
 1

Expressing Meaningful Processing Requirements among 
Heterogeneous Nodes in an Active Network 

Virginie Galtier 
National Institute of Standards 

and Technology 
Building 820, Room 445 

Gaithersburg, Maryland 20899 
1-301-975-3613 
vgaltier@nist.gov 

Kevin L. Mills, Yannick Carlinet,  
 

{kmills, carlinet}@nist.gov 

Stefan Leigh, Andrew Rukhin 
 

{sleigh, rukhin}@nist.gov 
 

ABSTRACT 
Active Network technology envisions deployment of virtual 
execution environments within network elements, such as 
switches and routers. As a result, nonhomogeneous processing 
can be applied to network traffic associated with services, flows, 
or even individual packets. To use such a technology safely and 
efficiently, individual nodes must provide mechanisms to enforce 
resource limits. To provide effective enforcement mechanisms, 
each node must have a meaningful understanding of the resource 
requirements for specific network traffic. In Active Network 
nodes, resource requirements typically come in three categories: 
bandwidth, memory, and processing. Well-accepted metrics exist 
for expressing bandwidth (bits per second) and memory (bytes) in 
units independent of the capabilities of particular nodes. 
Unfortunately, no well-accepted metric exists for expressing 
processing (i.e., CPU time) requirements in a platform-
independent form. This paper investigates a method to express the 
CPU time requirements of Active Applications (similar to 
distributed, mobile agents) in a form that can be meaningfully 
interpreted among heterogeneous nodes in an Active Network. 
The model consists of two parts: a node model and an application 
model. For modeling applications, the paper describes and 
evaluates a semi-stochastic state-transition model intended to 
represent the CPU usage requirements of Active Applications. 
Using measurement data, the general model is instantiated for two 
Active Applications, ping and multicast. The model instances are 
simulated, and the simulation results are compared against real 
measurements. For both Active Applications, the simulated and 
measured CPU time usage compare within 5% for the mean and 
the 90th and 95th percentiles. The 99th percentiles compare within 
7%. The paper also evaluates three different scaling factors that 
might be used to transform a model accurate on one node into 
terms that prove accurate on another node. 
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1. INTRODUCTION 
Active Network technology envisions deployment of virtual 
execution environments within network elements, such as 
switches and routers. As a result, nonhomogeneous processing 
can be applied to network traffic associated with services, flows, 
or even individual packets. To use such a technology safely and 
efficiently, individual nodes must provide mechanisms to enforce 
resource limits. In order to provide effective enforcement 
mechanisms, each node must have a meaningful understanding of 
the resource requirements for specific network traffic. In Active 
Network nodes, resource requirements typically come in three 
categories: bandwidth, memory, and processing. Well-accepted 
metrics exist for expressing bandwidth (bits per second) and 
memory (bytes) in units independent of the capabilities of 
particular nodes. Unfortunately, no well-accepted metric exists for 
expressing processing (i.e., CPU time) requirements in a platform-
independent form. This paper investigates a method to express the 
CPU time requirements of Active Applications in a form that can 
be interpreted among heterogeneous nodes in an Active Network.  

Absent the capabilities we propose, Active Nets researchers have 
taken two main approaches to the problem. One approach assigns 
a time-to-live (TTL) to each packet, and then decreases the TTL at 
each hop, or each time a packet creates another packet. This TTL 
approach limits packets from excessively consuming global CPU 
resources in a network, but does not allow a particular node to 
protect itself. The second approach enforces an arbitrary limit on 
the CPU time that a packet can use at each node. Using an 
arbitrary limit ensures only a worse case upper bound, and can 
also allocate less CPU time than an application needs. The ideas 
proposed in this paper aim to provide Active Nets researchers 
with better information to allocate and control CPU usage for 
individual applications. These ideas might also be applied more 
generally, for example to heterogeneous distributed systems, 
where processes execute on nodes that exhibit a wide range of 
computational capabilities. Such heterogeneous systems could 
include systems based on mobile code, such as mobile agent 
applications, or systems based on code loaded from disk, such as 
distributed parallel processors. Wherever applied, metrics for 
CPU time requirements among distributed nodes will open the 
door to some essential uses. 

