
Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 105, 343 (2000)]

IMPI: Making MPI Interoperable

Volume 105 Number 3 May–June 2000

William L. George, John G.
Hagedorn, and Judith E. Devaney

National Institute of Standards and
Technology,
Gaithersburg, MD 20899-8591

william.george@nist.gov
john.hagedorn@nist.gov
judith.devaney@nist.gov

The Message Passing Interface (MPI) is the
de facto standard for writing parallel sci-
entific applications in the message passing
programming paradigm. Implementations
of MPI were not designed to interoperate,
thereby limiting the environments in
which parallel jobs could be run. We
briefly describe a set of protocols, de-
signed by a steering committee of current
implementors of MPI, that enable two or
more implementations of MPI to interoper-
ate within a single application. Specifi-
cally, we introduce the set of protocols col-
lectively called Interoperable MPI (IMPI).
These protocols make use of novel tech-
niques to handle difficult requirements
such as maintaining interoperability among
all IMPI implementations while also

allowing for the independent evolution of
the collective communication algorithms
used in IMPI. Our contribution to this
effort has been as a facilitator for meet-
ings, editor of the IMPI Specification docu-
ment, and as an early testbed for imple-
mentations of IMPI. This testbed is in the
form of an IMPI conformance tester, a
system that can verify the correct operation
of an IMPI-enabled version of MPI.

Key words: conformance testing; dis-
tributed processing; interoperable; message
passing; MPI; parallel processing.

Accepted: April 28, 2000

Available online: http://www.nist.gov/jres

1. Introduction

The Message Passing Interface (MPI) [6,7] is the
de facto standard for writing scientific applications
in the message passing programming paradigm. MPI
was first defined in 1993 by the MPI Forum
(http://www.mpi-forum.org), comprised of representa-
tives from United States and international industry,
academia, and government laboratories. The protocol
introduced here, the Interoperable MPI protocol (IMPI),1

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

extends the power of MPI by allowing applications to
run on heterogeneous clusters of machines with various
architectures and operation systems, each of which in
turn can be a parallel machine, while allowing the pro-
gram to use a different implementation of MPI on each
machine. This is accomplished without requiring any
modifications to the existing MPI specification. That is,
IMPI does not add, remove, or modify the semantics of
any of the existing MPI routines. All current valid MPI
programs can be run in this way without any changes to
their source code.

The purpose of this paper is to introduce IMPI, indi-
cate some of the novel techniques used to make IMPI
work as intended, and describe the role NIST has played

343

Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

in its development and testing. As of this writing, there
is one MPI implementation, Local Area Multicomputer
(LAM) [19], that supports IMPI, but others have indi-
cated their intent to implement IMPI once the first ver-
sion of the protocol has been completed. A more de-
tailed explanation of the motivation for and design of
IMPI is given in the first chapter of the IMPI Specifica-
tion document [3], which is included in its entirety as an
appendix to this paper.

The need for interoperable MPI is driven by the desire
to make use of more than one machine to run applica-
tions, either to lower the computation time or to enable
the solution of problems that are too large for any avail-
able single machine. Another anticipated use for IMPI is
for computational steering in which one or more pro-
cesses, possibly running on a machine designed for
high-speed visualization, are used interactively to con-
trol the raw computation that is occurring on one or
more other machines.

Although current portable implementations of MPI,
such as MPICH [14] (from the MPICH documentation:
The “CH” in MPICH stands for “Chameleon,” symbol
of adaptability to one’s environment and thus of
portability.), and LAM (Local Area Multicomputer) [2]
support heterogeneous clusters of machines, this ap-
proach does not allow the use of vendor-tuned MPI
libraries and can therefore sacrifice communications
performance. There are several other related projects.
PVMPI [4] (PVMPI is a combination of the acronyms
PVM, which stands for Portable Virtual Machine (an-
other message passing system) and MPI) and its succes-
sor MPI-Connect [5], use the native MPI implementa-
tion on each system, but use some other communication
channel, such as PVM, when passing messages between
processes in the different systems. One main difference
between the PVMPI/MPI-Connect interoperable MPI
systems and IMPI is that no collective communication
operations, such as broadcasting a value from one pro-
cess to all of the other processes (MPI_Bcast) or syn-
chronizing all of the processes (MPI_Barrier), are sup-
ported between MPI implementations. MAGPIE [16,17]
is a library of collective communications operations
built on top of MPI (using MPICH) and optimized for
wide area networks. Although this system allows for
collective communications across all MPI processes,
you must use MPICH on all of the machines and not the
vendor tuned MPI libraries. Finally, MPICH-G [8], is a
version of MPICH developed in conjunction with the
Globus project [9] to operate over a wide area network.
This also bypasses the vendor tuned MPI libraries.

Several ongoing research projects take the concept of
running parallel applications on multiple machines
much further. The concept variously known as meta-
computing , wide area computing , computational grids ,

or the IPG (Information Power Grid), is being pursued
as a viable computational framework in which a pro-
gram is submitted to run on a geographically distributed
group of Internet-connected sites. These sites form a
grid which provides all of the resources, including mul-
tiprocessor machines, needed to run large jobs. The
many and varied protocols and infrastructures needed to
realize this is an active research topic [9,10,11,12,
13,15]. Some of the problems under study include com-
putational models, resource allocation, user authentica-
tion, resource reservations, and security. A related pro-
ject at NIST is WebSubmit [18], a web-based user
interface that handles user authentication and provides a
single point of contact for users to submit and manage
long running jobs on any of our high-performance and
parallel machines.

2. The IMPI Steering Committee
Meetings

The Interoperable MPI steering committee first met
in March 1997 to begin work on specifying the Interop-
erable MPI protocol. This first meeting was organized
and hosted by NIST at the request of the attending ven-
dor and academic representatives. All of these initial
members (with one neutral exception) expressed the
view that the role of NIST in this process would be vital.
As a knowledgeable neutral party, NIST would help
facilitate the process and provide a testbed for imple-
mentations. At this first meeting, only representatives
from within the United States attended, but the question
of allowing international vendors to participate was in-
troduced. This was later agreed to and several foreign
vendors actively participated in the IMPI meetings. All
participating vendors are listed in the IMPI document
(see Appendix).

There were eight formal meetings of the IMPI steer-
ing committee from March 1997 to March 1999, aug-
mented with a NIST-maintained mailing list for ongoing
discussions between meetings.

NIST has had three main roles in this effort: facilita-
tor for meetings and maintaining an on-line mailing list,
editor for the IMPI protocol document, and confor-
mance testing. It is this last task, conformance testing,
that required our greatest effort.

3. Design Highlights of the IMPI
Protocols

The IMPI protocols were designed with several im-
portant guiding principles. First, IMPI was not to alter
the MPI interface. That is, no user level MPI routines

344

Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

were to be added and no changes were to be made to the
interfaces of the existing routines. Any valid MPI pro-
gram must run correctly using IMPI if it runs correctly
without IMPI. Second, the performance of communica-
tion within an MPI implementation should not be notice-
ably impacted by supporting IMPI. IMPI should only
have a noticeable impact on communication perfor-
mance when a message is passed between two MPI
implementations (the success of this goal will not be
known until implementations are completed). Finally,
IMPI was designed to allow for the easy evolution of its
protocols, especially its collective communications al-
gorithms. It is this last goal that is most important for the
long-term usefulness of IMPI for MPI users.

An IMPI job , once running, consists of a set of MPI
processes that are running under the control of two or
more instances of MPI libraries. These MPI processes
are typically running on two or more systems . A system,
for this discussion, is a machine, with one or more pro-
cessors, that supports MPI programs running under con-
trol of a single instance of an MPI library. Note that
under these definitions, it is not necessary to have two
different implementations of MPI in order to make good
use of IMPI. In fact, given two identical multiprocessor
machines that are only linked via a LAN (Local Area
Network), it is possible that the vendor supplied MPI
library will not allow you to run a single MPI job across
all of the processors of both machines. In this case,
IMPI would add that capability, even though you are
running on one architecture and using one implementa-
tion of MPI.

The remainder of this section outlines some of the
more important design decisions made in the develop-
ment of IMPI. This is a high-level discussion of a few
important aspects of IMPI with many details omitted for
brevity.

3.1 Common Communication Protocol

As few assumptions as possible were made about the
systems on which IMPI jobs would be run; however
some common attributes were assumed in order to be-
gin to obtain interoperability.

The most basic assumption made, after some debate,
was that TCP/IP would be the underlying communica-
tions protocol between IMPI implementations. TCP/IP
(Transmission Control Protocol/Internet Protocol), is one
of the basic communications protocols used over the In-
ternet. It is important to note that this decision does not
mandate that all machines running the MPI processes be
capable of communicating over a TCP/IP channel, only
that they can communicate, directly or indirectly, with a
machine that can. IMPI does not require a completely
connected set of MPI processes. In fact, only a small

number of communications channels are used to con-
nect the MPI processes on the participating systems.

The decision to use only a few communications chan-
nels to connect the systems in an IMPI job, rather than
requiring a more dense connection topology, was made
under the assumption that these IMPI communications
channels would be slower, in some cases many times
slower, than the networks connecting the processors
within each of the systems. Even as the performance of
networking technology increases, it is likely that the
speed of the dedicated internal system networks will
always meet or exceed the external network speed.

Other communications mediums, besides TCP/IP,
could be added to IMPI as needed, for example to sup-
port IMPI between embedded devices. However, the use
of TCP/IP was considered the natural choice for most
computing sites.

3.2 Start-up

One of the first challenges faced in the design of IMPI
was determining how to start an IMPI job. The main
task of the IMPI start-up protocol is to establish commu-
nication channels between the MPI processes running
on the different systems.

Initially, several procedures for starting an IMPI job
were proposed. After several iterations a very simple
and flexible system was designed. A single, implementa-
tion-independent process, the IMPI server , is used as a
rendezvous point for all participating systems. This pro-
cess can be run anywhere that is network-reachable by
all of the participating systems, which includes any of
the participating systems or any other suitable machine.
Since this server utilizes no architecture specific infor-
mation, a portable implementation can be shared by all
users. As a service to the other MPI implementors, the
Laboratory for Computer Science at the University of
Notre Dame (the current developers of LAM/MPI), has
provided a portable IMPI server that all vendors can use.
The IMPI server is not only implementation indepen-
dent, it is also immune to most changes to IMPI itself.
The server is a simple rendezvous point that knows noth-
ing of the information it is receiving; it simply relays the
information it receives to all of the participating sys-
tems. All of the negotiations that take place during the
start-up are handled within the individual IMPI/MPI
implementations. The only information that the server
needs at start-up is how many systems will be participat-
ing.

One of the first things the IMPI server does is print
out a string containing enough information for any of
the participating systems to be able to contact it. This
string contains the Internet address of the machine run-
ning the IMPI server and the TCP/IP port that the server

345

Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

is listening on for connections from the participating
systems.

The conversation that takes place between the partic-
ipating systems, relayed through the IMPI server, is in a
simple “tokenized” language in which each token iden-
tifies a certain piece of information needed to configure
the connections between the systems. For example, one
particular token exchanged between all systems indi-
cates the maximum number of bytes each system is
willing to send or receive in a single message over the
IMPI channels. Messages larger that this size must be
divided into multiple packets, each of which is no larger
than this maximum size. Once this token is exchanged,
all systems choose the smallest of the values as the
maximum message size.

Many tokens are specified in the IMPI protocol, and
all systems must submit values for each of these tokens.
However, any system is free to introduce new tokens at
any time. Systems unfamiliar with any token it receives
during start-up can simply ignore it. This is a powerful
capability that requires no changes to either the IMPI
server, or to the current IMPI specification. This allows
for experimentation with IMPI without requiring the
active participation of other IMPI/MPI implementors.
Once support for IMPI version 0.0 has been added to
them, any of the freely available implementations of
MPI, such as MPICH or LAM, can be used by anyone
interested in experimenting with IMPI at this level. If a
new start-up parameter appears to be useful, then it can
be added to an IMPI implementation and be used as if
it were part of the original IMPI protocol.

One particular parameter, the IMPI version number,
is intended for indicating updates to one or more internal
protocols or to indicate the support for a new set of
collective communications algorithms. For example, if
one or more new collective algorithms have been shown
to enhance the performance of IMPI, then support for
those new algorithms by a system would be indicated by
passing in the appropriate IMPI version number during
IMPI start-up. All systems must support IMPI version
0.0 level protocols and collective communications al-
gorithms, but may also support any number of higher
level sets of algorithms. This is somewhat different than
traditional version numbering in that an IMPI imple-
mentation must indicate not only its latest version, but
all of the previous versions that it currently supports
(which must always include 0.0). Since all systems must
agree on the collective algorithms to be used, the IMPI
version numbers are compared at start-up and the
highest version supported by all systems will be used. It
is possible for an IMPI implementation to allow the user
to control this negotiation partially by allowing the user
to specify a particular IMPI version number (as a com-
mand-line option perhaps). The decision to provide this

level of flexibility to the user is completely up to those
implementing IMPI.

3.3 Security

As an integral part of the IMPI start-up protocol, the
IMPI server accepts connections from the participating
systems. In the time interval between the starting of the
IMPI server and the connection of the last participating
system to the server, there is the possibility that some
other rogue process might try to contact the server.
Therefore, it is important for the IMPI server to authen-
ticate the connections it accepts. This is especially true
when connecting systems that are either geographically
distant or not protected by other security means such as
a network firewall. The initial IMPI protocol allows for
authentication via a simple 64 bit key chosen by the user
at start-up time. Much more sophisticated authentication
systems are anticipated so IMPI includes a flexible secu-
rity system that supports multiple authentication proto-
cols in a manner similar to the support for multiple IMPI
versions. Each IMPI implementation must support at
least the simple 64 bit key authentication, but can also
support any number of other authentication schemes.

Just as the collective communications algorithms that
are to be used can be partially controlled by the user via
command-line options, the authentication protocol can
also be chosen by the user. More details of this are given
in Sec. 2.3.3 of the IMPI Specification document.

If security on the IMPI communication channels dur-
ing program execution is needed, that is, between MPI
processes, then updating IMPI to operate over secure
sockets could be considered. Support for this option in
an IMPI implementation could be indicated during IMPI
start-up.

3.4 Topology Discovery

The topology of the network connecting the IMPI
systems, that is, the set of network connections available
between the systems, can have a dramatic effect on the
performance of the collective communications al-
gorithms used. It is not likely that any static collective
algorithm will be optimal in all cases. Rather, these
collective algorithms will need to dynamically choose
an algorithm to use based on the available network. The
initial IMPI collective algorithms acknowledge this in
that, in many cases, they choose between two al-
gorithms based on the size of the messages involved and
the number of systems involved. Algorithms for large
messages try to minimize the amount of data transmit-
ted (do not transmit data more than once if possible) and
algorithms for small messages try to minimize the la-
tency by parallelizing the communication if possible (by

346

Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

using a binary tree network for a gather operation for
example). In order to assist in the implementation of
dynamically tunable collective algorithms, IMPI has in-
cluded four topology parameters, to be made available at
the user level (for those familiar with MPI, these
parameters are made available as cached attributes on
each MPI communicator). These attributes identify
which processes are close, that is, within the same sys-
tem, and which are distant, or outside the local system.
Communication within a system will almost always be
faster than communications between systems since com-
munication between systems will take place over the
IMPI channels. These topology attributes give no
specific communications performance information, but
are provided to assist in the development of more dy-
namic communications algorithms.

Through NIST’s SBIR (Small Business Innovative
Research) program, we have solicited help in improving
collective communications algorithms for IMPI as well
as for clustered computing in general.

4. Conformance Tester

The design of the IMPI tester, which we will refer to
simply as the tester, is unique in that it is accessed over
the Web and operates completely over the Internet. This
design for a tester has many advantages over the conven-
tional practice of providing conformance testing in the
form of one or more portable programs delivered to the
implementors site and compiled and run on their system.
For example, the majority of the IMPI tester code runs
exclusively on a host machine at NIST, regardless of
who is using the tester, thus eliminating the need to port
this code to multiple platforms, the need for documents
instructing the users how to install and compile the
system, and the need to inform users of updates to the
tester (since NIST maintains the only instance of this
part of the tester). There are two components of the
tester that run at the user’s site. The first of these com-
ponents is a small Java applet that is down-loaded on
demand each time the tester is used, so this part of the
tester is always up to date. Since it is written in Java and
runs in a JVM (Java Virtual Machine), there is no need
to port this code either. The other part of the tester that
runs at the user’s site is a test interpreter (a C/MPI
program) that exercises the MPI implementation to be
tested. This program is compiled and linked to the ven-
dor’s IMPI/MPI library. Since this C/MPI program is a
test interpreter and not a collection of tests, it will not be
frequently updated. This means that it will most likely
need to be downloaded only once by a user. All updates,
corrections, and additions to the conformance test suite
will take place only at NIST.

