Sep 1, 2003

# Software Write Block Tool Specification & Test Plan

Version 3.0 September 1, 2003



## Abstract<sup>1</sup>

This document defines requirements for *hard drive software write block* (SWB) tools used in computer forensics investigations and the test methods used to ascertain whether a specific tool meets the requirements.

The requirements are used to derive assertions that will be tested. The assertions are described as general statements of conditions that can be checked after a test is executed. Each assertion generates one or more test cases consisting of a test protocol and the expected test results. The test protocol specifies detailed procedures for setting up the test, executing the test, and measuring the test results.

The requirements and test methods were developed by a focus group of individuals who are expert in the use of hard drive software write block tools and have performed investigations that have depended on the results of these tools. As this document evolves through comments from the focus group and others, new versions will be posted to the web site at <a href="http://www.cftt.nist.gov">http://www.cftt.nist.gov</a>.

<sup>&</sup>lt;sup>1</sup> Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

| 1       | Introduction                        | 1  |
|---------|-------------------------------------|----|
| 2       | Purpose                             | 1  |
| 3       | Scope                               | 1  |
| 4       | References                          | 2  |
| 5       | Technical Background                | 2  |
| 5.1     | Hard Drive Attachment and Access    | 3  |
| 5.2     | Technical Terminology               | 4  |
| 6       | Requirements                        |    |
| 6.1     | Requirements for Mandatory Features | 7  |
| 6.2     | Requirements for Optional Features  | 7  |
| 7       | Assertions                          | 7  |
| 7.1     | Assertions for Mandatory Features   | 7  |
| 7.2     | Assertions for Optional Features    | 8  |
| 8       | Test Methodology                    | 8  |
| 8.1     | Test Case Parameters 1              | 0  |
| 8.2     | Parameter Values 1                  | 1  |
| 8.2.1   | Category                            | 1  |
| 8.2.2   | N Drives 1                          | 2  |
| 8.2.3   | Protected1                          | 2  |
| 8.2.4   | Return1                             | 3  |
| 9       | Abstract Test Cases                 | 3  |
| 9.1     | Test Case Summaries                 | 4  |
| 9.2     | Test Case Parameters                | 6  |
| 9.3     | Test Case Expected Results          |    |
| 9.4     | Test Case Selection Guide           | 7  |
| 9.5     | Run Protocol Selection              | 8  |
| Appendi | x A Interrupt 0x13 BIOS Access      | 21 |
| Appendi |                                     |    |
| Appendi | x C Traceability Matrices           | 27 |

### Contents

## List of Tables

| Table 8-1 SWB Test Parameters                         | 10 |
|-------------------------------------------------------|----|
| Table 8-3 Interrupt 0x13 Command Category Assignments | 11 |
| Table 8-5 Possible Values for the Protected Parameter |    |
| Table 9-1 Test Case Summaries                         | 14 |
| Table 9-2 Test Case Parameters                        |    |
| Table 9-4 Test Case Expected Results                  | 17 |
| Table 9-6 Software Required for Testing               |    |
| Table C-1 Requirements to Assertions Traceability     |    |

# List of Figures

| Figure 5-1 Drive Access Through the 0x13 BIOS Interface | 4  |
|---------------------------------------------------------|----|
| Figure 5-2 SWB Tool Operation                           | 6  |
| Figure 8-1 Test Harness and Interrupt Monitor Operation | 10 |

## 1 Introduction

There is a critical need in the law enforcement community to ensure the reliability of computer forensic tools. A capability is required to ensure that forensic software tools consistently produce accurate and objective test results. The goal of the Computer Forensic Tool Testing (CFTT) project at the National Institute of Standards and Technology (NIST) is to establish a methodology for testing computer forensic software tools by development of general tool specifications, test procedures, test criteria, test sets, and test hardware. The results provide the information necessary for toolmakers to improve tools, for users to make informed choices about acquiring and using computer forensic tools, and for interested parties to understand the tools capabilities. Our approach for testing computer forensic tools is based on well-recognized international methodologies for conformance testing and quality testing. This project is further described at <a href="http://www.cftt.nist.gov/">http://www.cftt.nist.gov/</a>.

The CFTT is a joint project of the National Institute of Justice, the research and development organization of the U.S. Department of Justice; the National Institute of Standards and Technology Office of Law Enforcement Standards and Information Technology Laboratory; and other agencies, such as the Technical Support Working Group. The entire computer forensics community participates in the development of the specifications and test methods by commenting on drafts as they are published on the website.

The central requirement for a sound forensic examination of digital evidence is that the original evidence must not be modified, i.e., the examination or capture of digital data from the hard drives of a seized computer must be performed so that the drive contents are not changed. The investigator follows a set of procedures designed to avoid any modification of original data, including prevention of the execution of any program that might modify the drive contents, using a software tool to block modification of a drive, or using a hardware device to block modification of a drive.

## 2 Purpose

This document defines requirements for *hard drive software write block* (SWB) tools used in computer forensics investigations and the test methods used to ascertain whether a specific tool meets the requirements.

The requirements are used to derive assertions that will be tested. The assertions are described as general statements of conditions that can be checked after a test is executed. Each assertion generates one or more test cases consisting of a test protocol and the expected test results. The test protocol specifies detailed procedures for setting up the test, executing the test, and measuring the test results.

The requirements and test methods were developed by a focus group of individuals who are expert in the use of hard drive software write block tools and have performed investigations that have depended on the results of these tools. As this document evolves through comments from the focus group and others, new versions will be posted to our web site at <a href="http://www.cftt.nist.gov">http://www.cftt.nist.gov</a>.

### 3 Scope

The scope of this specification is limited to software tools that protect a hard drive attached to a PC from unintended modification. The test plan is currently confined to tools that protect drive access through the interrupt 0x13 BIOS interface of a PC. This interface is also listed as *INT 13h* and is defined as "A BIOS interrupt service that provides a protocol independent method for addressing floppy, hard drive, and other storage devices[NCITS 347:2001] Not included are tools that protect a hard drive from modification through other mechanisms such as hardware write blocking devices. However, the specifications are general and could be adapted to other types of software write blocking tools. If software write blocking tools other than interrupt 0x13 based tools are tested (e.g., windows device driver based tools), an additional test plan, specific to the type of tool tested will be developed and published as an addendum to this document. Definitions for hard drive related terms can be found in NCITS 347:2001 "American National Standard for Information Technology – BIOS Enhanced Disk Drive Services."

### 4 References

[NCITS 347:2001] ANSI NCITS 347-2001 BIOS Enhanced Disk Drive Services, ANSI 11 West 42nd Street, New York, NY 10036.

[Gilluwe] F. van Gilluwe, The Undocumented PC, Second ed. Addison-Wesley, New York (1997).

[Micro] The Hard Disk Technical Guide, 12th edition, MicroHouse, Micro House International, Inc. Boulder, CO, 1996.

[Norton] P. Norton, The Peter Norton Programmer's Guide to the IBM PC, Microsoft Press, Bellevue, Washington, 1985.

[Phoenix] PhoenixBIOS 4.0 Revision 6 User's Manual, Phoenix Technologies Ltd., 411 E. Plumeria, San Jose, CA 95134 (2000), http://www.phoenix.com/resources/userman.pdf.

### 5 Technical Background

This section provides technical background for a discussion of write blocking technology. The first subsection gives definitions and references for several physical drive interfaces. The second subsection presents an overview of how hard drives are physically attached to a computer and then accessed by programs running on the computer. The third subsection defines terminology related to software write block tools. An example illustrating how the terminology relates to an actual PC is presented in Appendix B.

### 5.1 Definitions

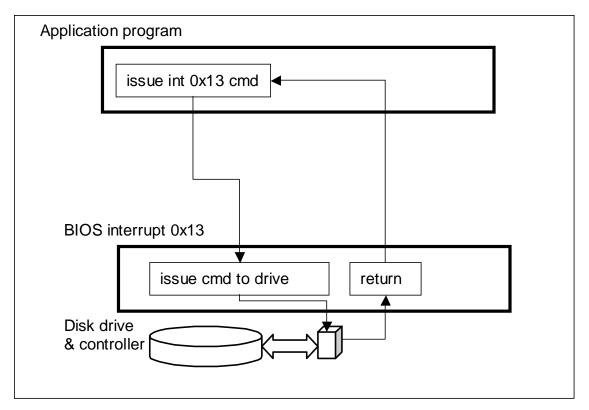
**Firewire**: colloquial term referring to an external bus standard that supports data transfer rates of up to 400Mbps (IEEE Standard 1394a) and 800Mbps (IEEE Standard 1394b). The term 'FireWire' was trademarked by Apple.

**Integrated Drive Electronics/AT Attachment (IDE/AT) Interface:** A colloquial term for interface standards developed by T13. Technical Committee T13 is responsible for all interface standards relating to the AT Attachment (ATA) storage interface utilized as the disk drive interface on personal and mobile computers. T13 is a Technical Committee for the InterNational Committee on Information Technology Standards (INCITS) [http://www.incits.org/]. INCITS is accredited by, and operates under rules approved by, the American National Standards Institute (ANSI) [http://www.ansi.org/]. [see Addendum for ATA interface commands]

**Interface:** A shared boundary defined by the characteristics of that boundary. The interface may be described at the physical level, at the software level, or as purely logic operations. For example, characteristics of the boundary may include the identification of any physical interconnections, description of signal exchanges across the boundary, or specification of functions performed on each side of the boundary.

**Small Computer System Interface (SCSI)**: A colloquial term for interface standards developed by T10. Technical Committee T10 is responsible for SCSI Storage Interfaces and SCSI architecture standards (SAM, SAM-2, and SAM-3), which are used by SCSI, SAS, Fibre Channel, SSA, IEEE 1394, USB, and ATAPI. T10 is a Technical Committee of the InterNational Committee on Information Technology Standards (INCITS) [http://www.incits.org]. INCITS is accredited by, and operates under rules that are approved by, the American National Standards Institute (ANSI) [http://www.ansi.org]. [see Addendum for SCSI interface commands]

**Universal Serial Bus (USB):** A colloquial term referring to external bus standards that support data transfer rates of up to 480Mbps for high-speed connection of peripheral equipment to microcomputers.


**ASPI:** Short for Advanced SCSI Programming Interface, an interface specification developed by Adaptec, Inc. for sending commands to a SCSI host adapter. ASPI has become a de facto standard that enables programmers to develop applications and drivers that work with all ASPI-compatible SCSI adapters.

### 5.2 Hard Drive Attachment and Access

Before a hard drive can be used it must be physically attached to a computer. A hard drive is attached to a computer by one of several available physical interfaces. A drive is usually connected by a cable to an interface controller located either on the mother board or on a separate adapter card. The most common physical interface is the ATA (AT Attachment) or IDE (Integrated Drive Electronics) interface. This includes variants such as EIDE (Enhanced IDE) or ATA-2, ATA-3, etc. Some other physical interfaces include, but are not limited to SCSI (Small Computer System Interface), IEEE 1394 (also known as FireWire or i-Link), and USB (Universal Serial Bus).

