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Abstract. We describe a new technique to automatically segment and
track the cell images of a breast cancer cell line in order to study cell
migration and metastasis. Within each image observable cell character-
istics vary widely, ranging from very bright completely bounded cells to
barely visible cells with little to no apparent boundaries. A set of dif-
ferent segmentation algorithms are used in series to segment each cell
type. Cell segmentation and cell tracking are done simultaneously, and
no user selected parameters are needed. A new method for background
subtraction is described and a new method of selective dilation is used to
segment the barely visible cells. We show results for initial cell growth.

1 Introduction

The ability of cells to migrate varies widely during development and the life of
multicellular organisms. For example, cell migration is crucial during the early
stages of development when organs are formed. During adulthood, a wide array
of immune cells can migrate at speeds that can reach more than one cell length
per minute. These cells travel over wide distances to sites of inflammation or
injury to precipitate the host′s immune response. On the other hand, epithelial
cells, which line cavities and surfaces inside the body, are characterized by tight
contact with neighboring cells and typically do not migrate over far distances.

Cell- and organ-specific regulation of the migratory behavior of cells is crucial
under both physiological and pathological conditions. In normal epithelia, such
as breast epithelium, cell migration is restricted, but in tumor disease these
transformed epithelial cells acquire mutations that allow them to migrate into
the surrounding connective tissue (invasive tumor) and then to distant sites to
establish metastatic disease [1]. Therefore, investigating the migratory behavior
of epithelial and tumor cells may enable us to find new ways to control migration
of tumor cells to distant sites and reduce metastasis.

Cell migration can be studied by visualizing cell responses through the cap-
ture of time-lapse images for long periods of time. Quantitative analysis of these
images is performed by tracking the position of individual cells as a function of
time, which is labor-intensive and can only be done manually for a few selected
0 This contribution of NIST, an agency of the U.S. government, is not subject to

copyright.



2 Peskin, et al.

cells. Thus, current ways to analyze cell migration often generate data of lim-
ited statistical value. To robustly analyze migration of cells over a time range
of days, an image analysis program would ideally be able (a) to segment images
and identify cells, (b) to individually name cells, (c) to assign cells in one image
to cells in the preceding and succeeding images, that is, identify the same cell
in sequential images although this cell may change location, size and shape, (d)
identify whether a cell dies, (e) notice whether a cell divides and identify the
offspring as new cells but related to the parental cell.

We developed a segmentation method specific for the cell line studied here,
MCF10CA1a cells [2]. Many segmentation methods exist in the literature: edge-
based methods, methods which minimize certain energy functions [3] [4], and
methods that combine different techniques, such as the coarse-to-fine iterative
segmentation of 3T3 cells [5]. Several methods determine cell boundaries by
tracking cell movements over time, either by tracking cell trajectories [6], or
by feature-specific shape change detection [7]. Ersoy et.al. propose a flux-tensor
based method that detects cell movements [8]. The images from this cell line
present segmentation problems that are not addressed by these solutions: cell
edges are not clearly defined and cell shapes are not consistent from one image
to the next, so methods that depend on these features are not useful for this cell
line. Other cell tracking methods fail to accurately track both the bright round
cells, and the barely visible cells. In this paper, we discuss a method that tracks
the combination of diverse, often fast-moving, cells of this breast cancer line.
The parameters used in the segmentation method are based on the statistics of
image intensities and user input is not required.