This design was inspired by the work of Brady and St.
Pierre at NIST and their use of Java and CORBA in their
conformance testing system [1]. In their system,
CORBA was used as the communication interface be-
tween the tests and the objects under test (objects de-
fined in IDL). In our IMPI tester, since we are testing a
TCP/IP-based communications protocol, we used the
Java networking packages for all communications.

5. Enhancements to IMPI

This initial release of the IMPI protocol will enable
users to spread their computations over multiple ma-
chines while still using highly-tuned native MPI imple-
mentations. This is a needed enhancement to MPI and
will be useful in many settings, such as within the com-
puting facilities at NIST. However, several enhance-
ments to this initial version of IMPI are envisioned.

First, the IMPI collective communications algorithms
will benefit from the ongoing Grid/IPG research on
efficient collective algorithms for clusters and WANs
[12,16,17,20]. IMPI has been designed to allow for ex-
perimenting with improved algorithms by allowing the
participating MPI implementations to negotiate, at pro-
gram start-up, which version of collective communica-
tions algorithms will be used. Second, although IMPI is
currently defined to operate over TCP/IP sockets, a
more secure version could be defined to operate over a
secure channel such as SSL (Secure Socket Layer).
Third, start-up of an IMPI job currently requires that
multiple steps be taken by the user. This start-up process
could be automated, possibly using something like Web-
Submit [18], in order to simplify the starting and stop-
ping of IMPI jobs.

IMPI-enabled clusters could be used in a WAN (Wide
Area Network) environment using Globus [9], for exam-
ple, for resource management, user authentication, and
other management tasks needed when operating over
large distances and between separately managed com-
puting facilities. If two or more locally managed clusters
can be used via IMPI to run a single job, then these
resources could be described as a single resource in a
grid computation so that it can be offered and reserved
as a unit in the grid.

6. References

[1] K. G. Brady and J. St. Pierre, Conformance testing object-ori-
ented frameworks using Java. NIST Technical Report NISTIR
6202, 1998.

[2] Greg Burns, Raja Daoud, and James R. Vaigl. LAM: An open
cluster environment for MPI, in Supercomputing Symposium
‘94, University of Toronto, June 1994, pp. 379–386.

347

Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

[3] IMPI Steering Committee, IMPI: Interoperable Message Passing
Interface, January 2000. Protocol Version 0.0, http://
impi.nist.gov/IMPI.

[4] G. Faag, J. Dongarra, and A. Geist. PVMPI provides interoper-
ability between MPI implementations, in Proc. 8th SIAM Conf.
on Parallel Processing, SIAM (1997).

[5] G. E. Fagg and K. S. London. MPI interconnection and control.
Technical Report Tech Rep. 98-42, Corps of Engineers Water-
ways Experiment Station Major Shared Resource Center (1998).

[6] Message Passing Interface Forum. MPI: A message-passing in-
terface standard, Int. J. Supercompu. Applic. High Perform.
Compu. 8(3/4), 1994.

[7] Message Passing Interface Forum. MPI-2: A message-passing
interface standard, Int. J. Supercompu. Applic. High Perfom.
Compu. 12(1-2), 1998.

[8] I. Foster and N. Karonis. A grid-enabled MPI: Message passing
in heterogeneous distributed computing systems, in Proceedings
of SC ‘98 (1998).

[9] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Int. J. Supercompu. Applic. 11(2) 115–128
(1997). See http://www.globus.org.

[10] I. Foster and C. Kesselman. Computational grids, in The Grid:
Blueprint for a New Computing Infrastructure.

[11] I. Foster and C. Kesselman, eds. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann (1999).

[12] Patrick Geoffray, Loic Pyrlli, and Bernard Tourancheau. BIP-
SMP: High performance message passing over a cluster of com-
modity SMPs, in Proceedings of SC ‘99 (1999).

[13] A. Grimshaw and Wm. A. Wulf, Legion—A view from 50,000
feet, in Proceedings of the Fifth IEEE International Symposium
on High Performance Distributed Computing, Computer Society
Press, Los Alamitos, CA (1996).

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-perfor-
mance, portable implementation of the MPI message passing
interface standard. Parallel Compu. 22(6), 789–828 (1996).

[15] William E. Johnson, Dennis Gannon, and Bill Nitzberg, Grids as
production computing environments: The engineering aspects of
NASA’s information power grid, in Eighth IEEE International
Symposium on High Performance Distributed Computing.
IEEE, August (1999).

[16] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat,
and Raoul A. F. Bhoedjang. MAGPIE: MPI’s collective communi-
cation operations for clustered wide area systems, in Seventh
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP’99), Atlanta, GA, May 1999, pp. 131–
140.

[17] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat,
and Raoul A. F. Bhoedjang. MPI’s reduction operations in clus-
tered wide area systems, in Message Passing Interface Devel-
oper’s and User’s Conference (MPIDC’99), Atlanta, GA, March
1999, pp. 43–52.

[18] Ryan McCormack, John Koontz, and Judith Devaney, Seamless
computing with WebSubmit, Special issue on Aspects of Seam-
less Computing, J. Concurrency: Practice and Experience
11(12), 1–15 (1999).

[19] Jeff M. Squyres, Andrew Lumsdaine, William L. George, John
G. Hagedorn, and Judith E. Devaney, The interoperable message
passing interface (IMPI) extensions to LAM/MPI, in Message
Passing Interface Developer’s Conference (MPIDC2000), Cor-
nell University, May 2000.

[20] Steve Sustare, Rolf van de Vaart, and Eugene Loh, Optimization
of MPI collectives on collections of large scale SMPs, in Pro-
ceedings of SC ‘99 (1999).

About the authors: William L. George and John G.
Hagedorn are computer scientists in the Scientific Ap-
plications and Visualization Group, High Performance
Systems and Services Division, of the NIST Information
Technology Laboratory. Judith E. Devaney is Group
Leader of the Scientific Applications and Visualization
Group in the High Performance Systems and Services
Division of the NIST Information Technology Labora-
tory. The National Institute of Standards and Technol-
ogy is an agency of the Technology Administration,
U.S. Department of Commerce.

348

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Appendix

IMPI:
Interoperable Message-Passing Interface

IMPI Steering Committee

January 2000

Protocol Version 0.0

349

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Abstract

This document describes the industrial led effort to create a standard for an Interoperable
Message-Passing-Interface (MPI). The first steering committee meeting was held on March 4, 1997.

350

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Contents

Acknowledgments 354

1 Introduction to IMPI 355
1.1 Overview . 355
1.2 Conventions . 356

1.2.1 Protocol Types . 356
1.2.2 Data Format . 357
1.2.3 Host Identifiers . 357

1.3 Organization of this Document . 357

2 Startup/Shutdown 359
2.1 Introduction . 359
2.2 User Steps . 359

2.2.1 Launching A Server . 359
2.2.2 Launching Clients . 360
2.2.3 Examples . 360
2.2.4 Security . 361

2.3 Startup Wire Protocols . 361
2.3.1 Introduction . 361
2.3.2 The IMPI Server . 362
2.3.3 The AUTH command . 362
2.3.4 The IMPI command . 366
2.3.5 The COLL command . 367
2.3.6 The DONE command . 374
2.3.7 The FINI command . 374
2.3.8 Shall We Dance? . 375

2.4 Shutdown Wire Protocols . 375
2.5 Client and Host Attributes . 376

3 Data Transfer Protocol 377
3.1 Introduction . 377
3.2 Process Identifier . 377
3.3 Context Identifier . 378
3.4 Message Tag . 378
3.5 Message Packets . 378
3.6 Packet Protocol . 380
3.7 Message Protocols . 381

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

351

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

3.7.1 Short-Message Protocol . 381
3.7.2 Long-Message Protocol . 381
3.7.3 Message-Probing Protocol . 382
3.7.4 Message-Cancellation Protocol . 382

3.8 Finalization Protocol . 383
3.9 Mandated Properties . 383

4 Collectives 385
4.1 Introduction . 385
4.2 Utility functions . 386
4.3 Context Identifiers . 387

4.3.1 Context ID Creation . 387
4.4 Comm create . 388
4.5 Comm free . 388
4.6 Comm dup . 389
4.7 Comm split . 390
4.8 Intercomm create . 391
4.9 Intercomm merge . 394
4.10 Barrier . 396
4.11 Bcast . 397
4.12 Gather . 398
4.13 Gatherv . 401
4.14 Scatter . 405
4.15 Scatterv . 406
4.16 Reduce . 409
4.17 Reduce scatter . 412
4.18 Scan . 412
4.19 Allgather . 413
4.20 Allgatherv . 413
4.21 Allreduce . 414
4.22 Alltoall . 414
4.23 Alltoallv . 416
4.24 Finalize . 417
4.25 Constants . 417
4.26 Future work . 418

5 IMPI Conformance Testing 419
5.1 Summary . 419
5.2 Test Tool Applet . 424
5.3 Test Interpreter . 425
5.4 Test Manager . 428

Bibliography 428

352

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

List of Figures
2.1 IMPI command exchange. 367
2.2 COLL command IMPI C NHOSTS exchange. 372
2.3 COLL command IMPI H PORT exchange. 373

5.1 IMPI Test Architecture . 421
5.2 IMPI Home Page . 422
5.3 IMPI Test Communications Stack . 423
5.4 The Test Tool . 424

List of Tables
2.1 List of standardized authentication methods, shown in enumerated and bit mask

forms. 364

3.1 Packet field usage. 380

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

353

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Acknowledgments

This document represents the work of the IMPI Steering Committee. The technical devel-
opment of individual parts was facilitated by subgroups, whose work was reviewed by the full
committee. Those who served as the primary coordinators are:

� Dean Collins: Facilitator
� Judith Devaney: Editor
� Mark Fallon and Marc Snir: Introduction to IMPI
� Eric Salo, Raja Daoud, and Jeff Squyres: Startup/Shutdown
� Raja Daoud: Data Transfer Protocol
� Nick Nevin: Collectives
� William George, John Hagedorn, Peter Ketcham, and Judith Devaney:

IMPI Conformance Testing

The IMPI Steering Committee consists of the following members.

Darwin Ammala Bill Gropp Al Mink
Ed Benson John Hagedorn Jose L. Munoz
Peter Brennan Christopher Hayden Todd Needham
Ken Cameron Rolf Hempel Nick Nevin
Dean Collins Shane Herbert Heidi Poxon
Raja Daoud Hans-Christian Hoppe Nobutoshi Sagawa
Judith Devaney Peter Ketcham Eric Salo
Terry Dontje Lloyd Lewins Adam Seligman
Nathan Doss Andrew Lumsdaine Anthony Skjellum
Mark Fallon Rusty Lusk Marc Snir
Sam Feinberg Gordon Lyon Jeff Squyres
Al Geist Kinis L. Meyer Clayborne Taylor, Jr.
William George Thom McMahon Dick Treumann

The following institutions supported the IMPI effort through time and travel support for the people
listed above.

Argonne National Laboratory MPI Software Technology, Inc.
Asian Technology Information Program (ATIP) National Institute of Standards
Compaq and Technology (NIST)
Defense Advanced Research Projects Agency NEC Corp.
Digital Equipment Corp. Oak Ridge National Laboratory
Fujitsu Ohio Supercomputer Center
Hewlett-Packard Co. PALLAS GmbH
Hitachi Sanders, A Lockheed-Martin Co.
Hughes Aircraft Co. Silicon Graphics, Inc,
International Business Machines SUN Microsystems Computer Corp.
Microsoft Corp. University of Notre Dame

354

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Chapter 1

Introduction to IMPI

1.1 Overview

There is a long experience in the message passing community of harnessing heterogeneous com-
puting resources into one parallel message passing computation. This is useful for a variety of
applications: some “embarrassingly parallel” applications may be able to utilize spare compute
power in a large network of workstations; some applications may decompose naturally into compo-
nents that are better suited to different platforms, e.g., a simulation component and a visualization
component; other applications may be too large to fit in one system.

Such applications can be developed using standard interprocess communication protocols,
such as sockets on TCP/IP. However, these protocols are at a lower level than the message pass-
ing interfaces defined by MPI [1]. Furthermore, if each subsystem is a parallel system, then MPI
is likely to be used for “intra-system” communication, in order to achieve the better performance
that vendor MPI libraries provide, as compared to TCP/IP. It is then convenient to use MPI for
“inter-system” communication as well.

MPI was designed with such heterogeneous applications in mind. For example, all message
passing communication is typed, so that it is possible to perform data conversion when data is
transferred across systems with different data representations. Indeed, there are several freely avail-
able implementations of MPI that run in a heterogeneous environment. These implementations use
a common approach. An infrastructure is developed that provides a parallel virtual machine, on
top of the multiple heterogeneous systems. Then, message passing is implemented on this parallel
virtual machine. This approach has several deficiencies:

� The parallel virtual machine has to be implemented and supported on each underlying plat-
form by a third party software developer. This poses a significant development and testing
problem for such a developer, especially if it attempts to use faster but nonstandard interfaces
for intra-system communication. So far, only academic development groups that have direct
access to multiple platforms in supercomputing centers have been able to undertake such a
development – it is hard to see a successful business model for such a product. In any case,
this model implies that support for heterogeneous MPI always lags platform availability.

� Even though each system is likely to provide a native implementation of MPI for intra-system
communication, the parallel virtual machine imposes an additional software layer, often re-
sulting in reduced performance, even for MPI intra-system communication.

� The MPI standard does not specify the interaction between MPI communication and TCP/IP
communication; more generally, it does not specify the interaction between the MPI imple-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

355

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

mentation and the underlying system. The details are different from vendor to vendor, and
from release to release by the same vendor. The details of this interaction are important for
a heterogeneous MPI implementation, where a process may participate both in intra-system
communication, possibly layered on top of the native MPI implementation, and in inter-
system communication, possibly layered on top of sockets. The third party implementor has
to “reverse engineer” the details of the vendor MPI library, and may have to make significant
changes in its implementation whenever a vendor releases a new MPI implementation.

� The virtual machine library may suffer from significant inefficiencies because the internal
communication layer was not built to interface with an external communication layer.

The MPI interoperability effort proposes to define a cross implementation protocol for MPI
that will enable heterogeneous computing. MPI implementations that support this protocol will be
able to interoperate. A parallel message passing computation will be able to span multiple systems
using the native vendor message passing library on each system. We propose to do this without
adding any new functions to MPI. Instead, we propose to specify implementation specific inter-
faces, so as to enable interoperability. In a first phase, our goal is to support all point-to-point
communication functions for communication across systems, as well as collectives. We intend to
phase in full MPI support, over time. The initial binding will assume that inter-system communi-
cation uses one or more sockets between each pair of communicating systems, while intra-system
communication uses proprietary protocols, at the discretion of each vendor. Over time, we expect
that the socket interface be expanded to allow for other industry standard stream oriented protocols,
such as ATM virtual channels.

While efficient inter-system communication is important, the main performance goal of the
design will be to not slow down intra-system communication: native communication performance
should not be affected by the hooks added to support interoperability, as long as there is no inter-
system communication. The design should be so that support for interoperability does not weaken
availability and security on each system.

1.2 Conventions

In order to support heterogeneous networks a standard data representation is needed in order to
initiate communication and transfer typed data.

1.2.1 Protocol Types

The following data types are defined and used in protocol packets:

IMPI Int4: 32-bit signed integer

IMPI Uint4: 32-bit unsigned integer

IMPI Int8: 64-bit signed integer

IMPI Uint8: 64-bit unsigned integer

All integral values are in two’s complement big-endian format. Big-endian means most sig-
nificant byte at lowest byte address.

356

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

1.2.2 Data Format

The user data transferred is packed at the source and unpacked at the destination using the external
data representation “external32” standardized in MPI-2 (section 9.5.2).

