
 1

Expressing Meaningful Processing Requirements among
Heterogeneous Nodes in an Active Network

Virginie Galtier
National Institute of Standards

and Technology
Building 820, Room 445

Gaithersburg, Maryland 20899
1-301-975-3613
vgaltier@nist.gov

Kevin L. Mills, Yannick Carlinet,

{kmills, carlinet}@nist.gov

Stefan Leigh, Andrew Rukhin

{sleigh, rukhin}@nist.gov

ABSTRACT
Active Network technology envisions deployment of virtual
execution environments within network elements, such as
switches and routers. As a result, nonhomogeneous processing
can be applied to network traffic associated with services, flows,
or even individual packets. To use such a technology safely and
efficiently, individual nodes must provide mechanisms to enforce
resource limits. To provide effective enforcement mechanisms,
each node must have a meaningful understanding of the resource
requirements for specific network traffic. In Active Network
nodes, resource requirements typically come in three categories:
bandwidth, memory, and processing. Well-accepted metrics exist
for expressing bandwidth (bits per second) and memory (bytes) in
units independent of the capabilities of particular nodes.
Unfortunately, no well-accepted metric exists for expressing
processing (i.e., CPU time) requirements in a platform-
independent form. This paper investigates a method to express the
CPU time requirements of Active Applications (similar to
distributed, mobile agents) in a form that can be meaningfully
interpreted among heterogeneous nodes in an Active Network.
The model consists of two parts: a node model and an application
model. For modeling applications, the paper describes and
evaluates a semi-stochastic state-transition model intended to
represent the CPU usage requirements of Active Applications.
Using measurement data, the general model is instantiated for two
Active Applications, ping and multicast. The model instances are
simulated, and the simulation results are compared against real
measurements. For both Active Applications, the simulated and
measured CPU time usage compare within 5% for the mean and
the 90th and 95th percentiles. The 99th percentiles compare within
7%. The paper also evaluates three different scaling factors that
might be used to transform a model accurate on one node into
terms that prove accurate on another node.

Keywords
Active Networks, Resource Management, CPU Usage.

1. INTRODUCTION
Active Network technology envisions deployment of virtual
execution environments within network elements, such as
switches and routers. As a result, nonhomogeneous processing
can be applied to network traffic associated with services, flows,
or even individual packets. To use such a technology safely and
efficiently, individual nodes must provide mechanisms to enforce
resource limits. In order to provide effective enforcement
mechanisms, each node must have a meaningful understanding of
the resource requirements for specific network traffic. In Active
Network nodes, resource requirements typically come in three
categories: bandwidth, memory, and processing. Well-accepted
metrics exist for expressing bandwidth (bits per second) and
memory (bytes) in units independent of the capabilities of
particular nodes. Unfortunately, no well-accepted metric exists for
expressing processing (i.e., CPU time) requirements in a platform-
independent form. This paper investigates a method to express the
CPU time requirements of Active Applications in a form that can
be interpreted among heterogeneous nodes in an Active Network.

Absent the capabilities we propose, Active Nets researchers have
taken two main approaches to the problem. One approach assigns
a time-to-live (TTL) to each packet, and then decreases the TTL at
each hop, or each time a packet creates another packet. This TTL
approach limits packets from excessively consuming global CPU
resources in a network, but does not allow a particular node to
protect itself. The second approach enforces an arbitrary limit on
the CPU time that a packet can use at each node. Using an
arbitrary limit ensures only a worse case upper bound, and can
also allocate less CPU time than an application needs. The ideas
proposed in this paper aim to provide Active Nets researchers
with better information to allocate and control CPU usage for
individual applications. These ideas might also be applied more
generally, for example to heterogeneous distributed systems,
where processes execute on nodes that exhibit a wide range of
computational capabilities. Such heterogeneous systems could
include systems based on mobile code, such as mobile agent
applications, or systems based on code loaded from disk, such as
distributed parallel processors. Wherever applied, metrics for
CPU time requirements among distributed nodes will open the
door to some essential uses.

CPU time requirements can be used to inform resource
management decisions on a node. For example, a node might
reject a new packet class if the processing requirements cannot be
supported. Or, having accepted a new packet class, the node’s
operating system can monitor the CPU time used by each arriving

 2

packet of the new class in order to halt the execution of packets
that exceed the stated CPU resource requirements. Beyond
admission control, new questions can be imagined relating to path
routing decisions in an Active Network. For example, can a path
be found through the network that can provide the CPU time
required by an application, while also meeting the application’s
throughput, delay, and jitter requirements? As another example,
given both application performance constraints and resource
requirements (CPU time, memory, and bandwidth), can an
application query an Active Network for multiple viable paths,
each with an associated cost? The resource management questions
in nodes become very interesting under these circumstances
because taking on new processing loads can have a negative effect
on the ability of nodes to meet the requirements promised for
other applications. Nodes might need to condition such promises
on a certain level of CPU utilization dedicated to an application.
Then, resource management algorithms must police CPU
utilization for each application, in addition to total CPU time
used. This discussion illustrates that dynamically programmable
networks will provide a range of interesting research questions
that cannot be addressed unless CPU time can be interpreted
among heterogeneous nodes.

