 107 possible buffer overflow
 sprintf (log_name, “%s”,p[i]);

Results Partab should satisfy its requirements

Code Review 9 – partcmp
Case Summary Review partcmp.c

 Linux Version 1.3 Created 03/15/05
against
 Version 3.1 Created 10/11/01

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights lines 275 and 277 target of %x should be unsigned int, not int

 sscanf (p[5],"%2x",&fill_char);

The original coder says that lines 388 and 389 were returned to
their original, working forms.

Results Partcmp should satisfy its requirements

Code Review 10 – seccmp
Case Summary Review seccmp.c

 Linux Version 1.3 Created 03/18/05
against
 Version 3.1 Created 10/11/01

Reviewers PEB
Review Dates 29 April 2005 and 19 January 2006
Anomalies No anomalies found
Review Highlights line 91 wrong code - fault if src read ok, but dst read error

 if (src_status || dst_status) return src_status;
Results Seccmp should satisfy its requirements

Code Review 11 – zbios
Case Summary Review zbios.c

 Linux Version 1.5 Created 03/21/05
against
 Version 3.2 created 08/26/03

Reviewers PEB
Review Date 29 April 2005
Anomalies No anomalies found
Review Highlights lines 679/680 and 720/721 manifest constants (use is_extended

macro)
 if ((mbr->pe[i].type_code == 0x05) ||
 (mbr->pe[i].type_code == 0x0F)

Page 27 of 28

The original coder says that the change from absolute byte offset
to mbr struct access returned the code to its original, working
form.

Results Zbios should satisfy its requirements

Code Review 12 – zbios.h
Case Summary Review zbios.h

 Linux Version 1.1 Created 02/10/05
against
 Version 3.1 Created 10/11/01

Reviewers PEB
Review Date 29 April 2005
Anomalies No anomalies found
Review Highlights line 56 slightly safer to put parentheses around operand, e.g.,

 #define is_extended(t) (((t) == 0x05) || ((t) == 0x0F))
Results Zbios.h should satisfy its requirements

Appendix A Error Checklist for Code Review

A.1 Acknowledgements
Ideas for checklist questions came from the following sources.

John T. Baldwin, An Abbreviated C++ Code Inspection Checklist, Oct 1992,
www.literateprogramming.com/Baldwin-inspect.pdf, accessed 19 May 2004.
Jorge Rady de Almeida Jr., João Batista Camargo Jr., Bruno Abrantes Basseto, and
Sérgio Miranda Paz, Best Practices in Code Inspection for Safety-Critical Software,
IEEE Software, 20(3):56-63, May/June 2003.
Java Code Inspection Checklist, www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/
literatur/L06-1, accessed 20 May 2004.
John Noll, Code Inspection Checklist, Jan 2004, www.cse.scu.edu/~jnoll/286/projects/
checklist.html, accessed 19 May 2004.

http://www.literateprogramming.com/Baldwin-inspect.pdf
http://www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/�literatur/�L06-1
http://www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/�literatur/�L06-1
http://www.cse.scu.edu/~jnoll/286/projects/�checklist.html
http://www.cse.scu.edu/~jnoll/286/projects/�checklist.html

Page 28 of 28

A.2 Error Checklist
Review Date ____________________ Reviewer _____________________________

Name of Code (function or file) __

1 Data & Variables

1.1 Possible uninitialized variable? No

1.2 Possible off-by-1 error in array indexing? No

1.3 Possible array access out of bounds (or buffer overflow)?
No

1.4 Can a string not be null-terminated? No

2 Calls & Returns

2.1 Wrong parameter order or type across call or return? No

2.2 Parameters don’t match format in *printf() or *scanf()? No

2.3 Returned structures on stack? No

2.4 Error return from function not checked? No

3 Control Flow

3.1 Switch case without break (or return)? No

3.2 Switch without default? No

3.3 Possible infinite loop? No

3.4 Incorrect comparison or Boolean operators (eg & vs. &&)?
No

4 Files

4.1 Possible reuse of temporary or working files? No

Describe the location and nature of possible errors.

	INTRODUCTION
	SCOPE
	Items to Be Verified
	Summary of features to be verified
	Common features
	Specific features

	Transmittal of Items Reviewed

	ANOMALIES
	VALIDATION METHODOLOGY
	Assumptions
	Test and Review Approach

	Technical Background
	References
	Interpretation of Code Review Results
	Code Review Results Summary Key
	Summaries of First Review
	Summaries of Second and Third Reviews – Current Code

	Appendix A Error Checklist for Code Review
	A.1 Acknowledgements
	A.2 Error Checklist