1.2.3 Host Identifiers

Host identifiers used in messaging are 16 bytes long. Typically the host IP address is used as the
host identifier. A 16-byte container is defined to accommodate the IPv6 protocol.

Advice to implementors. The following text highlights IPv6/IPv4 addressing issues. It is
taken from RFC 2373 by R.Hinden & S.Deering:

The IPv6 transition mechanisms include a technique for hosts and routers to dynamically
tunnel IPv6 packets over IPv4 routing infrastructure. IPv6 nodes that utilize this technique
are assigned special IPv6 unicast addresses that carry an IPv4 address in the low-order 32-
bits. This type of address is termed an “IPv4-compatible IPv6 address” and has the format:

0000000000000....................................00000000 000...000 IPv4 Address

80 bits 16 bits 32 bits

A second type of IPv6 address which holds an embedded IPv4 address is also defined. This
address is used to represent the address of IPv4-only nodes (those that do not support IPv6)
as IPv6 addresses. This type of address is termed “IPv4-mapped IPv6 address” and has the
format:

80 bits 16 bits 32 bits

0000000000000....................................00000000 111...111 IPv4 Address

(End of advice to implementors.)

1.3 Organization of this Document

This document is organized as follows:

� Chapter 2, Startup/Shutdown, describes the protocol used to initiate communication.

� Chapter 3, Data Transfer Protocol, describes the protocol used to transfer data between two
MPI implementations.

� Chapter 4, Collectives, specifies the algorithms to be used in collective operations which
span multiple MPI implementations

� Chapter 5, IMPI Conformance Testing, outlines the preliminary design for a Web-based
IMPI conformance testing system.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

357

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

358

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Chapter 2

Startup/Shutdown

2.1 Introduction

One of the major hurdles to overcome in making different MPI implementations interoperate is
launching MPI applications in a multiple-vendor environment. Because we can’t encompass all
working environments, we must make some basic assumptions about those environments for which
interoperability might most reasonably be expected.

ASSUMPTIONS:

1. TCP/IP is available and in use on at least one computer within each implementation
universe.

Rationale. TCP/IP need not necessarily be available on all computers which are
to run MPI processes; we merely require that such machines be able to commu-
nicate with such a machine running under the local MPI implementation. (End of
rationale.)

2. The use of rsh must not be assumed. However, all else being equal, those solutions
which lend themselves nicely to rsh environments are preferable to those which do not.

3. The use of UNIX must not be assumed. However, all else being equal, those solutions
which lend themselves nicely to UNIX environments are preferable to those which do
not.

CONCLUSION:

host:port is the best convention to use for establishing initial connections between imple-
mentations

2.2 User Steps

2.2.1 Launching A Server

To launch a single job spanning multiple MPI implementations (with a common
MPI COMM WORLD), a two-step process will be needed in general. The first step is to launch a
‘server’ process to be used as the rendezvous point for the different implementations. The name of
the command used to start IMPI jobs (both the server and client) is implementation dependent; the
name impirun is used throughout this document to represent this command. Regardless of the
actual name, the command must be of the form:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

359

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

impirun -server <count> -port <port_number>

Here, <count> is the number of client connections that the server expects to see. When
impirun is started with the ‘-server’ option, it creates a TCP/IP socket for listening and then prints
both the IP address of the local host (in standard dot notation) and the port number of the socket (to
stdout, if on a UNIX machine). If the ‘-port’ option is specified, the server will attempt to start on
the given <port_number>. If the ‘-port’ option is not given, the server is free to choose any port
number.

Rationale. Printing the complete address instead of only the port number allows for an easy
cut-and-paste of the output. And using the IP address instead of the hostname eliminates
potential name-lookup problems. (End of rationale.)

2.2.2 Launching Clients

impirun -client <rank> <host:port> <cmd_line>

<rank> specifies where the processes belonging to this client should be placed in
MPI COMM WORLD relative to the other clients and must be a unique number between 0 and
count� 1, inclusive.

<host:port> is the host:port string provided by the server.

<cmd_line> is implementation-specific.

2.2.3 Examples

Given a machine named foo which will be the server, and two machines named bar and baz which
will be the clients. The user wishes to run 8 copies of a.out on bar (with ranks 0 � 7 in MPI -
COMM WORLD) and 4 copies of b.out on baz (with ranks 8� 11 in MPI COMM WORLD).

On foo: impirun -server 2 (typed by user)
128.162.19.8:5678 (output from impirun)

On bar: impirun -client 0 128.162.19.8:5678 -np 8 a.out

On baz: impirun -client 1 128.162.19.8:5678 -np 4 b.out

Advice to implementors. We do not mandate support for the ‘-np’ syntax, this is simply com-
mon practice which we are using for the purpose of example. In general, anything following
the host:port argument is completely implementation dependent (and may be quite complex).
(End of advice to implementors.)

Rationale. The above design allows users with rsh support to write a single shell script to
launch a job. For example, on most UNIX systems, the above could be rewritten as follows:

360

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

#!/bin/csh

setenv hostport ‘impirun -server 2 | head -1‘

rsh bar impirun -client 0 $hostport -np 8 a.out &
rsh baz impirun -client 1 $hostport -np 4 b.out &

wait

On some systems, the above script may only work if impirun is restricted to writing only a
single line of text, since subsequent lines could potentially cause a SIGPIPE on impirun after
the head process terminates.

A slightly different approach might be to incorporate support for a configuration file directly
into the impirun command line:

% impirun -server 2 -file appfile

where appfile contains:

bar -client 0 $hostport -np 8 a.out
baz -client 1 $hostport -np 4 b.out

(End of rationale.)

2.2.4 Security

Allowing any client on the Internet to establish a connection to the server process may make some
users nervous. In light of the fact that security and authentication technology is ever-changing, IMPI
is designed to have a modular and upgradable authentication scheme. This scheme is described in
Section 2.3.3.

Rationale. Security has become a real concern for all users of the Internet. With the wide-
spread popularity of network scanning tools, an open TCP/IP port on the server node is liable
to be discovered by a malicious user, and potentially exploited (especially if the same port
is used repeatedly). Many other meta-computing systems offer some form of authentication,
ranging from a simple key to more complex protocols to protect against such occurrences.
(End of rationale.)

2.3 Startup Wire Protocols

2.3.1 Introduction

The IMPI server was designed to be as stupid as possible in order to provide maximum flexibility
for future modifications to the clients. Basically it just collects opaque data from each of the clients,
concatenates it all together, and broadcasts it back out again.

Each client component of the full job can be broken down into two parts: procs and hosts.
Procs are equivalent to MPI processes. Hosts are agents which control a set of procs. Every proc has

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

361

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

exactly one host. A host might have only a single proc or it might have many; this is implementation
dependent. For example, when running in a clustered SMP environment, there might reasonably be
one host for each machine.

Hosts and procs need not exist on the same physical machine.

2.3.2 The IMPI Server

The server accepts commands of the following form:

typedef struct {
IMPI_Int4 cmd; // command code
IMPI_Int4 len; // length in bytes of command payload

} IMPI_Cmd;

The cmd field tells the server which command is being sent, and the len field tells the
server how many bytes of payload are about to follow. In this way, servers can be made forward-
compatible by simply discarding any command code that they do not understand.

Note that the traffic in both directions (i.e. client!server and server!client) is always tok-
enized.
Commands

The following cmd values are defined:

#define IMPI_CMD_AUTH 0x41555448 // ASCII for ’AUTH’
#define IMPI_CMD_IMPI 0x494D5049 // ASCII for ’IMPI’
#define IMPI_CMD_COLL 0x434F4C4C // ASCII for ’COLL’
#define IMPI_CMD_DONE 0x444F4E45 // ASCII for ’DONE’
#define IMPI_CMD_FINI 0x46494E49 // ASCII for ’FINI’

AUTH : pass an authentication key
IMPI : setup an IMPI job
COLL : collect/broadcast information amongst the IMPI clients
DONE : no more COLL labels to submit
FINI : all procs have completed (exited) successfully

2.3.3 The AUTH command

A client must be authenticated to the server before sending any other commands; the AUTH com-
mand must be the first command sent to the server. After successful authentication, the client may
continue the IMPI startup process. If the authentication is not successful, the server will terminate
the client’s connection.

Advice to implementors. The protocols that are outlined below, because they are designed
to be flexible, may seem somewhat amorphous and non-intuitive when reading. There are
comprehensive examples at the end of the description of each authentication protocol. (End
of advice to implementors.)

The client and server will each have multiple authentication mechanisms available. As such,
they must negotiate and agree on a specific method before authentication can proceed. Two authen-
tication mechanisms are currently mandated for all client and server implementations: the IMPI -
AUTH NONE and IMPI AUTH KEY protocols.

362

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Rationale. In order to make the authentication mechanism universal between client and
server, the list of standardized methods is enumerated below. It is expected that this list can
be expanded in the future, both by user requests for specific forms of authentication, and also
with advances in authentication technologies. (End of rationale.)

Two factors determine whether an authentication method can be used in either the client or
the server. First, the mechanism needs to be implemented in the software. Second, the mechanism
needs to be enabled by the user. If both of these criteria are met, the authentication method is avail-
able for negotiation. If either the client or the server has no authentication mechanisms available
for negotiation upon invocation, it will abort with an error message.

Since the client and server may have different authentication mechanisms available for negoti-
ation, they must negotiate to decide on a common method to use. The client begins the negotiation
by sending a bit mask of the authentication mechanisms available for negotiation to the server.

typedef struct {
IMPI_Uint4 auth_mask; // Mask of which authentication

// methods the client has available
} IMPI_Client_auth;

Advice to implementors. The auth mask is only 32 bits long. While this is probably
enough to specify currently available authentication mechanisms, it is possible that it will
become desirable to have more than 32 choices in the future. This can be implemented by
having the client send multiple IMPI Client auth’s, and change the value of len in the
AUTH IMPI Cmd header. (End of advice to implementors.)

For each client, the server will compare the client’s available methods with its own, and choose
the most preferable method that is supported by both. If no common method exists, the server will
terminate the connection and display an error message. If a common mechanism exists, the server
will inform the client which authentication method it wishes to use, optionally followed by any
protocol-specific messages.

typedef struct {
IMPI_Int4 which; // Which authentication will be used
IMPI_Int4 len; // Length of follow-on [protocol-specific]

// message(s)
} IMPI_Server_auth;

The which variable is the enumerated value of the authentication mechanism to be used,
with the least significant bit of the first auth mask being 0, and the most significant bit being 31.
The len variable indicates the length of any protocol-specific follow-on message(s) that may be
sent by the server immediately after the IMPI Server auth message. A len of zero indicates
that the server will not send any protocol-specific messages. All authentication messages after the
IMPI Server auth message are protocol-dependent, and are detailed in the sections below.

The currently supported mechanisms are listed in Table 2.1. Their values are shown with their
symbolic (i.e., #define) name, enumerated values (i.e., their corresponding which value), and their
bit mask form (i.e., their corresponding auth mask value). The symbolic name is synonymous
with the enumerated value.

On the command line of the server, the user can specify the order of preference of authen-
tication methods. For example, IMPI AUTH NONE (if available for negotiation), should always
be last in the order of preference. The following command line syntax will be used to specify the
preference list:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

363

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Protocol Enumerated value Bit mask form

IMPI AUTH NONE 0 0x0001
IMPI AUTH KEY 1 0x0002

Table 2.1: List of standardized authentication methods, shown in enumerated and bit mask forms.

impirun -server N -auth <preference_list>

The <preference_list> is a comma separated list of which value ranges specifying
the highest preference on the left. A range can be a single number or a hyphen-separated range of
numbers. For example, to specify protocol three as the most preferable, followed by IMPI AUTH -
KEY and IMPI AUTH NONE (in that order), the following syntax can be used:

impirun -server N -auth 3,1-0

If no -auth flag is specified on the command line, the server may choose any authentication
mechanism that is available for negotiation on both the client and server.

Advice to implementors. High quality server implementations will choose the “strongest” or
“best” form of authentication when multiple authentication mechanisms are available, even
if easier, less-secure methods are also available. (End of advice to implementors.)

IMPI AUTH NONE Protocol

Since some sites can guarantee the security of their networks (behind firewalls, etc.), no au-
thentication is necessary. The IMPI AUTH NONE method is designed just for this purpose. The
presence of the IMPI AUTH NONE environment variable allows the client (and server) to make
this method available for negotiation.

If the IMPI AUTH NONE protocol is chosen, the which value sent to the client will be zero,
and the len will also be zero. After the server sends the IMPI Server auth message, the
authentication is considered successful; no further authentication messages are sent.

Advice to implementors. Even though the IMPI AUTH NONE protocol must be deliber-
ately chosen by the user by setting the IMPI AUTH NONE environment variable, it is still
a “dangerous” operation. A high quality implementation of the server should warn the user
that a client has connected with IMPI AUTH NONE authentication by printing a message to
the standard output (or standard error), that includes the network address of the connected
client. (End of advice to implementors.)

Example Authentication Using IMPI AUTH NONE

The following command lines show two clients attempting to start. client1 sets the IMPI -
AUTH NONE environment variable and invokes impirun on myprog. client2 does not set the
IMPI AUTH NONE environment variable, and aborts since the user presumably did not make any
other authentication mechanisms available.

364

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

client1% setenv IMPI_AUTH_NONE
client1% impirun [...client args...] myprog

client2% impirun [...client args...] myprog
Error: No authentication methods available for negotiation.
Aborting.

The server also sets the IMPI AUTH NONE variable, and invokes impirun. After printing
out its IP and socket numbers, it receives a connection from client1, and prints a warning message
stating that IMPI AUTH NONE was used to authenticate.

server% setenv IMPI_AUTH_NONE
server% impirun -server 2
12.34.56.78:9000
Warning: client1.foo.com (12.34.56.78) has authenticated
with IMPI_AUTH_NONE.

The messages exchanged by client1 and server were as follows:

Client1 sends: IMPI_Cmd { IMPI_CMD_AUTH, 4 }
Client1 sends: IMPI_Client_auth { 0x0001 }
Server sends: IMPI_Server_auth { 0, 0 }

At this point, the authentication is considered successful for client1.

IMPI AUTH KEY Protocol

The IMPI AUTH KEY protocol is a simplistic mechanism that involves the client sending a
key to the server. If the client’s key matches the server’s key, the authentication is successful. If
this method of authentication is desired, the value of the key is placed in the IMPI AUTH KEY
environment variable. The presence of a value in this variable allows both the client and the server
to make the IMPI AUTH KEY protocol available for negotiation.

If this protocol is chosen, the server sends a which value of one, and a len of zero back to
the client. The client responds with the following message.

typedef struct {
IMPI_Uint8 key; // 64-bit authentication key

} IMPI_Auth_key;

If the client’s key does not match the key on the server, the server terminates the connection.
If the client’s key does match, the fact that the server does not terminate the connection indicates a
successful authentication.

Example Authentication Using IMPI AUTH KEY

The server sets the key value in the environment variable IMPI AUTH KEY:

server% setenv IMPI_AUTH_KEY 5678
server% impirun -server 2
12.34.56.78:9000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

365

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

The following command lines show two clients attempting to start. client1 sets the IMPI -
AUTH KEY environment variable to the same value as the server, and invokes impirun on myprog.
client2 sets the IMPI AUTH KEY environment variable to the wrong value, and aborts when the
server terminates the connection.

client1% setenv IMPI_AUTH_KEY 5678
client1% impirun [...client args...] myprog

client2% setenv IMPI_AUTH_KEY 1234
client2% impirun [...client args...] myprog
Error: Server disconnected (wrong authentication key?)

