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Abstract - We present a statistical method that leads to 
accurate volume measurements of lung tumors from 
computerized tomographic (CT) data. The method is based on 
the assumption that a range of pixel intensities in CT data 
defines the edge of a tumor, and from our statistical model, we 
assign a probability that a given pixel intensity is included in 
the tumor measurement. Using the magnitude of the gradient 
of the pixel intensities over the density range observed for lung 
tumors and lung tissue, we have found consistent metrics that 
help define these weights, so that the measurement does not 
require user-controlled parameters and can be performed 
automatically. This could ultimately lead to direct 
comparisons of measurements from different medical 
laboratories. 

Keywords: image processing, segmentation, biweight, robust 
methods1 

1 Introduction 
Tumors in the lung are classified according to their detected 

growth in CT scans taken over a period of time. Tumors that 
are large enough to be detected in CT scans vary in size, but 
often are so small that a large proportion of the tumor pixels 
lie near the tumor surface, adding to the difficulty of making 
volume measurements [1, 2]. If an edge of a tumor lies 
between two pixel locations, radiologists must determine 
which of those pixels should be included in a measurement of 
the size of the tumor, determinations which can have large 
effects on estimated tumor volumes. Current techniques to 
measure these “partial volumes,” or 3-D voxels in the grid that 
are only partially filled, in this case by a tumor in a scan of the 
lung, vary widely in resulting tumor volume measurements. 
Current techniques to segment objects within an image fall 
into several different categories, and vary in their approaches 
to determining partial volumes. Many of these techniques are 
histogram-based and hence depend on the overall distribution 
of pixel values in the image. A single threshold or set of 
threshold values is chosen based on the distribution of pixel 
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intensities or the distribution of the magnitude of the gradient 
of the pixel intensities [3]. Techniques also vary according to 
whether edges are defined by choosing cutoff values, by 
growing regions from seed points based on cutoff values, or 
by growing regions with model-based approaches. The goal 
for each approach is the same: accurate estimates of tumor 
volumes leading to accurate estimates of tumor growth over 
time. Most current techniques use associated parameters as a 
basis for calculations that are input by the user and hence 
results vary from user to user [4, 5]. We present a technique 
that involves no user defined parameters. 
 
Our approach is based on the observed distribution of pixel 
intensities in a region containing the suspected tumor. Tumor 
edges appear as 3D voxels with partial volumes in CT scans, 
so the contribution to the volume calculation for these voxels 
should carry less than the full weight of a filled voxel. A 
challenge arises because the pixel intensities at tumor edges 
can be distributed rather widely. We use a statistical approach 
to weight each pixel intensity according to its “likelihood” of 
being inside or outside of the tumor. Instead of specifying an 
exact mask that represents the tumor, we sum the 
contributions of weighted partial volumes. Each pixel 
intensity lies in one of three different pixel intensity 
distributions for the lung pixels: the tumor pixels, the edge 
pixels (which vary over the entire range), and the background 
pixels. We describe the data that motivated this work, our 
method for assigning pixel weights, and then use them to 
estimate tumor volumes. 

2 Data Description 
Images were obtained from the Public Lung Database to 
Address Drug Response, a project which is funded by the 
Cancer Research and Prevention Foundation 
(www.via.cornell.edu/crpf.html). We have examined many 
sets of lung tumor data, and have compared the pixel 
distributions in the regions of lung tumors using both 
statistical and visualization tools. We have looked, in 
particular, at the distribution of pixel intensities within a two-
pixel length distance of the tumor edge, where all of the 



partially filled voxels occur. It is clear that edges of the 
tumors lie at varying distances to their closest pixel location, 
since the grids of pixel locations are laid arbitrarily across the 
lung data. If the average pixel intensity of an object is x and 
the average background value is y, a pixel at the edge of that 
object will be assigned an intensity somewhere between x and 
y depending upon its relationship to the grid. A method for 
estimating tumor volume should give consistent results 
regardless of grid shifts with respect to the tumor. Thus, a 
single threshold value cannot define the edges of an object. 