The paper is organized into six main sections. We begin in
Section 2 by considering the sources of variability in CPU time
usage in an Active Network node. To the degree feasible any
model proposed must account for these sources of variability. In
Section 3, we review briefly the state of practice with regard to
computer system performance benchmarks, and we provide a brief
summary of research related to the problem addressed in this
paper. In Section 4, we describe a semi-stochastic state-transition
model to represent Active Applications, and we explain how the
model can be used within a simulator to predict the mean and high
percentiles of the CPU requirements for specific applications.
Next, we explain how to scale this model from one Active Node
to another, using scaling factors intended to capture the
performance differences of each node. Section 5 compares results
for two real Active Applications, ping and multicast, against
results from simulating their parameterized models. Further, we
compare measured results against simulated results obtained using
three different factors to scale application models. Section 6
presents a critical view of our approach. Section 7 introduces
ideas we need to explore to improve our work.

2. VARIABILITY IN CPU TIME USAGE
Any reasonable metric for an application’s CPU time requirements
must account for the major sources of variability affecting the
application. In this section we identify and discuss the major
sources of variability likely to affect the CPU time requirements
of an active application. A proposed architecture for an Active
Network node [1] identifies several components and the
relationships among them. Figure 1 gives a conceptual overview
of the major components and relationships. The components can
be viewed as four layers: the hardware, the node operating system
(Node OS) and interface, the execution environment (EE), and the
active application (AA). Each EE provides a virtual execution
environment (similar for example to a Java Virtual Machine [2])
in which AAs can execute. Several EEs have been defined and
implemented within the Active Networks research community
[e.g., see 3, 4, 5, 6, and 7]. In addition, several implementations of
a Node OS are being developed [e.g., see 8, 9, and 10]. To enable

any EE to run over any implementation of a Node OS, a standard
application-programming interface, in the form of system calls, is
defined within a separate Node OS specification [11].

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services

S1 S2 S3 S4 SmNodeOS System Calls
• • •

Execution Environment Layer

NodeOS
Interface

Layer

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services

S1 S2 S3 S4 SmNodeOS System Calls
• • •• • •

Execution Environment Layer

NodeOS
Interface

Layer

Figure 1. Conceptual Architecture of an Active Network Node

Our analysis of this model, and of real systems, reveals the main
sources of variability affecting the CPU time requirements of an
AA. In the hardware layer, the main factors that influence the
execution time of an application include: the frequency of the
processor, the architecture of the processor (e.g., Pentium,
Pentium II, K6, Sparc, and so on), the amount of memory
available on the host, the speed of the different buses (e.g.,
memory, I/O, and system), the technology of the persistent storage
(SCSI or IDE hard drive, for instance), and the type of network
card (e.g., 10 or 100 Mbps Ethernet). Within the node operating
system (OS) and node OS interface layer, the main sources of
variability include: the performance of the device drivers, the
performance in managing processes and memory, and the nature
and performance of the system calls provided by the operating
system. In the case of networking system calls, performance of
reads and writes also varies with the specific protocol stacks that
are buried beneath the systems calls, and with the implementation
of those protocols. Within the EE layer, performance can be
affected by the mapping between the EE system calls and the OS
system calls (a mapping usually defined by a library), as well as
the compiler and options used to compile the EE. For example for
a Linux system, if the EE uses the Java Virtual Machine (JVM),
then we must consider the performance of the C library and the
results from the C compiler used to compile the JVM. Finally, the
execution of a specific AA can go through many paths in the code
of the program. The path of execution taken can depend on many
things, such as the state of the node (e.g., whether data is cached
or not), the data carried (e.g., the length of the data to be
processed), and even the state of other nodes (e.g., in an active
multicast application an intermediate node creates and sends as
many new capsules as the number of subscribed nodes). A
detailed discussion of these issues appears elsewhere [48].

To corroborate our analysis, we measured the variability of a
single EE running on three different hardware platforms. Table 1
gives the details of the platforms. We used an Active Application,
ping, as a calibration workload to assess EE performance. We
implemented a small calibration driver to measure the
performance of the Linux system calls. The systems were
measured in the absence of background load. The results appear in
Tables 1 and 2.

 3

Table 1. Average CPU Time Required for Calibration
Workload on Three Platforms

Trait Node A Node B Node C

CPU seconds 1.00 0.46 0.53

CPU speed 200 MHz 450 MHz 333 MHz

Processor PentiumPro Pentium II Pentium II

Memory 64 Mbytes 128 Mbytes 128 Mbytes

OS Linux 2.2.7 Linux 2.0.36 Linux 2.2.7

JVM jdk 1.1.7B jdk 1.1.7B jdk 1.1.6

Table 1 shows the average number of user-mode CPU seconds
taken for three different platforms to execute a calibration
workload: acting as intermediate nodes for 3,000 ping capsules.
Using as a predictor only the measured workload performance on
Node B and Node C and their CPU speeds relative to Node A,
given in rows one and two of Table 1, we might have expected
Node A to take either 1.04 CPU seconds [based on Node B, Node
A = (450 MHz / 200 MHz) * 0.46 CPU seconds] or 0.88 CPU
seconds [based on Node C, Node A = (333 MHz / 200 MHz) *
0.53 CPU seconds] instead of the measured 1.00 CPU second.
Clearly, factors other than CPU speed affect application
performance. Table 2 shows that variability can also occur in the
execution of system calls, perhaps depending on how the system
call is implemented from OS-to-OS (or in this case even from
version-to-version of the same OS). Other factors might include
differences in devices, and thus device drivers, underlying specific
system calls. An effective metric for CPU time usage in an Active
Network node must account for these sources of variability. In
Section 4, we investigate a model designed to respond to this
challenge. First, we present a brief survey of some existing
computer system performance benchmarks used by industry,
followed by references to other related work.