CPU time requirements can be used to inform resource 
management decisions on a node. For example, a node might 
reject a new packet class if the processing requirements cannot be 
supported. Or, having accepted a new packet class, the node’s 
operating system can monitor the CPU time used by each arriving 
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packet of the new class in order to halt the execution of packets 
that exceed the stated CPU resource requirements. Beyond 
admission control, new questions can be imagined relating to path 
routing decisions in an Active Network. For example, can a path 
be found through the network that can provide the CPU time 
required by an application, while also meeting the application’s 
throughput, delay, and jitter requirements? As another example, 
given both application performance constraints and resource 
requirements (CPU time, memory, and bandwidth), can an 
application query an Active Network for multiple viable paths, 
each with an associated cost? The resource management questions 
in nodes become very interesting under these circumstances 
because taking on new processing loads can have a negative effect 
on the ability of nodes to meet the requirements promised for 
other applications. Nodes might need to condition such promises 
on a certain level of CPU utilization dedicated to an application. 
Then, resource management algorithms must police CPU 
utilization for each application, in addition to total CPU time 
used. This discussion illustrates that dynamically programmable 
networks will provide a range of interesting research questions 
that cannot be addressed unless CPU time can be interpreted 
among heterogeneous nodes. 

The paper is organized into six main sections. We begin in 
Section 2 by considering the sources of variability in CPU time 
usage in an Active Network node. To the degree feasible any 
model proposed must account for these sources of variability. In 
Section 3, we review briefly the state of practice with regard to 
computer system performance benchmarks, and we provide a brief 
summary of research related to the problem addressed in this 
paper. In Section 4, we describe a semi-stochastic state-transition 
model to represent Active Applications, and we explain how the 
model can be used within a simulator to predict the mean and high 
percentiles of the CPU requirements for specific applications. 
Next, we explain how to scale this model from one Active Node 
to another, using scaling factors intended to capture the 
performance differences of each node. Section 5 compares results 
for two real Active Applications, ping and multicast, against 
results from simulating their parameterized models. Further, we 
compare measured results against simulated results obtained using 
three different factors to scale application models. Section 6 
presents a critical view of our approach. Section 7 introduces 
ideas we need to explore to improve our work. 

2. VARIABILITY IN CPU TIME USAGE 
Any reasonable metric for an application’s CPU time requirements 
must account for the major sources of variability affecting the 
application. In this section we identify and discuss the major 
sources of variability likely to affect the CPU time requirements 
of an active application. A proposed architecture for an Active 
Network node [1] identifies several components and the 
relationships among them. Figure 1 gives a conceptual overview 
of the major components and relationships. The components can 
be viewed as four layers: the hardware, the node operating system 
(Node OS) and interface, the execution environment (EE), and the 
active application (AA). Each EE provides a virtual execution 
environment (similar for example to a Java Virtual Machine [2]) 
in which AAs can execute. Several EEs have been defined and 
implemented within the Active Networks research community 
[e.g., see 3, 4, 5, 6, and 7]. In addition, several implementations of 
a Node OS are being developed [e.g., see 8, 9, and 10]. To enable 

any EE to run over any implementation of a Node OS, a standard 
application-programming interface, in the form of system calls, is 
defined within a separate Node OS specification [11]. 
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Figure 1. Conceptual Architecture of an Active Network Node 