To visualize the range of pixel values for the edge pixels of 
the lung tumors, we examine a set of data containing a lung 
tumor, a slice of which is shown in Figure 1a. We isolate a 
region of lung CT data around the tumor and examine the 
distribution of pixel intensities corresponding to tumor 
interior, tumor edge, and background. Figure 1b displays 
individual pixel intensities in the region of the tumor, i.e. a 
discretized version of the data shown in Figure 1a. The edge 
pixels, color-coded according to pixel intensity, are shown as 
orange, red, and yellow boxes in this picture, with intensities 
that range from –650 to –150 Hounsfield units (HU), 
compared with the interior of the tumor, colored white and 
grey, in the –150 to 150 HU range, and the background, 
colored green, blue, and purple, in the –1024 to –650 HU 
range. A blood vessel that is attached to the tumor on the left 
is also visible in this figure, as well as cross-sections of other 
blood vessels. 

 

             

 

Figure 1. a.) Section of a slice of lung CT data containing a 
lung tumor; b.) Pixel intensities  in Hounsfield units for data 
in 1a: white:-150 to 100,orange:-250 to -150,pink:-350 to -
250,red:-450 to -350,yellow:-550 to -450,green:-650 to -
550,blue:-750 to -650,purple:-850 to -750,teal:less than -850; 
c.) Histogram of the intensities inside the box in 1b. 

Figure 1c shows a histogram of pixel intensities in the 
bounding box of Figure 1b, which clearly indicates two 
distinct pixel distributions, one for the tumor (centered around 
50 HU) and one for its surroundings (centered around –800 
HU). Pixel intensities between the modes of these 
distributions could be either tumor pixels or background 
pixels. We calculate a weight that each individual intensity 
comes from one or the other of these distributions, based on 
the assumption that each pixel has some probability of being 
tumor or background.  

3 Approach 
The overall goal of this project is to estimate tumor volumes 
accurately from CT measurements. Since our data consists of 
pixel intensities and pixel locations, we need a good 
understanding of how pixel intensities around a tumor are 
distributed. We assume the existence of an algorithm to 
identify the approximate tumor region. We  model the 
distributions using a 3-component Gaussian mixture via the 
EM (Expectation-Maximization) algorithm. A 2-component 
mixture model, with a tumor pixel component and a 
background pixel component, did not accurately represent the 
data. Thus we reasoned that the edge pixels, whose intensities 
cover a wide range of pixels, form their own distribution, and 
expanded the model to include a third component whose 
standard deviation is much larger than that of the other two 
components. 

The 3-component model illustrated in Figure 2 reliably 
reflects the actual data. The equations for fitting the 3-
component model are described in general terms in [6] and in 
more detail in Appendix 1. For the normalized density 
functions shown here, the tumor distribution has a mean value 
of 26.65 HU and a standard deviation of 51.46 HU. The 
background distribution has a mean value of –837.43 HU and 
a standard deviation of 59.27 HU. The volume fractions for 
the tumor, background, and edge distributions are respectively 
0.082312, 0.410151, and 0.507537. 

For a given tumor we find the mean and standard deviation of 
each component of a 3-component mixture. The challenge is 

Figure 2. Normalized density functions for the 3 components 
of pixels from Fig. 1.  



then to determine which pixels from the edge pixel 
distribution are part of the tumor, and which are part of the 
background; the former (tumor pixels) should receive full 
weight (1.0) while background pixels should receive no 
weight (0.0). Edge pixels receive partial weights in a smooth 
way, depending upon their distances from the tumor pixel 
distribution. A smooth weight function that achieves this 
purpose and has demonstrated excellent performance in many 
applications is the biweight function [7,8,9]: 
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where x is a value for a pixel intensity, T is an estimate of the 
average of the distribution of tumor pixel intensities, S is an 
estimate of the scale (e.g., standard deviation) of this 
distribution, I[-1,1] is the indicator function, and k is a “tuning 
constant” (typically chosen to be in the range 4–6). Values of 
x that are more than kS away from the presumed center of the 
distribution (T) receive zero weight. For our situation, pixel 
intensities above a certain value are always presumed to be 
those from tumor, so we need the weight function for only 
those observations whose pixel intensities are below some 
cutoff. For these data, we assume that this cutoff is chosen to 
be T −k1S; i.e., all values x of the pixel intensities greater than 
T −k1S receive a weight of 1.0; the values below T −k1S 
receive a weight in accordance with the biweight function, 
until a value T −k2S, beyond which the weight is 0.0. The 
constants k1 and k2 are functions of the data set (i.e., not user-
defined), and are described below. First, we recall that the 
biweight estimate of location, T, from a set of pixel intensities 
{x1, ..., xn}, can be calculated as an iteratively re-weighted 
mean [10]: 
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(typically c = 6), I[−1,1](ui) is the indicator function that is 1 for 
−1 ≤ ui  ≤ 1 and zero otherwise, and the iteration over j = 1, 2, 
..., continues until convergence to some criterion (e.g., relative 
change (Tj−Tj−1)/Tj < 10–4). The iteration often starts with T0 
and S as the median and the median absolute deviation from 
the median, respectively. [The algorithm actually uses for S a 
more refined estimate of the scale, described in [10].] 