The messages exchanged by the clients and the server are as follows:

Client1 sends: IMPI_Cmd { IMPI_CMD_AUTH, 4 }
Client1 sends: IMPI_Client_auth { 0x0002 }
Server sends: IMPI_Server_auth { 1, 0 }
Client1 sends: IMPI_Auth_key { 5678 }

Client2 sends: IMPI_Cmd { IMPI_CMD_AUTH, 4 }
Client2 sends: IMPI_Client_auth { 0x0002 }
Server sends: IMPI_Server_auth { 1, 0 }
Client2 sends: IMPI_Auth_key { 1234 }
Server disconnects

2.3.4 The IMPI command

IMPI commands contain the following payload:

typedef union {
IMPI_Int4 rank; // rank of this client in IMPI job
IMPI_Int4 size; // total # of clients in IMPI job

} IMPI_Impi;

The IMPI command informs the server that this client wishes to join an IMPI job. For the
client-to-server packet, the payload consists of the rank of the client. After every client in the job
has connected to the server and sent its own rank, the server will send back to each client the size,
that is, the total number of clients in the job.
Example: Consider an IMPI job built from three clients:

client 0 : 3 hosts, each with 2 processes per host
client 1 : 2 hosts, each with 3 processes per host
client 2 : 2 hosts, each with 4 processes per host

The exchange of messages for the IMPI command is shown in Figure 2.1. Each client will
first send a single IMPI Cmd containing the fields fIMPI CMD IMPI, 4g. The clients will then
each send a single IMPI Impi, with the following fields:

client 0 : f rank = 0 g

client 1 : f rank = 1 g

client 2 : f rank = 2 g

366

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�

�
�
�

��	

�

@
@
@

@
@
@

@@I

Passing rank to the server.

’IMPI’, 4, 0

’IMPI’, 4, 1

’IMPI’, 4, 2

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�
�
�
�
���

-

@
@
@
@
@
@
@@R

Returning size to the clients.

’IMPI’, 4, 3

’IMPI’, 4, 3

’IMPI’, 4, 3

Figure 2.1: IMPI command exchange.

After collecting all of the above, the server will send the following IMPI Impi struct back to
each client:

IMPI_Int4 cmd = IMPI_CMD_IMPI
IMPI_Int4 len = 4
IMPI_Int4 size = 3

2.3.5 The COLL command

After the server replies to the IMPI commands from the clients, it is ready to start collecting other,
opaque, startup information from them. This is done via the COLL command, which instructs the
server to collect one payload from each of the clients and return the concatenation (in ascending
client order) of all of them.

All COLL payloads sent from the clients to the server begin with the following struct:

typedef struct {
IMPI_Int4 label;

} IMPI_Coll;

The label field marks the payloads as being of a certain kind; only buffers which share the
same label will be concatenated by the server.

All COLL payloads sent from the server to the clients begin with the following struct:

typedef struct {
IMPI_Int4 label;
IMPI_Int4 client_mask;

} IMPI_Chdr;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

367

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

In addition to the label field, this struct contains the client mask field, which is a bit-
mask that identifies which clients have submitted values for this label. Bit i in the mask corresponds
to the client with rank i (client rank as specified in the IMPI command, not an MPI COMM WORLD
rank).

The following IMPI labels are currently defined (full explanations are provided below). C++
style comments are used for convenience.

#define IMPI_NO_LABEL 0 // reserved for future use

// Per client labels
#define IMPI_C_VERSION 0x1000 // IMPI version(s)
#define IMPI_C_NHOSTS 0x1100 // # of local hosts
#define IMPI_C_NPROCS 0x1200 // # of local procs
#define IMPI_C_DATALEN 0x1300 // maximum data bytes in packet
#define IMPI_C_TAGUB 0x1400 // maximum tag
#define IMPI_C_COLL_XSIZE 0x1500 // coll. crossover size
#define IMPI_C_COLL_MAXLINEAR 0x1600 // coll. crossover # of hosts

// Per host labels
#define IMPI_H_IPV6 0x2000 // IPv6 address
#define IMPI_H_PORT 0x2100 // listening port
#define IMPI_H_NPROCS 0x2200 // # procs per host
#define IMPI_H_ACKMARK 0x2300 // ackmark flow control
#define IMPI_H_HIWATER 0x2400 // hiwater flow control

// Per proc labels
#define IMPI_P_IPV6 0x3000 // IPv6 address
#define IMPI_P_PID 0x3100 // pid

The current IMPI version is 0.0. All servers and clients for IMPI version 0.0 must implement
all of the above labels, with the exception of IMPI NO LABEL.

To simplify server implementations, clients are required to pass labels in ascending numeric
order. To simplify client implementations, servers are required to broadcast a concatenated buffer
as soon as they receive complete sets of buffers from the clients.

Rationale. Ordering these labels allows the server to identify clients that have not imple-
mented a particular label simply by observing the value of the current label sent from that
client. Similarly, clients can ignore buffers they receive from the server with labels they do
not understand.

The exact order of these labels is not particularly significant except that the IMPI C NHOSTS
label must precede any per-host labels so that clients can correctly interpret the concatenated
buffers they receive for the per-host labels. Similarly, the IMPI H NPROCS label must pre-
cede any per-proc label. (End of rationale.)

Reserved labels. The following labels are reserved for future use.

IMPI NO LABEL This label only exists for future use – it is not used in IMPI version 0.0. It is
not sent to the IMPI server.

Client labels. The following labels represent client information.

368

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

IMPI C VERSION The payload following this label is to comprise of one or more structures of
the following type:

typedef struct {
IMPI_Uint4 major;
IMPI_Uint4 minor;

} IMPI_Version;

The client sends an IMPI Version for each version of the IMPI protocols that it supports.
All IMPI clients must support version 0.0. The length of the array of IMPI Version structures
can be calculated from the payload len. Each clients’ array of version numbers must be in strictly
ascending order.

Each client chooses the highest major:minor version number that all clients support. Both
the major and minor version numbers must match on all clients. This version number determines
the nature and content for all future communication between the hosts of each client pair, and may
also determine which labels the client will send to the server.

Rationale. Exchanging an IMPI version number between the clients allows for newer proto-
cols to be developed while still maintaining compatibility with older codes. For example, an
IMPI version could mandate the minimal set of IMPI COLL labels to be recognized.

It is expected that after IMPI version 0.0 begins to be used by real applications, changes in the
protocols will be suggested and adopted by the IMPI steering committee. This will change
the IMPI version number. The major version number indicates large differences between
protocols, while the minor version number indicates smaller changes (such as corrections) in
the published protocols.

The IMPI version number should not be confused with a particular vendor’s software version
number. The IMPI version number indicates a published set of protocols, not a particular
implementation of those protocols.

Forcing all clients to implement version 0.0 maximizes flexibility and potential for interop-
erability. (End of rationale.)

For example, if the server broadcasts the following data for the IMPI C VERSION label:

IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 72
IMPI_Int4 label = IMPI_C_VERSION
IMPI_Int4 client_mask = 0x7
IMPI_Uint4 major = 0 // from client 0
IMPI_Uint4 minor = 0
IMPI_Uint4 major = 0
IMPI_Uint4 minor = 1
IMPI_Uint4 major = 0 // from client 1
IMPI_Uint4 minor = 0
IMPI_Uint4 major = 0
IMPI_Uint4 minor = 1
IMPI_Uint4 major = 0
IMPI_Uint4 minor = 2
IMPI_Uint4 major = 0 // from client 2
IMPI_Uint4 minor = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

369

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

IMPI_Uint4 major = 0
IMPI_Uint4 minor = 1
IMPI_Uint4 major = 0
IMPI_Uint4 minor = 2

All clients will use IMPI protocol version 0.1 since that is the highest version supported by all
clients.

IMPI C NHOSTS Each client contributes an IMPI Uint4 that indicates the total number of
hosts that it has. It must be � 1.

IMPI C NPROCS Each client contributes an IMPI Uint4 that indicates the total number of
procs on all of its hosts. It must be � 1.

IMPI C DATALEN Each client contributes an IMPI Uint4 that indicates the maximum length,
in bytes, of user data in a packet used for host-to-host communication. The smallest value specified
by any client determines the value of IMPI Pk maxdatalen (see section 3.5 Message Packets).
It must be � 1.

IMPI C TAGUB Each client contributes an IMPI Int4 that indicates the maximum tag value
that will be used for host-to-host communication. Section 3.9 mandates some restrictions on this
value.

IMPI C COLL XSIZE Each client contributes an IMPI Int4 that indicates the minimum num-
ber of data bytes for which relevant collective calls will use “long” protocols. Relevant collective
calls with data sizes less than this value will use “short” protocols.

Clients must provide a way for users to choose this value. If the user does not select a value,
the client will contribute -1, indicating that that client wants the default value for this label. If the
user does select a value (which must be � 0), that value is sent. All clients must contribute the
same value, or an error occurs.

The default value for IMPI C COLL XSIZE for IMPI version 0.0 is 1024.

IMPI C COLL MAXLINEAR Each client contributes an IMPI Int4 that indicates the mini-
mum number of hosts for which relevant collective calls will use logarithmic protocols. Relevant
collective calls with fewer hosts than this value will use linear protocols.

Clients must provide a way for users to choose this value. If the user does not select a value,
the client will contribute -1, indicating that that client wants the default value for this label. If the
user does select a value (which must be � 0), that value is sent. All clients must contribute the
same value, or an error occurs.

The default value for IMPI C COLL MAXLINEAR for IMPI version 0.0 is 4.

Host labels. The following labels represent host information.
For each host label, client i contributes an array of IMPI C NHOSTS[i] values. The array

values are ordered; array[0] is the value for the lowest numbered host, array[IMPI C -
NHOSTS[i] - 1] is the value for the highest numbered host, etc.

The clients read back an array of the collated values; the values for the client 0’s hosts begin
at index 0, the values for client 1’s hosts begin at index IMPI C NHOSTS[0], etc.

370

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

IMPI H IPV6 Each client’s array contains the IPv6 addresses for its hosts. Each IPv6 address is
a 128 bit quantity (16 bytes).

IMPI H PORT Each client’s array contains the TCP port numbers for its hosts. Each value is an
IMPI Uint4.

IMPI H NPROCS Each client’s array contains the number of procs on each of its hosts. Each
value is an IMPI Uint4.

IMPI H ACKMARK Each client’s array contains the IMPI Pk ackmark values for its hosts.
Each value is an IMPI Uint4. Section 3.9 mandates some restrictions on this value.

IMPI H HIWATER Each client’s array contains the IMPI Pk hiwater values for its hosts.
Each value is an IMPI Uint4. Section 3.9 mandates some restrictions on this value.

Proc labels. The following labels represent proc information.
For each proc label, client i contributes an array of IMPI C NPROCS[i] values. The array

values are ordered; array[0] is the value for the first proc on the client’s first host, array[IMPI -
H NPROCS[0]] is the value for the first proc on the client’s second host, array[IMPI C -
NPROCS[i] - 1] is the value for the last proc on the client’s last host, etc.

The clients read back an array of the collated values of length
P

nclients

i=1
IMPI C NPROCS[i

- 1]. The values for the client 0’s procs begin at index 0, the values for client 1’s procs begin at
index IMPI C NPROCS[0], etc.

IMPI P IPV6 Each client’s array contains the IPv6 addresses of the hosts on which each proc
resides. Each IPv6 address is a 128 bit quantity (16 bytes).

Advice to implementors. This IPv6 address is only used for unique identification of a proc; it
need not be the same as the IPv6 address for the host that the proc resides on. (End of advice
to implementors.)

IMPI P PID Each client’s array contains identification numbers for its procs. Each value is an
IMPI Int8, and must be unique among other procs that share the same IPv6 address.

Example: per-client labels
Consider the same three-client job from above. After receiving the concatenated IMPI buffer

from the server, the clients now exchange their startup parameters.
The first parameter is the number of local hosts maintained by each client. In the above exam-

ple, each client would first send an IMPI Cmd to the server containing fIMPI CMD COLL, 8g.
After the IMPI Cmd, the clients each send the IMPI C NHOSTS label followed by their local host
count. (For a total of 8 bytes, thus the value of 8 in the len field of the command.) This exchange
is shown in Figure 2.2.

The server, upon receiving all of the IMPI C NHOSTS data, passes back the concatenated
values to the clients:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

371

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�

�
�
�

��	

�

@
@
@

@
@
@

@@I

’COLL’, 8,
IMPI C NHOSTS, 3

’COLL’, 8,
IMPI C NHOSTS,
2

’COLL’, 8,
IMPI C NHOSTS, 2

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�
�
�
�
���

-

@
@
@
@
@
@
@@R

’COLL’, 20,
IMPI C HOSTS, 0x7,
3, 2, 2

’COLL’, 20,
IMPI C HOSTS,
0x7, 3, 2, 2

’COLL’, 20,
IMPI C HOSTS, 0x7,
3, 2, 2

Figure 2.2: COLL command IMPI C NHOSTS exchange.

IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 20
IMPI_Int4 label = IMPI_C_NHOSTS
IMPI_Int4 client_mask = 0x7
IMPI_Int4 value = 3 // from client 0
IMPI_Int4 value = 2 // from client 1
IMPI_Int4 value = 2 // from client 2

All of the per-client values follow this same pattern. For another example, assume that client
0 has a maximum data length of 8000, while clients 1 and 2 have a maximum data length of 4000.
They therefore first send an IMPI Cmd to the server containing fIMPI CMD COLL, 8g. After the
IMPI Cmd, the clients each send the IMPI C DATALEN label followed by their local maximum
data length value.

The server, upon receiving all of the IMPI C DATALEN data, passes back the concatenated
values to the clients:

IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 20
IMPI_Int4 label = IMPI_C_DATALEN
IMPI_Int4 client_mask = 0x7
IMPI_Int4 value = 8000 // from client 0
IMPI_Int4 value = 4000 // from client 1
IMPI_Int4 value = 4000 // from client 2

Each client can then independently determine the global minimum data length. Similarly,
the IMPI C TAGUB value will be used by the clients to determine the minimum tag ub among

372

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

the clients. The server, being a passive collecting and broadcasting process, knows nothing of the
meaning of any of these COLL labels.

Note: Some tags may be optional, and therefore may not be sent by all clients. When this
happens, the server will zero the appropriate bit(s) in the client mask field and just concatenate
the values from the participating clients. For example, if client 1 had not passed in a data length,
the above would instead have been:

IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 16
IMPI_Int4 label = IMPI_C_DATALEN
IMPI_Int4 client_mask = 0x5
IMPI_Int4 value = 8000 // from client 0
IMPI_Int4 value = 4000 // from client 2

This is sent to all clients, regardless of whether they submitted a value for this label. Clients
are free to ignore non-mandated COLL labels for the IMPI protocol version(s) that they are using,
as well as commands they do not understand.

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�

�
�
�

��	

�

@
@
@

@
@
@

@@I

’COLL’, 16,
IMPI H PORT,
5001, 5002, 5003

’COLL’, 12,
IMPI H PORT,
6001, 6002

’COLL’, 12,
IMPI H PORT,
7001, 7002

#

"

!
Server

"!

Client

"!

Client

"!

Client

�
�
�
�
�
�
���

-

@
@
@
@
@
@
@@R

’COLL’, 36,
IMPI H PORT, 0x07,
5001, 5002, 5003, 6001,
6002, 7001, 7002

’COLL’, 36, IMPI H PORT,
0x07, 5001, 5002,
5003, 6001, 6002,
7001, 7002

’COLL’, 36,
IMPI H PORT, 0x07,
5001, 5002, 5003, 6001,
6002, 7001, 7002

Figure 2.3: COLL command IMPI H PORT exchange.

Example: per-host labels
Again using the same three-client example, let’s say that it is now time for the clients to submit

the port numbers for their hosts. This exchange is shown in Figure 2.3. These would be submitted
as follows:

client 0:
IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 16
IMPI_Int4 label = IMPI_H_PORT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

373

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

IMPI_Int4 port = 5001 // (or whatever)
IMPI_Int4 port = 5002
IMPI_Int4 port = 5003

client 1:
IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 12
IMPI_Int4 label = IMPI_H_PORT
IMPI_Int4 port = 6001 // (or whatever)
IMPI_Int4 port = 6002

client 2:
IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 12
IMPI_Int4 label = IMPI_H_PORT
IMPI_Int4 port = 7001 // (or whatever)
IMPI_Int4 port = 7002

In return, the server would send back:

IMPI_Int4 cmd = IMPI_CMD_COLL
IMPI_Int4 len = 36
IMPI_Int4 label = IMPI_H_PORT
IMPI_Int4 client_mask = 0x7
IMPI_Int4 port = 5001 // from client 0
IMPI_Int4 port = 5002
IMPI_Int4 port = 5003
IMPI_Int4 port = 6001 // from client 1
IMPI_Int4 port = 6002
IMPI_Int4 port = 7001 // from client 2
IMPI_Int4 port = 7002

2.3.6 The DONE command

This command contains no payload, so it should always have a len of zero. It tells the server that
a client has no more COLL labels to submit. After all clients have issued the DONE command, the
server sends the DONE command, with no payload, back to all clients. This indicates that the startup
exchange has completed.