Table 2. Average CPU Time Required for System Calls on
Three Platforms

Microseconds System Call

Node A Node B Node C

_llseek 6 4 3

close 11 9 7

fstat 6 4 2

link 31 32 22

open 19 32 11

read 13 7 8

socket 21 13 14

stat 15 12 9

unlink 28 19 20

write 6 21 3

3. RELATED WORK
Over the years, the computer industry has developed many
benchmarks to evaluate the performance of computer systems.
The most successful among these evolve over time to account for
changes in underlying hardware performance and for shifts in user
interest. While these industry benchmarks have different
characteristics, they share a common purpose: to compare
performance among computer systems. None of these expresses
the CPU time requirements for specific applications. Still,
measurements of performance differences among computer
systems provide one essential ingredient in any design that
attempts to meaningfully express an application’s CPU time
requirements among heterogeneous nodes. For this reason,
examining existing industry benchmarks has proven valuable to
us. We have also considered related research that attempts to
model the performance of computer programs. In addition, we
have surveyed the current state-of-the-art with respect to CPU
resource control in Active Networks. Readers uninterested in this
background can move directly to Section 4.

3.1 Performance Benchmarks
While a few benchmarks, such as composite theoretical
performance (CTP) calculated for purposes of export control [24],
use static computations, most benchmarks entail dynamic
execution of a workload. As a main division, most dynamic
benchmarks are either synthetic or real, while a few hybrid
benchmarks mix both elements. Synthetic benchmarks contain
artificial programs designed to mimic characteristics that the
designers believe would be exhibited by real programs from a
population of interest [12-23]. These programs are artificial in
that they produce no useful results outside the benchmark. Real
benchmarks contain programs from a population that the
designers either: (1) know is the population of interest or (2)
believe behave similarly to programs within the population of
interest [25-30]. The programs used in real benchmarks produce
useful results when used outside the context of the benchmark.
Some hybrid benchmarks consist of a mix of synthetic and real
benchmarks [31, 32].

3.2 Program Models
Computer science researchers and practitioners have explored the
use of graph theory and Markov models to represent computer
systems and programs and to predict performance characteristics
at both micro and macro levels [35-42, 45, 49]. These previous
explorations have guided our work. Other researchers have
investigated additional techniques to analyze program code in
order to predict the performance of programs on various computer
systems [33-34, 43-44, 46]. Of particular interest, Saavedra and
Smith [33, 34] developed a machine-independent model of
program execution that formed the basis for characterizing both
machine performance and program profile. While this is an
appealing approach, the workload characterization, and thus the
resulting performance prediction, is valid for only a particular
instance of execution behavior, that is, a single run of a program.
In our case, we need a model that will capture many possible
executions of a program.

 4

3.3 CPU Usage Control in Active Networks
The Active Network architecture document [1] proposes to use
RISC (reduced instruction set computer) cycles as a unit of CPU
resource measurement; however, the document does not explain
how to convert RISC cycles into a meaningful figure on an actual
node. The document also does not explain how to determine the
number of RISC cycles needed to execute specific active
applications. In light of this situation, most execution
environments implement their own mechanism to protect CPU
resources. For example, some systems, such as ANTS [3] and
PLAN [50], assign a time-to-live (TTL) to each active packet,
while other systems, such as Magician [51], Smart Packets [52],
and ANTSv1.3 [53], limit that amount of CPU time any packet
can use at each node. In both approaches, limits are assigned
arbitrarily, regardless of an application’s requirements.

4. MODELING CPU USAGE
In order for a node operating system (Node OS) to efficiently
manage the utilization of its CPU, each active application (AA)
must declare the CPU time required for its execution. In a simple
approach, an application might declare the average CPU time
required and the variance. We believe statistics for the higher
percentiles of CPU time required by an application could prove
more useful for resource enforcement and estimation. With an aim
to characterize both the average and high percentile CPU time
requirements of applications, we investigated a fine-grained
model, as presented in this section. First, we devised a general
model for the CPU requirements of AAs, and then we used
measurements to instantiate our model for two specific AAs, ping
and multicast, executing on Node A (see Table 1). Second, we
simulated our model instances; validating them against results
obtained from measurements on Node A. Third, we used several
different techniques to scale our model instances to reflect the
CPU time usage we expected to see on Node C. We then
compared the results from simulating our scaled models against
the CPU time usage obtained from measuring real executions of
the same applications on Node C. The details follow.

