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Abstract. Expanding on our previously developed method for insert-
ing synthetic objects into clinical computed tomography (CT) data, we
model a set of eight clinical tumors that span a range of geometries and
locations within the lung. The goal is to create realistic but synthetic
tumor data, with known volumes. The set of data we created can be
used as ground truth data to compare volumetric methods, particularly
for lung tumors attached to vascular material in the lung or attached
to lung walls, where ambiguities for volume measurement occur. In the
process of creating these data sets, we select a sample of often seen lung
tumor shapes and locations in the lung, and show that for this sample a
large fraction of the voxels representing tumors in the gridded data are
partially filled voxels. This points out the need for volumetric methods
that handle partial volumes accurately.

1 Introduction

The change in pulmonary nodules over time is an extremely important indicator
of tumor malignancy and rate of growth. Physicians base both diagnoses and
treatment on perceived changes in size, so accurate and precise measurement
of such changes can have significant implications for the patient. Many articles
have described a variety of techniques for calculating tumor volumes and/or the
change in tumor size between two sets of data on the same tumor [1]-[6]. To
compare volumetric techniques, we need reference data with a variety of known
tumor volumes with different levels of background noise. Although phantom tu-
mor data are currently available and published studies [7] [8] have compared
volumetric methods on these phantom data sets, the phantom data settings are
often not realistic, because the synthetic phantoms are placed in a synthetic
background. A realistic and valid assessment of these volumetric methods needs
realistic calibrated data sets. Lung tumor volume calculations are often difficult
because of the physical location of tumors in the lung: typically highly vascular
regions where tumors are hard to discriminate from overlaying blood vessels or
along the pleural lining of the lung where boundaries are also hard to define.
Ground truth sets of lung tumor data are needed to compare different volu-
metric measurement methods. Of particular importance are sets with a single
tumor acquired over time. In a previous paper we presented a method for em-
bedding spheres of known size into lung CT data to create reference synthetic
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data sets in realistic lung environments [9]. In this paper, we expand on these
ideas to replicate eight sets of clinical data with a range of lung tumor shapes
and locations. We explain why these sets were chosen, and then describe the
methods to recreate clinical tumor shapes with synthetic tumors whose volumes
are computed accurately as the shapes are created.

2 Examination of Lung Tumor Edges

The pixel intensities associated with a lung tumor appearing on a CT scan typi-
cally lie in the same intensity range as the blood vessels of the lung (between -100
and +200 Hounsfield units). The non-vascular lung tissue and air passageways,
which serves as the background in these scans, appear at significantly lower in-
tensities (-1000 to -700 Hounsfield unit range). The regions at or near the lung
tumor surface lie in a broad range between the two (-700 to -100 Hounsfield
units), and are only partially filled by a tumor or contain both tumor and other
vascular material. Figure 1 shows a section of a CT slice through a tumor, along
with a 3-D picture of an isosurface from 41 slices of the same data set that
include the tumor. The isosurface is created at a Hounsfield value of -400, and
includes both the tumor and the surrounding blood vessels. A histogram of the
pixel intensities in a small region containing the tumor, also shown in Figure
1, is representative of diseased lung tissue. There is a peak for the background
tissue, a peak for the tumor, and a spread of intensities in between the two that
represents the partial volumes and vascular material surrounding the tumor.

3 Clinical Tumor Sets

Eight clinical tumors were selected with the help of a radiologist from a larger
set of available data that included a range of sizes and physical locations in the
lung. Images were obtained from the public NCI Reference Image Database to
Evaluate Response (RIDER) [10]. Data from each of these patients are available
at two different time points. We cannot precisely measure the volumes of these
clinical tumors and their changes over time, but we can create synthetic models
of known volume. Several of the selected tumors are small and centrally located
in the lung. Others are larger and attached in some way to the lining of the lung.
The larger tumors appear to be less round than the smaller ones, and require
more complex geometric models. These eight tumors were selected because they
had shapes and attachments representative of those seen in our data sets. Several
of the tumors were selected because they represented lesions with commonly
occurring challenges in terms of reading the data. If several sets of CT data
included similar tumors, we chose a sample representative of that shape and
location.