Our analysis of this model, and of real systems, reveals the main 
sources of variability affecting the CPU time requirements of an 
AA. In the hardware layer, the main factors that influence the 
execution time of an application include: the frequency of the 
processor, the architecture of the processor (e.g., Pentium, 
Pentium II, K6, Sparc, and so on), the amount of memory 
available on the host, the speed of the different buses (e.g., 
memory, I/O, and system), the technology of the persistent storage 
(SCSI or IDE hard drive, for instance), and the type of network 
card (e.g., 10 or 100 Mbps Ethernet). Within the node operating 
system (OS) and node OS interface layer, the main sources of 
variability include: the performance of the device drivers, the 
performance in managing processes and memory, and the nature 
and performance of the system calls provided by the operating 
system. In the case of networking system calls, performance of 
reads and writes also varies with the specific protocol stacks that 
are buried beneath the systems calls, and with the implementation 
of those protocols. Within the EE layer, performance can be 
affected by the mapping between the EE system calls and the OS 
system calls (a mapping usually defined by a library), as well as 
the compiler and options used to compile the EE. For example for 
a Linux system, if the EE uses the Java Virtual Machine (JVM), 
then we must consider the performance of the C library and the 
results from the C compiler used to compile the JVM. Finally, the 
execution of a specific AA can go through many paths in the code 
of the program. The path of execution taken can depend on many 
things, such as the state of the node (e.g., whether data is cached 
or not), the data carried (e.g., the length of the data to be 
processed), and even the state of other nodes (e.g., in an active 
multicast application an intermediate node creates and sends as 
many new capsules as the number of subscribed nodes). A 
detailed discussion of these issues appears elsewhere [48]. 

To corroborate our analysis, we measured the variability of a 
single EE running on three different hardware platforms. Table 1 
gives the details of the platforms. We used an Active Application, 
ping, as a calibration workload to assess EE performance. We 
implemented a small calibration driver to measure the 
performance of the Linux system calls. The systems were 
measured in the absence of background load. The results appear in 
Tables 1 and 2. 
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Table 1. Average CPU Time Required for Calibration 
Workload on Three Platforms 

Trait Node A Node B Node C 

CPU seconds  1.00 0.46 0.53 

CPU speed 200 MHz  450 MHz  333 MHz  

Processor  PentiumPro Pentium II Pentium II 

Memory 64 Mbytes 128 Mbytes 128 Mbytes 

OS Linux 2.2.7 Linux 2.0.36 Linux 2.2.7 

JVM jdk 1.1.7B jdk 1.1.7B jdk 1.1.6 

 

Table 1 shows the average number of user-mode CPU seconds 
taken for three different platforms to execute a calibration 
workload: acting as intermediate nodes for 3,000 ping capsules. 
Using as a predictor only the measured workload performance on 
Node B and Node C and their CPU speeds relative to Node A, 
given in rows one and two of Table 1, we might have expected 
Node A to take either 1.04 CPU seconds [based on Node B, Node 
A = (450 MHz / 200 MHz) * 0.46 CPU seconds] or 0.88 CPU 
seconds [based on Node C, Node A = (333 MHz / 200 MHz) * 
0.53 CPU seconds] instead of the measured 1.00 CPU second. 
Clearly, factors other than CPU speed affect application 
performance. Table 2 shows that variability can also occur in the 
execution of system calls, perhaps depending on how the system 
call is implemented from OS-to-OS (or in this case even from 
version-to-version of the same OS). Other factors might include 
differences in devices, and thus device drivers, underlying specific 
system calls. An effective metric for CPU time usage in an Active 
Network node must account for these sources of variability. In 
Section 4, we investigate a model designed to respond to this 
challenge. First, we present a brief survey of some existing 
computer system performance benchmarks used by industry, 
followed by references to other related work. 

 

Table 2. Average CPU Time Required for System Calls on 
Three Platforms  

Microseconds System Call 

Node A Node B Node C 

_llseek 6  4  3 

close 11 9 7 

fstat 6 4  2 

link 31 32 22 

open 19 32 11 

read 13 7 8 

socket 21 13 14 

stat 15 12 9 

unlink 28 19 20 

write 6 21 3 

 

3. RELATED WORK 
Over the years, the computer industry has developed many 
benchmarks to evaluate the performance of computer systems. 
The most successful among these evolve over time to account for 
changes in underlying hardware performance and for shifts in user 
interest. While these industry benchmarks have different 
characteristics, they share a common purpose: to compare 
performance among computer systems. None of these expresses 
the CPU time requirements for specific applications. Still, 
measurements of performance differences among computer 
systems provide one essential ingredient in any design that 
attempts to meaningfully express an application’s CPU time 
requirements among heterogeneous nodes. For this reason, 
examining existing industry benchmarks has proven valuable to 
us. We have also considered related research that attempts to 
model the performance of computer programs. In addition, we 
have surveyed the current state-of-the-art with respect to CPU 
resource control in Active Networks. Readers uninterested in this 
background can move directly to Section 4. 