Rather than using the bisquare weight function to estimate the 
location T of the population from a sample of values, we use 
the bisquare weights directly for estimating tumor volumes. 
Because w[·) traditionally is defined as 1 at 0 and 0 at –1 and 
1, we needed to translate and rescale the function, and thus we 
considered two possible weight functions derived from the 
bisquare weight function: 

     w1(u) = 0 u<–1  
 = (1 – u2) 2 –1 ≤ u ≤ 1    
 = 1 u > 1                      
           u = [x – (T – k1S)]/(k2S)  
  

 

w2(u) = 0 u<-1 
 = (1 – u2) 2/D –1≤u≤1 
 = 1 u>1 
         u = [x – (T – k1S)]/(k2S),  
         D = (k1 – T)/(k2S) 

The weight function w1 translates the weight function so it 
takes the value 1 at x = (T − k1S) (instead of at x = T) and 0 at 
x − (T − k2S). The second weight function w2 takes that part of 
the ordinary weight that lies in x = T −k1S and x = k2S and 
rescales the values so that w2(u) = 1 when x = T −k1S. In 
practice, we found rather little difference in the volume 
estimates between weights defined by w1(·) versus w2(·); the 
results shown below use w2(·). A plot of the second weight 
function is shown in Figure 3. 

 
In our algorithm below, we use for T the estimated mean of 
the tumor pixel intensity distribution from the EM algorithm. 
Our algorithm could use instead the biweight estimate from 
(2), but the biweight assumes as least half of the observations 
come from the target distribution (in this case, intensities 
corresponding to tumor). In our data, most intensities are 
background, so our algorithm would require a user-specified 
limit below which intensities would be ignored (to ensure a 
majority from tumor pixels). Since automation is a desirable 
feature of our algorithm, we chose the first route instead. 
Below we describe the algorithm for estimating tumor volume 
using these robust biweight weights. 

 
4 Biweight Constants 
We examined 10 independent sets of lung tumor data from 
two different sources to assess consistency in the definition of 
the two constants, k1 and k2, needed for the biweight equations 
above across various data sets. We found significant variation 
in the pixel intensity distributions that characterize the tumors 
in these sets, with means ranging from –23.3 to 69.5 HU, and 
standard deviations ranging from 50.1 to 248.8 HU. However, 
since our main objective in using these equations is to assign 
weights to intensities of those pixels that lie at the edges of the 

Figure 3. Weighting function (in blue) for edge 
pixels; tumor distribution (in green). 

 
 



tumors, we reasoned that these two constants, k1 and k2, 
should be a function of the edge pixel intensity distribution. 
We expect the edge distributions to be similar across data sets, 
even though the densities of the tumors may vary, since there 
is a large, consistent change of approximately 800 HU 
between the means of these distributions. Therefore, we 
studied the edge distributions in relation to the change in the 
gradient field of the pixel intensities at the tumor edges. At 
each pixel location, we calculated the magnitude of the 
gradient of the pixel intensity, and for each pixel intensity in 
the set, we calculated an average value for the gradient 
magnitude. Examples are shown in Figure 4, in which for 3 of 
the 10 representative data sets, we display a histogram of the 
pixel intensities overlaid with a plot of average gradient 
magnitude values. We used the biweight estimator [10] to 
estimate a mean and standard deviation for each of the 
gradient magnitude curves, using values associated with pixel 
intensities between –800 and –100 HU. These biweight 
means, as opposed to the EM-estimated means and standard 
deviations for the tumor pixel distributions, were more 
similar; see Table 1. The results suggest that the constants k1 
and k2 in weight function w2(·) can come directly from the 
distribution of gradient magnitude values. 

         

 

Figure 4. Histograms of pixel intensities in the region of 3 
lung tumors (in blue) shown with plots of average gradient 
magnitudes of the pixel intensities over the same regions (in 
black) for three representative data sets. 