4.1 Modeling Active Applications
Recall from Figure 1 that an AA executes in user mode within an
execution environment (EE), but requests services periodically
from the node operating system through specific system calls. An
observer, situated at the boundary between an EE and the Node
OS, would view the behavior of an AA as a series of transitions
between specific system calls: from an initial state, the application
executes in user mode for some amount of CPU time within its EE
and then executes in kernel mode for some amount of CPU time
within a system call, then again in the EE before transitioning to
another system call, and so on until the active packet is processed
and the AA has returned to its initial state. We call each execution
cycle a scenario. We are interested in modeling the total CPU time
taken for each scenario, as well as the distribution of CPU time
used by an application when executing a typical mix of scenarios.

To generate models from real applications, we built a software
monitor that can observe the transitions between system calls. The
monitor logs a trace of system calls made to process an active
packet, along with CPU time information. Each transition lists the
previous system call and the upcoming system call, along with the
CPU time used by the previous system call, and the CPU time

used by the EE between the calls. The sequence of system calls
may vary from one execution to another because several paths are
possible within the processing code. We label each different
sequence as an execution scenario. To ensure that the model
captures a representative coverage of the AA, the AA developer is
responsible for running the AA through the expected mix of
scenarios. Using the resulting execution trace, we construct the
model of an AA.

Idle SC

W W SC Idle

LS R SC SC W W SC Idle

P = 0.66

P = 0.33

Idle SC

W W SC Idle

LS R SC SC W W SC Idle

P = 0.66

P = 0.33

Idle SC

W W SC IdleW W SC Idle

LS R SC SC W W SC IdleLS R SC SC W W SC IdleW W SC Idle

P = 0.67

P = 0.33

Idle SC

W W SC Idle

LS R SC SC W W SC Idle

P = 0.66

P = 0.33

Idle SC

W W SC IdleW W SC Idle

LS R SC SC W W SC IdleLS R SC SC W W SC IdleW W SC Idle

P = 0.66

P = 0.33

Idle SC

W W SC IdleW W SC Idle

LS R SC SC W W SC IdleLS R SC SC W W SC IdleW W SC Idle

P = 0.66

P = 0.33

Idle SC

W W SC IdleW W SC Idle

LS R SC SC W W SC IdleW W SC IdleLS R SC SC W W SC IdleW W SC Idle

P = 0.67

P = 0.33

Figure 2. Stochastic State-Transition Graph Representing
Two Scenarios in an Active Application (System Calls: LS =

_llseek; R = read; SC = socket call; W = write) (P = the
probability of executing a specific scenario)

An AA model consists of two types of information: scenario
representation and workload representation. Each scenario (see
Figure 2) is represented by its sequence of system calls. Further,
each system call is characterized by the distribution of the CPU
time spent in the system call, as measured from the execution
trace. In addition, each transition is characterized by the measured
distribution of CPU time spent in the EE during the transition,
also as measured from the execution trace. In an earlier version of
our model, we hoped to represent these distributions using
classical probability distributions. Our goal was to produce an
analytically tractable model. Unfortunately, the observed
distributions exhibit a degree of discreteness and truncation not
well represented by typical continuous distributions. For this
reason, we chose to represent the distributions of CPU usage with
histograms (see Figure 3). Note that this approach increases
significantly the volume of information that must be exchanged
when AA models are transferred among nodes in a network. (Our
experiments show that at least 25 bins per histogram are required
to obtain reasonable results.)

Write
System call

38
00

42
00

46
00

50
00

54
00 time

P

0.5
0.33
0.17

20
00

21
00

26
00

27
00 time

0.7

0.3

P Write-to-Socket
Call Transition

Write
System call

38
00

42
00

46
00

50
00

54
00 time

P

0.5
0.33
0.17

20
00

21
00

26
00

27
00 time

0.7

0.3

P Write-to-Socket
Call Transition

Figure 3. Sample Histograms Representing the CPU Time
Requirements for the Write System Call and a Write-to-

Socket-Call Transition (P is the Probability of a Specific Bin in
a Histogram)

 5

The AA workload is represented as a list of the possible scenarios,
where each scenario is assigned a probability of occurrence (based
on the frequency with which the scenario appeared in the
execution trace). The scenarios, their probability of occurrence,
and the distributions of user and system CPU time usage
constitute the AA model, which is transmitted among nodes in the
network, and used to estimate the execution time needed at each
node

4.2 Simulating CPU Requirements
To validate the predictive ability of our AA models, we used
Monte-Carlo simulation. Each pass through the simulator
represents the processing of an active packet. Using the
probability of occurrence contained in the AA model, the
simulator selects a scenario. For each component of the scenario
(system calls and transitions in user mode between two system
calls), the simulator runs another Monte-Carlo test to choose a bin
of the histogram describing the CPU time distribution. The sum of
the CPU times of each component in the scenario yields a
simulated execution time. After repeated scenario executions, we
obtain an estimate for the mean and the high percentiles of the
CPU time requirements of the AA.

4.3 Overcoming Node Heterogeneity
Recall that the CPU time values included in the model were
generated from an execution trace measured on a specific node.
For this reason, these values likely have no meaning on other
nodes in the network. We need to scale the values in the model to
a form that will have meaning on these other nodes. Since the
model consists of CPU time values related to system calls (kernel
mode) and EE execution (user mode), we need to devise
transformation factors that can scale independently the kernel-
mode and user-mode times. (The reasons for this were discussed
earlier in Section 2.)