3.1 Performance Benchmarks 
While a few benchmarks, such as composite theoretical 
performance (CTP) calculated for purposes of export control [24], 
use static computations, most benchmarks entail dynamic 
execution of a workload. As a main division, most dynamic 
benchmarks are either synthetic or real, while a few hybrid 
benchmarks mix both elements. Synthetic benchmarks contain 
artificial programs designed to mimic characteristics that the 
designers believe would be exhibited by real programs from a 
population of interest [12-23]. These programs are artificial in 
that they produce no useful results outside the benchmark. Real 
benchmarks contain programs from a population that the 
designers either: (1) know is the population of interest or (2) 
believe behave similarly to programs within the population of 
interest [25-30]. The programs used in real benchmarks produce 
useful results when used outside the context of the benchmark. 
Some hybrid benchmarks consist of a mix of synthetic and real 
benchmarks [31, 32]. 

3.2 Program Models 
Computer science researchers and practitioners have explored the 
use of graph theory and Markov models to represent computer 
systems and programs and to predict performance characteristics 
at both micro and macro levels [35-42, 45, 49]. These previous 
explorations have guided our work. Other researchers have 
investigated additional techniques to analyze program code in 
order to predict the performance of programs on various computer 
systems [33-34, 43-44, 46]. Of particular interest, Saavedra and 
Smith [33, 34] developed a machine-independent model of 
program execution that formed the basis for characterizing both 
machine performance and program profile. While this is an 
appealing approach, the workload characterization, and thus the 
resulting performance prediction, is valid for only a particular 
instance of execution behavior, that is, a single run of a program. 
In our case, we need a model that will capture many possible 
executions of a program. 
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3.3 CPU Usage Control in Active Networks 
The Active Network architecture document [1] proposes to use 
RISC (reduced instruction set computer) cycles as a unit of CPU 
resource measurement; however, the document does not explain 
how to convert RISC cycles into a meaningful figure on an actual 
node. The document also does not explain how to determine the 
number of RISC cycles needed to execute specific active 
applications. In light of this situation, most execution 
environments implement their own mechanism to protect CPU 
resources. For example, some systems, such as ANTS [3] and 
PLAN [50], assign a time-to-live (TTL) to each active packet, 
while other systems, such as Magician [51], Smart Packets [52], 
and ANTSv1.3 [53], limit that amount of CPU time any packet 
can use at each node. In both approaches, limits are assigned 
arbitrarily, regardless of an application’s requirements. 

4. MODELING CPU USAGE 
In order for a node operating system (Node OS) to efficiently 
manage the utilization of its CPU, each active application (AA) 
must declare the CPU time required for its execution. In a simple 
approach, an application might declare the average CPU time 
required and the variance. We believe statistics for the higher 
percentiles of CPU time required by an application could prove 
more useful for resource enforcement and estimation. With an aim 
to characterize both the average and high percentile CPU time 
requirements of applications, we investigated a fine-grained 
model, as presented in this section. First, we devised a general 
model for the CPU requirements of AAs, and then we used 
measurements to instantiate our model for two specific AAs, ping 
and multicast, executing on Node A (see Table 1). Second, we 
simulated our model instances; validating them against results 
obtained from measurements on Node A. Third, we used several 
different techniques to scale our model instances to reflect the 
CPU time usage we expected to see on Node C. We then 
compared the results from simulating our scaled models against 
the CPU time usage obtained from measuring real executions of 
the same applications on Node C. The details follow. 