Peskin et al. [11] describe an algorithm for generating realistic 
synthetic tumor data sets, with features similar to clinical 
tumor data sets, but whose volumes are known. The aim is to 
identify values of k1 and k2 in the weight function such that the 
resulting estimated tumor volumes will be as close to the 
known values as possible. We therefore created spherical 
tumor sets (radius 10 pixels) whose tumor intensities had 
means and standard deviations similar to those in the 10 real 
data sets shown in Table 1. Recognizing that the gradient is 
likely highest at the edge of the tumor, we set for k2 the 
biweight mean of the gradient magnitude distribution. We 

then calculated volumes for these tumors, using our marching 
cubes algorithm (see next section), as a function of k1, and 
identified the value of k1 that gave a volume closest to the 
given volume of the simulated tumor. These values are also 
given in Table 1. Looking for some consistent metrics, we 
found that in each of the 10 data sets, the ratio of the number 
of Hounsfield units between the tumor mean and k1, to the 
number of Hounsfield units between the tumor mean and k2, is 
0.465 (SD = 0.001). Hence, we choose for k1 = 0.535Ttumor − 
0.465k2, where Ttumor is the estimated mean of the tumor 
intensity distribution from the EM algorithm.  

Table 1: Means and standard deviations (SD) of 
tumor intensity distributions and edge gradient 
magnitude distributions from 10 clinical tumor data 
sets. Using simulated spherical tumors (radii = 10 
pixels) with intensity means and SDs similar to those 
in columns 2 and 3, and setting k2 equal to the 
biweight mean of the gradient distribution, k1 
(column 6) yields an estimated tumor volume closest 
to the actual volume for simulated data sets based on 
these 10 real data sets. Column 7 gives the ratio:  
(tumor mean – k1)/(tumor mean – k2); mean = 0.465; 
SD = 0.001. 

Data 
set 

Tumor 
mean 

Tumor 
SD 

Gradient 
mean 

Gradient 
SD 

round(
k1) 

Ratio
* 

S59 28.77 50.10 –441.86 171.828 -223 0.464 
S72 22.92 72.10 –456.65 182.207 -234 0.465 
S64 25.40 93.74 –474.97 188.819 -243 0.464 
S52 23.93 88.46 –480.63 182.568 -246 0.465 
S55 5.01 112.24 –501.62 189.524 -279 0.466 
S66 –23.26 184.63 –491.83 168.978 -261 0.465 
R23-1 20.43 90.59 –469.20 188.550 -243 0.462 
R23-2 69.55 146.47 –473.28 179.743 -220 0.466 
R32-1 18.05 112.75 –452.63 171.370 -234 0.465 
R32-2 55.57 248.83 –483.40 176.912 -232 0.467 
 

5 Volume Calculations 
The shape of the lung tumor can be seen by visualizing a 
surface at a specified pixel intensity. We start by assuming 
that every pixel inside the surface having an isovalue 
round(k1) corresponds to tumor (versus background or edge). 
We calculate the volume of the enclosed isosurface as a 
starting point for our tumor volume calculation. This volume 
is computed by summing the volumes in each individual voxel 
that contains the tumor, using a marching cubes-type 
algorithm [12], in which each partially filled voxel geometry 
is computed based on a linear interpolation within that voxel. 
This algorithm is illustrated in Figure 5, which shows a partial 
volume as a set of tetrahedrons whose volumes can be 
calculated geometrically. 



For each pixel value between round(k1), the lowest value at 
the which the weight equals 1.0, and round(k2), the highest 
value for which the weight equals 0.0, we calculate an  

 

additional volume measurement for the pixels enclosed within 
that isosurface. In general, this set of isosurfaces produces a 
corresponding set of volumes, each slightly larger than the 
next. Each additional volume shell is multiplied by its 
corresponding weight and added to the total volume 
calculation. If we determine that a value of –150 HU, for 
example, is the lowest value with a probability of 1.0, we 
calculate an initial estimate of the tumor volume, V0, by 
calculating the volume enclosed by the corresponding iso-
surface and weight it by w0. Subsequent volumes, Vi, are 
calculated for each i less than round(k2). With each 
subsequent calculation, we multiply the difference between it 
and the previous volume by wi (see Section 3); i.e., wi(Vi − 
Vi−1). We continue this process until we reach a volume whose 
difference from the previous volume is weighted by wi = 0. 
The total volume of tumor is then calculated as a function of 
the individual volume calculations at each of the isovalues (Vi 
= volume at isovalue i) and their corresponding weights (wi = 
weight at isovalue i) as:  