All access to a drive is accomplished by commands sent from a computer to a drive through the interface controller. However, since the low level programming required for direct access through the interface controller is difficult and tedious, each operating system usually provides other access interfaces. For example, programs running in the DOS environment can, in addition to direct access via the drive controller, use two other interfaces: DOS service interface (interrupt 0x21) or BIOS service interface (interrupt 0x13). The DOS service operates at the logical level of files and records while the BIOS service operates at the physical drive sector level. More complex operating systems, for example Windows XP or a UNIX variant (e.g., Linux), may disallow any low level interface (through the BIOS or the controller) and only allow user programs access to a hard drive through a device driver, a component of the operating system that manages all access to a device.

Using the interrupt 0x13 interface for hard drive access is illustrated in Figure 5-1. An application program issues an interrupt 0x13 command. The interrupt transfers control to the interrupt 0x13 routine in the BIOS. The BIOS routine issues commands, ATA or SCSI as appropriate, directly to the hard drive controller. The device does the requested operation and returns the result to the BIOS and then to the application program.



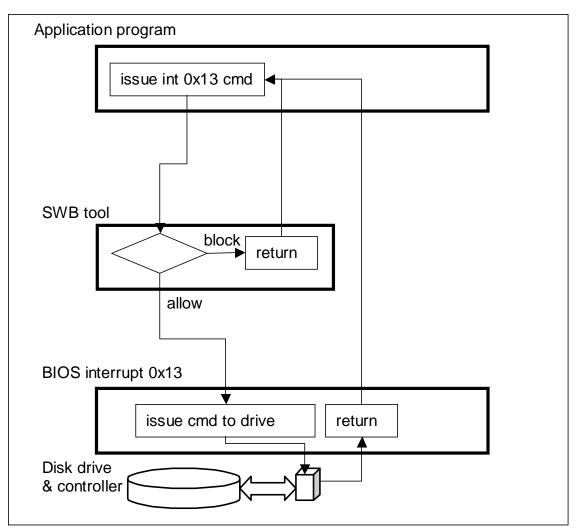
#### Figure 5-1 Drive Access Through the 0x13 BIOS Interface

#### 5.3 Technical Terminology

A hard drive software write block tool replaces or monitors a hard drive *access interface* on a general purpose host computer with hard drives attached by a physical interface. A hard drive access interface is defined as a method used by a program to access a hard drive. For a program to access a drive, the program issues a high level command to the access interface that is translated by the access interface into the corresponding low level command that is sent to the drive through the physical interface controller. For each command issued, the access interface indicates command results (e.g., command completion, error status) by a *return value*. A hard drive software write block tool operates by monitoring drive I/O commands sent from the PC through a given access interface. Any commands that could modify a hard drive are intercepted (i.e., blocked) and not passed on to the hard drive controller. The most common access interfaces currently found are as follows: hard drive device driver, interrupt 0x13 BIOS (Basic Input Output Services), ATA (AT Attachment) direct controller, ASPI (Advanced SCSI Programming Interface), USB (Universal Serial Bus) and IEEE 1394 (also known as Firewire). Each interface has its own command set and access protocol. The command set for a given interface can be partitioned into the following categories:

- Write: commands that transfer data from the computer memory to the drive.
- **Configuration:** commands that change how the drive is presented to the host computer. These commands often destroy data on the drive or make data inaccessible.
- **Read:** commands that transfer data from the drive to the computer memory.
- Control: commands that request the drive to do a nondestructive operation, for example: reset or seek.
- Information: commands that return information about the drive.
- Miscellaneous: commands that do not fit into the other categories.

Appendix A presents two tables: categorizations of the typical interrupt 0x13 BIOS commands, and a catalog of commands and widely known extensions to the typical command set.


The following terms are defined for convenience in specifying the tool requirements.

- **Covered interface:** a drive access interface that is controlled by the tool.
- Covered drive: a drive attached to a covered interface.
- **Protected drive:** a drive designated for protection from modification when accessed by a covered interface.
- Unprotected drive: a drive that is not protected from modification through a specified access interface.
- **Blocked command to a drive:** a command issued by an application program that is intercepted by a SWB tool such that neither the issued command nor some other command is sent to the interface used to access the drive. A command that is not blocked is not altered in any way.

Use of a SWB tool changes the normal operation of the interrupt 0x13 interface. Figure 5-2 illustrates SWB tool operation.

- 1. The SWB tool is executed. The SWB tool saves the current interrupt 0x13 routine entry address and installs a new interrupt 0x13 routine.
- 2. The application program initiates a drive I/O operation by invoking interrupt 0x13. The replacement routine installed by the SWB tool intercepts the command.
- 3. The SWB tool determines if the requested command should be blocked or if the command should be allowed.
- 4. If a command is blocked, the SWB tool returns to the application program without passing any command to the BIOS I/O routines. Depending on SWB tool configuration either **success** or **fail** is returned for the command status.
- 5. If the command is allowed (not blocked), the command is passed to the BIOS and the BIOS I/O routine issues required I/O commands (ATA, SCSI or other) to the drive controller so that the desired I/O operation occurs on the hard drive.
- 6. Results are returned to the application program.





### 6 Requirements

This section presents mandatory requirements for all software write block tools and a list of optional requirements that some software write block tools may provide.

The informal hard drive software write block tool requirements are the following:

- The tool shall not allow a protected drive to be changed.
- The tool shall not prevent obtaining any information from or about any drive.
- The tool shall not prevent any operations to a drive that is not protected.

The three informal requirements are the essence of a software write blocking tool: protect the evidence from alteration while allowing a complete examination of the evidence. It should be noted that it may be acceptable to not block a given command in one environment, but vital to block the same command in another environment. In other words, a SWB tool may be safe to use in one environment but not in other environments. For example, an int 13 extended write command (43h) must be blocked on contemporary computers, but a SWB tool that does not block this command might be acceptable on a computer with a legacy BIOS (i.e., a BIOS that does not implement command 43h). The

requirements stated in this document are intended for a general use tool that allows safe access to a hard drive in almost all environments.

#### 6.1 Requirements for Mandatory Features

A formal statement of these requirements follows:

- SWB-RM-01. The tool shall block any commands to a protected drive in the write, configuration, or miscellaneous categories.
- SWB-RM-02. The tool shall not block any commands to a protected drive in the read, control or information categories. SWB-RM-03. The tool shall give an indication to the user that the tool is active.
- SWB-KIM-05. The tool shall give an indication to the user that the tool is active.
- SWB-RM-04. The tool shall report all drives accessible by the covered interfaces.
- SWB-RM-05. The tool shall report the protection status of all drives.
- SWB-RM-06. The tool shall, if so configured, adjust the return value of any blocked commands to indicate that the operation was carried out successfully even though the operation was blocked.
- SWB-RM-07. The tool shall, if so configured, adjust the return value of any blocked commands to indicate that the operation failed.
- SWB-RM-08. The tool shall not block any commands to an unprotected drive.

### 6.2 Requirements for Optional Features

The following requirements are defined for tool features that might be implemented for some SWB tools. If a tool provides the optional feature, the tool is tested as if the requirement were mandatory. If the tool does not provide the capability defined, the requirement does not apply.

The following optional features are identified:

- The SWB tool can indicate to the user with an audio or visual signal that a command has been blocked.
- The SWB tool can be deactivated after the tool has been executed.
- The SWB tool can be configured to be active during the system boot and shutdown.
- The SWB tool allows the user to select an arbitrary subset of the available hard drives for protection.

A formal statement of these requirements follows:

SWB-RO-01. The tool shall alert the user when a command is blocked, either by an audio or a visual signal.

- SWB-RO-02. If after the tool is running and is then successfully deactivated, any protected drives become unprotected, otherwise there is no change to the protection status of the covered drives.
- SWB-RO-03. The user shall be able to specify each of the covered drives as either protected or unprotected.
- SWB-RO-04. If the tool is active during the operating system boot and shutdown processes, then the tool shall block any commands to the protected drives in the write, configuration, or miscellaneous categories during the boot process and during the shutdown.
- SWB-RO-05. If a subset of the covered drives is designated for protection, the tool shall not block commands from any category to the unprotected drives.

### 7 Assertions

Each assertion specifies a set of conditions that can be tested and the expected results. A traceability matrix relating requirements and assertions is presented in Table C-1.

### 7.1 Assertions for Mandatory Features

This section lists assertions that all SWB tools should meet.

- SWB-AM-01. If a drive is protected and a command from the write category is issued for the protected drive then the tool shall block the command.
- SWB-AM-02. If a drive is protected and a command from the configuration category is issued for the protected drive then the tool shall block the command.
- SWB-AM-03. If a drive is protected and a command from the miscellaneous category is issued for the protected drive then the tool shall block the command.
- SWB-AM-04. If a drive is protected and a command from the read category is issued for the protected drive then the tool shall not block the command.
- SWB-AM-05. If a drive is protected and a command from the control category is issued for the protected drive then the tool shall not block the command.
- SWB-AM-06. If a drive is protected and a command from the information category is issued for the protected drive then the tool shall not block the command.
- SWB-AM-07. If the tool is executed then the tool shall issue a message indicating that the tool is active.
- SWB-AM-08. If the tool is executed then the tool shall issue a message indicating all drives accessible by the covered interfaces.
- SWB-AM-09. If the tool is executed then the tool shall issue a message indicating the protection status of each drive attached to a covered interface.
- SWB-AM-10. If the tool is configured to return *success* on blocked commands and the tool blocks a command then the return code shall indicate successful command execution.
- SWB-AM-11. If the tool is configured to return *fail* on blocked commands and the tool blocks a command then the return code shall indicate unsuccessful command execution.

#### 7.2 Assertions for Optional Features

This section lists assertions that are tested if the tool supports the relevant feature or option.

- SWB-AO-01. If a subset of all covered drives is specified for protection, then commands from the write category shall be blocked for drives in the selected subset.
- SWB-AO-02. If a subset of all covered drives is specified for protection, then commands from the configuration category shall be blocked for drives in the selected subset.
- SWB-AO-03. If a subset of all covered drives is specified for protection, then commands from the miscellaneous category shall be blocked for drives in the selected subset.
- SWB-AO-04. If a subset of all covered drives is specified for protection, then commands from the read category shall not be blocked for drives in the selected subset.
- SWB-AO-05. If a subset of all covered drives is specified for protection, then commands from the control category shall not be blocked for drives in the selected subset.
- SWB-AO-06. If a subset of all covered drives is specified for protection, then commands from the information category shall not be blocked for drives in the selected subset.
- SWB-AO-07. If a subset of all covered drives is specified for protection, then no commands from any category shall be blocked for drives not in the selected subset.
- SWB-AO-08. If the tool is active during the operating system boot and shutdown processes then no changes are made to any protected drives.
- SWB-AO-09. If the tool is active and the tool is then deactivated then no commands to any drive shall be blocked.