4.1 Modeling Active Applications 
Recall from Figure 1 that an AA executes in user mode within an 
execution environment (EE), but requests services periodically 
from the node operating system through specific system calls. An 
observer, situated at the boundary between an EE and the Node 
OS, would view the behavior of an AA as a series of transitions 
between specific system calls: from an initial state, the application 
executes in user mode for some amount of CPU time within its EE 
and then executes in kernel mode for some amount of CPU time 
within a system call, then again in the EE before transitioning to 
another system call, and so on until the active packet is processed 
and the AA has returned to its initial state. We call each execution 
cycle a scenario. We are interested in modeling the total CPU time 
taken for each scenario, as well as the distribution of CPU time 
used by an application when executing a typical mix of scenarios. 

To generate models from real applications, we built a software 
monitor that can observe the transitions between system calls. The 
monitor logs a trace of system calls made to process an active 
packet, along with CPU time information. Each transition lists the 
previous system call and the upcoming system call, along with the 
CPU time used by the previous system call, and the CPU time 

used by the EE between the calls. The sequence of system calls 
may vary from one execution to another because several paths are 
possible within the processing code. We label each different 
sequence as an execution scenario. To ensure that the model 
captures a representative coverage of the AA, the AA developer is 
responsible for running the AA through the expected mix of 
scenarios. Using the resulting execution trace, we construct the 
model of an AA. 
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Figure 2. Stochastic State-Transition Graph Representing 
Two Scenarios in an Active Application  (System Calls: LS = 

_llseek; R = read; SC = socket call; W = write) (P = the 
probability of executing a specific scenario) 

 

An AA model consists of two types of information: scenario 
representation and workload representation. Each scenario (see 
Figure 2) is represented by its sequence of system calls. Further, 
each system call is characterized by the distribution of the CPU 
time spent in the system call, as measured from the execution 
trace. In addition, each transition is characterized by the measured 
distribution of CPU time spent in the EE during the transition, 
also as measured from the execution trace. In an earlier version of 
our model, we hoped to represent these distributions using 
classical probability distributions. Our goal was to produce an 
analytically tractable model. Unfortunately, the observed 
distributions exhibit a degree of discreteness and truncation not 
well represented by typical continuous distributions. For this 
reason, we chose to represent the distributions of CPU usage with 
histograms (see Figure 3). Note that this approach increases 
significantly the volume of information that must be exchanged 
when AA models are transferred among nodes in a network. (Our 
experiments show that at least 25 bins per histogram are required 
to obtain reasonable results.) 
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Figure 3. Sample Histograms Representing the CPU Time 
Requirements for the Write System Call and a Write-to-

Socket-Call Transition (P is the Probability of a Specific Bin in 
a Histogram) 
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The AA workload is represented as a list of the possible scenarios, 
where each scenario is assigned a probability of occurrence (based 
on the frequency with which the scenario appeared in the 
execution trace). The scenarios, their probability of occurrence, 
and the distributions of user and system CPU time usage 
constitute the AA model, which is transmitted among nodes in the 
network, and used to estimate the execution time needed at each 
node 

4.2 Simulating CPU Requirements 
To validate the predictive ability of our AA models, we used 
Monte-Carlo simulation. Each pass through the simulator 
represents the processing of an active packet. Using the 
probability of occurrence contained in the AA model, the 
simulator selects a scenario. For each component of the scenario 
(system calls and transitions in user mode between two system 
calls), the simulator runs another Monte-Carlo test to choose a bin 
of the histogram describing the CPU time distribution. The sum of 
the CPU times of each component in the scenario yields a 
simulated execution time. After repeated scenario executions, we 
obtain an estimate for the mean and the high percentiles of the 
CPU time requirements of the AA. 

4.3 Overcoming Node Heterogeneity 
Recall that the CPU time values included in the model were 
generated from an execution trace measured on a specific node. 
For this reason, these values likely have no meaning on other 
nodes in the network. We need to scale the values in the model to 
a form that will have meaning on these other nodes. Since the 
model consists of CPU time values related to system calls (kernel 
mode) and EE execution (user mode), we need to devise 
transformation factors that can scale independently the kernel-
mode and user-mode times. (The reasons for this were discussed 
earlier in Section 2.) 