We are able to recreate clinical tumor shapes using combinations of spheres,
ellipsoids, cones, and cylinders, which can be assembled at arbitrary sizes and
angles with respect to one another. During assembly, partial voxel volumes are
calculated by subdividing each voxel and testing for the appearance of each
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Fig. 1. Section of a slice of CT data containing a tumor; Isosurface at -400 Hounsfield
units of 41 slices containing the same tumor; Histogram of pixel intensities in a small
grid immediately surrounding the tumor.
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geometric object in the subsections. Using this technique, we are able to get an
accurate estimate of the final volume for the combined set of objects. A particular
set of geometric objects is assembled in a grid whose grid points contain either a
1.0 for a completely filled voxel, a 0.0 for a completely empty voxel, or a number
between 0.0 and 1.0 representing the fraction of the voxel filled by the geometric
objects.

As described in a previous paper [9], pixel intensities are then selected for
each grid point in the grid of geometric objects. We first approximate the pixel
intensity distribution of a clinical tumor in the same data set, using a normal
distribution and the mean and standard deviation of the clinical tumor’s pixel
distribution. Any grid point completely inside of the synthetic tumor is then
assigned a random value from this normal distribution.

Pixel intensities for the partially filled voxels are computed based on param-
eters that we derive from the clinical tumor data, which define the upper and
lower boundaries for pixel intensities at the tumor surface. We find the lower
boundary for surface pixel intensity from the gradient field of the pixel inten-
sities at the tumor surface. For each intensity at the tumor edge, we find an
average value for the magnitude of pixel gradient. K2, the lower boundary for
surface pixel intensity, is the intensity with the maximum average gradient mag-
nitude at the tumor edge. The upper limit for edge pixels, K1, is determined
from a ratio based on our previous work. Spheres of different sizes were embed-
ded into clinical CT data such that the pixel intensity gradient at the sphere
surface resembled the gradient of clinical tumor data. Pixel intensities at the
edge contributed to the overall volumes of the spheres, but were weighted de-
pending upon their intensity. All intensities greater than K1 were assumed to
be inside the sphere, and because the sphere volumes were known, values of K1

were estimated. Over all of the data sets in our previous study, a common ratio
emerged from our values of K1, K2, and the mean value of the peak of the tumor
pixel intensities, Km:

Km −K1

Km −K2
= 0.46. (1)

We therefore estimate K1 in our current data sets once we know K2 and Km.
Grid values with partial volumes are assigned a pixel intensity between K2 and
K1 according to their partial volume. The new grid is then embedded into the
CT data. Figure 2 shows an example of one slice of a sphere as both DICOM
data and as colored individual pixels. Table 1 provides data for the range of
pixel intensities for the eight synthetic tumor partial volumes, calculated from
a clinical tumor found in each of the eight data sets. (See [9] for a lengthier
discussion of how and why these parameters are chosen.)

4 Modeling Clinical Tumor Shapes

Figure 3 displays the eight geometric objects that were inserted into clinical
data. These objects are shown in the figure as polygonal surfaces created from
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Fig. 2. One slice of a sphere inserted into clinical CT data, DICOM data on the left
and pixels individually colored on the right, to differentiate the background, edge, and
tumor intensities.

Table 1. Ranges of pixel intensities for partial volumes of synthetic tumors.

Data set K2 K1 (Hounsfield units)

1 -439 -204
2 -420 -194
3 -413 -190
4 -412 -189
5 -356 -167
6 -388 -182
7 -415 -188
8 -426 -197
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gridded data and represent a range of tumor sizes. Some were embedded in the
wall of the lung to simulate more challenging cases; others were kept separate
from the wall and are intended to be easier to measure. The clinical tumors that
served as a basis for these shapes were selected with the help of a radiologist
as representative samples from 26 sets available for this study. Each object in
Figure 3 is made up of between four and 13 different geometric shapes chosen
so that their cross sections in each CT slice resemble the cross sections of the
clinical data. Figures 4-11 display sections of a single slice from each of the eight
amended data sets at two different time points. The image data is taken from a
single patient at two different times. In several of the figures, the clinical tumors
that were used to model the synthetic tumors are seen. The volume change is
specified for each set as either a 30 % increase in volume or a 10 % decrease in
volume.

Fig. 3. The eight geometric objects that were inserted into clinical data at the initial
time of the test.
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Fig. 4. Object 1 at two time points. The clinical tumor is bottom left; the synthetic
tumor to the right of it, modelled after the tumor at time point 2. Tumor was reduced
in size by 10 % for the second time point. The clinical tumor shrank by a larger amount
during the corresponding time period.