2 Tissue Culture

Breast cancer cells (MCF10CA1a cells) were cultured as described previously
[9] [10]. Briefly, cells were grown in DMEM/F12 supplemented with 5 % horse
serum (both Invitrogen, Carlsbad, CA) in a humidified atmosphere at 5 % CO2.
For experiments, cells were trypsinized and resuspended in a 1:1 mixture of
DMEM/F12 supplemented with 5 % horse serum and DMEM, low glucose, sup-
plemented with 10 % fetal bovine serum (Invitrogen). 25000 cells were plated
into each dish (total volume: 3 ml). Cells were allowed to adhere overnight and
then transferred into the incubator chamber of the microscope for monitoring
cell migration. 3

3 Microscopy

Cultured cells were imaged continuously in a 5 % CO2 environment (Zeiss CO2

module S). Temperature was regulated to 37 ◦C ± 0.1 ◦C by use of an AirTherm

3 Certain trade names are identified in this report in order to specify the experimental
conditions used in obtaining the reported data. Mention of these products does not
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heater (WPI). Cells were imaged by use of a Zeiss AxioObserver microscope
with a 40x, 1.3 NA oil-immersion objective and Cargille 37 immersion oil. DIC
images were captured with an Orca EM (Hamamatsu) CCD camera every 2
min and saved as .zvi files at 512x512 pixels and 16 bit depth. Original files were
converted to .tif series using ImageJ with no post-hoc file manipulation. Multiple
areas of the coverslip were imaged simultaneously using a computer-controlled
motorized stage (Ludl Mac5000) with a linear encoder. Axiovision (Zeiss, Version
4.6) software was used to control all hardware components. To minimize photo
toxicity, 15 ms exposure times were achieved using a shutter (UniBlitz). Sample
images can be found at: http://www.nist.gov/itl/math/hpcvg/cellimgvis.cfm.

Fig. 1. Early image.

4 Background Removal

Background values for live cell images have been computed in a number of dif-
ferent ways, from taking the mean value or weighted mean of pixel intensities
at each location [11] [3], to modeling pixel intensities over time at each location
with Gaussian distributions representing cell and background [12], to top-hat
filtering [4]. The goal for this segmentation is to do simultaneous cell track-
ing along with the segmentation, so we chose a method that can be performed
on each image without knowledge of previous background image information.
Background removal needs to be highly accurate in order to track the barely
visible cells. To start, a mean value is found for the image as a whole, and all
pixels with an intensity higher than three standard deviations above the mean
are temporarily replaced by the mean value to smooth out the image. Then the
background value for each individual pixel is determined by the average value in
a small neighborhood of that pixel. We experimented with different sized neigh-
borhoods, from 3 to 20 pixels in each direction. A neighborhood of ten pixels
in each direction was used, which produced a smooth background without re-
moving features of the image. Figure 1 shows an image at the start of growth
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in new cell medium, a 16-bit 508x496 pixel image (intensity units are on a scale
of 0-65536). Background removal for this image is displayed in Figure 2. The
presence of the barely visible cells in the resulting image indicates the success of
this technique.

Fig. 2. Sample image color-coded before and after background removal. Color table
shows intensities before removal.

5 Initial Segmentation

The initial images in a time sequence contain cells of a fairly similar size, although
even at this stage several quite different cell morphologies are seen. Figure 3
shows some closeup pictures of a few of the cells from Figure 1, showing both
cells with clearly defined boundaries, and cells that are barely visible on the
image with large gaps in any apparent boundary. The overall approach is to
capture the dark cell boundaries to define the brighter cells, and then use a
combination of selectively dilating the fainter bright areas that mark the barely
visible cells with a measure of pixel intensity standard deviation, which also
indicates faint areas on the image that represent cells. Dilation in this paper
will refer to enlarging a set of selected pixels by including pixels directly above,
below, to the left or to the right of a selected pixel. Erosion refers to decreasing
a set of selected pixels by eliminating pixels that have an unselected pixel above,
below, to the left or to the right.

Fig. 3. Sub-sections of the image in Figure 1, showing different cell morphologies.
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To begin we define several overall patterns within the image, starting with the
areas of high standard deviation. We want to capture cell features on the scale
of the size of a dark boundary or a bright shadow inside a dark boundary. Most
of these features are represented by 3-10 pixels on the image. We experimented
with neighborhoods varying between 3 and 15 pixels in each direction, looking
for a pattern that best resembled the visual pattern of the cells. For each pixel,
intensities in a neighborhood of five pixels in each direction are collected, and
a mean and standard deviation are assigned to that pixel. The individual pixel
values are then averaged to give an overall mean (om) and overall standard
deviation for the pixel standard deviations (osd). Figure 4 shows pixels with
individual standard deviation values above the overall mean plus one overall
standard deviation (om + osd).

