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Abstract Active Network technology envisions deployment of virtual execution environ-
ments within network elements, so that nonhomogeneous processing can be ap-
plied to network traffic. For management purposes, each node must have a
meaningful understanding of resource requirements - in terms of bandwidth,
memory, and processing. To express the processing requirements in a platform-
independent manner, we are developing a model of CPU time usage, which comes
in two parts: a node model and an application model. In order to generate in-
stances of the model, one needs to gather some metrics relative to the platform,
that is, to calibrate a node. We have investigated what factors this process of cali-
bration should account for, and especially how background load on a node affects
our ability to obtain accurate calibrations for the CPU time used by node oper-
ating system calls and by virtual execution environments. We have shown that
a background load, either computation intensive or input/output intensive, has
little influence on the calibration. On the contrary, a memory consuming back-
ground load introduces an overhead in some measurements. The paper draws the
conclusion that the calibration of a node can be done whatever the background
load, provided that the memory consuming loads can be suppressed if necessary.

1. INTRODUCTION

Active Network technology envisions deployment of virtual execution en-
vironments within network elements, such as switches and routers, so that
nonhomogeneous processing can be applied to network traffic associated with
services, flows, or even individual packets. To use such a technology safely and
efficiently, individual nodes must provide mechanisms to manage resources as-
sociated with specific network traffic. In order to provide such management
mechanisms, each node must have a meaningful understanding of resource re-
quirements for each active application. In Active Network nodes, resource
requirements typically come in three categories: bandwidth, memory, and pro-
cessing. Well-accepted metrics exist for expressing bandwidth (bits per second)
and memory (bytes) in units independent of the capabilities of particular nodes.
Unfortunately, no well-accepted metric exists for expressing processing (i.e.,
CPU time) requirements in a platform-independent form. To address this prob-
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lem, we are developing a model of CPU time usage for an active application.
The model consists of two parts: a node model and an application model. The
node model represents the capabilities of a specific node with respect to ele-
ments likely to affect the performance of applications. The application model
represents CPU time requirements in terms of elements contained within the
node model. This paper investigates a method to calibrate Active Network
nodes in order to generate instances of the node model. Specifically, the paper
assesses the degree to which background load on a node affects our ability to
obtain accurate calibrations for the CPU time used by node operating system
calls (e.g., Linux system calls) and by execution environments (e.g., Java Virtual
Machines).

We have shown that the presence of a computationally intensive competing
workload does not affect significantly the calibration of system calls or exe-
cution environments on active network nodes. Our paper also shows that the
presence of a competing workload of input/output intensive processes does not
affect significantly the calibration of system calls or execution environments.
We show as well that a memory consuming background load can have a no-
ticeable influence on the calibration of some system calls and the execution
environment. In this paper we describe and quantify this influence.

The paper is organized into four main sections. We begin by describing
the context of the study: in Section 2 we consider the sources of variability in
CPU time usage for an Active Network node. To the degree feasible any model
proposed must account for these sources of variability. In Section 3, we describe
the general outlines of a model to represent CPU time usage on an Active
Network node. The model is described only in sufficient detail to motivate
the need for node calibration. Then in Section 4, we describe an approach to
calibrate the system calls in a node operating system. We give some results
from calibrating Linux system calls, and we specifically address the influence
of background load on the calibration measurements. In Section 5, we describe
an approach to calibrate virtual execution environments running on a node
operating system. We give some results from calibrating ANTS (Java virtual
environment), and we specifically address the influence of background load on
the calibration measurements. Section 6 discusses the results we obtained.