2.3.7 The FINI command

Like the DONE command, the FINI command contains no payload, so it should always have a
len of zero. The server waits to receive the FINI command from all clients. A client must issue
the FINI command after all of its procs successfully exit. The server does not generate any return
traffic to the clients in response to the FINI commands. After receiving the FINI command from
a client the server may close the socket to that client. A server-client socket that dies before the
client sends the FINI command is an indication of an error which should be reported to the user;
server behavior after this error is undefined. The server, after receiving a FINI from all clients,
exits successful.

374

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Rationale. Leaving the server running while the MPI program is running leaves open the
possibility of using it for other purposes such as an error server or a print server. (End of
rationale.)

2.3.8 Shall We Dance?

The exchange of startup parameters is completed when the DONE command is received from the
server. At this point, it may be necessary for additional socket connections to be established. The
agents responsible for each socket must therefore participate in a connect/accept “dance”, the order
of which is defined as follows:

/*
* Higher ranked host connects, lower ranked host accepts.
*/

for (i = 0; i < nhosts; i++) {
if (i < myhostrank) {

do_connect(i);
} else if (i > myhostrank) {

do_accept(); /* from anybody */
}

}

After a successful connect(), each host must send its rank as a 32-bit value to the accepting
process.

2.4 Shutdown Wire Protocols

An IMPI job shuts down in the following order: procs, hosts, clients, and finally, the IMPI server.
As per Section 4.24, MPI FINALIZE invokes a MPI BARRIER on MPI COMM WORLD. After
this barrier, each proc performs implementation-specific cleanup and shutdown.

After all the procs of a host have completed (meaning that there will be no further MPI com-
munications from each proc), the host will send an IMPI PK FINI packet to each other host
(see Section 3.8), indicating that it is shutting down. The host must wait for the corresponding
IMPI PK FINI from each other host before closing a communications channel. The host must
consume arriving packets and issue appropriate acknowledgments until the IMPI PK FINI ar-
rives. The host then performs implementation-specific cleanup and shutdown.

After all the hosts of a client have completed (meaning that all IMPI PK FINImessages have
been sent, and all of the client’s host communication channels have been closed), the client sends an
IMPI CMD FINI message to the IMPI server. The client then performs implementation-specific
cleanup and shutdown.

After the IMPI server receives an IMPI CMD FINI message from each client, it performs its
own cleanup and shutdown.

Rationale. The sequence of events during IMPI shutdown is mandated to avoid race condi-
tions and deadlock. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

375

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

2.5 Client and Host Attributes

This section is heavily influenced by Section 5.3 of the MPI-2 Journal of Development, “Cluster
Attributes.”

Inter-client and inter-host communications may be significantly slower than communications
between processes on the same host. It is therefore desirable for programs to be able to determine
which ranks are local and which are remote.

The following attributes are predefined on all communicators:

IMPI CLIENT SIZE returns as the keyvalue the number of IMPI clients included in the commu-
nicator.

IMPI CLIENT COLOR returns as the keyvalue a number between 0 and IMPI CLIENT SIZE-1.
The value returned indicates with which client the querying rank is associated. The relative
ordering of colors corresponds to the ordering of host ranks in MPI COMM WORLD.

IMPI HOST SIZE returns as the keyvalue the number of IMPI hosts included in the communica-
tor.

IMPI HOST COLOR returns as the keyvalue a number between 0 and IMPI HOST SIZE-1. The
value returned indicates with which client the querying rank is associated. The relative or-
dering of colors corresponds to the ordering of host ranks in MPI COMM WORLD.

Advice to users. This interface returns no information about the significance of the difference
between the communication inside and between client/hosts members. However, this can be
achieved by small application-specific benchmarks as part of the application. The returned
color can be used as input to IMPI COMM SPLIT. (End of advice to users.)

376

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Chapter 3

Data Transfer Protocol

3.1 Introduction

This chapter specifies the protocol used to transfer data between two MPI implementations. The
protocol assumes a reliable, ordered, bidirectional stream communication channel between the two
implementations. The channel is assumed to have a finite but unspecified amount of buffering.
The protocol does not rely on the channel buffering for its operation. Processes on one side of
the channel belong to the same MPI implementation. Two implementations communicate via a
dedicated channel. Message routing (the selection of a channel to use for a particular message
transfer) is not addressed here. It is assumed that an agent at the source determines the appropriate
channel to use and directs the message to it. In essence, the data transfer protocol enables multiple
processes to have timeshared access to a single communication channel, and provides mechanisms
to throttle fast senders and cancel transferred messages.

The protocol is defined independently of the underlying channel technology. Initially, TCP/IP
is expected to be used by most implementations. Some implementations may opt for a restricted
interoperability space and choose a different channel technology, while others may support multiple
technologies. The protocol does not specify the interaction between processes and their agent
nor the medium used (e.g. sockets, shared-memory). To provide generality of implementation,
no restrictions are placed on the process/agent setup (e.g. shared access to socket, file descriptor
passing). To support the MPI-2 client/server functionality, no parent/child relationship is assumed
between processes and their agent.

3.2 Process Identifier

Messages exchanged between implementations are multiplexed in the channel. A system-wide
unique process identifier is required to label the message source and destination. To support the
MPI-2 client/server functionality, a decentralized mapping of processes to identifiers is chosen.
The IMPI Proc process identifier is defined as the combination of a system-wide unique host
identifier and a process identifier unique within the host:

typedef struct {
IMPI_Uint1 p_hostid[16]; /* host identifier */
IMPI_Int8 p_pid; /* local process identifier */

} IMPI_Proc;

Typically, the host IP address is used as host identifier. A 16-byte container is defined to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

377

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

accommodate the IPv6 protocol.
Solutions with a restricted interoperability scope may select other host identification methods.

IMPI does not mandate p pid to be unique across all implementations within a given host. Thus
IMPI does not guarantee interoperability between two implementations that share a host within a
single MPI application.

Advice to implementors. Implementors are encouraged to use an OS-wide unique p pid
identifier within a host, such as a UNIX pid. This would support IMPI host sharing in prac-
tice, and can be helpful for situations such as testing IMPI functionality. (End of advice to
implementors.)

3.3 Context Identifier

A context identifier of type IMPI Uint8 is associated with every MPI communicator (intra- and
inter-communicators). It has the following properties:

� It uniquely identifies a communicator within a process.

� All processes within a communicator group use the same context identifier for that commu-
nicator.

The context identifier of MPI COMM WORLD is 0.

Advice to implementors. Mandating a collectively unique context ID may be a burden
on some implementations that use memory addresses to segregate message contexts. Such
implementations may choose to let the agent handle the mapping between context IDs and
memory addresses and not impact the performance of the intra-implementation communica-
tion protocols. (End of advice to implementors.)

3.4 Message Tag

The message tag is of type IMPI Int4. MPI requires MPI TAG UB to be at least 32767. At startup
time, the actual tag upper bound, IMPI Tag ub, is negotiated between the implementations.

3.5 Message Packets

MPI requires that messages of active requests be uniquely identified to allow for their cancellation.
Requests that have been completed or are otherwise inactive cannot be canceled. As a result, an
IMPI message is identified by its source and destination processes, and by a source request identifier
unique for every active request at the source process. The request identifier is of type IMPI Uint8.
The total message length is represented by a value of type IMPI Uint8. The sender’s local rank in
the communicator is given in the pk lsrank field of the header. This allows the receiving process
to set the MPI SOURCE status entry without having to map pk src to its local rank.

Advice to implementors. On systems with 64-bit memory addressing or less, the address of
the request object at the source process may be used as the unique identifier of an active re-
quest. On systems with wider memory addressing, the source process would need to maintain
a mapping of active requests to identifiers.

378

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

The source and destination processes are identified by their IMPI Proc structures instead
of their local ranks in the communicator used. This gives implementors more freedom in
the design of the internal agent protocol with respect to message buffering and matching
messages to receive requests. For example, messages may be buffered and matched:

� in the agent, the agent acting as an MPI-aware “database”.

� in the receiving processes, the agent acting purely as a funnel.

� a mixture of both where the agent handles the buffering and matching on a destination
process basis, and the receiving processes handle the buffering and matching of MPI
tags and context IDs.

(End of advice to implementors.)

A message is divided into packets, each containing up to IMPI Pk maxdatalen bytes of
user data. The IMPI Pk maxdatalenvalue is negotiated at startup time. All message packets are
sent in the same channel, in sequential order. A fixed-length packet header, IMPI Packet, holds
the message information and identifies the type of transfer: data packet (synchronous message or
not), synchronization or protocol acknowledgment (ACK), cancel request, cancel reply (successful
or not), or finalization. The maximum size of a packet is IMPI Pk maxdatalen plus the size of
the IMPI Packet header.

In addition to identifying messages for cancellation, the source request identifier is used by the
sender to access the request handle in the rendezvous message protocol. Similarly, an optional des-
tination request identifier, of type IMPI Uint8, may be used to accelerate the receiving process’s
access to the request handle. Its usage and the required support by the peer agent is discussed in a
later section.

Three optional quality-of-service fields are made available. They may be used by collaborating
implementations to provide additional services, such as profiling or debugging. If used, pk count
holds the message “count” argument (number of datatype elements), pk dtype is an opaque han-
dle that uniquely identifies the sender’s datatype within the process (e.g. the handle of the datatype
object), and pk seqnum holds a sequence number that helps identify a message independently of
its source request ID, which may be reused (e.g. a sequence number unique per sending process,
per sending agent, per sender/receiver process pair, or per agent pair).

typedef struct {
IMPI_Uint4 pk_type; /* packet type */

#define IMPI_PK_DATA 0 /* message data */
#define IMPI_PK_DATASYNC 1 /* message data (sync) */
#define IMPI_PK_PROTOACK 2 /* protocol ACK */
#define IMPI_PK_SYNCACK 3 /* synchronization ACK */
#define IMPI_PK_CANCEL 4 /* cancel request */
#define IMPI_PK_CANCELYES 5 /* ’yes’ cancel reply */
#define IMPI_PK_CANCELNO 6 /* ’no’ cancel reply */
#define IMPI_PK_FINI 7 /* agent end-of-connection */

IMPI_Uint4 pk_len; /* packet data length */
IMPI_Proc pk_src; /* source process */
IMPI_Proc pk_dest; /* destination process */
IMPI_Uint8 pk_srqid; /* source request ID */
IMPI_Uint8 pk_drqid; /* destination request ID */
IMPI_Uint8 pk_msglen; /* total message length */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

379

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

IMPI_Int4 pk_lsrank; /* comm-local source rank */
IMPI_Int4 pk_tag; /* message tag */
IMPI_Uint8 pk_cid; /* context ID */
IMPI_Uint8 pk_seqnum; /* message sequence # */
IMPI_Int8 pk_count; /* QoS: message count */
IMPI_Uint8 pk_dtype; /* QoS: message datatype */
IMPI_Uint8 pk_reserved; /* for future use */

} IMPI_Packet;

Advice to implementors. The choice of 4- or 8-byte integers in IMPI Packet is a trade-off
between providing enough storage space where needed with some room for future extensions,
keeping the structure size a power-of-two value (128 bytes in this case), and ordering the
elements to avoid compiler padding. (End of advice to implementors.)

The data packet is made of a header followed by up to IMPI Pk maxdatalen bytes of
packed user data, and uses all the header fields. The four other packet types are header-only, and
use a subset of the header fields. The list of fields used by each packet is given in table 3.1. Network
byte-order is used in the header.

3.6 Packet Protocol

At the packet level, a simple throttling protocol is setup to limit the amount of buffering required
and to prevent fast senders from affecting the message flow of other processes sharing the channel.
This creates process-pair virtual channels. The number of virtual channels mapped onto a single
channel is not fixed and can change according to the application’s behavior. The communication
agents are expected to handle the resulting change in buffering requirement. At startup time, two
packet protocol values of type IMPI Uint4 are negotiated:

IMPI Pk ackmark: The number of packets received by the destination process before a protocol
ACK is sent back to the source.

IMPI Pk hiwater: The maximum number of unreceived packets the source can send before
requiring a protocol ACK to be send back.

For each process-pair, the source maintains a packets-sent counter and the destination main-
tains a packets-received counter. The destination process sends a protocol ACK to the source pro-
cess for every IMPI Pk ackmark packets it receives from that source. This decrements the

Packet Type Fields Used

data all fields (QoS fields optional)
data sync. all fields (QoS fields optional)
sync. ACK pk type, pk src, pk dest, pk srqid, pk drqid
protocol ACK pk type, pk src, pk dest
cancel request pk type, pk src, pk dest, pk srqid
cancel reply pk type, pk src, pk dest, pk srqid
finalization pk type

Table 3.1: Packet field usage.

380

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

source’s counter by IMPI Pk ackmark. When the source’s counter reaches the IMPI Pk -
hiwater value, it refrains from sending more packets to that destination until an ACK is received
from it. The transfer of protocol ACK packets does not modify the value of the counters. The
implementation is expected to provide sufficient buffering to receive the protocol ACK packets and
to expedite their processing.

Advice to implementors. Depending on the implementation’s internal process/agent protocol,
packet counters can either be maintained by the processes or by the agent. (End of advice to
implementors.)

3.7 Message Protocols

The data, synchronization, cancel request, and cancel reply packet types are used to construct the
protocols for handling MPI point-to-point transfers. A message with length of up to IMPI Pk -
maxdatalen bytes is categorized as a short message. It fits in a single data packet. Longer
messages are split into several data packets. The IMPI PK DATASYNC packet type notifies the
receiving process that the sender is expecting a synchronization ACK for the message. Otherwise,
the IMPI PK DATA packet type is used.

3.7.1 Short-Message Protocol

Short messages are sent eagerly, relying on the packet protocol ACKs for flow control. The pk len
and pk msglen fields have the same value. If the IMPI PK DATASYNC packet type is used, the
destination process sends a synchronization ACK packet back to the source after it matches the
message to a receive request.

The pk srqid field in the ACK packet must be set to the value of the pk srqid field in
the message packet. The sender must store the send request identifier in the outgoing packet. It
receives it back in the ACK packet. This mechanism is used by the sending process to locate the
request that matches the ACK packet.

Short messages generated by MPI SSEND and MPI ISSEND are mapped onto the short-
message protocol with the IMPI PK DATASYNC packet type. All other short messages are mapped
onto this protocol with the IMPI PK DATA packet type.

3.7.2 Long-Message Protocol

For long messages, the first data packet is sent eagerly, with the IMPI PK DATASYNC packet type.
When the destination process matches the packet to a receive request, it sends a synchronization
ACK packet back to the source process. The source can then send all remaining data packets with
the IMPI PK DATA packet type.

The pk srqid field in the ACK packet must be set to the value of the pk srqid field in
the message packet. The sender must store the send request identifier in the outgoing packet. It
receives it back in the ACK packet. This mechanism is used by the sending process to locate the
request that matches the ACK packet.

Likewise, the pk drqid field in the data packets sent after the ACK packet is received (that
is all data packets except the first one) must be set to the value of the pk drqid field in the ACK
packet. The receiving process may use this field to store a handle to the matching MPI receive

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

381

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

request in the ACK packet, and receive it back in all the following data packets. This avoids having
the receiving process search for the matching request for each remaining data packet.

Long messages generated by all MPI send calls are mapped onto the long-message protocol,
independent of their blocking nature and synchronization requirements.

3.7.3 Message-Probing Protocol

Supporting the MPI PROBE and MPI IPROBE functions does not require special packet trans-
fers. The protocol is purely local between the process and the agent. IMPI defines the conditions
under which a message is considered to be available for the purpose of probing.

Packet transfers are considered atomic operations, independent of the medium’s transfer mech-
anism. A message is considered available to the destination process after its first packet (its only
packet for short messages) has been completely read by the agent, including the packet’s user data
segment. The total length of the message is available in the packet’s pk msglen field. Thus the
status information needed by the probe calls is available.

3.7.4 Message-Cancellation Protocol

For a send request, there is a time window during which a call to MPI CANCEL can cause a cancel
request packet to be sent to the message destination. This can happen in the following cases:

� After a short non-synchronous message is sent.

� After a short synchronous message is sent and before the synchronization ACK is received.