Fig. 5. Object 2 at two time points. The clinical tumor is bottom center; the synthetic
tumor is top center, modelled after the tumor at time point 2. Tumor was increased in
size by 30 % for the second time point.

Fig. 6. Object 3 at two time points. The clinical tumor is bottom center; the synthetic
tumor is above it, modelled after the tumor at time point 2. Tumor reduced in size by
10 % for the second time point.
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Fig. 7. Object 4 at two time points. The clinical tumor is top right; the synthetic tumor
below it, modelled after the tumor at time point 2. Tumor is increased in size by 30 %
for the second time point.

Fig. 8. Object 5 at two time points. The clinical tumor is not in this image; the
synthetic tumor is at top right. Tumor is increased in size by 30 % for the second time
point. The third image is a section of a slice of the CT data containing the clinical
tumor from which the synthetic tumor was derived.

Fig. 9. Object 6 at two time points. The clinical tumor is not in this slice; the synthetic
tumor is seen at the bottom of the lung image. Tumor was reduced in size by 10 % for
the second time point. The third image is a section of a slice of the data containing
the clinical tumor from which the synthetic tumor was derived.
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Fig. 10. Object 7 at two time points. The clinical tumor is not in this slice; the synthetic
tumor in the lower lung. Tumor was increased in size by 30 % for the second time point.
The third image is a section of a slice of the data containing the the clinical tumor
from which the synthetic tumor was derived.

Fig. 11. Object 8 at two time points. The clinical tumor is on the left, the synthetic
tumor is bottom right. Tumor was reduced in size by 10 % for the second time point.
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Changes in tumor size over time have traditionally been measured using
the Response Evaluation Criteria in Solid Tumors (RECIST). One recent study
[11] with phantom tumors has shown that size measurements are dramatically
improved when using volumetric measurements instead of one-dimensional RE-
CIST measurements. However, for small tumors, volume measurements often
are dependent upon determining exact surface locations and are heavily influ-
enced by the difficulties of measuring partial volumes. This is illustrated in Table
2, which shows the tumor volumes associated with the eight tumor shapes de-
scribed here along with the fraction of partially filled voxels for each grid. These
partially filled voxels are at risk for error in volume calculations. The fractions
vary between 0.247 and 0.410; i.e., in our sample, approximately one quarter to
one half of the voxels representing tumors are partially filled. Volumetric meth-
ods that do not accurately account for partial volume data will lead to errors of
this extent. The fractions are high, either because the tumors are small and the
surface area to volume ratios are high, or because the tumors, although larger,
are less round, with more surface area in extended appendages. This underscores
the need for accurate methods to determine tumor boundaries in CT data. We
have suggested such a method in [12], which assigns weighted volumes to vox-
els that are not completely filled. Further work investigating changes in tumor
shapes with time are needed to determine if the data sets used here are truly
representative.

Table 2. Volumes and partial volumes for the eight objects.

Data set volume (mm3) fraction of partial volume voxels

1 27266.40 0.304
2 20800.67 0.323
3 10094.76 0.384
4 91280.65 0.336
5 18832.44 0.299
6 6136.94 0.410
7 57754.50 0.247
8 15158.10 0.377

5 Conclusions

Reference CT data sets that contain time-dependent lung tumor size change data
are needed in order to compare volumetric methods for measuring lung tumor
growth. Phantom lung tumor data can supply time dependent information, but
not necessarily in the clinical environment of common lung tumors. These data
also often have the disadvantage of not replicating the complications associated
with tumor size measurements, such as highly concentrated vasculature or air
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passageways, or growth out of the pleural lining. Creating synthetic data in real-
istic environments is one way of mitigating these disadvantages. We have shown
a selection of clinical tumors from available data that we believe exhibits rep-
resentative shapes and placements. We describe the insertion of these synthetic
shapes into clinical CT data. These representative synthetic tumors can then be
used as ground truth data for comparison of algorithms that calculate tumor
volumes. We show from an analysis of the gridded data representing all eight of
our tumor shapes that a large fraction of voxels are only partially filled. Future
work is needed to further investigate tumor shapes and their changes over time
to see if our small study is representative of lung tumor data in general.
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