SWB-AO-10. If the tool blocks a command then the tool shall issue either an audio or a visual signal.

### 8 Test Methodology

This section describes the methodology that has been developed to test interrupt 0x13 based SWB tools. First several issues are identified and then an approach is described that addresses the issues.

One simple strategy to determine the effectiveness of a SWB tool would be to install the tool, attempt an operation that should change the hard drive contents, and then examine the drive for any changes. This has the limitation that only effects for the selected command parameters are measured, not the actual commands blocked. If there is no change to the hard drive it is not clear if the command is actually blocked or if the selected command parameters did not cause a

change to the hard drive. A second limitation is that some commands, should only be executed in a *factory setting*. These are commands such as *low level formatting* or *diagnostic* commands that may have subtle and unexpected results. The proper parameter values for some commands are propriety and not easily determined. The user is cautioned that improper parameters may render a drive unusable. The problem is how to safely test if a SWB tool blocks such potentially destructive commands.

A more direct methodology that avoids these limitations has been developed. The normal interrupt 0x13 BIOS routine is replaced with a software monitor that counts the number of times each I/O function is called. The monitor blocks all commands so that any command can be safely issued to a SWB tool. The monitor has a secondary interface to allow a test harness to query the monitor to determine the command functions blocked or allowed by the SWB tool.

Every possible command can be tried and the results observed. First, the monitor is installed to replace the usual interrupt 0x13 processing. The monitor operates in two states: *allow command* or *block/tally*. In the *allow command* state all commands are passed to the hard drive. The *allow command* state permits the SWB tool to initialize during installation. After the SWB tool is installed the monitor state is switched to *block/tally*. In this state, all commands passed by the SWB tool are blocked by the monitor and a tally is kept of all commands seen by the monitor. The monitor query interface allows the test harness to determine which commands are passed by the SWB tool.

Figure 8-1 illustrates the command flow during a test case. After the interrupt 0x13 monitor and the SWB tool are installed, the test harness is executed. The test harness issues every command for a given category. For example, a test of the read command category would issue each command defined for the read command category: 0x02 (read), 0x10 (read long) and 0x42 (extended read). As each command is issued, the SWB tool intercepts the command and either blocks (return with no action) or allows the command (passes on to the interrupt 0x13 monitor). If the command gets to the interrupt 0x13 monitor the tally for the received command is incremented and the monitor returns to the caller (the test harness). After control returns to the test harness, the test harness queries the interrupt 0x13 monitor to get a count of the number of times the issued command has been intercepted by the monitor. If the count is zero, then the SWB tool has blocked the command. Otherwise, a non-zero count indicates that the command was not blocked.



Figure 8-1 Test Harness and Interrupt Monitor Operation

#### 8.1 Test Case Parameters

Each test case is specified in two parts, the settings of conditions (parameters) for the test and the expected results after the test run completes. Test parameters derived from the requirements and assertions are presented in Table 8-1. The BIOS type (legacy or extended) was considered as a possible parameter but rejected since there is no interaction with the BIOS when the SWB tool decides on blocking or allowing a command. The only interaction between the BIOS and a SWB tool is when the tool is installed to determine the number of attached drives.

| Parameter Name | Description                                                                          |
|----------------|--------------------------------------------------------------------------------------|
| Category       | The category of command function to be tested. Possible values are: all, read,       |
|                | write, information, control, configuration, miscellaneous and Return-Status. A       |
|                | value of <b>all</b> indicates that all command functions should be tested.           |
| Return         | The value returned to the application program from the SWB tool if a command is      |
|                | blocked. Possible values are: success and fail.                                      |
| N Drives       | The number of hard drives attached to the <b>covered interface</b> (interrupt 0x13). |
|                | Possible values (one, two, three and all) are explained below.                       |

 Table 8-1 SWB Test Parameters

| Parameter Name | Description                                                                |
|----------------|----------------------------------------------------------------------------|
| Protected      | Specification of protected and unprotected hard drives Possible values are |
|                | explained below in section 8.2.3.                                          |

#### 8.2 Parameter Values

This section discusses the possible parameter values for each parameter.

#### 8.2.1 Category

There is no definitive set of interrupt 0x13 commands. There are 256 possible command codes. For a given BIOS, only a few of all possible commands are implemented. There are slight variations for which commands are implemented among BIOS implementations. The listed commands in Table 8-2 are derived from a variety of sources including BIOS user guides [Phoenix], PC architecture books [Gilluwe], [Micro], {Norton], and BIOS related standards [NCITS 347:2001].

The **category** parameter indicates the set of commands to be tested. Each of the 256 possible *int* 0x13 command codes, from 0x00 through 0xFF inclusive, are assigned to a unique category so that all possible command codes, including unimplemented commands, are tested. For testing a selected category, all commands in the category are tried. The assignment of 0x13 BIOS drive access commands to categories is presented below (Table 8-2). Any command code not in the table is assigned to the miscellaneous category.

The **Prime Source** column indicates at least one reference to documentation for the given command. Note that not all commands are defined for a typical BIOS [Phoenix]. For example, the majority of command codes in the miscellaneous category are usually undefined and do not represent valid command functions.

It should be noted that the assignment of commands to categories that should be blocked is conservative. While it would be safer to block all unimplemented commands, it might be acceptable to use a tool that does not block a given command (even a write command) if it is known that the command is not implemented in the BIOS environment where the SWB tool is used. For example, a legacy BIOS does not implement the *extended write* command (43h). Therefore, a SWB tool that does not block the extended write command can be safely used with a legacy BIOS. However, other factors may complicate matters. If a SCSI adaptor card and SCSI drive is added, the adaptor card may modify the BIOS environment and add an implementation of the extended write command to the BIOS. With such a SCSI adaptor card installed it would now be unsafe to use a SWB tool that does not block the extended write command.

| Categorization of Interrupt 0x13 BIOS Commands |     |               |                                        |
|------------------------------------------------|-----|---------------|----------------------------------------|
| Command Code                                   |     | Category      | Prime Sources                          |
| Format Track                                   | 05h | Configuration | [Gilluwe]                              |
| Format Track With Bad Sectors                  | 06h | Configuration | [Gilluwe]                              |
| Format Cylinder                                | 07h | Configuration | [Phoenix]                              |
| Initialize Drive Parameters                    | 09h | Configuration | [Phoenix], [Gilluwe]                   |
| ESDI Diagnostic (PS/2)                         | 0Eh | Configuration | [Gilluwe]                              |
| ESDI Diagnostic (PS/2)                         | 0Fh | Configuration | [Gilluwe]                              |
| Controller RAM Diagnostic                      | 12h | Configuration | [Gilluwe]                              |
| Drive Diagnostic                               | 13h | Configuration | [Gilluwe]                              |
| Controller Diagnostic                          | 14h | Configuration | [Phoenix], [Gilluwe]                   |
| Reset                                          | 00h | Control       | [Phoenix], [Gilluwe]                   |
| Seek Drive                                     | 0Ch | Control       | [Phoenix], [Gilluwe]                   |
| Alternate Drive Reset                          | 0Dh | Control       | [Phoenix], [Gilluwe]                   |
| Recalibrate Drive                              | 11h | Control       | [Phoenix], [Gilluwe]                   |
| Extended Seek                                  | 47h | Control       | [Phoenix], [NCITS 347:2001], [Gilluwe] |
| Get Last Status                                | 01h | Information   | [Phoenix], [Gilluwe]                   |
| Verify Sectors                                 | 04h | Information   | [Phoenix], [Gilluwe]                   |

| Table 8-2 Interru | pt 0x13 Command | Category | Assignments |
|-------------------|-----------------|----------|-------------|
| Table 0-2 metru   | pi oxi5 Commanu | Category | Assignments |

| Categorization of Interrupt 0x13 BIOS Commands |                     |               |                                        |  |
|------------------------------------------------|---------------------|---------------|----------------------------------------|--|
| Command                                        | Code                | ode Category  | Prime Sources                          |  |
| Read Drive Parameters                          | 08h                 | Information   | [Phoenix], [Gilluwe]                   |  |
| Test Drive Ready                               | 10h                 | Information   | [Phoenix], [Gilluwe]                   |  |
| Read Drive Type                                | 15h                 | Information   | [Phoenix], [Gilluwe]                   |  |
| Check Extensions Present                       | 41h                 | Information   | [Phoenix], [NCITS 347:2001], [Gilluwe] |  |
| Verify Sectors                                 | 44h                 | Information   | [Phoenix], [NCITS 347:2001], [Gilluwe] |  |
| Get Drive Parameters                           | 48h                 | Information   | [Phoenix], [NCITS 347:2001], [Gilluwe] |  |
| Read Sectors                                   | 02h                 | Read          | [Phoenix], [Gilluwe]                   |  |
| Read Long Sector                               | 0Ah                 | Read          | [Phoenix], [Gilluwe]                   |  |
| Extended Read                                  | 42h                 | Read          | [Phoenix], [NCITS 347:2001], [Gilluwe] |  |
| Write Sectors                                  | 03h                 | Write         | [Phoenix], [Gilluwe]                   |  |
| Write Long Sector                              | 0Bh                 | Write         | [Phoenix], [Gilluwe]                   |  |
| Extended Write                                 | 43h                 | Write         | [Phoenix], [NCITS 347:2001], [Gilluwe] |  |
| Undefined & Unimplemented                      | 16h-40h,<br>49h-FFh | Miscellaneous |                                        |  |

#### 8.2.2 N Drives

A typical computer motherboard allows connection of up to four ATA devices. A typical SCSI adapter card allows connection of at least seven devices and up to fifteen. A computer could easily be configured with up to ten hard drives plus a CD-ROM drive. While a typical computer forensics usage would be for a single protected (source) drive and a single unprotected (destination) drive, using all attached drives would be possible.

The challenge for selecting parameter values for **N Drives** is to select usable values for a variety of possible but unknown test environments. The number of drives that can be used on a test machine cannot be known in advance and depends on the test machine available for testing. However, a reasonable estimate can be derived from the following scenarios:

- An examiner boots a PC from a floppy and then images a single drive to removable media such as tape or CD.
- An examiner boots a PC from a floppy and then images or copies a single source drive to another drive.
- An examiner boots from a hard drive and then images or copies a source drive to another drive.
- An examiner uses all drives attached to a system.

These scenarios are not the only ones possible, but they are typical and suggest using the values **one**, **two**, **three** and **all** as possible values to use for **N Drives**, the number of drives to install for a test. With the value **all** representing *install as many drives as possible* in the test machine.