� After the first packet of a long message is sent and before the synchronization ACK is re-
ceived.

In all other cases, the MPI CANCEL call must be resolved locally. Once a cancel request
is sent, a cancel reply packet must be returned, independently of whether a synchronization ACK
for that message was already sent back. This allows MPI CANCEL to act as a simple RPC call,
waiting for the reply, and simplifies the operations of the agents. If the message’s first data packet
has not been received by the destination process (i.e. matched a receive request), the agent sends
a IMPI PK CANCELYES reply packet and atomically destroys the buffered packet. Otherwise, a
IMPI PK CANCELNO packet is sent back. Note that due to the message ordering guarantee, a
cancel request cannot be received without the agent having fully read the message’s first packet.
Thus the message can be in either of two states: buffered, or received by the destination process.
The transition from a buffered state to a received state happens when the message’s first packet
matches a receive request, irrespective of the state of the remaining packets in the case of a long
message.

For a given pair of processes, the sender’s request identifier is used by the receiver to select
the message to be canceled. The request identifier is unique among the sender’s active requests. It
is possible that multiple messages buffered at the receiver share the same sender request identifier.
In such a case, only the last message received can be canceled, the other messages are no longer
attached to the active request. This requires that the storage of unexpected messages be searchable
in reverse chronological order.

382

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

3.8 Finalization Protocol

When an agent determines that its processes no longer require a channel for communication, it
sends a finalization packet (IMPI PK FINI packet type) to notify the agent on the opposite side of
the channel of its request to terminate the connection. An agent may not close the connection until
it has sent an IMPI PK FINI packet to the other agent and received one from it. Until a finalization
packet is received, an agent must continue to consume arriving packets and issue the appropriate
acknowledgments; this effectively destroys unmatched messages. Acknowledgment are the only
packets an agent may send on a channel after it issues a finalization packet. Because the finalization
packet is exchanged between agents, it does not require buffering and thus does not affect the proto-
col ACK counters. The finalization protocol allows agents to distinguish between applications that
terminate successfully and those that terminate abnormally (see section 2.4). It does not mandate
error handling for the latter.

Advice to implementors. The protocol does not specify how an agent determines when its
processes no longer need the channel. This is a local implementation-specific synchronization
between MPI FINALIZE and the agent.

It is recommended that the agent not set the TCP/IP socket’s SO LINGER option to a linger
time of zero. If it is set to zero, the connection may be destroyed before the IMPI PK FINI
packet reaches its destination. This causes the receiving agent to erroneously conclude that
the application terminated abnormally.

The protocol does not specify the error handling an agent performs in cases of unmatched
messages. It only requires that unmatched messages be destroyed. (End of advice to imple-
mentors.)

3.9 Mandated Properties

To support wide interoperability, IMPI requires the data transfer channel to be an Internet-domain
socket. In addition, the following must be true:

� 1 � IMPI Pk ackmark� IMPI Pk hiwater

� 1 � IMPI Pk maxdatalen

� 32767 � IMPI Tag ub � 2147483647

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

383

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

384

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Chapter 4

Collectives

4.1 Introduction

This chapter specifies the algorithms to be used in collective operations on communicators which
span multiple MPI clients.

A native communicator is defined to be a communicator in which all processes are running
under the same MPI client.

IMPI places no restrictions on and does not specify the implementation of collective operations
on native communicators.

Processes running under the same MPI client are defined to be local processes. Similarly
communication between between processes running under the same MPI client is called local com-
munication.

Communication between processes running under different MPI clients is referred to as non-
local or global.

Many of the collective operations consist of one or more local and global phases of communi-
cation. An IMPI implementation is free to implement local phases in whatever manner it chooses
but must implement the global phases as specified in order to properly interoperate with other im-
plementations. No global communications may be done other than those explicitly specified.

In the specifications of the collectives great liberties have been taken with the cleaning up
of temporary objects, e.g. intermediate groups. It is expected that implementors will add the
necessary resource freeing. Additionally little specific error handling is specified. It is expected
that implementors will check the return codes of MPI functions used and return appropriately on
error.

Some of the collective operations require that data packed by one implementation be unpacked
by another implementation. This requires that all implementations use the same format for such
packed data. This leads to the following restriction on MPI Pack() in the case of non-native com-
municators. The format of data packed by a call to MPI Pack() with a non-native communicator is
the wire (external32) format with no header or trailer bytes. In addition a call to MPI Pack size()
with a non-native communicator will return as the size the minimum number of bytes required to
represent the data in the wire (external32) format.

No restriction is placed on the behavior of MPI Pack() and MPI Pack size() when called with
native communicators.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

385

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.2 Utility functions

For a given communicator there is one master process per MPI client the communicator spans. The
master process for a client is the process of lowest rank running under the client. Note that process
rank 0 within a communicator is always a master process. The master processes in a communicator
are numbered from 0 to (number of masters) �1 in order of rank in the communicator.

For example consider the case of a communicator of size 8 which spans 3 clients (say A, B and
C) with ranks 0,1,4 under client A, ranks 2,3,5 under client B and ranks 6,7 under client C. Then
the master processes are ranks 0,2 and 6 and they are numbered 0,1 and 2 respectively.

The descriptions of the IMPI collectives make use of the following utility functions. Each
implementation is free to implement them in whatever manner they see fit.

int is master(int r, MPI Comm comm) Returns TRUE iff process rank r in comm is a master
process.

int are local(int r1, int r2, MPI Comm comm) Returns TRUE iff processes ranked r1 and r2 in
comm are local to one-another.

int master num(int r, MPI Comm comm) If process rank r in comm is a master process returns
its master number else returns -1.

int master rank(int n, MPI Comm comm) Returns the rank in comm of master number n.

int local master num(int r, MPI Comm comm) Returns the master number of the master pro-
cess local to process rank r in comm.

int local master rank(int n, MPI Comm comm) Returns the rank in comm of the master pro-
cess local to process rank r in comm.

int num masters(MPI Comm comm) Returns the number of master processes in comm.

int num local to master(int n, MPI Comm comm) Returns the number of processes in comm
local to master process number n.

int num local to rank(int r, MPI Comm comm) Returns the number of processes in comm local
to process rank r in comm.

int *locals to master(int n, MPI Comm comm) Returns an array containing the ranks in comm
of the processes local to master number n.

int cubedim(int n) If n > 0 returns the dimension of the smallest hypercube containing at least n
vertices (i.e. smallest i such that n <= 2

i) else returns �1.

int highbit(int r, int dim) Returns the position of the highest bit set in the lowest dim bits of r
else �1 if no bit is set in the lowest dim bits of r. E.g. highbit(5,3) = 2, highbit(5,2) = 0,
highbit(8,2) = �1.

386

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.3 Context Identifiers

Context IDs are of type IMPI Uint8 and are collectively unique. Collectively unique means the
context IDs for a communicator are the same for each process in the communicator and no other
communicator of which the process is a member has the same context IDs.

Advice to implementors. Mandating collectively unique context IDs may be a burden on
some implementations that use memory addresses to segregate message contexts. Such im-
plementations may choose to let the agent handle the mapping between context IDs and
memory addresses and not impact the performance of the intra-implementation communica-
tion protocols. (End of advice to implementors.)

Each communicator has two context IDs. One is used for point-to-point communication and
the other for collective communication. The collective context ID is always one greater than the
point-to-point context ID.

The point-to-point context identifier of MPI COMM WORLD is 0 and the collective context
identifier is 1.

Many of the collective operations are defined in terms of point-to-point communications on
a communicator. All point-to-point communications which occur inside collectives must use the
communicator’s collective context ID.

Advice to implementors. This can be done, for example, by passing a shadow “collective
version” of the communicator to the point-to-point communication. (End of advice to imple-
mentors.)

4.3.1 Context ID Creation

When a new communicator is created it must be assigned collectively unique context IDs. Generat-
ing the new context ID is a collective operation over the communicator(s) from which the new one
is being derived.

The basic mechanism for creating a new context ID is to first find the maximum context ID
currently in use by any process involved in the new context creation. The new point-to-point context
ID is then this maximum plus one and the new collective context ID is this maximum plus two.

In the descriptions of the collective algorithms which create new contexts it is assumed that
each process keeps track of the maximum context ID it has in use in the variable

IMPI Uint8 IMPI max cid;
which is initialized to 1 in MPI Init().

Advice to implementors. Implementations are free to allocate other context IDs (e.g. for
shadow communicators) but they must ensure that the value of IMPI max cid is correctly
maintained.

In systems with limited context ID space the agent for each process can maintain a mapping
between the limited space and the 64-bit IMPI space. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

387

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.4 Comm create

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)
{
IMPI_Uint8 newcid, maxcid;

/* create a new context ID */
if (IMPI_max_cid % 2 == 0) IMPI_max_cid += 1;
MPI_Allreduce(&IMPI_max_cid, &maxcid, 1, IMPI_UINT8, MPI_MAX, comm);
if (maxcid >= IMPI_MAX_CID-1)
error out of contexts;

newcid = maxcid + 1;
IMPI_max_cid = maxcid + 2;

build a new communicator newcomm from group with point-to-point
context newcid and collective context (newcid+1);

}

4.5 Comm free

int MPI_Comm_free(MPI_Comm *comm)
{
if (*comm is an intra-communicator) {
MPI_Barrier(*comm);

} else {
/* Inter-communicator, cannot use collection operations.
* Perform a barrier with point-to-point calls only.
*/
int i, myrank, rgsize;
MPI_Status status;

MPI_Comm_remote_size(*comm, &rgsize);
MPI_Comm_rank(*comm, &myrank);

/* Fan-in from local ranks to remote rank 0. */
if (myrank == 0) {
for (i=1; i<rgsize; i++) {

MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, i, IMPI_COMM_FREE_TAG,
*comm, &status);

}
} else {
MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, 0, IMPI_COMM_FREE_TAG, *comm);

}

/* Swap between local and remote rank 0’s. */
if (myrank == 0)
MPI_Sendrecv(MPI_BOTTOM, 0, MPI_BYTE, 0, IMPI_COMM_FREE_TAG,

MPI_BOTTOM, 0, MPI_BYTE, 0, IMPI_COMM_FREE_TAG,
*comm, &status);

/* Fan-out from local rank 0 to remote group. */

388

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

if (myrank == 0) {
for (i=1; i<rgsize; i++)

MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, i, IMPI_COMM_FREE_TAG, *comm);
} else {
MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, 0, IMPI_COMM_FREE_TAG,

*comm, &status);
}

}

mark communicator with handle *comm for deallocation;
*comm = MPI_COMM_NULL;
return MPI_SUCCESS;

}

MPI Comm free merely marks a communicator for deallocation and does not necessarily imme-
diately deallocate it. When the communicator is actually deallocated its context IDs are freed.
Implementations may keep track of the context IDs which are in use and lower IMPI max cid
appropriately when freeing a context ID.

4.6 Comm dup

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)
{
MPI_Status status;
IMPI_Uint8 newcid, maxcid;
MPI_Group group;
MPI_Comm localcomm, tmpcomm;
int myrank, rgsize;

MPI_Comm_rank(comm, &myrank);

/* create a new context ID */
if (IMPI_max_cid % 2 == 0) IMPI_max_cid += 1;

if (comm is an intra-communicator) {
MPI_Allreduce(&IMPI_max_cid, &maxcid, 1, IMPI_UINT8, MPI_MAX, comm);

} else {
/* Rank 0 processes are the leaders of their local group.
* Each leader finds the max context ID of all remote group
* processes (excluding their leader). The leaders then swap the
* information and broadcast to the remote group.
*/
MPI_Comm_remote_size(comm, &rgsize);

if (myrank == 0) {
maxcid = IMPI_max_cid;

/* find max context ID of remote non-leader processes */
for (i = 1; i < rgsize; i++) {

MPI_Recv(&newcid, 1, IMPI_UINT8, i, IMPI_DUP_TAG, comm, &status);
if (newcid > maxcid) maxcid = newcid;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

389

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

/* swap context ID with remote leader */
MPI_Sendrecv(&maxcid, 1, IMPI_UINT8, 0, IMPI_DUP_TAG,

&newcid, 1, IMPI_UINT8, 0, IMPI_DUP_TAG,
comm, &status);

if (newcid > maxcid) maxcid = newcid;

/* broadcast context ID to remote non-leader processes */
for (i = 1; i < rgsize; i++)
MPI_Send(&maxcid, 1, IMPI_UINT8, i, IMPI_DUP_TAG, comm);

}
else {
/* non-leader */
MPI_Send(&IMPI_max_cid, 1, IMPI_UINT8, 0, IMPI_DUP_TAG, comm);
MPI_Recv(&maxcid, 1, IMPI_UINT8, 0, IMPI_DUP_TAG, comm, &status);

}
}

if (maxcid >= IMPI_MAX_CID-1)
error out of contexts;

newcid = maxcid + 1;
IMPI_max_cid = maxcid + 2;

build a new communicator newcomm with the same groups as comm and
with point-to-point context newcid and collective context (newcid+1)

return MPI_SUCCESS;
}

4.7 Comm split

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
{
int *p, *p2, *procs;
int nprocs, myrank, *myprocs, mynprocs;
MPI_Group oldgroup, newgroup;
IMPI_Uint8 newcid, maxcid;

/* create a new context ID */
if (IMPI_max_cid % 2 == 0) IMPI_max_cid += 1;

MPI_Allreduce(&IMPI_max_cid, &maxcid, 1, IMPI_UINT8, MPI_MAX, comm);
if (maxcid >= IMPI_MAX_CID-1)
error out of contexts;

newcid = maxcid + 1;
IMPI_max_cid = maxcid + 2;

/* create an array of process information for doing the split */
MPI_Comm_size(comm, &nprocs);
MPI_Comm_rank(comm, &myrank);

390

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

procs = (int *) malloc(3 * nprocs * sizeof(int));

/* gather all process information at all processes */
p = &procs[3 * myrank];
p[0] = color;
p[1] = key;
p[2] = myrank;

MPI_Allgather(p, 3, MPI_INT, procs, 3, MPI_INT, comm);

/* processes with undefined color can stop here */
if (color == MPI_UNDEFINED) {
*newcomm = MPI_COMM_NULL;
return MPI_SUCCESS;

}

sort the array of process information in ascending order by
color, then by key if colors are the same, then by rank if color
and key are the same;

/* locate and count the # of processes having my color */
myprocs = 0;
for (i = 0, p = procs; (i < nprocs) && (*p != color); ++i, p += 3);

myprocs = p;
mynprocs = 1;

for (++i, p += 3; (i < nprocs) && (*p == color); ++i, p += 3) {
++mynprocs;

}

/* compact the old ranks of my old group in the array */
p = myprocs;
p2 = myprocs + 2;
for (i = 0; i < mynprocs; ++i, ++p, p2 += 3) *p = *p2;

/* create the new group */
MPI_Comm_group(comm, &oldgroup);
MPI_Group_incl(oldgroup, mynprocs, myprocs, &newgroup);
MPI_Group_free(&oldgroup);

create a new communicator newcomm with point-to-point context newcid,
collective context (newcid+1) and group newgroup;

return MPI_SUCCESS;
}

4.8 Intercomm create

int MPI_Intercomm_create(MPI_Comm lcomm, int lleader, MPI_Comm pcomm,
int pleader, int tag, MPI_Comm *newcomm)

{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

391

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

MPI_Status status;
MPI_Group oldgroup, remotegroup;
IMPI_Uint8 newcid, maxcid;
IMPI_Uint8 inmsg[2], outmsg[2];
int lgsize, rgsize, myrank;
int *lranks, *rranks;

/* Create the new context ID. Reduce-max to leader within the local
* group, then find the max between the two leaders, then broadcast
* within group.
* In the same message, the leaders exchange their local group sizes
* and broadcast the received group size to their local group. */

MPI_Group_size(lcomm, &lgsize);
MPI_Comm_rank(lcomm, &myrank);

if (IMPI_max_cid % 2 == 0) IMPI_max_cid += 1;

MPI_Reduce(&IMPI_max_cid, &maxcid, 1, IMPI_UINT8,
MPI_MAX, lleader, lcomm);

if (lleader == myrank) {
outmsg[0] = maxcid;
outmsg[1] = lgsize;