V
!
= V

0
+ w

i

i=1

n

" (V
i
#V
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6 Uncertainties 
Several sources contribute to the uncertainties in these 
calculations. Probably the largest source of error is due to the 
linear interpolation used in the voxel by voxel volume 
calculation. For tumors with large curvatures along their 
edges, especially very small tumors with large surface to 
volume ratios, these errors can be non-negligible. We created 
3D gridded data to represent perfect spheres of different sizes, 
and computed their volumes using our marching cubes 
algorithm. With a 3D grid with equal interpixel distances, the 
systematic error due to the marching cubes algorithm varied 
from 2.37 % (for spheres of radius 5) to 0.15 % (for spheres of 

radius 20). These errors rose significantly, however, when we 
used grids that more closely reflect the grids of the lung data; 
that is, the interpixel distances in one direction (in the 
direction of the CT slice) are larger than the those in the other 
directions (within one slice of CT data). Table 2 compares the 
volumes calculated on an even grid with volumes calculated 
on a grid resembling the data of Figure 1, in which the slice 
thickness is 1.25 mm and the distance between pixels within a 
slice is 0.57 mm. Although the marching cubes algorithm for 
computing volumes provides reasonably accurate estimates 
for data on a regular grid, the linear approximations in the 
non-regular grid lead to large errors, especially for small 
spheres (tumors). Currently, we are implementing a second 
order approximation in the slice direction to reduce these 
errors. 

Table 2: Analytic vs. Numerical Volumes of Spheres in  
Lung Data 

 
Radius 

Actual  
volume 

Volume  
1 x 1 x 1 
grid 

%error  
1 x 1 x 
1 grid 

Volume  
1 x 1 x 2.9 
grid 

% error  
1 x 1 x 
2.9 grid 

5 523.60 511.19 2.37 375.13 28.36 
10 4188.79 4164.12 0.59 3571.21 14.74 
15 14137.16 14099.81 0.26 12673.75 10.35 
20 33510.29 33460.98 0.15 30920.93 7.73 
 

A second source of uncertainties arises from the statistical 
method to assign weights. Each Vi involves uncertainty, which 
are combined to yield an overall uncertainty. Since the 
volume calculation is a weighted linear combination of Vi, the 
variance is, to a first approximation,  

Var(V
!
) = w

i

2
Var(V

i
)

i=1

n

" . (4)  

The calculation is conservative because (a) wi has uncertainty 
as well, due to the uncertainty in T and S that are used in it; 
and (b) the Vi are not uncorrelated. The effects of (a) and (b) 
tend to offset each other, so this estimate of the variance of the 
final calculation is adequate for most purposes. A bootstrap 
calculation verifies this claim, as will be shown in future 
work. 
 

 

7 Comparisons With Other Approaches 
In this section, we briefly compare this approach for lung 
tumor volume calculation to other types of approaches, since 
different approaches are useful for different overall goals. The 
method described here is focused on accurately and 
automatically measuring lung tumor volumes with measurable 
accuracy. Other methods may be better suited for other 
purposes. Thresholding methods can produce good results, 
which improve with the number of threshold values used [13], 
but assumes that tumor edges have consistent pixel intensities. 
Region-growing segmentation methods begin growth from a 
seed point of a connected region bounded by a threshold value 

Figure 5: Example volume broken into sets of tetrahedra. 



[14] and require user-specified values. Watershed 
segmentation, another region-based method that has been 
widely used in the medical community [15,16], also produces 
user-dependent results, as do other methods such as livewire 
segmentation, which utilizes gradients of the pixel field and 
can be very useful on images where steep gradients exist, such 
as the brain or liver [17]. In the method presented here, two 
different users will arrive at exactly the same volume for an 
object, an answer that is not influenced by various parameters 
input by the users. 