#### 8.2.3 Protected

The optional feature allowing specification of a subset of installed drives for protection specified in assertions SWB-AO-01 through SWB-AO-05 is challenging to test thoroughly. As the number of installed hard drives increases, the number of possible combinations of protected and unprotected drives increases exponentially  $(2^n-1 \text{ combinations for } n \text{ drives})$ . Exhaustive testing of all possible combinations of up to ten drives would require at least 2,000 test cases. However, three protection scenarios that cover a wide range of situations are the following: protect a single drive while imaging the drive to tape, protect a single drive while imaging to a second unprotected hard drive, and imaging drives from a system with several drives requiring protection. This suggests the following heuristics for selecting the number of drives and patterns of protecting drives.

- Test one or two drives with at least one drive protected.
- Test as many drives attached as possible with about the same number of drives protected as unprotected.
- Test as many drives attached as possible with only one drive unprotected.

• Exhaustive testing of all protection patterns for a small (three) number of drives.

The protection patterns in Table 8-3 are designed to yield a variety of patterns of either one drive protected, one drive unprotected, approximately an equal number of protected and unprotected drives, or an arbitrary pattern of protection.

| Value Name         | Description                                                                                                                                                                                                |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| odd                | Protect the odd numbered drives: 0x81, 0x83, 0x85, etc                                                                                                                                                     |  |  |
| even               | Protect the even numbered drives: 0x80, 0x82, 0x84, etc                                                                                                                                                    |  |  |
| low                | Protect the low numbered drives: 0x80, 0x81, etc. Given <i>n</i> drives, the first unprotected drive is $0x80 + n/2$ (using integer division discarding any fraction)                                      |  |  |
| high               | Protect the high numbered drives. Given <i>n</i> drives, the first protected drive is $0x80 + (n/2)$                                                                                                       |  |  |
| random protected   | Select at random (die throw) one drive that has not been used as a single protected drive. If there are no unused drives, select any drive at random.                                                      |  |  |
| random unprotected | Select at random (die throw) one drive that has not been used as a single unprotected drive. If there are no unused drives, select any drive at random.                                                    |  |  |
| first              | Protect drive 0x80.                                                                                                                                                                                        |  |  |
| mid                | Given <i>n</i> drives protect drive $0x80 + n/2$ (discard any fraction).                                                                                                                                   |  |  |
| last               | Given <i>n</i> drives protect drive $0x80 + n - 1$ .                                                                                                                                                       |  |  |
| not first          | Protect all drives except for 0x80.                                                                                                                                                                        |  |  |
| not mid            | Given <i>n</i> drives, protect all drives except for drive $0x80 + n/2$ (discard any fraction).                                                                                                            |  |  |
| not last           | Given <i>n</i> drives, protect all drives except for drive $0x80 + n - 1$ .                                                                                                                                |  |  |
| XXX                | Where X is either U or P, explicit specification of protected (P) or unprotected (U) drives. The first U or P indicates the state of drive 0x80, the second letter indicates the state of drive 0x81, etc. |  |  |

 Table 8-3 Possible Values for the Protected Parameter

#### 8.2.4 Return

The **return** parameter is specified to the SWB tool on execution to select the status code return value that the SWB tool should cause to be returned to the calling program if a command is blocked by the SWB tool. This parameter is meaningful only if the SWB tool allows specification of a return status code. A value of **success** indicates that the tool is configured to return a value indicating a successful I/O operation even though the I/O command is actually blocked. A value of **fail** indicates that either the tool is configured to return **fail** on blocked commands. If the tool does not allow return code configuration, then this parameter is meaningless and should be ignored.

### 9 Abstract Test Cases

Abstract test cases describe the combinations of test parameters required to fully test each assertion and the results expected for the given combination of test parameters. The test cases are abstract in that they do not prescribe the exact environment in which the tests are to be performed. They are written at the next level above the environment. This allows different environments to be substituted under the test cases for testing different products and options.

A set of test parameters is chosen to cover the assertions from various aspects. Not all possible tests will be specified since this number could run into the hundreds or thousands based on the combinations of parameters that could be used. Exhaustive testing, in most cases, is not economically feasible. Instead, a subset of parameter values will be used to define the set of test cases needed to evaluate tools against the requirements.

The test cases are described in Table 9-2. The primary goal of test cases 01-06 is to identify the commands blocked by the SWB tool for each installed drive. A secondary goal of cases 01-06 is to test the **return value** feature of the SWB tool for blocked commands.

The primary goal of test cases 07-12 is to investigate the behavior of the SWB tool for commands that should not be blocked.

Test cases 13-36 investigate the behavior of the SWB tool given a protected subset of covered drives. These cases use two different approaches. Cases 13-24 are focused on testing a sample of likely protection patterns for a relatively large number (4 or more) of installed drives. Not all possible combinations of protected and unprotected drives are used since this would create more cases than would be feasible to execute. Test cases 25-36 focus on executing tests on the **read** and **write** command categories for all possible combinations of protecting a subset of three drives. Three drives were chosen as a likely upper limit for the minimum number of drives that must be installed.

Test cases 37 and 38 investigate the capabilities of the tool to protect a drive during the boot and shutdown processes.

Test cases 39 and 40 investigate the ability of the SWB tool to cleanly uninstall.

#### 9.1 Test Case Summaries

The following table gives a summary for each test case.

| Table 9-1 Test Case Summ | naries |
|--------------------------|--------|
|--------------------------|--------|

| SWB-01 | Install all drives, configure return code to fail, protect all drives,  |
|--------|-------------------------------------------------------------------------|
|        | execute write commands.                                                 |
| SWB-02 | Install two drives, configure return code to success, protect all       |
|        | drives, execute write commands.                                         |
| SWB-03 | Install one drive, configure return code to fail, protect all drives,   |
|        | execute configuration commands.                                         |
| SWB-04 | Install all drives, configure return code to success, protect all       |
|        | drives, execute configuration commands.                                 |
| SWB-05 | Install two drives, configure return code to fail, protect all drives,  |
|        | execute miscellaneous commands.                                         |
| SWB-06 | Install one drive, configure return code to success, protect all        |
|        | drives, execute miscellaneous commands.                                 |
| SWB-07 | Install all drives, configure return code to fail, protect all drives,  |
|        | execute read commands.                                                  |
| SWB-08 | Install two drives, configure return code to success, protect all       |
|        | drives, execute read commands.                                          |
| SWB-09 | Install one drive, configure return code to fail, protect all drives,   |
|        | execute information commands.                                           |
| SWB-10 | Install all drives, configure return code to success, protect all       |
|        | drives, execute information commands.                                   |
| SWB-11 | Install two drives, configure return code to fail, protect all drives,  |
|        | execute control commands.                                               |
| SWB-12 | Install one drive, configure return code to success, protect all        |
|        | drives, execute control commands.                                       |
| SWB-13 | Install all drives, configure return code to fail, protect with pattern |
|        | odd, execute write commands.                                            |
| SWB-14 | Install all drives, configure return code to success, protect with      |
|        | pattern low, execute write commands.                                    |
| SWB-15 | Install all drives, configure return code to fail, protect with pattern |
|        | first, execute configuration commands.                                  |
| SWB-16 | Install all drives, configure return code to success, protect with      |
|        | pattern mid, execute configuration commands.                            |
| SWB-17 | Install all drives, configure return code to fail, protect with pattern |
|        | random_p, execute miscellaneous commands.                               |

| SWB-18  | Install all drives, configure return code to success, protect with                                   |
|---------|------------------------------------------------------------------------------------------------------|
|         | pattern not_last, execute miscellaneous commands.                                                    |
| SWB-19  | Install all drives, configure return code to fail, protect with pattern last, execute read commands. |
| SWB-20  | Install all drives, configure return code to success, protect with                                   |
|         | pattern not_mid, execute read commands.                                                              |
| SWB-21  | Install all drives, configure return code to fail, protect with pattern                              |
| 5112 22 | high, execute information commands.                                                                  |
| SWB-22  | Install all drives, configure return code to success, protect with                                   |
|         | pattern not_first, execute information commands.                                                     |
| SWB-23  | Install all drives, configure return code to fail, protect with pattern                              |
| SWD 25  | random_u, execute control commands.                                                                  |
|         |                                                                                                      |
| SWB-24  | Install all drives, configure return code to success, protect with                                   |
|         | pattern even, execute control commands.                                                              |
| SWB-25  | Install three drives, configure return code to fail, protect with                                    |
|         | pattern PUU, execute write commands.                                                                 |
| SWB-26  | Install three drives, configure return code to success, protect with                                 |
|         | pattern UPU, execute write commands.                                                                 |
| SWB-27  | Install three drives, configure return code to fail, protect with                                    |
|         | pattern UUP, execute write commands.                                                                 |
| SWB-28  | Install three drives, configure return code to success, protect with                                 |
|         | pattern UPP, execute write commands.                                                                 |
| SWB-29  | Install three drives, configure return code to fail, protect with                                    |
|         | pattern PUP, execute write commands.                                                                 |
| SWB-30  | Install three drives, configure return code to success, protect with                                 |
|         | pattern PPU, execute write commands.                                                                 |
| SWB-31  | Install three drives, configure return code to fail, protect with                                    |
|         | pattern PUU, execute read commands.                                                                  |
| SWB-32  | Install three drives, configure return code to success, protect with                                 |
| 5112 52 | pattern UPU, execute read commands.                                                                  |
| SWB-33  | Install three drives, configure return code to fail, protect with                                    |
| SNE 33  | pattern UUP, execute read commands.                                                                  |
| SWB-34  | Install three drives, configure return code to success, protect with                                 |
| SMD-24  | pattern UPP, execute read commands.                                                                  |
| SWB-35  | Install three drives, configure return code to fail, protect with                                    |
| 2MB-22  | pattern PUP, execute read commands.                                                                  |
|         |                                                                                                      |
| SWB-36  | Install three drives, configure return code to success, protect with                                 |
|         | pattern PPU, execute read commands.                                                                  |
| SWB-37  | Install all drives, configure to be active at boot and shutdown,                                     |
|         | configure return code to fail, protect with pattern odd, execute write                               |
|         | commands.                                                                                            |
| SWB-38  | Install all drives, configure to be active at boot and shutdown,                                     |
|         | configure return code to success, protect with pattern even, execute                                 |
|         | write commands.                                                                                      |
| SWB-39  | Install all drives, configure return code to fail, protect with pattern                              |
|         | high, execute write commands, uninstall, execute all commands.                                       |
| SWB-40  | Install all drives, configure return code to success, protect with                                   |
|         | pattern low, execute write commands, uninstall, execute all commands.                                |

#### 9.2 Test Case Parameters

The test case parameters specified in Table 9-2 identify conditions that must be created for each test case. The **Criterion** column, explained in more detail in section 9.4, is not a test case parameter, but identifies a criterion for test case selection. A test case is executed if the tool under test implements the set of optional features tied to a given selection criterion.