MPI_Sendrecv(outmsg, 2, MPI_INT, pleader, tag,
inmsg, 2, MPI_INT, pleader, tag, pcomm, &status);

if (inmsg[0] < maxcid) inmsg[0] = maxcid;
}

MPI_Bcast(inmsg, 2, IMPI_UINT8, lleader, lcomm);

maxcid = inmsg[0];
rgsize = (int) inmsg[1];

if (maxcid >= IMPI_MAX_CID-1)
error out of contexts;

newcid = maxcid + 1;
IMPI_max_cid = maxcid + 2;

/* allocate remote group array of ranks */
rranks = malloc(rgsize * sizeof(int));

/* leaders exchange rank arrays and broadcast them to their group */
if (lleader == myrank) {
lranks = malloc(lgsize * sizeof(int));

fill local ranks array lranks with the ranks in MPI_COMM_WORLD of
the process in lcomm;

MPI_Sendrecv(lranks, lgsize, MPI_INT, pleader, tag, rranks,

392

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

rgsize, MPI_INT, pleader, tag, pcomm, &status);

free(lranks);
}

MPI_Bcast(rranks, rgsize, MPI_INT, lleader, lcomm);

/* create the remote group */
MPI_Comm_group(MPI_COMM_WORLD, &oldgroup);
MPI_Group_incl(oldgroup, rgsize, rranks, &remotegroup);

create a new inter-communicator newcomm with point-to-point context
newcid, collective context (newcid+1), local group the group of
lcomm and remote group remotegroup;

return MPI_SUCCESS;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

393

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.9 Intercomm merge

int MPI_Intercomm_merge(MPI_Comm comm, int high, MPI_Comm *newcomm)
{
MPI_Status status;
MPI_Group g1, g2, newgroup;
IMPI_Uint8 newcid, maxcid;
IMPI_Uint8 inmsg[2], outmsg[2];
int myrank, rgsize, rhigh;

/* Create the new context ID. Rank 0 processes are the leaders of their
* local group. Each leader finds the max context ID of all remote
* group processes (excluding their leader) and their "high" setting.
* The leaders then swap the information and broadcast to the remote
* group.
* Note: this is a criss-cross effect, processes talk to the remote
* leader. */

MPI_Comm_rank(comm, &myrank);
MPI_Comm_remote_size(comm, &rgsize);

if (IMPI_max_cid % 2 == 0) IMPI_max_cid += 1;

if (myrank == 0) {
maxcid = IMPI_max_cid;

/* find max context ID of remote non-leader processes */
for (i = 1; i < rgsize; i++) {
MPI_Recv(inmsg, 1, IMPI_UINT8, i, IMPI_MERGE_TAG, comm, &status);
if (inmsg[0] > maxcid) maxcid = inmsg[0];

}

/* swap context ID and high value with remote leader */
outmsg[0] = maxcid;
outmsg[1] = high;

MPI_Sendrecv(outmsg, 2, IMPI_UINT8, 0, IMPI_MERGE_TAG,
inmsg, 2, IMPI_UINT8, 0, IMPI_MERGE_TAG, comm, &status);

if (inmsg[0] > maxcid) maxcid = inmsg[0];

rhigh = inmsg[1];

/* broadcast context ID and local high to remote
* non-leader processes */
outmsg[0] = maxcid;
outmsg[1] = high;

for (i = 1; i < rgsize; i++)
MPI_Send(outmsg, 2, IMPI_UINT8, i, IMPI_MERGE_TAG, comm);

}
else {
/* non-leader */

394

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

MPI_Send(&maxcid, 1, IMPI_UINT8, 0, IMPI_MERGE_TAG, comm);
MPI_Recv(inmsg, 2, IMPI_UINT8, 0, IMPI_MERGE_TAG, comm, &status);

maxcid = inmsg[0];
rhigh = inmsg[1];

}

if (maxcid >= IMPI_MAX_CID-1)
error out of contexts;

newcid = maxcid + 1;
IMPI_max_cid = maxcid + 2;

/* All procs know the "high" for local and remote groups and
* the context ID. Create the properly ordered union group.
* In case of equal high values, the group that has the leader
* with the lowest rank in MPI_COMM_WORLD goes first.
*/
if (high && (!rhigh)) {
MPI_Comm_remote_group(comm, &g1);
MPI_Comm_group(comm, &g2);

} else if ((!high) && rhigh) {
MPI_Comm_group(comm, &g1);
MPI_Comm_remote_group(comm, &g2);

} else if ((rank in MPI_COMM_WORLD of rank 0 in local group)
< (rank in MPI_COMM_WORLD of rank 0 in remote group)) {

MPI_Comm_group(comm, &g1);
MPI_Comm_remote_group(comm, &g2);

} else {
MPI_Comm_remote_group(comm, &g1);
MPI_Comm_group(comm, &g2);

}

MPI_Group_union(g1, g2, &newgroup);

create a new intra-communicator newcomm with point-to-point context
newcid, collective context (newcid+1) and group newgroup;

return MPI_SUCCESS;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

395

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.10 Barrier

int MPI_Barrier(MPI_Comm comm)
{
MPI_Status status;
int i, nmasters, myrank, mynum, dim, hibit, mask;

MPI_Comm_rank(comm, &myrank);

/* local phase */
fan in to local master;

/* global phase */
if (is_master(myrank, comm)) {
nmasters = num_masters(comm);
if (nmasters <= IMPI_MAX_LINEAR_BARRIER) {
/* linear barrier among the masters */
if (myrank == 0) {

for (i = 1; i < nmasters; i++)
MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, rank_master(i, comm),

IMPI_BARRIER_TAG, comm, &status);

for (i = 1; i < nmasters; i++)
MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, rank_master(i, comm),

IMPI_BARRIER_TAG, comm);
} else {
MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, 0, IMPI_BARRIER_TAG, comm);
MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, 0,

IMPI_BARRIER_TAG, comm, &status);
}

} else {
/* tree barrier among the masters */
mynum = master_num(myrank, comm);
dim = cubedim(nmasters);
hibit = highbit(mynum, dim);
--dim;

/* receive from children */
for (i = dim, mask = 1 << i; i > hibit; --i, mask >>= 1) {

peer = mynum | mask;
if (peer < nmasters)
MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, rank_master(peer, comm),

IMPI_BARRIER_TAG, comm, &status);
}

/* send to and receive from parent */
if (mynum > 0) {
peer = rank_master(mynum & ˜(1 << hibit), comm);
MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, peer, IMPI_BARRIER_TAG, comm);

MPI_Recv(MPI_BOTTOM, 0, MPI_BYTE, peer,
IMPI_BARRIER_TAG, comm, &status);

}

396

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

/* send to children */
for (i = hibit + 1, mask = 1 << i; i <= dim; ++i, mask <<= 1) {
peer = rank | mask;
if (peer < nmasters)
MPI_Send(MPI_BOTTOM, 0, MPI_BYTE, rank_master(peer, comm),

IMPI_BARRIER_TAG, comm);
}

}
}

/* local phase */
fan out from local master;

return MPI_SUCCESS;
}

4.11 Bcast

int MPI_Bcast(void *buf, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)

{
int myrank;

MPI_Comm_rank(comm, &myrank);

/* global phase */
if (myrank == root ||

(is_master(myrank, comm) && !are_local(myrank, root, comm)))
master_bcast(buf, count, dtype, root, comm);

/* local phase */
if (are_local(myrank, root, comm))
broadcast the data from the root to the local processes;

else
broadcast the data from the local master to the local processes;

return MPI_SUCCESS;
}

int master_bcast(void *buf, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)

{
MPI_Status status;
int myrank, nmasters, mynum, rootnum, vnum, dim, hibit;
int i, peer, mask;

MPI_Comm_rank(comm, &myrank);
nmasters = num_masters(comm);

if (nmasters <= IMPI_MAX_LINEAR_BCAST) {
/* linear broadcast between masters */
if (myrank == root)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

397

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

for (i = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm)) continue;

MPI_Send(buf, count, dtype, master_rank(i, comm),
IMPI_BCAST_TAG, comm);

}
else
MPI_Recv(buf, count, dtype, root, IMPI_BCAST_TAG, comm, &status);

} else {
/* tree broadcast between masters */
mynum = master_num(myrank, comm);
rootnum = master_num(root, comm);
vnum = (mynum + nmasters - rootnum) % nmasters;
dim = cubedim(nmasters);
hibit = highbit(vnum, dim);
--dim;

/* receive data from parent in the tree */
if (vnum > 0) {
peer = ((vnum & ˜(1 << hibit)) + rootnum) % nmasters;
peer = master_rank(peer, comm);
if (are_local(peer, root, comm))

peer = root;

MPI_Recv(buf, count, dtype, peer, IMPI_BCAST_TAG, comm, &status);
}

/* send data to the children */
for (i = hibit + 1, mask = 1 << i; i <= dim; ++i, mask <<= 1) {
peer = vnum | mask;
if (peer < nmasters) {
peer = master_rank((peer + rootnum) % nmasters, comm);
MPI_Send(buf, count, dtype, peer, IMPI_BCAST_TAG, comm);

}
}

}

return MPI_SUCCESS;
}

4.12 Gather

int gather_is_short(int count, MPI_Datatype dtype, MPI_Comm comm)
{
int size;

MPI_Pack_size(count, dtype, comm, &size);
return(size < IMPI_COLL_CROSSOVER);

}

int MPI_Gather(void *sbuf, int scount, MPI_Datatype sdtype, void *rbuf,

398

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

int rcount, MPI_Datatype rdtype, int root, MPI_Comm comm)
{
if (gather_is_short(scount, sdtype, comm))
gather_short(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);

else
gather_long(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);

return MPI_SUCCESS;
}

int gather_long(void *sbuf, int scount, MPI_Datatype sdtype, void *rbuf,
int rcount, MPI_Datatype rdtype, int root, MPI_Comm comm)

{
MPI_Status status;
MPI_Aint extent;
int i, nprocs, myrank, incr;
char *p;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (myrank != root) {
MPI_Send(sbuf, scount, sdtype, root, IMPI_GATHER_TAG, comm);
return MPI_SUCCESS;

}

MPI_Type_extent(rdtype, &extent);
incr = extent * rcount;

for (i = 0, p = (char *) rbuf; i < nprocs; i++, p += incr) {
if (i == myrank)
MPI_Sendrecv(sbuf, scount, sdtype, i, IMPI_GATHER_TAG,

p, rcount, rdtype, i, IMPI_GATHER_TAG, comm, &status);
else
MPI_Recv(p, rcount, rdtype, i, IMPI_GATHER_TAG, comm, &status);

}

return MPI_SUCCESS;
}

int gather_short(void *sbuf, int scount, MPI_Datatype sdtype, void *rbuf,
int rcount, MPI_Datatype rdtype, int root, MPI_Comm comm)

{
MPI_Status status;
int myrank, packsize, vnum, rootnum, nmasters;
int mask, nprocs, count, size;
int mynum, peer, i;
char *tmpbuf;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);
MPI_Pack_size(scount, sdtype, comm, &packsize);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

399

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

if (is_master(myrank, comm) || myrank == root)
allocate a temporary buffer tmpbuf of size nprocs*packsize;

nmasters = num_masters(comm);

/* local phase */
if (are_local(myrank, root, comm))
gather the send buffers of the local processes into the
root’s receive buffer;

else
gather send buffers at the local master into tmpbuf;
/* At this point the master must have a buffer tmpbuf
* containing a concatenation in rank order of the
* local processes packed send buffers.
*/

/* global phase */
if ((myrank == root) || (is_master(myrank, comm)

&& !are_local(myrank, root, comm))) {

if (nmasters <= IMPI_MAX_LINEAR_GATHER) {
/* linear gather to root */
if (myrank == root) {
for (i = 0, size = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm))
continue; /* skip root’s node */

MPI_Recv(tmpbuf+size, nprocs*packsize, MPI_BYTE,
master_rank(i, comm), IMPI_GATHER_TAG, comm, &status);

MPI_Get_count(status, MPI_BYTE, &count);
size += count;

}
} else {
size = num_local_to_rank(myrank, comm) * packsize;
MPI_Send(tmpbuf, size, MPI_BYTE, root, IMPI_GATHER_TAG, comm);

}
} else {
/* tree gather to root */
mynum = local_master_num(myrank, comm);
rootnum = local_master_num(root, comm);
vnum = (mynum - rootnum + nmasters) % nmasters;

if (myrank == root)
size = 0;

else
size = num_local_to_rank(myrank, comm) * packsize;

for (mask = 1; mask < nprocs; mask <<= 1) {
if (vnum & mask) {
peer = master_rank(((vnum & ˜mask) + rootnum) % nmasters, comm);
if (are_local(peer, root, comm))
peer = root;

400

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

MPI_Send(tmpbuf, size, MPI_BYTE, peer, IMPI_GATHER_TAG, comm);
break;

}
else {
peer = vnum | mask;
if (peer >= nmasters) continue;
peer = master_rank((peer + rootnum) % nmasters, comm);
if (are_local(peer, root, comm))
peer = root;

MPI_Recv(tmpbuf+size, nprocs*packsize, MPI_BYTE, peer,
IMPI_GATHER_TAG, comm, &status);

MPI_Get_count(status, MPI_BYTE, &count);
size += count;

}
}

}
}

/* local phase */
if (myrank == root) {
/* For the linear gather to root, tmpbuf contains, concatenated in
* order of master rank, the concatenations of the process send
* buffers created in the first local phase.
* For the tree gather to root, the order of these send buffers can be
* circularly rotated by master rank number (skipping over the root,
* which has been put directly in the root’s receive buffer already).
*/

unpack the data in tmpbuf into the receive buffer;
}

if (is_master(myrank, comm))
free(tmpbuf);

return MPI_SUCCESS;
}

4.13 Gatherv

IMPI_Int4 gatherv_is_short(int *count, MPI_Datatype dtype,
int root, MPI_Comm comm)

{
IMPI_Int4 maxsize;
int myrank, nprocs, size;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);
MPI_Pack_size(1, dtype, comm, &size);

if (myrank == root) {
maxsize = count[0] * size;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

401

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

for (i = 1; i < nprocs; i++)
if (count[i] * size > maxsize)

maxsize = count[i] * size;

if (maxsize > IMPI_COLL_CROSSOVER)
maxsize = 0;

}

MPI_Bcast(&maxsize, 1, IMPI_INT4, root, comm);
return(maxsize);

}

int MPI_Gatherv(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int *rcounts, int *disps, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
IMPI_Int4 maxsize;

maxsize = gatherv_is_short(rcounts, rdtype, root, comm);
if (maxsize)
gatherv_short(sbuf, scount, sdtype, rbuf, rcounts, disps, rdtype,

root, comm, maxsize);
else
gatherv_long(sbuf, scount, sdtype, rbuf, rcounts, disps, rdtype,

root, comm);

return MPI_SUCCESS;
}

int gatherv_short(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int *rcounts, int *disps,
MPI_Datatype rdtype,
int root, MPI_Comm comm, IMPI_Int4 maxsize)

{
MPI_Status status;
int myrank, packsize, vnum, rootnum, nmasters;
int mask, nprocs, count, size;
int i, msgnum, peer;
char *tmpbuf;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (is_master(myrank, comm) || myrank == root)
allocate a temporary buffer tmpbuf of size nprocs*maxsize;

nmasters = num_masters(comm);

/* local phase */
if (are_local(myrank, root, comm)) {
gather the send buffers of the local processes into the
root’s receive buffer;

} else {

402

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

gather send buffers at the local master into tmpbuf;
on local master set size equal to the # of bytes gathered in tmpbuf;
/* At this point the master must have a buffer tmpbuf
* containing a concatenation in rank order of the
* local processes packed send buffers.
*/

}

/* global phase */
if ((myrank == root) || (is_master(myrank, comm)

&& !are_local(myrank, root, comm))) {

if (nmasters <= IMPI_MAX_LINEAR_GATHER) {
/* linear gather to root */
if (myrank == root) {
for (i = 0, size = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm))
continue; /* skip root’s node */

MPI_Recv(tmpbuf+size, nprocs*maxsize, MPI_BYTE,
master_rank(i, comm), IMPI_GATHERV_TAG, comm, &status);

MPI_Get_count(status, MPI_BYTE, &count);
size += count;

}
} else
MPI_Send(tmpbuf, size, MPI_BYTE, root, IMPI_GATHERV_TAG, comm);