Our approach is to provide workloads that each node can use to 
calibrate itself with respect to performance of EEs contained on 
the node, and also with respect to performance of system calls. 
After executing the calibration workloads, a node obtains two 
vectors. The EE vector gives the average user-mode CPU time 
taken by the node to execute a representative workload for each 
type of EE. The system-call vector gives the average CPU time 
taken to execute each Node OS system call. (We discuss in 
another paper [55] our progress on node calibration.) To allow the 
transformation of AA models to scale across a large population of 
nodes, we select a specific node as a reference. 

The calibration vectors for the reference node are distributed to all 
nodes in the network. Prior to transferring the model of an AA 
(running on a specific execution environment, EE1) between two 
nodes x and y, the model is subjected to a "Node-to-Reference 
transform": the histograms describing the time spent between two 
system calls are dilated or contracted using the ratio Tref/Tx, 
where Tref is the average time taken by EE1 to execute the 
calibration workload on the reference node and Tx is the average 
time taken by EE1 to execute the calibration workload on node x. 
The histograms describing the time spent in each system call are 
transformed in the same manner using the system-call vectors. 
The model, with its CPU time requirements expressed in terms of 
a reference node, is then transmitted across the network. Upon 
arrival at node y, the model is subjected to an inverse (the ratio is 

Ty/Tref) "Reference-to-Node transform". The combination of 
these two transforms scales the CPU times within an application 
model from a form meaningful on node x into a form meaningful 
on node y. 

5. Results 
We used our approach to construct models for two active 
applications (ping and multicast) written for the EE ANTS. First, 
we validated our models by comparing simulation results against 
measured results obtained on Node C (see Table 1). Second, we 
investigated three scaling factors to transform our models for use 
on Node A. Then we simulated the scaled models, and compared 
the simulation results against measured results obtained when 
running the real applications on Node A. The details follow. 

5.1 Validating the Models 
We selected the relevant scenarios for each of the applications, 
and then exercised each application on Node C until 20,000 active 
packets were processed. The mean and high percentiles of 
execution time (expressed in CPU clock cycles) measured from 
these test sequences appear in Table 3 below. Row one provides 
the measured values for ping and row three provides the measured 
values for multicast. 

We used these same execution traces to construct the models. 
When constructing and using a model, two parameters can 
influence the results: (1) the number of bins chosen for the 
histograms and (2) the number of simulation runs. Our 
experiments showed that, independent of the number of runs, 25 
bins per histogram appears to be the minimum needed to obtain 
results within 5% of the real values. With 100 bins per histogram, 
1,000 runs of the simulator proved sufficient to provide estimated 
values for mean and high percentiles with the accuracy shown in 
Table 3. For both applications, the simulated and measured CPU 
time usage compare within 5% for the mean and the 90th and 95th 
percentiles. The 99th percentiles compare within 7%. 

 

Table 3. Validation Results for Active Applications Ping and 
Multicast on Node C 

 Thousands of CPU Cycles 

Experiment Mean 90% 95% 99% 

Measured Ping  176 197 211 263 

Simulated Ping  170 190 202 269 

Measured Multicast 143 169 180 201 

Simulated Multicast 144 165 173 187 

 

5.2 Validating the Scaled Models 
Next we tried to scale our Node C models for ping and multicast 
for use on Node A. Scaling was accomplished using the 
transformations described above (see Section 4.3). First, we 
compared two different scaling factors: (1) MHz scaling, using the 
ratio of CPU speeds on the two nodes (as given in Table 1) and 
(2) Workload scaling, using the ratio of the times taken by the two 
nodes to execute the preliminary calibration workloads (as given 
in Tables 1 and 2). Our working hypothesis was that the first ratio 
would yield poor results, but that the second ratio would yield 
better results. 
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Table 4 gives the results we obtained. As expected, scaling the 
model using the ratio of CPU speeds (results in rows two and six 
of Table 4) yields poor correspondence with the measured results 
(rows one and five in Table 4). The errors range from about 40% 
to as much as 60%. Unfortunately, scaling the model using the 
ratio of CPU time needed to execute the calibration workloads 
yielded equally poor results (row three of Table 4) for the ping 
application (errors range from 30% to 80%), and for multicast 
(results not included in the table). One possible reason is that the 
preliminary calibration workload does not provide a good 
representative workload. This issue is under investigation. Given 
the poor results from both MHz and Workload scaling, we 
adopted a third approach to obtain a scaling factor. We call this 
approach Inspection scaling. We simply varied the value 
corresponding to the average time to execute a calibration 
workload on ANTS on each node until we found a ratio giving 
better results for ping (see row four in Table 4). We achieved 
accuracy within 2% for the mean and the 90th and 95th percentiles, 
and within 9% for the 99th percentile. The same ratio turns out to 
give reasonable results for multicast (see row seven in Table 4). In 
the case of multicast, all the statistics correspond within 8%. 