| Case   | Category      | N Drives | Protected | Return  | Criterion               |
|--------|---------------|----------|-----------|---------|-------------------------|
| SWB-01 | Write         | all      | all       | fail    | Base                    |
| SWB-02 | Write         | two      | all       | success | return value            |
| SWB-03 | Configure     | one      | all       | fail    | Base                    |
| SWB-04 | Configure     | all      | all       | success | return value            |
| SWB-05 | Miscellaneous | two      | all       | fail    | Base                    |
| SWB-06 | Miscellaneous | one      | all       | success | return value            |
| SWB-07 | Read          | all      | all       | fail    | Base                    |
| SWB-08 | Read          | two      | all       | success | return value            |
| SWB-09 | Information   | one      | all       | fail    | Base                    |
| SWB-10 | Information   | all      | all       | success | return value            |
| SWB-11 | Control       | two      | all       | fail    | Base                    |
| SWB-12 | Control       | one      | all       | success | return value            |
| SWB-13 | Write         | all      | odd       | fail    | Subset                  |
| SWB-14 | Write         | all      | low       | success | Subset, return value    |
| SWB-15 | Configure     | all      | first     | fail    | Subset                  |
| SWB-16 | Configure     | all      | mid       | success | Subset, return value    |
| SWB-17 | Miscellaneous | all      | ran p     | fail    | Subset                  |
| SWB-18 | Miscellaneous | all      | not last  | success | Subset, return value    |
| SWB-19 | Read          | all      | last      | fail    | Subset                  |
| SWB-20 | Read          | all      | not mid   | success | Subset, return value    |
| SWB-21 | Information   | all      | high      | fail    | Subset                  |
| SWB-22 | Information   | all      | not first | success | Subset, return value    |
| SWB-23 | Control       | all      | ran u     | fail    | Subset                  |
| SWB-24 | Control       | all      | even      | success | Subset, return value    |
| SWB-25 | Write         | three    | PUU       | fail    | Subset                  |
| SWB-26 | Write         | three    | UPU       | success | Subset, return value    |
| SWB-27 | Write         | three    | UUP       | fail    | Subset                  |
| SWB-28 | Write         | three    | UPP       | success | Subset, return value    |
| SWB-29 | Write         | three    | PUP       | fail    | Subset                  |
| SWB-30 | Write         | three    | PPU       | success | Subset, return value    |
| SWB-31 | Read          | three    | PUU       | fail    | Subset                  |
| SWB-32 | Read          | three    | UPU       | success | Subset, return value    |
| SWB-33 | Read          | three    | UUP       | fail    | Subset                  |
| SWB-34 | Read          | three    | UPP       | success | Subset, return value    |
| SWB-35 | Read          | three    | PUP       | fail    | Subset                  |
| SWB-36 | Read          | three    | PPU       | success | Subset, return value    |
| SWB-37 | Write         | all      | odd       | fail    | Boot                    |
| SWB-38 | Write         | all      | even      | success | Boot, return value      |
| SWB-39 | all           | all      | high      | fail    | Uninstall               |
| SWB-40 | all           | all      | low       | success | Uninstall, return value |

#### Table 9-2 Test Case Parameters

### 9.3 Test Case Expected Results

Table 9-3 presents the expected results for each test assertion. The Expected Results column contains a message template for the related assertion. The Comments column presents additional information about the assertion. For assertions that have more than one possible expected result, the Comments column documents any conditions that select the particular expected result.

| Assertion | Expected Result              | Comments                                |
|-----------|------------------------------|-----------------------------------------|
| AM-01     | All cmds to drive XX blocked | Write commands                          |
| AM-02     | All cmds to drive XX blocked | Configure commands                      |
| AM-03     | All cmds to drive XX blocked | Miscellaneous commands                  |
| AM-04     | No cmds to drive XX blocked  | Read commands                           |
| AM-05     | No cmds to drive XX blocked  | Control commands                        |
| AM-06     | No cmds to drive XX blocked  | Information commands                    |
| AM-07     | Tool Active message          | Required message                        |
| AM-08     | N drives identified          | Required message                        |
| AM-09     | Drive XX is protected        | Protection status for protected drive   |
| AM-09     | Drive XX is unprotected      | Protection status for unprotected drive |
| AM-10     | N Commands return success    | S option specified                      |
| AM-11     | N Commands return fail       | S option not specified                  |
| AO-01     | All cmds to drive XX blocked | Write commands                          |
| AO-02     | All cmds to drive XX blocked | Configure commands                      |
| AO-03     | All cmds to drive XX blocked | Miscellaneous commands                  |
| AO-04     | No cmds to drive XX blocked  | Read commands                           |
| AO-05     | No cmds to drive XX blocked  | Control commands                        |
| AO-06     | No cmds to drive XX blocked  | Information commands                    |
| AO-07     | No cmds to drive XX blocked  | All commands to unprotected drives      |
| AO-08     | All cmds to drive XX blocked | Protected drive                         |
| AO-08     | No cmds to drive XX blocked  | Unprotected drive                       |
| AO-09     | SWB not removed              | S option specified                      |
| AO-09     | SWB removed                  | S option not specified                  |

Table 9-3 Expected Results by Assertion

#### 9.4 Test Case Selection Guide

Not all test cases are appropriate for all tools. Each test case is assigned to a selection criterion based on optional tool features needed for the test case. If a given tool implements a given feature listed below then test cases assigned to the associated criterion are executed. The selection criteria are: base, return value, subset and uninstall.

The base criterion test cases apply to all tools and should always be run. For some tools, minor adjustments to parameter values may be required for test case execution.

If the SWB tool allows configuration of the return value parameter, the cases assigned to the return value criterion are executed.

If the SWB tool allows selection of a subset of covered drives for protection, the test cases assigned to the subset criterion are executed.

If the SWB tool can be uninstalled, the test cases assigned to the uninstall criterion are executed.

If the SWB tool can be active during the boot process, then the test cases assigned to the boot criterion are executed.

### 9.5 Run Protocol Selection

Most test cases follow the same test procedures. However, some test cases require a special procedure. The programs listed in Table 9-4 are required for testing.

| Program      | Description                                                                                                                                                                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWB Tool     | The software write block tool to be tested                                                                                                                                                                                                                                                                   |
| Monitor      | The interrupt $0x13$ monitor program. The monitor program blocks all interrupt $0x13$ command functions, counts the number of times each function is requested for each drive, and provides an interface for retrieving the count of the number of times each command function was requested for each drive. |
| Test Harness | The test harness issues (requests) all interrupt 0x13 command functions for a specified command category and then queries the monitor program to determine if the function was blocked or allowed.                                                                                                           |

#### **Table 9-4 Software Required for Testing**

Setup a selection of hard drives for use in testing as follows:

- 1. Select a hard drive.
- 2. Use the FS-TST **diskwipe** program to initialize the drive.
- 3. Create and format partitions on the drive (optional step).
- 4. Compute a reference SHA1 hash of the drive.

The general procedure for executing a test case is as follows:

- 1. Select a test case to execute.
- 2. Install the number of hard drives called for by the **installed** parameter.
- 3. Boot the test computer into DOS.
- 4. Follow the run protocol for the selected test case.
- 5. Save test case results to an archive location.

The **run protocol** specifies the actual procedures to follow for the test case. Some test cases require different setup procedures and methods to measure results. The following protocols are defined:

- Typical
  - 1. Execute the interrupt 0x13 monitor
  - 2. Execute the SWB tool under test with the specified **return** type.
  - 3. Execute the test harness for the specified **command category**.
- Uninstall
  - 1. Execute the interrupt 0x13 monitor
  - 2. Execute the SWB tool under test with the specified return type.
  - 3. Execute the test harness for the **write** command category.
  - 4. Uninstall the SWB tool.
  - 5. Execute the test harness for each command category
- Boot
  - 1. Install the SWB tool. (For DOS systems, include the tool in the AUTOEXEC.BAT file.)
  - 2. Boot the system.
  - 3. Execute the test harness for the **write** command category.
  - 4. Shutdown the system.

After all test cases are run, a SHA1 hash of each hard drive used in testing is computed. The hashes taken before testing are compared to the hashes taken after testing. If the hash values are the same then no changes have occurred to the drives during testing.

The **typical** protocol applies to cases 01-36, the **boot** protocol applies to test cases 37 and 38, and the **uninstall** protocol applies to cases 39 and 40.

## Appendix A Interrupt 0x13 BIOS Access

A typical set of interrupt 0x13 BIOS drive access commands [Phoenix] implemented in PhoenixBIOS 4.0 Revision 6 can be categorized as in Table A-1. Other BIOS vendors or software installed on a PC may add or change functionality for the interrupt 0x13 interface.

| Categorization of Interrupt 0x13 BIOS Commands |      |               |  |  |
|------------------------------------------------|------|---------------|--|--|
| Command                                        | Code | Category      |  |  |
| Reset                                          | 00h  | Control       |  |  |
| Get last status                                | 01h  | Information   |  |  |
| Read sectors                                   | 02h  | Read          |  |  |
| Write sectors                                  | 03h  | Write         |  |  |
| Verify sectors                                 | 04h  | Information   |  |  |
| Format Cylinder                                | 05h  | Configuration |  |  |
| Read Drive Parameters                          | 08h  | Information   |  |  |
| Initialize Drive Parameters                    | 09h  | Configuration |  |  |
| Read Long Sector                               | 0Ah  | Read          |  |  |
| Write Long Sector                              | 0Bh  | Write         |  |  |
| Seek Drive                                     | 0Ch  | Control       |  |  |
| Alternate drive reset                          | 0Dh  | Control       |  |  |
| Test drive ready                               | 10h  | Information   |  |  |
| Recalibrate drive                              | 11h  | Configuration |  |  |
| Controller diagnostic                          | 14h  | Configuration |  |  |
| Read drive type                                | 15h  | Information   |  |  |
| Check extensions present                       | 41h  | Information   |  |  |
| Extended read                                  | 42h  | Read          |  |  |
| Extended write                                 | 43h  | Write         |  |  |
| Verify sectors                                 | 44h  | Information   |  |  |
| Extended seek                                  | 47h  | Control       |  |  |
| Get drive parameters                           | 48h  | Information   |  |  |

#### Table A-1 Int 0x13 Commands Implemented in a Typical BIOS

The following table is a list of common interrupt 0x13 BIOS drive access commands and widely known extensions derived from <u>http://www.ctyme.com/rbrown.htm</u> (August 23, 2000).The listed commands have either been implemented in some BIOS or in some software module that adds new functionality to an existing BIOS. NIST does not make any claims for the accuracy of the contents but has included this to illustrate commands that should be used for test cases of interrupt 0x13 based software write block tools. Some commands that might modify hard drive contents are highlighted with a gray background.