Fig. 4. Pixels with high standard deviation values.

The dark areas defining cell borders are found in a series of steps shown in
Figure 5. We look for the lowest possible intensity cutoff that leaves complete cell
boundary sections intact and choose all pixels less than -100 intensity units after
background removal. We remove small clusters of dark pixels. Most of the dark
pixels of the background are present in small clusters of 10-15 pixels or fewer, so
all remaining clusters of 15 or less of these pixels are eliminated. The remaining
pixels are dilated to fill in any small gaps in the cell boundaries. Remaining
pixels clusters that are not part of the cell boundaries are all located in small
pixel clusters. It was found that eliminating clusters less than 50 pixels left all
of the cell boundaries intact. The result is shown as the center picture in Figure
5. The last step is to eliminate all remaining clusters that do not coincide with
the high standard deviation clusters of Figure 4. This last figure clearly shows
that many of the cells are missing at least part of their cell boundary definition.

Many of the cells on these images are dead cells and can be identified by a
round appearance, bright interior, and dark boundary. These cells are important
to identify as a normal terminal fate in cell development and differentiation. Some
of the round cells are cells that are not yet attached to other cells. However it is
not important to track the random movement of the dead cells once they come
in contact with other cells. Many of the dead cells have brighter than average
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Fig. 5. Steps to finding the dark cell borders.

pixels scattered just inside the boundary. To enhance these bright regions, pixels
are selected that are at least two standard deviations above the mean value for
the whole image. These bright pixels are randomly located across the image, but
are seen in very small clusters of 3 or more pixels near cell borders. To enhance
these bright regions, we dilate only the bright pixels in these clusters, and not the
bright pixels scattered elsewhere. We evaluate the shapes of the resulting clusters
of bright pixels, and the round clusters, as well as those completely surrounded
by the dark regions, are initially assigned cell numbers. The resulting cells for
the above image are shown in Figure 6.

Fig. 6. Bright round cells are assigned first.

The next step is to identify the cells that do not have clear cell boundaries on
the image. Potential cell pixels are selected by looking for a combination of pixels
that are at least slightly above the mean pixel intensity, and also pixels whose
standard deviation value is at least the mean standard deviation value. Several
steps to assemble these pixels are shown for this example image in Figure 7. On
the image these cells are recognized by the human eye because they are slightly
brighter than the background. So we collect pixels slightly above the mean image
intensity value (a value of 100 is used as a cutoff because it is approximately 1/3
of a standard deviation higher). Again to pick up the small clusters and leave
out the background noise, we selectively dilate pixel clusters of greater than 3
pixels. Then pixels with standard deviation values less than the mean standard
deviation are eliminated. Remaining pixels are dilated again, but cannot grow
into the dark regions.

Of the remaining pixels, we look at regions that have not been previously
assigned to a cell above, and keep clusters bigger than 100 pixels, a cutoff for the
size of a cell. We use the pattern of the pixel standard deviations from Figure 4
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Fig. 7. Pixels with intensity above 100 are identified and clusters greater than 3 are
dilated. Resulting pixels are kept if the standard deviation is at least the mean standard
deviation of the image (om).

to understand which of the resulting pieces are part of the same cell. The pixels
with the very highest standard deviation values are either part of the dark border
of a cell and its surrounding pixels, or part of the very brightest cell pieces. If
two clusters of this set fall along the same high standard deviation region, they
are probably both part of the same cell. The very high standard deviation pixels,
defined by pixels whose standard deviation is at least the mean (om) plus two
overall standard deviations (2*osd) are shown in Figure 8, along with the larger
than 100 cluster pieces and the final grouping of these pieces. A few final steps
check the resulting cells, fill any small holes, and eliminate cells that are too
small.