 

Table 4. Validation Results after Scaling Ping and 
Multicast Models to Node A  (M = MHz scaling; W = 

Workload scaling, I = Inspection scaling) 

 Thousands of CPU Cycles 

Experiment Mean 90% 95% 99% 

Measured Ping 206 229 237 274 

Simulated Ping-M 293 320 342 440 

Simulated Ping-W 367 358 327 357 

Simulated Ping-I 210 229 241 298 

Measured Multicast  171 186 198 239 

Simulated Multicast-M 236 276 289 311 

Simulated Multicast-I 172 200 210 228 

 

6. DISCUSSION 
Two topics warrant further discussion. First, the approach 
outlined in this paper has some limitations. Second, the issue of 
node calibration requires further exploration. 

6.1 Limits of the Approach 
The limits of our current approach fall into two main categories. 
First, our model lacks space and time efficiency. A specific model 
can be huge: if a lot of different paths exist through the processing 
code of an active packet, if the paths are long, and if the 
histograms are fine-grained. These issues can be overlooked to 
some degree because the envisaged AAs are designed for 
processing network packets, rather than performing arbitrary 
distributed computation. Thus, we can reasonably expect an AA 
to have a small number of scenarios, and each scenario to be 
short. That said, since AA CPU usage profiles do not match well 
the known statistical distributions, we have had to resort to 
simulation in order to obtain estimates of CPU time usage. Using 
simulation to estimate the high percentile of CPU usage can be 
costly. For this reason, simulation is interesting only for AAs that 

will execute for a long period on a node. An analytical solution 
would be much faster. To date, the analytical approximations that 
we have investigated yield much less accurate results than 
simulation. 

The second limitation of our approach is more conceptual. Our 
model captures only the behavior of the application as exercised 
during the generation of execution traces. Unless the AA 
developer exercises good judgment, the execution traces can give 
a distorted representation of the application. Even when the AA 
developer exercises good judgment, the conditions existing on a 
node or in a network of nodes might well prove different than the 
conditions present when the execution trace was generated. 
Perhaps this limitation could be overcome if a model is allowed to 
evolve as it travels from node to node and gains experience (an 
active model!). Such an active model should also be 
parameterizable to capture the fact that an AA may execute loops 
a varying number of times based on parameter values local to the 
node. For example, a multicast application might perform some 
operations once per each multicast user known to a node. 
Information such as this cannot be known in advance, but would 
be available on each node. 

6.2 Calibration Issues 
The results of our transformation attempts led us to consider 
several alternative approaches. First, we could try to generate a 
different calibration workload that better represents AA 
processing. But we might instead want to rethink the calibration 
process. We could deploy a calibration application on each node, 
and then measure the mean and 95th percentile of the application’s 
CPU usage. Subsequently, we choose one node as a reference and 
then instantiate a simulation model of the calibration application, 
as it executes on the reference node. This model would be 
distributed to all nodes. Node calibration would comprise finding 
a scaling factor that yields a close correspondence for the 
calibration application between simulated and measured CPU 
usage for the mean and 95th percentile statistics. 