| Common Interrupt 0x13 BIOS Commands |                                      |  |  |
|-------------------------------------|--------------------------------------|--|--|
| Command                             | Description                          |  |  |
| AH = 00h                            | DRIVE - RESET DRIVE SYSTEM           |  |  |
| AH = 01h                            | DRIVE - GET STATUS OF LAST OPERATION |  |  |
| AH = 02h                            | DRIVE - READ SECTOR(S) INTO MEMORY   |  |  |
| AH = 03h                            | DRIVE - WRITE DRIVE SECTOR(S)        |  |  |
| AH = 04h                            | DRIVE - VERIFY DRIVE SECTOR(S)       |  |  |
| AH = 05h                            | FLOPPY - FORMAT TRACK                |  |  |
| AH = 05h                            | FIXED DRIVE - FORMAT TRACK           |  |  |

|             | Common Interrupt 0x13 BIOS Commands                                     |
|-------------|-------------------------------------------------------------------------|
| Command     | Description                                                             |
| AH = 05h    | Future Domain SCSI BIOS - SEND SCSI MODE SELECT COMMAND                 |
| AX = 057Fh  | 2M - FORMAT TRACK                                                       |
| AH = 06h    | FIXED DRIVE - FORMAT TRACK AND SET BAD SECTOR FLAGS (XT,PORT)           |
| AH = 06h    | Future Domain SCSI BIOS - FORMAT DRIVE WITH BAD SECTOR MAPPING          |
| AH = 06h    | Adaptec AHA-154xA/Bustek BT-542 BIOS - IDENTIFY SCSI DEVICES            |
| AH = 06h    | V10DRIVE.SYS - READ DELETED SECTORS                                     |
| AH = 07h    | FIXED DRIVE - FORMAT DRIVE STARTING AT GIVEN TRACK (XT,PORT)            |
| AH = 07h    | Future Domain SCSI BIOS - FORMAT DRIVE                                  |
| AH = 07h    | V10DRIVE.SYS - WRITE DELETED SECTORS                                    |
| AH = 08h    | DRIVE - GET DRIVE PARAMETERS (PC,XT286,CONV,PS,ESDI,SCSI)               |
| AH = 08h    | V10DRIVE.SYS - SET FORMAT                                               |
| AX = 08000h | SecureDrive - INSTALLATION CHECK                                        |
| AH = 09h    | HARD DRIVE - INITIALIZE CONTROLLER WITH DRIVE PARAMETERS                |
|             | (AT,PS)                                                                 |
| AH = 0Ah    | HARD DRIVE - READ LONG SECTOR(S) (AT and later)                         |
| AH = 0Bh    | HARD DRIVE - WRITE LONG SECTOR(S) (AT and later)                        |
| AH = 0Ch    | HARD DRIVE - SEEK TO CYLINDER                                           |
| AH = 0Dh    | HARD DRIVE - RESET HARD DRIVES                                          |
| AH = 0Eh    | HARD DRIVE - READ SECTOR BUFFER (XT only)                               |
| AH = 0Fh    | HARD DRIVE - WRITE SECTOR BUFFER (XT only)                              |
| AH = 10h    | HARD DRIVE - CHECK IF DRIVE READY                                       |
| AH = 11h    | HARD DRIVE - RECALIBRATE DRIVE                                          |
| AH = 12h    | HARD DRIVE - CONTROLLER RAM DIAGNOSTIC (XT,PS)                          |
| AH = 12h    | Future Domain SCSI CONTROLLER - STOP SCSI DRIVE                         |
| AH = 12h    | SyQuest - START/STOP SCSI DRIVE                                         |
| AH = 13h    | HARD DRIVE - DRIVE DIAGNOSTIC (XT,PS)                                   |
| AH = 13h    | SyQuest - READ DRIVE PARAMATERS (for DOS 5+)                            |
| AH = 14h    | HARD DRIVE - CONTROLLER INTERNAL DIAGNOSTIC                             |
| AH = 15h    | DRIVE - GET DRIVE TYPE (XT 1/10/86 or later, XT286, AT, PS)             |
| AH = 16h    | FLOPPY DRIVE - DETECT DRIVE CHANGE (XT 1/10/86 or later, XT286, AT, PS) |
| AH = 17h    | FLOPPY DRIVE - SET DRIVE TYPE FOR FORMAT (AT,PS)                        |
| AX = 1700h  | Future Domain SCSI CONTROLLER - GET INQUIRY INFO FROM SCSI DEVICE       |
| AH = 18h    | DRIVE - SET MEDIA TYPE FOR FORMAT (AT model 3x9,XT2,XT286,PS)           |
| AH = 18h    | Future Domain SCSI BIOS - GET SCSI CONTROLLER INFORMATION               |
| AH = 18h    | PU_1700.COM - INSTALLATION CHECK                                        |
| AH = 18h    | XDF.COM - API                                                           |
| AH = 19h    | FIXED DRIVE - PARK HEADS ON ESDI DRIVE (XT286,PS)                       |
| AH = 19h    | Future Domain SCSI CONTROLLER - REINITIALIZE DRIVE                      |
| AH = 1Ah    | ESDI FIXED DRIVE - FORMAT UNIT (PS)                                     |
| AH = 1Ah    | Future Domain SCSI CONTROLLER - GET SCSI PARTIAL MEDIUM CAPACITY        |
| AH = 1Bh    | ESDI FIXED DRIVE - GET MANUFACTURING HEADER                             |
| AH = 1Bh    | Future Domain SCSI CONTROLLER - GET POINTER TO SCSI DRIVE INFO          |
|             | BLOCK                                                                   |
| AH = 1Ch    | Future Domain SCSI CONTROLLER - GET POINTER TO FREE CONTROLLER          |
|             | RAM                                                                     |
| AH = 1Ch    | ESDI FIXED DRIVE - ???                                                  |
| AX = 1C08h  | ESDI FIXED DRIVE - GET COMMAND COMPLETION STATUS                        |
| AX = 1C09h  | ESDI FIXED DRIVE - GET DEVICE STATUS                                    |
| AX = 1C0Ah  | ESDI FIXED DRIVE - GET DEVICE CONFIGURATION                             |
| AX = 1C0Bh  | ESDI FIXED DRIVE - GET ADAPTER CONFIGURATION                            |
| AX = 1C0Ch  | ESDI FIXED DRIVE - GET POS INFORMATION                                  |
| AX = 1C0Dh  | ESDI FIXED DRIVE - ???                                                  |
|             |                                                                         |

|            | Common Interrupt 0x13 BIOS Commands                                 |
|------------|---------------------------------------------------------------------|
| Command    | Description                                                         |
| AX = 1C0Eh | ESDI FIXED DRIVE - TRANSLATE RBA TO ABA                             |
| AX = 1C0Fh | ESDI FIXED DRIVE - ???                                              |
| AX = 1C12h | ESDI FIXED DRIVE - ???                                              |
| AH = 1Dh   | IBMCACHE.SYS - CACHE STATUS                                         |
| AH = 1Fh   | SyQuest - DOOR LATCH/DOOR BUTTON DETECT                             |
| AH = 20h   | DRIVE - ??? (Western Digital "Super BIOS")                          |
| AH = 20h   | Compaq, ATAPI Removable Media Device - GET CURRENT MEDIA FORMAT     |
| AH = 20h   | QUICKCACHE II v4.20 - DISMOUNT                                      |
| AH = 21h   | HARD DRIVE - PS/1 and newer PS/2 - READ MULTIPLE DRIVE SECTORS      |
| AH = 21h   | QUICKCACHE II v4.20 - FLUSH CACHE                                   |
| AH = 22h   | HARD DRIVE - PS/1 and newer PS/2 - WRITE MULTIPLE DRIVE SECTORS     |
| AH = 22h   | QUICKCACHE II v4.20 - ENABLE/DISABLE CACHE                          |
| AH = 23h   | HARD DRIVE - PS/1 and newer PS/2 - SET CONTROLLER FEATURES REGISTER |
| AH = 23h   | QUICKCACHE II v4.20 - GET ??? ADDRESS                               |
| AH = 24h   | HARD DRIVE - PS/1 and newer PS/2 - SET MULTIPLE MODE                |
| AH = 24h   | QUICKCACHE II v4.20 - SET SECTORS                                   |
| AH = 25h   | HARD DRIVE - PS/1 and newer PS/2 - IDENTIFY DRIVE                   |
| AH = 25h   | QUICKCACHE II v4.20 - SET FLUSH INTERVAL                            |
| AH = 26h   | QUICKCACHE II v4.20 - UNINSTALL                                     |
| AH = 27h   | QUICKCACHE II v4.20 - INSTALLATION CHECK                            |
| AH = 28h   | QUICKCACHE II v4.20 - SET AUTOMATIC DISMOUNT                        |
| AH = 29h   | QUICKCACHE II v4.20 - NOP                                           |
| AH = 2Ah   | QUICKCACHE II v4.20 - SET BUFFER SIZE                               |
| AH = 2Bh   | QUICKCACHE II v4.20 - DRIVE ACCESS SOUNDS                           |
| AH = 2Ch   | QUICKCACHE II v4.20 - SET BUFFERED WRITES                           |
| AH = 2Dh   | QUICKCACHE II v4.20 - SET BUFFERED READ                             |
| AH = 2Eh   | QUICKCACHE II v4.20 - SET FLUSH COUNT                               |
| AH = 2Fh   | QUICKCACHE II v4.20 - FORCE IMMEDIATE INCREMENTAL FLUSH             |
| AH = 30h   | QUICKCACHE II v4.20 - GET INFO                                      |
| AH = 31h   | QUICKCACHE II v4.20 - RESERVE MEMORY                                |
| AH = 32h   | QUICKCACHE II v4.20 - ENABLE CACHING FOR SPECIFIC DRIVE             |
| AH = 33h   | QUICKCACHE II v4.20 - DISABLE CACHING FOR SPECIFIC DRIVE            |
| AH = 34h   | QUICKCACHE II v4.20 - SECTOR LOCKING                                |
| AH = 35h   | QUICKCACHE II v4.20 - SET LOCK POOL SIZE                            |
| AH = 36h   | QUICKCACHE II v4.20 - SET TRACE BUFFER SIZE                         |
| AH = 37h   | QUICKCACHE II v4.20 - SET BUFFERED READS FOR SPECIFIC DRIVE         |
| AH = 38h   | QUICKCACHE II v4.20 - SET BUFFERED WRITES FOR SPECIFIC DRIVE        |
| AH = 39h   | QUICKCACHE II v4.20 - SET READ BUFFER SIZE FOR SPECIFIC DRIVE       |
| AH = 3Ah   | QUICKCACHE II v4.20 - SET WRITE BUFFER SIZE FOR SPECIFIC DRIVE      |
| AH = 3Bh   | QUICKCACHE II v4.20 - ENABLE/DISABLE ???                            |
| AH = 3Ch   | QUICKCACHE II v4.20 - ENABLE/DISABLE ???                            |
| AH = 3Dh   | QUICKCACHE II v4.20 - ENABLE/DISABLE CYLINDER FLUSH FOR DRIVE       |
| AH = 3Eh   | QUICKCACHE II v4.20 - SET SINGLE-SECTOR BONUS                       |
| AH = 3Fh   | QUICKCACHE II v4.20 - SET BONUS THRESHOLD                           |
| AH = 40h   | QUICKCACHE II v4.20 - SET "sticky max"                              |
| AH = 41h   | IBM/MS INT 13 Extensions - INSTALLATION CHECK                       |
| AH = 41h   | QUICKCACHE II v4.20 - SAVE/RESTORE ???                              |
| AH = 42h   | IBM/MS INT 13 Extensions - EXTENDED READ                            |
| AX = 4257h | Beame&Whiteside BWLPD - INSTALLATION CHECK                          |
| ("BW")     |                                                                     |
| AH = 43h   | IBM/MS INT 13 Extensions - EXTENDED WRITE                           |
|            |                                                                     |