Fig. 8. Clusters larger than 100 pixels (left) are combined according to regions of very
high standard deviation (center), and the final initial segmentation is shown (right).

6 Simultaneous Segmentation and Cell Tracking

Once an initial segmentation is performed, subsequent images can use informa-
tion from the previous image to fill in gaps in cell boundaries, where they may
not be present in an image. The beginning steps, defining a standard deviation
value for each pixel, defining dark regions where they are present around the
cells, and finding the brightest, round cells, are the same as those described
above. Cell numbers are assigned to the bright round cells according to their
location and size. A cell that moves significantly between images is matched by
brightness and size across steps. As an example, Figure 9 shows a section of three



8 Peskin, et al.

consecutive images, where one of the cells is seen to be moving rapidly towards
the bottom of the image.

Fig. 9. Section of three consecutive images showing one of the cells (noted by the
arrows) moving rapidly towards the bottom of the image and the corresponding sections
of the segmentation masks.

Once the bright round cells are numbered, the rest of the cells are then defined
by pixel intensity standard deviation, areas brighter than the mean, sections of
dark boundaries, and boundaries markers from a previous image. The steps are
shown below. Figure 10 first shows the initial cell numbering for the bright,
round cells on the left. Pixels representing the bright high standard deviation
areas, or pixels associated with a cell in a previous image are shown on the right.
As described above, pixels with intensities greater than 100 are collected, and
clusters of greater than three pixels are selectively dilated. The resulting pixels
are then kept if they have higher than the mean value of standard deviation, or
if they are at locations of pixels from cells of the previous image. At this stage
the clusters are split by the available dark boundaries and numbered. Clusters of
pixels that are associated with a single cell from the previous image are assigned
to that cell number. Clusters of pixels associated with more than one previous
cell are eroded so that they split into several sections, each associated with
separate cells or at least fewer cells. The eroding process is repeated if necessary.
Figure 11 shows the clusters that include more than one cell, and then a final
eroded set of clusters.

Fig. 10. Numbered round bright cells (left), pixels that are brighter than average,
have a high standard deviation, or are in locations of pixels from a previous cell image
(right).
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Fig. 11. Clusters of pixels associated with more than one cell. Several of these clusters
are eroded to define separate cell clusters.

There are a few final steps where accuracy is checked. Bright shadows under
dark regions that look like potential new cells are eliminated. Gaps in cell bound-
aries that are overestimated in areas with bright shadows are redefined using the
cell boundaries of the previous image. Cells that are less than 30 pixels are elim-
inated. Figure 12 shows the segmentation as a function of time for the first 30
minutes of cell growth. The images and resulting masks are given at 10-minute
intervals. This segmentation method can keep track of mitosis events, with an
example shown in Figure 13, where a section of images taken two minutes apart
shows a dividing cell, and the corresponding segmentation masks also show that
event.

Fig. 12. Images and resulting masks at 0, 10, 20, and 30 minutes.

7 Conclusions

For initial growth of this breast cancer cell line in culture, our segmentation/cell
tracking program is capable of handling the five required tasks to robustly ana-
lyze migration of cells over time: segmenting and identifying cells, individually
naming cells, assigning cells of one image to corresponding cells in the preceed-
ing and succeeding images, identifying dead cells, and identifying mitosis events.
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Fig. 13. Dividing cell at center of section of images taken two minutes apart, and the
resulting segmentation masks.

For short periods we are able to track every cell in our test set of images. The
purpose of this paper is to present new techniques for the challenging segmenta-
tion issues this cell line presents. Groundtruth data for this cell is painstakingly
hard to collect for all of the cells, but future work will include larger scale tests
with this method and comparisons with limited manually collected data. Future
work will also include cell shape analysis to maintain high accuracy for longer
periods. Because we track more than just a center cell location, we are able to
analyze size and shape change information from these data over time as well,
which will provide further insight into the biology of these cells.
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