Another solution to the model transformation would be to 
calibrate by node and by application. In that way, each node 
would have its own model for a given application, and the model 
would not be transmitted through the network. This solution 
reduces network traffic at the cost of memory at each node. In 
addition a long initialization step would be required, and of 
course the approach does not scale to large and highly dynamic 
networks. Still, this approach could be used for AAs deployed by 
a network operator for a long period of time. In that case, static 
limits could be enforced for other classes of AA. 

7. FUTURE WORK 
Our future work on this project will evolve along two lines: (1) 
confirming and extending our current results and (2) investigating 
techniques to overcome the limitations of our existing approach. 
We have discovered a scaling factor that successfully transforms 
models for two AAs, ping and multicast, between two different 
nodes. We must confirm that this same scaling factor applies for 
other AAs. Further, we must show the existence of scaling factors 
that can successfully transform AA models among a variety of 
nodes. If such scaling factors exist, then we must develop a 
calibration technique aimed at discovering the scaling factors for 
specific nodes. Finally, since some aspects of AA processing 
depend on conditions present on particular nodes, we must extend 
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our model to enable parameterization that can account for node-
dependent conditions. Such parameterization would likely require 
us to include the possibility of loops within our transition graphs. 

Beyond confirming and extending our current approach, we must 
investigate AA models that exhibit improved space and time 
efficiency. We are exploring a nonparametric technique using the 
Epanechnikov kernel [54] to estimate a quantile function, given a 
set of representative data points. To date, we have applied the 
technique to analyze nineteen data sets drawn from five 
applications running on four nodes. In general, we have found 
that this technique yields a good correspondence between its 
estimates and the input data set, provided two conditions hold: (1) 
the input data set contains at least 200 sample points and (2) the 
distribution of data points is not overly discrete. We imagine that 
this technique might be applied to represent the CPU usage of an 
application with as few as 1,000 data points. Such a 
representation would be much more compact than our current 
model. In addition, using the estimated quantile function for high 
percentiles might well require less CPU time than needed to 
simulate 1,000 data points using our current approach. Further, 
modeling CPU time as a flat set of observations could provide a 
nice basis on which to evolve the model over time, based on 
actual measurements as the modeled application moves 
throughout the network. Even if these hypotheses are confirmed, 
we still need to develop suitable scaling factors to transform the 
sample data points into a form meaningful on various nodes, and 
we still need to account for node-dependent conditions. 

8. CONCLUSIONS 
The work reported in this paper is motivated by the search for an 
effective technique for Active Network (mobile code) applications 
to express CPU time requirements in a form that can be 
meaningfully interpreted on heterogeneous nodes distributed in a 
network. The paper identifies and discusses the major sources of 
variability likely to affect the CPU time requirements of an Active 
Application. To support that analysis, the paper reports results 
from measuring CPU time usage for virtual machine executions 
and for system calls on three Linux nodes. The paper describes a 
semi-stochastic model that can be used to represent the CPU time 
requirements of an Active Application. Measured execution traces 
from real Active Applications (ping and multicast) were used to 
construct instances of this model. Simulation results show that the 
model can give a reasonably accurate representation of the 
behavior of an Active Application, provided the data used to 
construct the model contain a faithful representation of the mix of 
scenarios composing the application. 

We also present a model capturing variations in node 
performance. We planned to use this model in conjunction with 
algorithms to transform Active Application models among 
heterogeneous nodes in a network. The poor results obtained with 
our proposed scaling factor illustrate the difficulty of generating a 
representative calibration workload for Active Applications. But 
we show that a ratio leading to better results exists, and we 
discuss other techniques to calibrate an active node. 

While the model investigated in this paper still has strong 
limitations, we plan to continue our research, searching for more 
effective models. Without such models, it will prove impossible to 
effectively manage CPU resources in distributed applications 
based on mobile code. The urgency to develop models of CPU 
time requirements for software applications will increase with the 

increasing use of mobile code in distributed software systems. In 
such systems, models must provide reasonably accurate 
representations of the expected CPU time usage of an application. 
Such models must also be capable of meaningful interpretation 
among heterogeneous nodes in a network. In our research to date, 
these requirements have proven difficult to meet. We plan to 
continue our search. We urge other researchers to join us. 
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