|               | Common Interrupt 0x13 BIOS Commands                        |
|---------------|------------------------------------------------------------|
| Command       | Description                                                |
| AH = 44h      | IBM/MS INT 13 Extensions - VERIFY SECTORS                  |
| AH = 45h      | IBM/MS INT 13 Extensions - LOCK/UNLOCK DRIVE               |
| AH = 46h      | IBM/MS INT 13 Extensions - EJECT MEDIA                     |
| AH = 47h      | IBM/MS INT 13 Extensions - EXTENDED SEEK                   |
| AH = 48h      | IBM/MS INT 13 Extensions - GET DRIVE PARAMETERS            |
| AH = 49h      | IBM/MS INT 13 Extensions - EXTENDED MEDIA CHANGE           |
| AH = 4Ah      | Bootable CD-ROM - INITIATE DRIVE EMULATION                 |
| AX = 4B00h    | Bootable CD-ROM - TERMINATE DRIVE EMULATION                |
| AX = 4B01h    | Bootable CD-ROM - GET STATUS                               |
| AH = 4Ch      | Bootable CD-ROM - INITIATE DRIVE EMULATION AND BOOT        |
| AX = 4D00h    | Bootable CD-ROM - RETURN BOOT CATALOG                      |
| AH = 4Eh      | IBM/MS INT 13 Extensions v2.1 - SET HARDWARE CONFIGURATION |
| AX = 5001h    | Enhanced Disk Drive Spec v3.0 - SEND PACKET COMMAND        |
| AX = 5001h    | VIRUS - "Andropinis" - INSTALLATION CHECK                  |
| AX = 5342h    | ScanBoot - INSTALLATION CHECK                              |
| ("SB")        |                                                            |
| AX = 5501h    | Seagate ST01/ST02 - Inquiry                                |
| AX = 5502h    | Seagate ST01/ST02 - RESERVED                               |
| AX = 5503h    | Seagate ST01/ST01 - Set Device Type Qualifier (DTQ)        |
| AX = 5504h    | Seagate - ??? - RETURN IDENTIFICATION                      |
| AX = 5504h    | Seagate ST01/ST02 - RETURN IDENTIFICATION                  |
| AX = 5505h    | Seagate - ??? - PARK HEADS                                 |
| AX = 5505h    | Seagate ST01/ST02 - PARK HEADS                             |
| AX = 5506h    | Seagate ST01/ST02 - SCSI Bus Parity                        |
| AX = 5507h to | Seagate ST01/ST02 - RESERVED FUNCTIONS                     |
| 550Dh         |                                                            |
| AX = 5514h    | Seagate - ???                                              |
| AX = 5515h    | Seagate - PARK HEADS???                                    |
| AH = 59h      | SyQuest - Generic SCSI pass through                        |
| AH = 70h      | Priam EDVR.SYS DRIVE PARTITIONING SOFTWARE???              |
| AH = 75h      | ???                                                        |
| AH = 76h      | ???                                                        |
| AX = 7B00h    | NOW! v3.05 - GET INFORMATION                               |
| AX = 7B01h    | NOW! v3.05 - ???                                           |
| AX = 7B02h    | NOW! v3.05 - SET INFORMATION                               |
| AX = 7B03h    | NOW! v3.05 - ???                                           |
| AX = 7B04h    | NOW! v3.05 - ???                                           |
| AX = 7B05h    | NOW! v3.05 - GET DRIVE ACCESSES???                         |
| AX = 7B06h    | NOW! v3.05 - GET ???                                       |
| AX = 7B07h    | NOW! v3.05 - GET ???                                       |
| AX = 7B08h    | NOW! v3.05 - ???                                           |
| AH = 80h      | FAST! v4.02+ - API                                         |
| AX = 8001h    | FAST! v4.02+ - GET CACHE INFORMATION                       |
| AX = 8006h    | FAST! v4.02+ - INSTALLATION CHECK                          |
| AX = 8007h    | FAST! v4.02+ - UNHOOK INTERRUPTS                           |
| AH = 81h      | Super PC-Kwik v3.20+ - ???                                 |
| AH = 82h      | Super PC-Kwik v3.20+ - ???                                 |
| AH = 83h      | Super PC-Kwik v3.20+ - ???                                 |
| AH = 84h      | Super PC-Kwik v3.20+ - ???                                 |
| AH = 85h      | Super PC-Kwik v3.20+ - ???                                 |
| AH = 86h      | Super PC-Kwik v4.00+ - ???                                 |

|            | Common Interrupt 0x13 BIOS Commands                     |
|------------|---------------------------------------------------------|
| Command    | Description                                             |
| AH = 87h   | Super PC-Kwik v4.00+ - ???                              |
| AH = 88h   | Super PC-Kwik v4.00+ - ???                              |
| AH = 89h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 8Ah   | Super PC-Kwik v5.10+ - ???                              |
| AX = 8EEDh | HyperDrive v4.01+ - ???                                 |
| AX = 8EEEh | HyperDrive v4.01+ - ???                                 |
| AX = 8EEFh | HyperDrive v4.01+ - ???                                 |
| AH = 92h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 93h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 94h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 95h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 96h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 97h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 98h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 99h   | Super PC-Kwik v5.10+ - ???                              |
| AH = 9Ah   | Super PC-Kwik v5.10+ - ???                              |
| AH = 9Bh   | Super PC-Kwik v5.10+ - ???                              |
| AH = 9Ch   | Super PC-Kwik v5.10+ - ???                              |
| AH = 9Dh   | Super PC-Kwik v5.10+ - ???                              |
| AH = A0h   | Super PC-Kwik v3.20+ - GET RESIDENT CODE SEGMENT        |
| AH = A1h   | Super PC-Kwik v3.20+ - FLUSH CACHE                      |
| AH = A2h   | Super PC-Kwik v3.20+ - ???                              |
| AH = A3h   | Super PC-Kwik v5.10+ - DISABLE CACHE                    |
| AH = A4h   | Super PC-Kwik v5.10+ - ENABLE CACHE                     |
| AH = A5h   | Super PC-Kwik v5.10+ - PROGRAM TERMINATION NOTIFICATION |
| AH = A6h   | Super PC-Kwik v5.10+ - PROGRAM LOAD NOTIFICATION        |
| AH = A7h   | Super PC-Kwik 5.1 - ???                                 |
| AX = A759h | Novell DOS 7 - SDRes v27.03 - ???                       |
| AH = A8h   | Super PC-Kwik 5.1 - ???                                 |
| AH = A9h   | Super PC-Kwik 5.1 - EXITCODE RETRIEVAL NOTIFICATION     |
| AH = AAh   | Super PC-Kwik v4+ - ???                                 |
| AH = ABh   | Super PC-Kwik v4+ - ???                                 |
| AH = ACh   | Super PC-Kwik v4+ - ???                                 |
| AH = ADh   | Priam HARD DRIVE CONTROLLER???                          |
| AH = ADh   | Super PC-Kwik v4+ - ???                                 |
| AH = AEh   | Super PC-Kwik v5.10+ - ???                              |
| AH = B0h   | Super PC-Kwik v3.20+ - ???                              |
| AX = E000h | XBIOS - COMMAND                                         |
| AX = EC00h | VIRUS - "Tiso" - INSTALLATION CHECK                     |
| AH = EEh   | SWBIOS - SET 1024-CYLINDER FLAG                         |
| AH = EFh   | Ontrack Drive Rocket - SET CYLINDER OFFSET              |
| AH = F2h   | VIRUS - "Neuroquila" - INSTALLATION CHECK               |
| AH = F9h   | SWBIOS - INSTALLATION CHECK                             |
| AH = FAh   | PC Tools v8+ VSAFE, VWATCH - API                        |
| AX = FD50h | VIRUS - "Predator" - INSTALLATION CHECK                 |
| AH = FEh   | SWBIOS - GET EXTENDED CYLINDER COUNT                    |
| AH = FFh   | EZ-Drive - INSTALLATION CHECK                           |
| AH = FFh   | IBM SurePath BIOS - Officially "Private" Function       |
| AX = FFFFh | UNIQUE UX Turbo Utility - SET TURBO MODE                |
|            |                                                         |

## Appendix B Terminology Example

Consider a computer with the following four drives attached:

| Example Configuration |       |                    |                   |  |
|-----------------------|-------|--------------------|-------------------|--|
| Model                 | Drive | Physical Interface | Access Interfaces |  |
| Fujitsu MPF3153AT     | 0x80  | EIDE               | ATA, BIOS         |  |
| WDC WD200BB-00AUA1    | 0x81  | EIDE               | ATA, BIOS         |  |
| QUANTUM ATLAS10K2     | 0x82  | SCSI               | ASPI, BIOS        |  |
| SEAGATE ST318404LC    | 0x83  | SCSI               | ASPI, BIOS        |  |

Each drive is attached to one physical interface, in this case, either EIDE or SCSI. Each EIDE drive can be accessed in either of two ways. The EIDE drives (attached as drives 0x80 and 0x81) can be accessed directly by the AT-Attachment (ATA) interface to the drive controller, or the drive can be accessed through the BIOS (by interrupt 0x13). The SCSI drives (attached as drives 0x82 and 0x83) can be accessed through either an ASPI driver or through the BIOS (by interrupt 0x13).