Our approach is to provide workloads that each node can use to
calibrate itself with respect to performance of EEs contained on
the node, and also with respect to performance of system calls.
After executing the calibration workloads, a node obtains two
vectors. The EE vector gives the average user-mode CPU time
taken by the node to execute a representative workload for each
type of EE. The system-call vector gives the average CPU time
taken to execute each Node OS system call. (We discuss in
another paper [55] our progress on node calibration.) To allow the
transformation of AA models to scale across a large population of
nodes, we select a specific node as a reference.

The calibration vectors for the reference node are distributed to all
nodes in the network. Prior to transferring the model of an AA
(running on a specific execution environment, EE1) between two
nodes x and y, the model is subjected to a "Node-to-Reference
transform": the histograms describing the time spent between two
system calls are dilated or contracted using the ratio Tref/Tx,
where Tref is the average time taken by EE1 to execute the
calibration workload on the reference node and Tx is the average
time taken by EE1 to execute the calibration workload on node x.
The histograms describing the time spent in each system call are
transformed in the same manner using the system-call vectors.
The model, with its CPU time requirements expressed in terms of
a reference node, is then transmitted across the network. Upon
arrival at node y, the model is subjected to an inverse (the ratio is

Ty/Tref) "Reference-to-Node transform". The combination of
these two transforms scales the CPU times within an application
model from a form meaningful on node x into a form meaningful
on node y.

5. Results
We used our approach to construct models for two active
applications (ping and multicast) written for the EE ANTS. First,
we validated our models by comparing simulation results against
measured results obtained on Node C (see Table 1). Second, we
investigated three scaling factors to transform our models for use
on Node A. Then we simulated the scaled models, and compared
the simulation results against measured results obtained when
running the real applications on Node A. The details follow.

5.1 Validating the Models
We selected the relevant scenarios for each of the applications,
and then exercised each application on Node C until 20,000 active
packets were processed. The mean and high percentiles of
execution time (expressed in CPU clock cycles) measured from
these test sequences appear in Table 3 below. Row one provides
the measured values for ping and row three provides the measured
values for multicast.

We used these same execution traces to construct the models.
When constructing and using a model, two parameters can
influence the results: (1) the number of bins chosen for the
histograms and (2) the number of simulation runs. Our
experiments showed that, independent of the number of runs, 25
bins per histogram appears to be the minimum needed to obtain
results within 5% of the real values. With 100 bins per histogram,
1,000 runs of the simulator proved sufficient to provide estimated
values for mean and high percentiles with the accuracy shown in
Table 3. For both applications, the simulated and measured CPU
time usage compare within 5% for the mean and the 90th and 95th
percentiles. The 99th percentiles compare within 7%.

Table 3. Validation Results for Active Applications Ping and
Multicast on Node C

 Thousands of CPU Cycles

Experiment Mean 90% 95% 99%

Measured Ping 176 197 211 263

Simulated Ping 170 190 202 269

Measured Multicast 143 169 180 201

Simulated Multicast 144 165 173 187

5.2 Validating the Scaled Models
Next we tried to scale our Node C models for ping and multicast
for use on Node A. Scaling was accomplished using the
transformations described above (see Section 4.3). First, we
compared two different scaling factors: (1) MHz scaling, using the
ratio of CPU speeds on the two nodes (as given in Table 1) and
(2) Workload scaling, using the ratio of the times taken by the two
nodes to execute the preliminary calibration workloads (as given
in Tables 1 and 2). Our working hypothesis was that the first ratio
would yield poor results, but that the second ratio would yield
better results.

 6

Table 4 gives the results we obtained. As expected, scaling the
model using the ratio of CPU speeds (results in rows two and six
of Table 4) yields poor correspondence with the measured results
(rows one and five in Table 4). The errors range from about 40%
to as much as 60%. Unfortunately, scaling the model using the
ratio of CPU time needed to execute the calibration workloads
yielded equally poor results (row three of Table 4) for the ping
application (errors range from 30% to 80%), and for multicast
(results not included in the table). One possible reason is that the
preliminary calibration workload does not provide a good
representative workload. This issue is under investigation. Given
the poor results from both MHz and Workload scaling, we
adopted a third approach to obtain a scaling factor. We call this
approach Inspection scaling. We simply varied the value
corresponding to the average time to execute a calibration
workload on ANTS on each node until we found a ratio giving
better results for ping (see row four in Table 4). We achieved
accuracy within 2% for the mean and the 90th and 95th percentiles,
and within 9% for the 99th percentile. The same ratio turns out to
give reasonable results for multicast (see row seven in Table 4). In
the case of multicast, all the statistics correspond within 8%.

Table 4. Validation Results after Scaling Ping and
Multicast Models to Node A (M = MHz scaling; W =

Workload scaling, I = Inspection scaling)

 Thousands of CPU Cycles

Experiment Mean 90% 95% 99%

Measured Ping 206 229 237 274

Simulated Ping-M 293 320 342 440

Simulated Ping-W 367 358 327 357

Simulated Ping-I 210 229 241 298

Measured Multicast 171 186 198 239

Simulated Multicast-M 236 276 289 311

Simulated Multicast-I 172 200 210 228

6. DISCUSSION
Two topics warrant further discussion. First, the approach
outlined in this paper has some limitations. Second, the issue of
node calibration requires further exploration.