2. SOURCES OF VARIABILITY IN CPU TIME USAGE
IN AN ACTIVE NETWORK NODE

Any reasonable metric for an application’s CPU time requirements must
account for the major sources of variability affecting the application. In this
Section we identify and discuss the major sources of variability likely to affect
the CPU time requirements of an active application. A proposed architecture
for an Active Network node (Calvert, 1998) identifies several components and
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the relationships among them. Figure 1 gives a conceptual overview of the
major components and relationships.
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Figure 1 Architecture of a Active Network Node

The components can be viewed as four layers: the hardware, the node op-
erating system (Node OS) and interface, the execution environment (EE), and
the active application (AA). Each EE provides a virtual execution environment
(similar for example to a Java Virtual Machine, Lindholm and Yelling, 1997)
in which AAs can execute. Several EEs have been defined and implemented
within the Active Networks research community (e.g., see Wetherall et al.,
1999, Alexander et al., 1997, Schwartz et al., 1999, Bhattacharjee et al., 1997,
and Mosberger and Perterson, 1997). In addition, several implementations of
a Node OS are being developed (e.g., see Kaashoek and et al., 1997, Decasper
et al., 1999, and Ford et al., 1997). To enable any EE to run over any imple-
mentation of a Node OS, a standard application-programming interface, in the
form of system calls, is defined within a separate Node OS specification, in
Peterson (ed.), 1999.

Our analysis of this model and of real systems, revealed the main sources of
variability affecting the CPU time requirements of an AA. In the hardware layer,
the main factors that influence the execution time of an application include:
the frequency of the processor, the type of processor (e.g., Pentium, Pentium
II, K6, Sparc, and so on), the amount of memory available on the host, the
speed of the different buses (e.g., memory, I/O, and system), the technology of
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the persistent storage (SCSI or IDE hard drive, for instance) - but only if the
application makes I/O accesses, and the type of network card (e.g., 10 or 100
Mbps Ethernet). Within the node operating system (OS) and node OS interface
layer, the main sources of variability include: the performance of the device
drivers, the performance in managing processes and memory, and the nature and
performance of the system calls provided by the operating system. In the case
of networking system calls, performance of reads and writes also vary based on
the specific protocol stacks that are buried beneath the system calls, as well as
the implementation of those protocols. Within the EE layer, performance can
be affected by the mapping between the EE system calls and the OS system calls
(a mapping usually defined by libraries), as well as the compiler and options
used to compile the EE. For example for a Linux system, if the EE uses the
Java Virtual Machine (JVM), then we must consider the performance of the C
library and the results from the C compiler used to compile the JVM. Finally,
the execution of a specific AA can go through many paths in the code of the
program. The path of execution taken can depend on many things, such as the
state of the node (e.g., whether data is cached or not), the data carried (e.g., the
length of the data to be processed), and even the state of other nodes (e.g., in an
active multicast application, an intermediate node creates and sends as many
new packets as the number of subscribed nodes). This paper does not address
the modeling of an AA (which is described in Galtier et al., 2000), but rather
focuses on estimating the performance of the lower layers (hardware, Node OS,
and EE).

3. GENERAL OUTLINE OF A MODEL FOR ACTIVE
NETWORK NODES AND APPLICATIONS

We have defined a model that represents CPU time usage of AAs as a function
of the CPU time used in Node OS system calls and in a specific EE between
Node OS system calls. An AA transaction enters and exits a state-transition
graph at an idle state (S0). Between entry and exit, the AA executes a series
of system calls (states S1 through Sm), also executing within an EE between
each system call. The fundamental model views the execution of each AA
transaction as a set of transitions in the graph, where the probability of making
a specific transition is driven by the AA logic, and where the time taken during
each transition is a function of the time spent in the source system call, and
a function of the time spent in the EE during the transition between system
calls. The projected CPU time used by a transaction is then the sum of all the
transition times.

The AA model can be represented as a vector of system calls and a matrix
of transitions. By representing an AA as a function of Node OS system call
performance and EE performance on a node, we expect to scale AA models
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into terms meaningful for specific nodes and for a specific EE on the node. We
define two transformations: (1) node-to-reference (NR) and (2) reference-to-
node (RN). Prior to transferring an AA model between two nodes, the model
is subjected to an NR transform. The model, with its CPU time requirements
expressed in terms of a reference node, is then transmitted across the network.
Upon arrival at the next node, the model is subjected to an RN transform.
The combination of these two transforms will scale the CPU times within an
application model from a form understood on one node into a form understood
on another. This paper investigates how the calibration of system calls and EEs
might be accomplished, and considers how uncontrollable background loads
might affect calibration measurements.