8 Conclusions 
We have described a method to calculate the partial volumes 
of voxels in medical lung CT images. This method is based on 
the assumptions that the pixel intensities defining the edges of 
an object form a separate, widely spread distribution from the 
pixel intensities in the center of the object. We propose an 
algorithm that assigns a weight to each pixel intensity that 
may be viewed as a ``likelihood'' that an individual pixel is a 
part of the tumor. This method uses the observed pixel 
distributions for tumor, background and edge pixel intensities, 
and the magnitude of the gradient of the pixel intensity to 
evaluate the parameters needed for volume measurement,  k1 
and k2, thus requiring no user input parameters. The growth of 
tumors can be measured by comparing data that is taken at 
different times and possibly on different CT machines, since 
each data set is evaluated independently. Initial studies with 
measurements of synthetic tumors of known size show that we 
are able to measure simple objects with a fair amount of 
accuracy. 
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Appendix 1: EM algorithm for 3-component 
Gaussian mixture 
The model for an observation X that comes from a three 
component Gaussian mixture is 

X = a1X1 + a2X2 + a3X3  (4) 

where Xj comes from a Gaussian distribution with mean µj and 
variance σ2

j (standard deviation σj ), a1, a2, and a3 = 1 − a1 − a2 
take values in {0,1}, and P{ai = 1} = πj , j = 1, 2, 3. That is, 
(a1, a2, a3) has a multinomial(3) distribution with parameters 
π1 and π2  (π3 ≡ 1 -  π1 - π2). The probability density function 
(pdf) of this three-component Gaussian mixture is 
 

f(x;θ) =  π1φµ1,σ1(x) +  π2φµ2,σ2(x) + π3φµ3,σ3(x) (5) 
 

where πjφµj,σj(x) = ( 2! σj )-1 exp[-(x - µj)2/(2σ2
j )] denotes the 

Gaussian pdf with mean µj  and variance σ2
j (standard 

deviation σj), πj denotes the proportion of pixels in component  
j (π3 ≡ 1 -  π1 - π2), and θ  denotes the vector of parameters (π1 

,π2 ,π3, µ1, µ2, µ3, σ2
1

 
, σ2

2, σ2
3). To fit these 8 parameters using 

the EM (expectation-maximization) algorithm using data 
values {x1 , ..., xn}, we start by recognizing that if we know 
for each observation the population from which it comes, then 
we would use the observations from each population to fit the 
Gaussian means and variances in the usual way using sample 
means and sample variances: 

µ̂ j = xi nj
i!Sj

" ,!!#̂ = xi $ µ̂ j( )
2

nj
i!Sj

"  (6) 

where Sj is the set of indices of xi  which come from 
population j  and nj  is the number of indices in Sj. Since we 
do not know a priori the population from each xi  comes, we 
proceed as follows. (See also Hastie, Tibshirani, and Friedman 
2001, Section 8.5, pp. 236–243. The EM algorithm for the 2-
component Gaussian mixture appears on p.238.) 
 
1. Intitialization step: Start with initial estimates of  θ; e.g., 
 

µ1 = –800,  σ1 = 100 (background pixels) 
µ2 = –400,  σ2 = 200 (edge pixels) 
µ3 = 50,      σ3 = 100 (foreground pixels) 

 
The algorithm converges more quickly with closer start values 
but precise start values are not critical. 
 
2. Expectation step: Compute the “indicators” for each 
observation xi, corresponding roughly to the probabilities that 
a given observation xi  comes from each of the populations: 
 

w
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x
i( ) / D

D % !̂
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x
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"
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x
i( ) + 1$ !̂

1
$ !̂

2( )"µ̂3 ,#̂ 3
x
i( )

 (7) 

 

3. Maximization (updating) step: We now treat the 
“indicators” as weights and compute the maximumlikelihood 
estimators of the Gaussian means and variances in the usual 
fashion, for j = 1, 2, 3: 
 

µ̂
j
= w

ij
x
ii=1

n

! w
iji=1

n

!

"̂
j

2
= w

ij
x
i
# µ̂

j( )
2
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n

! w
iji=1

n

!
 (8) 

 
and update the estimated proportions in the three components 
as 
 

!̂
j
= w

ij
/ n

i=1

n

" # w
+ j
/ n  (9) 

 
4. Iteration step: Repeat steps 2 and 3 until convergence 
criterion is reached. 
 
We note the following: 
• Scott[18] proposed an algorithm for fitting Gaussian 
mixtures based on a different criterion for estimation.  The 
algorithm has advantages particularly in robustness 
(insensitivity to possible outliers in the data). We expected 
rather few outliers in these data but are planning future work 
to investigate Scott’s algorithm on data such as those 
considered here. 
 
 