6.1 Limits of the Approach
The limits of our current approach fall into two main categories.
First, our model lacks space and time efficiency. A specific model
can be huge: if a lot of different paths exist through the processing
code of an active packet, if the paths are long, and if the
histograms are fine-grained. These issues can be overlooked to
some degree because the envisaged AAs are designed for
processing network packets, rather than performing arbitrary
distributed computation. Thus, we can reasonably expect an AA
to have a small number of scenarios, and each scenario to be
short. That said, since AA CPU usage profiles do not match well
the known statistical distributions, we have had to resort to
simulation in order to obtain estimates of CPU time usage. Using
simulation to estimate the high percentile of CPU usage can be
costly. For this reason, simulation is interesting only for AAs that

will execute for a long period on a node. An analytical solution
would be much faster. To date, the analytical approximations that
we have investigated yield much less accurate results than
simulation.

The second limitation of our approach is more conceptual. Our
model captures only the behavior of the application as exercised
during the generation of execution traces. Unless the AA
developer exercises good judgment, the execution traces can give
a distorted representation of the application. Even when the AA
developer exercises good judgment, the conditions existing on a
node or in a network of nodes might well prove different than the
conditions present when the execution trace was generated.
Perhaps this limitation could be overcome if a model is allowed to
evolve as it travels from node to node and gains experience (an
active model!). Such an active model should also be
parameterizable to capture the fact that an AA may execute loops
a varying number of times based on parameter values local to the
node. For example, a multicast application might perform some
operations once per each multicast user known to a node.
Information such as this cannot be known in advance, but would
be available on each node.

6.2 Calibration Issues
The results of our transformation attempts led us to consider
several alternative approaches. First, we could try to generate a
different calibration workload that better represents AA
processing. But we might instead want to rethink the calibration
process. We could deploy a calibration application on each node,
and then measure the mean and 95th percentile of the application’s
CPU usage. Subsequently, we choose one node as a reference and
then instantiate a simulation model of the calibration application,
as it executes on the reference node. This model would be
distributed to all nodes. Node calibration would comprise finding
a scaling factor that yields a close correspondence for the
calibration application between simulated and measured CPU
usage for the mean and 95th percentile statistics.

Another solution to the model transformation would be to
calibrate by node and by application. In that way, each node
would have its own model for a given application, and the model
would not be transmitted through the network. This solution
reduces network traffic at the cost of memory at each node. In
addition a long initialization step would be required, and of
course the approach does not scale to large and highly dynamic
networks. Still, this approach could be used for AAs deployed by
a network operator for a long period of time. In that case, static
limits could be enforced for other classes of AA.

7. FUTURE WORK
Our future work on this project will evolve along two lines: (1)
confirming and extending our current results and (2) investigating
techniques to overcome the limitations of our existing approach.
We have discovered a scaling factor that successfully transforms
models for two AAs, ping and multicast, between two different
nodes. We must confirm that this same scaling factor applies for
other AAs. Further, we must show the existence of scaling factors
that can successfully transform AA models among a variety of
nodes. If such scaling factors exist, then we must develop a
calibration technique aimed at discovering the scaling factors for
specific nodes. Finally, since some aspects of AA processing
depend on conditions present on particular nodes, we must extend

 7

our model to enable parameterization that can account for node-
dependent conditions. Such parameterization would likely require
us to include the possibility of loops within our transition graphs.

Beyond confirming and extending our current approach, we must
investigate AA models that exhibit improved space and time
efficiency. We are exploring a nonparametric technique using the
Epanechnikov kernel [54] to estimate a quantile function, given a
set of representative data points. To date, we have applied the
technique to analyze nineteen data sets drawn from five
applications running on four nodes. In general, we have found
that this technique yields a good correspondence between its
estimates and the input data set, provided two conditions hold: (1)
the input data set contains at least 200 sample points and (2) the
distribution of data points is not overly discrete. We imagine that
this technique might be applied to represent the CPU usage of an
application with as few as 1,000 data points. Such a
representation would be much more compact than our current
model. In addition, using the estimated quantile function for high
percentiles might well require less CPU time than needed to
simulate 1,000 data points using our current approach. Further,
modeling CPU time as a flat set of observations could provide a
nice basis on which to evolve the model over time, based on
actual measurements as the modeled application moves
throughout the network. Even if these hypotheses are confirmed,
we still need to develop suitable scaling factors to transform the
sample data points into a form meaningful on various nodes, and
we still need to account for node-dependent conditions.

8. CONCLUSIONS
The work reported in this paper is motivated by the search for an
effective technique for Active Network (mobile code) applications
to express CPU time requirements in a form that can be
meaningfully interpreted on heterogeneous nodes distributed in a
network. The paper identifies and discusses the major sources of
variability likely to affect the CPU time requirements of an Active
Application. To support that analysis, the paper reports results
from measuring CPU time usage for virtual machine executions
and for system calls on three Linux nodes. The paper describes a
semi-stochastic model that can be used to represent the CPU time
requirements of an Active Application. Measured execution traces
from real Active Applications (ping and multicast) were used to
construct instances of this model. Simulation results show that the
model can give a reasonably accurate representation of the
behavior of an Active Application, provided the data used to
construct the model contain a faithful representation of the mix of
scenarios composing the application.