4. CALIBRATING A NODE OPERATING SYSTEM

We reports the results from calibrating the CPU time used by 13 system calls
on two different nodes, node A and node B, whose characteristics are given
in Table 1 below. We selected these 13 system calls because they are the set
used by the active application ping. They are representative of the calls that
any Active Application (AA) would make, because the active ping application
performs the very basic operations of an AA. In ping, the active packet goes
through all the network layers of the node, accesses the information available at
the node, accesses the routing table of the node, sometimes changes itself (when
going back toward the source) or forwards itself to the next hop. Every AA
is likely to perform these operations, and therefore to invoke the same system
calls we have measured.

node A node B

CPU pentium II - 333 Mhz pentium II - 450 Mhz

RAM 128 Mbytes 128 Mbytes

storage SCSI hard drive IDE hard drive

OS linux 2.2.7 linux 2.0.36

EE ANTS 1.2 on jdk1.1.6 ANTS 1.2 on jdk1.1.7B

Table 1 Characteristics for the Platforms Used in the Experiments

To assess the effects of background load on our measurements, we define
three forms of background load: computation intensive, input/output (i/o) in-
tensive, and memory consuming. The computation intensive workload consists
of a process that continuously compresses 5,000 bytes of data, using the Huff-
man coding algorithm. The main purpose of this process is to fill the cache
memory of the processor to uncover any increase in measured CPU time use



6

related to switching processing contexts. The i/o intensive workload consists
of a process that continuously copies a 1 Mbyte file, using 100 byte blocks. The
main purpose of this process is to uncover any increase in measured CPU time
use related to processing competing i/o traffic. The memory consuming load
repeats the task of generating randomly an array of 10,000,000 integers and
sorting it. To calibrate the system calls, we execute a workload that makes each
call 200 times, using strace (Akkerman et al., 2000) to compute the average
CPU time taken for each system call.

We performed measurements of the system calls made by the workload first
without any load at all on each machine. Then we made the same measurements
while varying the number of processes (from 1 to 5, and 10) generating compu-
tation load. We repeated that same procedure replacing the computation load
with the two other kinds of background load (i/o and memory loads). The plat-
forms used are unable to run more than 5 memory consuming load processes,
due to a lack of memory. Therefore we varied the number of processes gener-
ating such a load only from 1 to 5. For a given type of load and a given number
of competing processes of that load, we performed several measurements to
uncover any possible variability in the results. When measuring a particular
system call, we perform enough replications to ensure that the true mean lies
within 5 % of the computed mean with 95 % confidence.

Node Call no load comp 10 I/O 10 mem 5

close 7 8 8 9
node A link 22 23 23 26

open 11 13 12 13

close 9 9 10 9
node B link 32 32 33 35

open 32 34 34 61

Table 2 Time in �s spent in system calls, while varying the background load

Table 2 shows the results we obtained for a selection of three system calls. In
this table, “comp 10” should be read as “10 competing computation intensive
processes”. Similarly “I/O 10” refers to a background load of 10 competing
input/output intensive processes. “mem 5” is a load of 5 processes of the
memory consuming load. The precision of the numbers given in the table is not
better than plus or minus 1 �s, the resolution of the measurement tool we used.

On both machines and for each system call, there is no significant difference
between the measurements without load and with the computation load (what-
ever the number of competing processes). Indeed, the overhead measured,
if any, does not exceed the precision of the measurement tool (there was no
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overhead larger than 2 �s). Similarly, on both machines and for each system
call, there is no significant difference between the measurements without load
and with the input/output intensive load (whatever the number of competing
processes).

On node B, when running the memory consuming loads, we have noticed an
increase only in the processing time of the calls open, link, and stat. That
increase is 29 �s (91 %) for open, 3 �s (9 %) for link, and 9 �s (75 %) for
stat. On node A, with the same kind of load, three system calls - read, link,
and socket - show a significant difference with measurements taken under no
load. They all three have a 4 �s overhead. We discuss these results in Section 6.