Consider a software write block tool that covers only BIOS drive access through the interrupt 0x13 interface. All of the drives can be accessed through the BIOS, but suppose that the tool is executed with drives 0x81 and 0x82 specified for protection. The **covered interface** is the interrupt 0x13 BIOS access. The tool does not cover the ASPI or ATA interfaces. All the drives are **covered drives** when accessed by the BIOS. None of the drives are **covered drives** when accessed by either the ATA or ASPI interfaces. Drives on drives 0x81 and 0x82 are **protected drives** when accessed by the BIOS. All the drives are **unprotected** when accessed by either ATA or ASPI.

| Protection Specified for BIOS interrupt 0x13 access to 0x81 & 0x82 |         |           |  |
|--------------------------------------------------------------------|---------|-----------|--|
| Drive/access interface                                             | Covered | Protected |  |
| 0x80/BIOS                                                          | yes     | no        |  |
| 0x80/ATA                                                           | no      | no        |  |
| 0x81/BIOS                                                          | yes     | yes       |  |
| 0x81/ATA                                                           | no      | no        |  |
| 0x82/BIOS                                                          | yes     | yes       |  |
| 0x82/ASPI                                                          | no      | no        |  |
| 0x83/BIOS                                                          | yes     | no        |  |
| 0x83/ASPI                                                          | no      | no        |  |

Note that even though drives on drives 0x81 and 0x82 are protected from modification by access through the BIOS interface, these drives could still be modified if accessed through the ATA or ASPI interfaces.

## **Appendix C Traceability Matrices**

This section presents traceability matrices to show the relationships between the requirements and assertions in Table C-1 and the relationships between assertions and test cases in Table C-.

#### **Table C-1 Requirements to Assertions Traceability**

|                            | Assertions |           |           | Manda     | atory F   | <b>Optional Requirements</b> |           |           |           |           |           |           |           |           |
|----------------------------|------------|-----------|-----------|-----------|-----------|------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Requirements               |            | SWB-RM-01 | SWB-RM-02 | SWB-RM-03 | SWB-RM-04 | SWB-RM-05                    | SWB-RM-06 | SWB-RM-07 | SWB-RM-08 | SWB-RO-01 | SWB-RO-02 | SWB-RO-03 | SWB-RO-04 | SWB-RO-05 |
| Mandatory Assertions       | SWB-AM-01  | •         |           |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-02  | •         |           |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-03  | •         |           |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-04  |           | •         |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-05  |           | •         |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-06  |           | •         |           |           |                              |           |           |           |           |           |           |           |           |
|                            | SWB-AM-07  |           |           | •         |           |                              |           |           |           |           |           |           |           |           |
| tor                        | SWB-AM-08  |           |           |           | •         |                              |           |           |           |           |           |           |           |           |
| Ianda                      | SWB-AM-09  |           |           |           |           | •                            |           |           |           |           |           |           |           |           |
|                            | SWB-AM-10  |           |           |           |           |                              | •         |           |           |           |           |           |           |           |
| N                          | SWB-AM-11  |           |           |           |           |                              |           | •         |           |           |           |           |           |           |
|                            | SWB-AO-01  | •         |           |           |           |                              |           |           |           |           |           | •         |           |           |
|                            | SWB-AO-02  | •         |           |           |           |                              |           |           |           |           |           | •         |           |           |
| <b>Optional Assertions</b> | SWB-AO-03  | •         |           |           |           |                              |           |           |           |           |           | •         |           |           |
|                            | SWB-AO-04  |           | •         |           |           |                              |           |           |           |           |           | •         |           |           |
|                            | SWB-AO-05  |           | •         |           |           |                              |           |           |           |           |           | •         |           |           |
|                            | SWB-AO-06  |           | •         |           |           |                              |           |           |           |           |           | •         |           |           |
|                            | SWB-AO-07  |           |           |           |           |                              |           |           | •         |           |           |           |           | •         |
|                            | SWB-AO-08  |           |           |           |           |                              |           |           |           |           |           |           | •         |           |
|                            | SWB-AO-09  |           |           |           |           |                              |           |           |           |           | ٠         |           |           |           |
| C                          | SWB-AO-10  |           |           |           |           |                              |           |           |           | •         |           |           |           |           |

| Test Case        | Mandatory Assertions |           |           |           |           |           |           |           |           |           |           | Optional Assertions |           |           |           |           |           |           |           |           |           |
|------------------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                  | 1                    | 2         | 33        | 4         | 2         | 9         | 7         | 8         | 6         | 0         | -         | 1                   | 2         | 3         | 4         | 10        | 9         | 7         | 8         | 6         | _         |
|                  | SWB-AM-01            | SWB-AM-02 | SWB-AM-03 | SWB-AM-04 | SWB-AM-05 | SWB-AM-06 | SWB-AM-07 | SWB-AM-08 | SWB-AM-09 | SWB-AM-10 | SWB-AM-11 | SWB-AO-01           | SWB-AO-02 | SWB-AO-03 | SWB-AO-04 | SWB-AO-05 | SWB-AO-06 | SWB-AO-07 | SWB-AO-08 | SWB-AO-09 | SWB-AO-10 |
|                  | -AN                  | -AN       | -AJ       | -AN       | NA-       | -AN       | -AN       | -AN       | -AN       | -AN       | -AI       | )A(                 | )A(       | )A(       | )A(       | )A(       | )A(       | -A(       | )A(       | -A(       | Ā         |
|                  | NΒ                   | NΒ        | ΥB        | VB        | WΒ        | VB        | VΒ        | VΒ        | VB        | NΒ        | MB        | VB                  | VB        | NΒ        | NΒ        | WΒ        | VB        | NΒ        | NΒ        | ΜB        | AB<br>AB  |
|                  | S                    | 1S        | S         | 1S        | IS        | 1S        | S         | S         | 1S        | S         | S         | 1S                  | 1S        | 1S        | S         | IS        | 1S        | S         | S         | S         | S         |
| SWB-01           | •                    |           |           |           |           |           | •         | •         | •         |           | •         |                     |           |           |           |           |           |           |           |           | •         |
| SWB-02           | •                    |           |           |           |           |           | •         | •         | •         | •         |           |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-03           |                      | •         |           |           |           |           | •         | •         | •         |           | •         |                     |           |           |           |           |           |           |           |           | •         |
| SWB-04           |                      | •         |           |           |           |           | •         | •         | •         | •         |           |                     |           |           |           |           |           |           |           |           | •         |
| SWB-05           |                      |           | •         |           |           |           | •         | •         | •         |           | •         |                     |           |           |           |           |           |           |           |           | •         |
| SWB-06           |                      |           | •         |           |           |           | •         | ٠         | •         | •         |           |                     |           |           |           |           |           |           |           |           | •         |
| SWB-07           |                      |           |           | •         |           |           | •         | •         | •         |           | ٠         |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-08           |                      |           |           | •         |           |           | ٠         | •         | •         | •         |           |                     |           |           |           |           |           |           |           |           | •         |
| SWB-09           |                      |           |           |           |           | •         | ٠         | ٠         | •         |           | •         |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-10           |                      |           |           |           |           | ٠         | ٠         | ٠         | ٠         | •         |           |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-11           |                      |           |           |           | ٠         |           | •         | ٠         | •         |           | ٠         |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-12           |                      |           |           |           | ٠         |           | ٠         | ٠         | ٠         | •         |           |                     |           |           |           |           |           |           |           |           | ٠         |
| SWB-13           |                      |           |           |           |           |           | ٠         | ٠         | ٠         |           | •         | •                   |           |           |           |           |           | ٠         |           |           | ٠         |
| SWB-14           |                      |           |           |           |           |           | ٠         | ٠         | ٠         | •         |           | ٠                   |           |           |           |           |           | ٠         |           |           | ٠         |
| SWB-15           |                      |           |           |           |           |           | •         | ٠         | ٠         |           | ٠         |                     | •         |           |           |           |           | ٠         |           |           | •         |
| SWB-16           |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     | •         |           |           |           |           | •         |           |           | ٠         |
| SWB-17<br>SWB-18 |                      |           |           |           |           |           | •         | •         | •         | -         | •         |                     |           | •         |           |           |           | •         |           |           | •         |
| SWB-18<br>SWB-19 |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     |           | •         | •         |           |           | •         |           |           | •         |
| SWB-19<br>SWB-20 |                      |           |           |           |           |           | •         | •         | •         | •         | •         |                     |           |           | •         |           |           | •         |           |           | •         |
| SWB-20<br>SWB-21 |                      |           |           |           |           |           | •         | •         | •         | •         | •         |                     |           |           | •         |           | •         | •         |           |           | •         |
| SWB-22<br>SWB-22 |                      |           |           |           |           |           | •         | •         | •         | •         | •         |                     |           |           |           |           | •         | •         |           |           | •         |
| SWB-22<br>SWB-23 |                      |           |           |           |           |           | •         | •         | •         | •         | •         |                     |           |           |           | •         | •         | •         |           |           | •         |
| SWB-23<br>SWB-24 |                      |           |           |           |           |           | •         | •         | •         | •         | •         |                     |           |           |           | •         |           | •         |           |           | •         |
| SWB-25           |                      |           |           |           |           |           | •         | •         | •         | •         | •         | •                   |           |           |           | •         |           | •         |           |           | •         |
| SWB-26           |                      |           |           |           |           |           | •         | •         | •         | •         |           | •                   |           |           |           |           |           | •         |           |           | •         |
| SWB-27           |                      |           |           |           |           |           | •         | •         | •         |           | •         | •                   |           |           |           |           |           | •         |           |           | •         |
| SWB-28           |                      |           |           |           |           |           | •         | •         | •         | •         |           | •                   |           |           |           |           |           | •         |           |           | •         |
| SWB-29           |                      |           |           |           |           |           | •         | •         | •         |           | ٠         | •                   |           |           |           |           |           | •         |           |           | •         |
| SWB-30           |                      |           |           |           |           |           | •         | ٠         | •         | •         |           | •                   |           |           |           |           |           | •         |           |           | ٠         |
| SWB-31           |                      |           |           |           |           |           | •         | •         | •         |           | •         |                     |           |           | •         |           |           | •         |           |           | •         |
| SWB-32           |                      |           |           |           |           |           | •         | ٠         | •         | •         |           |                     |           |           | •         |           |           | •         |           |           | ٠         |
| SWB-33           |                      |           |           |           |           |           | •         | •         | •         |           | •         |                     |           |           | •         |           |           | •         |           |           | ٠         |
| SWB-34           |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     |           |           | •         |           |           | •         |           |           | ٠         |
| SWB-35           |                      |           |           |           |           |           | •         | •         | •         |           | •         |                     |           |           | •         |           |           | •         |           |           | •         |
| SWB-36           |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     |           |           | •         |           |           | •         |           |           | ٠         |
| SWB-37           |                      |           |           |           |           |           | •         | •         | •         |           | •         |                     |           |           |           |           |           |           | •         |           | •         |
| SWB-38           |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     |           |           |           |           |           |           | •         |           | ٠         |
| SWB-39           |                      |           |           |           |           |           | ٠         | ٠         | •         |           | •         |                     |           |           |           |           |           |           |           | •         | ٠         |
| SWB-40           |                      |           |           |           |           |           | •         | •         | •         | •         |           |                     |           |           |           |           |           |           |           | •         | •         |

 Table C-2 Assertions to Test Cases Traceability