We also present a model capturing variations in node
performance. We planned to use this model in conjunction with
algorithms to transform Active Application models among
heterogeneous nodes in a network. The poor results obtained with
our proposed scaling factor illustrate the difficulty of generating a
representative calibration workload for Active Applications. But
we show that a ratio leading to better results exists, and we
discuss other techniques to calibrate an active node.

While the model investigated in this paper still has strong
limitations, we plan to continue our research, searching for more
effective models. Without such models, it will prove impossible to
effectively manage CPU resources in distributed applications
based on mobile code. The urgency to develop models of CPU
time requirements for software applications will increase with the

increasing use of mobile code in distributed software systems. In
such systems, models must provide reasonably accurate
representations of the expected CPU time usage of an application.
Such models must also be capable of meaningful interpretation
among heterogeneous nodes in a network. In our research to date,
these requirements have proven difficult to meet. We plan to
continue our search. We urge other researchers to join us.

9. ACKNOWLEDGMENTS
The work discussed in this paper was conducted under joint
funding from the Defense Advanced Research Projects Agency
(DARPA) and the National Institute for Standards and
Technology (NIST). The authors thank Hilary Orman for her
insightful comments during discussions that led to the beginning
of this project. In addition, the authors thank Doug Maughan for
his continued support of the work. Finally, we thank the
anonymous reviewers for taking time from their own research to
constructively criticize ours.

10. REFERENCES
[1] K. Calvert (ed.), Architectural Framework for Active

Networks, Version 0.9, Active Networks Working
Group, August 31, 1998.

[2] T. Lindholm and F. Yelling, The Java Virtual Machine
Specification, Addison-Wesley, Reading, Mass., 1997.

[3] D. Wetherall, J. Guttag, and D. Tennenhouse, "ANTS:
Network Services Without the Red Tape", IEEE
Computer, April 1999, pp. 42-48.

[4] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P.
Kakkar, A. D. Keromytis, J. T. Moore, C. A. Gunter, S.
M. Nettles, and J. M. Smith, "The SwitchWare Active
Network Architecture", IEEE Network Special Issue on
Active and Controllable Networks, vol. 12 no. 3, pp. 29
- 36.

[5] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou,
D. Rockwell and C. Partridge, "Smart Packets for
Active Networks", Proceedings of OpenArch 99,
March 1999.

[6] Samrat Bhattacharjee, Kenneth L. Calvert and Ellen W.
Zegura. "An Architecture for Active Networking",
Proceedings High Performance Networking (HPN’97),
White Plains, NY, April 1997.

[7] D. Mosberger and L. L. Perterson, "Making Paths
Explicit in the Scout OS", Proceedings of the Second
Symposium on Operating System Design and
Implementation, ACM Press, New York, 1997, pp.
153-168.

[8] F. Kaashoek at al., "Application Performance and
Flexibility on Exokernel Systems", 16th Symposium on
Operating System Principles, ACM Press, New York,
1997, pp. 52-65.

[9] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf,
and B. Plattner, "A Scalable, High Performance Active

 8

Network Node", IEEE Network, January/February
1999.

[10] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, O.
Shivers, "The Flux OSKit: A Substrate for OS and
Language Research", Proceedings of the 16th ACM
Symposium on Operating Systems Principles, ACM
Press, October 1997.

[11] L. Peterson (ed.), NodeOS Interface Specification,
Active Networks Node OS Working Group, February
2, 1999.

[12] R. P. Weicker, "A detailed look at some popular
benchmarks", Parallel Computing, No. 17, 1991, pp.
1153-1172.

[13] R. P. Weicker, "Dhrystone Benchmark: Rationale for
Version 2 and Measurement Rules", SIGPLAN Notices,
23, 8, August 1988, pp. 49-62.

[14] H. J. Curnow and B. A. Wichmann, "A Synthetic
Benchmark", The Computer Journal, 19, 1, 1976, pp.
43-49.

[15] TPC Benchmark A Standard Specification, Revision
2.0, Transaction Processing Performance Council, June
7, 1994.

[16] TPC Benchmark B Standard Specification, Revision
2.0, Transaction Processing Performance Council, June
7, 1994.

[17] TPC Benchmark C Standard Specification, Revision
3.4, Transaction Processing Performance Council,
August 25, 1998.

[18] TPC Benchmark D Standard Specification, (Decision
Support) Revision 2.1, Transaction Processing
Performance Council.

[19] K. Shanely, History and Overview of the TPC,
Transaction Processing Performance Council, February
1998.

[20] TPC Benchmark H Standard Specification, (Decision
Support), Revision 1.1.0, Transaction Processing
Performance Council.

[21] TPC Benchmark R Standard Specification, (Decision
Support), Revision 1.0.1, Transaction Processing
Performance Council.

[22] TPC Benchmark W (Web Commerce), Public Review
Draft Specification, Revision D 5.0, July 12, 1999.

[23] "WinTune98", Windows Magazine, Version 1.0.39,
June 24, 1999, 1.75 Mbyte download.

[24] Export Administration Regulations: Technical Note to
Category 4, Computers: Supplement No.1 to Part 774.

[25] SPEC CPU95 Benchmarks, Standard Performance
Evaluation Corporation, June 24, 1999.