5. CALIBRATING AN EXECUTION ENVIRONMENT

We report here the results from calibrating ANTS (Wetherall et al., 1999),
a Java-based execution environment for active networks. We have calibrated
ANTS using two different calibration workloads, active ping and active multi-
cast, on two different platforms (node A and node B - see Table 1). We have
executed each calibration workload at least 200 times to generate several CPU
time usage measures, including mean, variance, 95th and 99th percentiles, as
well as minimum and maximum. We used the procfilesystem in Linux to make
the measurements (i.e., to get the CPU time consumption of the active appli-
cation). The resolution is 1 centisecond. Unlike the measurements in Section
4 (where we measure only kernel time), here we measure the total CPU time
- i.e., the sum of kernel and user time. First we measured the two calibration
workloads without any background load on the two platforms. Then in a second
experiment, we performed calibrations while varying the number of processes
(2 and 10) generating computation load. In a third experiment, we performed
calibrations while varying the number of processes (2 and 10) generating i/o
load. We also performed calibrations while varying the number of processes (2
and 5) generating memory consuming load. We employed the same load gen-
erators used previously to calibrate system calls. The two active applications
we used for the calibration can be found in the standard distribution of ANTS.

To measure the multicast application we used a network of four nodes, all
running on the same machine. The topology of the nodes is as follows: the
server node is connected to an intermediate node, which in turn is connected to
the two client nodes. We recorded the CPU usage of the intermediate node. The
two client nodes regularly send messages subscribing to the multicast list. From
the moment we start recording the CPU time used by the intermediate node, the
server node sends 30 data messages (one every second) to the multicast list. We
used unchanged the data messages given as examples in ANTS (version 1.2)
distribution, as well as all the parameters of the application. The intermediate
node forwards these messages to the clients, since they have both subscribed.
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When the server is done sending the 30 messages, we stop recording the CPU
usage of the intermediate node and we store the result. Then we stop the four
nodes and start them again for the next replication of the measurement. For the
active ping application, we used a testbed network consisting of three logical
nodes in series, all three running on the same machine. We recorded the CPU
usage of the intermediate node.

Table 3 below reports a summary of the results we obtained. The table
reports the difference in the measurements with a background load compared
to the same measurement without any load, for both applications (ping and
multicast) and both platforms.

Node Application comp 10 I/O 10 mem 5

ping + 3.2 % - 3.2 % + 1.3 %
node A (+ 1.2 cs) (- 1.2 cs) (+ 0.5 cs)

multicast + 2.0 % + 0.9 % - 1.3 %
(+ 2.3 cs) (+ 1.0 cs) (- 1.5 cs)

ping 0 % - 0.6 % + 67 %
node B (0 cs) (- 0.2 cs) (+ 21.3 cs)

multicast + 5.2 % + 6.1 % + 20.7 %
(+ 5.3 cs) (+ 6.1 cs) (+ 20.9 cs)

Table 3 Relative and absolute (measured in centiseconds) increase of the measurements with
a background load, compared to the case without any load

The results indicate that EE calibration is largely unaffected when competing
with a load of computation intensive processes. When competing with an
input/output intensive load, the calibration is still little influenced. Note that
for ping, on both platforms, it takes actually less time for the workload to
execute when there is an I/O intensive load. While this decrease may seem
surprising, our explanation is given in the discussion section. When competing
with a memory consuming load, the results differ. On node B, the CPU time
needed to run both active applications increases significantly. While the increase
expressed as a percentage seems very different for ping and multicast, it is
interesting to notice that the absolute increase is the same (approximatively 21
cs). On node A, a memory consuming load does not influence the measurements
at all.

6. DISCUSSION

In this section we discuss the results obtained, and presented in the previous
two sections. The following explanations (that have not been verified but which
we believe to be true) refer to mechanisms present in the Linux kernel. For more
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details about these mechanisms, see Rusling, 1999. The following could hold
for other operating systems as well.

A computational background load fills the cache memory of the processor.
Therefore when the process we are measuring gains the processor, the latter first
empties its cache memory and fills it with the data that the process will need to
use. That operation requires CPU processing and the CPU time needed is taken
on behalf of the process we are measuring. That explains the (relatively small)
increase of the total CPU time required to run an active application. However,
for system call calibration, there is no increase in the measured time. That is
because we are only measuring in that case the time spent in kernel mode. When
the process enters into kernel mode, it has already gained the processor before,
therefore the processor has already replaced the data in its cache memory. The
processing time needed to empty and fill the cache memory cannot be measured
in the CPU system time (also called kernel time).

One of the main effects of an input/output intensive background load is that
many processes want to access kernel ressources. Indeed, a process generating
I/O load spends most of its time in kernel mode. When the process we are
measuring wants to enter into kernel mode, it has to wait first until the kernel
is released by the process that had a lock on it. When detecting that the kernel
is locked by another process, the process adds itself in the kernel semaphore’s
wait queue. Then it enters in a loop (spin lock) checking if the lock on the
kernel has been freed. All the processing time required to perform the spin lock
is taken on behalf of the process waiting, and it happens in user mode. This
explains why there is a very small overhead in the measurements of multicast (on
both machines). For the ping application, the small decrease is not significant
because it is only 1.2 �s (at most), so it is small compared to the precision we
can achieve. There is no reason why the system calls should see an overhead
in the time they require, because when the system call starts, the process has
already entered the kernel, therefore there is no CPU processing required to
wait for the kernel lock to be released.

The memory consuming load fills the random access memory (RAM), and
partly the virtual disk memory (swap memory). As a consequence, a process
competing with that kind of background load can hardly keep its data in RAM.
Because the operating system needs all the RAM to execute the background
loads, it flushes the memory address space of the process we are measuring and
stores it on the swap filesystem. Every time the process we measure gains the
processor, it has to load all of its data into RAM from the swap space. This load-
ing consumes significant CPU processing time, thus, explaining the increase of
the active application time on node B. On node A, since the swap partition is on
a SCSI disk, the page swapping is performed by the SCSI controller and there
is much less additional CPU processing required for that task. Therefore there
is little overhead measured in the time taken by the active applications. For the
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system calls, similarly to the computation intensive load case, when the process
enters the kernel, it has already gained the processor, therefore it has already
performed the memory swapping. That is why the memory swapping time is
not accounted for in the system time, and consequently neither in the node OS
calibration. However, if the kernel (on behalf of a process making a system
call) needs to allocate additional memory, a page swap will be triggered, and
all the CPU time needed for that page swap will be counted in the time used
by that system call. That is why some system calls see their execution time
increase because of the memory consuming load. Which system calls will see
such an overhead is determined by the particular implementations of the calls.

7. CONCLUSION

This paper has investigated a method to calibrate active network nodes in
order to generate a model for CPU time usage by active applications. Specifi-
cally, the paper assesses the degree to which background load on a node affects
our ability to obtain accurate calibrations for the CPU time used by node op-
erating system calls (e.g., Linux system calls) and by execution environments
(e.g., Java Virtual Machines). Our paper has shown that the presence of a
computationally intensive competing workload does not affect significantly the
calibration of system calls or execution environments on active network nodes.
This same conclusion holds when the background load we use is input/output
intensive. We also show in this paper that the presence of a memory consuming
background load increases the CPU time used by the execution environment,
but only if it is the CPU that has to perform the memory page swapping. In
the latter case, the overhead introduced by the load is very noticeable. If the
processor can rely on another device - such as a SCSI controller - to perform
the swapping, then there is little overhead due to the memory swapping. These
conclusions imply that when performing the node OS calibration (that is, the
measurement of the calls at the node OS interface, see Peterson (ed.), 1999),
as well as when performing the execution environment calibration, the back-
ground load does not influence significantly the measurements, as long as any
memory consuming background load can be suppressed. Nonetheless, it might
not be necessary to actually suppress the memory consuming load in one of the
following cases: there is enough memory on the host to avoid disk swapping,
or the CPU does not bear the main burden of page swapping.
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