[26] "BAPCo Debuts First Benchmarking Software for
Computers Running Windows*98" press release from
Business Applications Performance Corporation, Santa
Clara, CA, August 26, 1998.

[27] "PC Magazine Labs Benchmarks Tests: Winstone99",
PC Magazine On-line, ZDNet, December 1, 1998.

[28] "NetBench 6.0", ZDNet, 1999.

[29] "WebBench 3.0", ZDNet, 1999.

[30] "SPEC Announces SPECweb96, Industry’s First
Standardized Benchmark for Measuring Web Server
Performance", press release from Standard
Performance Evaluation Corporation, July 22, 1996.

[31] "WinBench 99", ZDNet, 1999.

[32] "PC Magazine Labs Benchmark Tests: CPUmark99",
PC Magazine On-line, ZDNet, December 1, 1998.

[33] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya,
"Machine Characterization Based on an Abstract High-
Level Language Machine", IEEE Transactions on
Computers, Vol. 38, No. 12, December 1989, pp.
1659-1679.

[34] R. H. Saavedra and A. J. Smith, "Analysis of
Benchmark Characteristics and Benchmark
Performance Prediction", ACM Transactions on
Computer Systems, Vol. 14, No. 4, November 1996,
pp. 344-384.

[35] Boris Beizer, Micro-Analysis of Computer System
Performance, Van Nostrand Reinhold Company, 1978.

[36] William S. Bowie, "Applications of Graph Theory in
Computer Systems", International Journal of
Computer and Information Sciences, Vol. 5, No. 1,
1976, pp. 9- 31.

[37] R. M. Karp, "A note on the application of graph theory
to digital computer programming", Information and
Control, Vol. 3, No. 6, 1960, pp. 179-190.

[38] C. V. Ramamoorthy, "Discrete Markov analysis of
computer programs", in Proceedings of the 20th ACM
National Conference, 1965, pp. 386-392.

[39] J. D. Foley, "A Markovian model of the University of
Michigan execution system", Communications of the
ACM, Vol. 10, No. 9, 1967, pp. 584-589.

[40] W. S. Bowie, Towards a distributed architecture for
OS/360, PhD Thesis, Department of Applied Analysis
and Computer Science, University of Waterloo, 1974.

[41] M. A. Franklin and R.K. Gupta, "Computation of Page
Fault Probability from Program Transition Diagram",
Communications of the ACM, Vol. 17, No. 4, 1974, pp.
186-191.

 9

[42] P. Hoschka, "Compact and Efficient Presentation of
Conversion Code", IEEE Transactions on Networking,
Vol. 6, No. 4, 1998, pp. 389-396.

[43] B. Wiegbreit, "Mechanical Program Analysis",
Communications of the ACM, Vol. 18, No. 9, 1975, pp.
528-539.

[44] T. Hickey and J. Cohen, "Automating Program
Analysis", Journal of the ACM, Vol. 35, No. 1, 1988,
pp. 185-220.

[45] G. Ramalingam, "Data Flow Frequency Analysis",
ACM SIGPLAN NOTICES, Vol. 31, No. 5, 1996, pp.
267-277.

[46] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer,
"A Static Performance Estimator to Guide Data
Partitioning Decisions", Proceedings of the Third ACM
SIGPLAN Symposium on Principles & Practice of
Parallel Programming, 1991, pp. 267-277.

[47] M. Kijima, Markov Processes for Stochastic Modeling,
Chapman and Hall, London, 1997, especially pages
168-229.

[48] Virginie Galtier, Craig Hunt, Stefan Leigh, Kevin L.
Mills, Doug Montgomery, Mudumbai Ranganathan,
Andrew Rukhin, and Debra Tang, "How Much CPU
Time?", Draft NIST Technical Report TR-ANTD-
ANETS-111999, November 1999.

[49] Connie U. Smith, Performance Engineering of
Software Systems, Addison-Wesley, Reading, Mass.,
1990.

[50] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore,
Carl A. Gunter and Scott Nettles, "PLAN: A Packet
Language for Active Networks", Proceedings of the
International Conference on Functional Programming
(ICFP)’98.

[51] A. B. Kulkarni, G. J. Minden, R. Hill,Y. Wijata, A.
Gopinath, S. Sheth, F.,Wahhab, H. Pindi and A.
Nagarajan, "Implementation of a Prototype Active
Network", Proceedings of OpenArch 98.

[52] Beverly Schwartz, Alden W. Jackson, W. Timothy
Strayer, Wenyi Zhou, Dennis Rockwell and Craig
Partridge, "Smart Packets for Active Networks",
Proceedings of OpenArch 99, March 1999.

[53] While inspecting the code for ANTS v1.3, we
discovered the addition of a "ChannelWatchDog"
thread, which halts long-running ANTS capsules.

[54] R.-D. Reiss, Approximate Distributions of Order
Statistics With Applications to Nonparameteric
Statistics, Springer-Verlag, New York, 1988 (see
specification Chapter 8).

[55] Y. Carlinet, V. Galtier, K. Mills, S. Leigh, A. Rukhin,
"Calibrating an Active Network Node", Proceedings of
the 2nd Workshop on Active Middleware Services,
August 2000.