} else {
/* tree gather to root */
mynum = local_master_num(myrank, comm);
rootnum = local_master_num(root, comm);
vnum = (mynum - rootnum + nmasters) % nmasters;

if (myrank == root)
size = 0;

for (mask = 1; mask < nprocs; mask <<= 1) {
if (vnum & mask) {
peer = master_rank(((vnum & ˜mask) + rootnum) % nmasters, comm);
if (are_local(peer, root, comm))
peer = root;

MPI_Send(tmpbuf, size, MPI_BYTE, peer, IMPI_GATHERV_TAG, comm);
break;

}
else {
peer = vnum | mask;
if (peer >= nmasters) continue;
peer = master_rank((peer + rootnum) % nmasters, comm);
if (are_local(peer, root, comm))
peer = root;

MPI_Recv(tmpbuf+size, nprocs*maxsize, MPI_BYTE, peer,
IMPI_GATHERV_TAG, comm, &status);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

403

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

MPI_Get_count(status, MPI_BYTE, &count);
size += count;

}
}

}
}

/* local phase */
if (myrank == root) {
/* tmpbuf contains concatenated in order of master rank the
* concatenations of the process send buffers created in the first
* local phase
*/
unpack the data in tmpbuf into the receive buffer;

}

if (is_master(myrank, comm))
free(tmpbuf);

return MPI_SUCCESS;
}

int gatherv_long(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int *rcounts, int *disps,
MPI_Datatype rdtype, int root, MPI_Comm comm)

{
MPI_Status status;
MPI_Aint extent;
int i, myrank, nprocs;
char *p;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (myrank != root) {
MPI_Send(sbuf, scount, sdtype, root, IMPI_GATHER_TAG, comm);
return MPI_SUCCESS;

}
MPI_Type_extent(rdtype, &extent);

for (i = 0; i < nprocs; i++) {

p = ((char *) rbuf) + (extent * disps[i]);

if (i == myrank)
MPI_Sendrecv(sbuf, scount, sdtype, i, IMPI_GATHERV_TAG,

p, rcounts[i], rdtype, i, IMPI_GATHERV_TAG,
comm, &status);

else
MPI_Recv(p, rcounts[i], rdtype, i, IMPI_GATHERV_TAG, comm, &status);

}
return MPI_SUCCESS;

}

404

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.14 Scatter

int scatter_is_short(int count, MPI_Datatype dtype, MPI_Comm comm)
{
int size;

MPI_Pack_size(count, dtype, comm, &size);
return(size < IMPI_COLL_CROSSOVER);

}

int MPI_Scatter(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
if (scatter_is_short(rcount, rdtype, comm))
scatter_short(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);

else
scatter_long(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);

return MPI_SUCCESS;
}

int scatter_long(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
MPI_Status status;
MPI_Aint extent;
int i, myrank, nprocs, incr;
char *p;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (myrank != root)
MPI_Recv(rbuf, rcount, rdtype, root, IMPI_SCATTER_TAG, comm, &status);

else {
MPI_Type_extent(sdtype, &extent);
incr = extent * scount;

for (i = 0, p = (char *) sbuf; i < nprocs; i++, p += incr) {
if (i == myrank)

MPI_Sendrecv(p, scount, sdtype, i, IMPI_SCATTER_TAG,
rbuf, rcount, rdtype, i, IMPI_SCATTER_TAG,
comm, &status);

else
MPI_Send(p, scount, sdtype, i, IMPI_SCATTER_TAG, comm);

}
}

return MPI_SUCCESS;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

405

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

int scatter_short(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
MPI_Status status;
int i, myrank, packsize, size, nmasters;
void *tmpbuf;

MPI_Comm_rank(comm, &myrank);
MPI_Pack_size(rcount, rdtype, comm, &packsize);

/* global phase */
if (myrank == root) {
nmasters = num_masters(comm);
for (i = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm))

continue; /* skip root’s node */

size = num_local_to_master(i, comm) * packsize;

allocate a temporary buffer tmpbuf of size bytes and
put into it concatenated in rank order packed copies of the data
destined for each process local to master i;

MPI_Send(tmpbuf, size, MPI_BYTE,
master_rank(i, comm), IMPI_SCATTER_TAG, comm);

free tmpbuf;
}

} else if (is_master(myrank, comm) && !are_local(myrank, root, comm)) {
size = num_local_to_rank(myrank, comm) * packsize;
allocate a temporary buffer tmpbuf of size bytes;
MPI_Recv(tmpbuf, size, MPI_BYTE, root,

IMPI_SCATTER_TAG, comm, &status);
}

/* local phase */
if (are_local(myrank, root, comm))
scatter data from root sbuf to local processes;

else
scatter packed data from master tmpbuf to local processes;

free all temporary buffers which are still allocated;
return MPI_SUCCESS;

}

4.15 Scatterv

IMPI_Int4 scatterv_is_short(int *count, MPI_Datatype dtype,
int root, MPI_Comm comm)

406

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

{
IMPI_Int4 maxsize;
int i, myrank, nprocs, size;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);
MPI_Pack_size(1, dtype, comm, &size);

if (myrank == root) {
maxsize = count[0] * size;
for (i = 1; i < nprocs; i++)
if (count[i] * size > maxsize)

maxsize = count[i] * size;

if (maxsize > IMPI_COLL_CROSSOVER)
maxsize = 0;

}

MPI_Bcast(&maxsize, 1, IMPI_INT4, root, comm);
return(maxsize);

}

int MPI_Scatterv(void *sbuf, int *scounts, int *disps,
MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
IMPI_Int4 maxsize;

maxsize = scatterv_is_short(scounts, sdtype, root, comm);
if (maxsize)
scatterv_short(sbuf, scounts, disps, sdtype, rbuf, rcount, rdtype,

root, comm, maxsize);
else
scatterv_long(sbuf, scounts, disps, sdtype, rbuf, rcount, rdtype,

root, comm);

return MPI_SUCCESS;
}

/* find sum of the counts to be scattered to the processes
* local to master number i
*/
int sum_counts_to_master(int *counts, int m, MPI_Comm comm)
{
int *ranks;
int i, nranks, sum;

nranks = num_local_to_master(m, comm);
ranks = locals_to_master(m, comm);

for (i = 0, sum = 0; i < nranks; i++)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

407

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

sum += counts[ranks[i]];

free(ranks);
return(sum);

}

int scatterv_short(void *sbuf, int *scounts, int *disps,
MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm, IMPI_Int4 maxsize)

{
MPI_Status status;
int i, myrank, packsize, size, nmasters;
void *tmpbuf;

MPI_Comm_rank(comm, &myrank);
MPI_Pack_size(1, sdtype, comm, &packsize);

/* global phase */
if (myrank == root) {
nmasters = num_masters(comm);
for (i = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm))

continue; /* skip root’s node */

size = sum_counts_to_master(scounts, i, comm) * packsize;

create a temporary buffer tmpbuf of size bytes and
put into it concatenated in rank order packed copies of the data
destined for each process local to master i;

MPI_Send(tmpbuf, size, MPI_BYTE,
master_rank(i, comm), IMPI_SCATTERV_TAG, comm);

free tmpbuf;
}

}
else if (is_master(myrank, comm) && !are_local(myrank, root, comm)) {
size = num_local_to_rank(myrank, comm) * maxsize;
allocate a temporary buffer tmpbuf of size bytes;
MPI_Recv(tmpbuf, size, MPI_BYTE, root,

IMPI_SCATTERV_TAG, comm, &status);
}

/* local phase */
if (are_local(myrank, root, comm))
scatter data from root sbuf to local processes;

else
scatter packed data from master tmpbuf to local processes;

free all temporary buffers which are still allocated;
return MPI_SUCCESS;

}

408

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

int scatterv_long(void *sbuf, int *scounts, int *disps,
MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

{
MPI_Status status;
MPI_Aint extent;
int i, myrank, nprocs;
char *p;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (myrank != root) {
MPI_Recv(rbuf, rcount, rdtype, root, IMPI_SCATTERV_TAG,

comm, &status);
return MPI_SUCCESS;

}

MPI_Type_extent(sdtype, &extent);

for (i = 0; i < nprocs; i++) {
p = ((char *) sbuf) + (extent * disps[i]);
if (i == myrank)
MPI_Sendrecv(p, scounts[i], sdtype, i, IMPI_SCATTERV_TAG,

rbuf, rcount, rdtype, i, IMPI_SCATTERV_TAG,
comm, &status);

else
MPI_Send(p, scounts[i], sdtype, i, IMPI_SCATTERV_TAG, comm);

}

return MPI_SUCCESS;
}

4.16 Reduce

int MPI_Reduce(void *sbuf, void *rbuf, int count, MPI_Datatype dtype,
MPI_op op, int root, MPI_Comm comm)

{
if (op is commutative)
return(reduce_commutative(sbuf, rbuf, count, dtype, op, root, comm));
else
return(reduce_noncommutative(sbuf, rbuf, count, dtype, op, root, comm));

}

int reduce_commutative(void *sbuf, void *rbuf, int count,
MPI_Datatype dtype,
MPI_op op, int root, MPI_Comm comm)

{
MPI_Status status;
int myrank, mynum, rootnum, vnum, dim, hibit, mask;
int peer, nmasters, i;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

409

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

void *tmpbuf, *redbuf;

nmasters = num_masters(comm);
MPI_Comm_rank(comm, &myrank);

/* local phase */
if (are_local(myrank, root, comm))
perform a local reduction to root’s rbuf;

else
perform a local reduction to a temporary buffer redbuf in
the local master;

/* global phase */
if ((myrank == root) || (is_master(myrank, comm)

&& !are_local(myrank, root, comm))) {

allocate a temporary buffer tmpbuf large enough for
count copies of dtype;

if (nmasters <= IMPI_MAX_LINEAR_REDUCE) {
/* linear reduction to root */
if (myrank == root) {
for (i = 0; i < nmasters; i++) {
if (i == local_master_num(root, comm)) continue;
MPI_Recv(tmpbuf, count, dtype, master_rank(i, comm),

IMPI_REDUCE_TAG, comm, &status);
}

call reduction function op on tmpbuf (invec)
and rbuf (inoutvec);

} else {
MPI_Send(redbuf, count, dtype, root, IMPI_REDUCE_TAG, comm);

}
} else {
/* tree reduction to root */
mynum = local_master_num(myrank, comm);
rootnum = local_master_num(root, comm);
vnum = (mynum - rootnum + nmasters) % nmasters;
dim = cubedim(nmasters);

/* loop over cube dimensions */
for (i = 0, mask = 1; i < dim; ++i, mask <<= 1) {
/* a high-proc sends to low-proc and stops */
if (vnum & mask) {
peer = master_rank(((vnum & ˜mask) + rootnum) % nmasters, comm);
if (are_local(peer, root, comm))
peer = root;

MPI_Send(redbuf, count, dtype, peer, IMPI_REDUCE_TAG, comm);
break;

}

/* a low-proc receives, reduces, and moves

410

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

* to a higher dimension */
else {
peer = vnum | mask;
if (peer >= nmasters) continue;
peer = master_rank((peer + rootnum) % nmasters, comm);

MPI_Recv(tmpbuf, count, dtype, peer,
IMPI_REDUCE_TAG, comm, &status);

if (myrank == root) {
call reduction function op on tmpbuf (invec)
and rbuf (inoutvec);

} else {
call reduction function op on tmpbuf (invec)
and redbuf (inoutvec);

}
}

}
}

}

free all temporary buffers;
return MPI_SUCCESS;

}

int reduce_noncommutative(void *sbuf, void *rbuf, int count,
MPI_Datatype dtype, MPI_op op, int root, MPI_Comm comm)

{
MPI_Status status;
int i, myrank, nprocs;
void *inbuf, *tmpbuf;

MPI_Comm_size(comm, &nprocs);
MPI_Comm_root(comm, &myrank);

if (myrank != root)
return(MPI_Send(sbuf, count, dtype, root, IMPI_REDUCE_TAG, comm);

if (nprocs > 1)
create a temporary buffer tmpbuf large enough for count dtypes;

if (myrank == (nprocs - 1))
MPI_Sendrecv(sbuf, count, dtype, myrank, IMPI_REDUCE_TAG,

rbuf, count, dtype, myrank, IMPI_REDUCE_TAG, comm,
&status);

else
MPI_Recv(rbuf, count, dtype, nprocs - 1, IMPI_REDUCE_TAG, comm,

&status);

for (i = nprocs - 2; i >= 0; --i) {
if (myrank == i) {

inbuf = sbuf;
} else {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

411

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

MPI_Recv(tmpbuf, count, dtype, i, IMPI_REDUCE_TAG, comm, &status);
inbuf = tmpbuf;

}

call reduction function op on inbuf (invec) and rbuf (inoutvec);
}

free all temporary buffers;
return MPI_SUCCESS;

}

4.17 Reduce scatter

int MPI_Reduce_scatter(void *sbuf, void *rbuf, int *rcounts,
MPI_Datatype dtype, MPI_Op op, MPI_Comm comm)

{
void *tmpbuf = 0;
int *disps = 0;
int i, myrank, nprocs, count;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

if (myrank == 0) {
for (i = 0, count = 0; i < nprocs; i++) {
count += rcounts[i];

}
create a temporary buffer tmpbuf large enough for count dtypes;
disps = malloc(nprocs * sizeof(int));

disps[0] = 0;
for (i = 0; i < (nprocs - 1); i++)
disps[i + 1] = disps[i] + rcounts[i];

}

MPI_Reduce(sbuf, tmpbuf, count, dtype, op, 0, comm);

MPI_Scatterv(tmpbuf, rcounts, disps, dtype,
rbuf, rcounts[myrank], dtype, 0, comm);

if (disps) free(disps);
if (tmpbuf) free(tmpbuf);
return MPI_SUCCESS;

}

4.18 Scan

int MPI_Scan(void *sbuf, void *rbuf, int count,
MPI_Datatype dtype, MPI_Op op, MPI_Comm comm)

{
MPI_Status status;

412

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

int i, myrank, nprocs;
void *tmpbuf;

MPI_Comm_rank(comm, &myrank);
MPI_Comm_size(comm, &nprocs);

/* copy the send buffer into the receive buffer */
MPI_Sendrecv(sbuf, count, dtype, myrank, IMPI_SCAN_TAG,

rbuf, count, dtype, myrank, IMPI_SCAN_TAG, comm, &status);

if (myrank > 0) {
/* receive previous buffer into a temporary and reduce */

create a temporary buffer tmpbuf large enough for count dtypes;

MPI_Recv(tmpbuf, count, dtype, myrank-1, IMPI_SCAN_TAG, comm,
&status);

call reduction function op on tmpbuf (invec) and rbuf (inoutvec)

free tmpbuf;
}

if (myrank < (nprocs - 1))
/* send result to next process */
MPI_Send(rbuf, count, dtype, myrank + 1, IMPI_SCAN_TAG, comm);

return MPI_SUCCESS;
}

4.19 Allgather

int MPI_Allgather(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
MPI_Comm comm)

{
int nprocs;

MPI_Comm_size(comm, &nprocs);
MPI_Gather(sbuf, scount, sdtype, rbuf, rcount, rdtype, 0, comm);
MPI_Bcast(rbuf, rcount * nprocs, rdtype, 0, comm);
return MPI_SUCCESS;

}

4.20 Allgatherv

int
MPI_Allgatherv(void *sbuf, int scount, MPI_Datatype sdtype,

void *rbuf, int *rcounts,
int *displs, MPI_Datatype rdtype,
MPI_Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

413

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

{
int nprocs;
int i, total_rcount;

MPI_Comm_size(comm, &nprocs);
MPI_Gatherv(sbuf, scount, sdtype, rbuf, rcounts, displs, rdtype, 0,comm);
total_rcount = 0;
for (i=0, total_rcount=0; i<nprocs; i++)
total_rcount += rcounts[i];

MPI_Bcast(rbuf, total_rcount, rdtype, 0, comm);
return MPI_SUCCESS;
}

4.21 Allreduce

int MPI_Allreduce(void *sbuf, void *rbuf, int count, MPI_Datatype dtype,
MPI_op op, MPI_Comm comm)

{
MPI_Reduce(sbuf, rbuf, count, dtype, op, 0, comm);
MPI_Bcast(rbuf, count, dtype, 0, comm);
return MPI_SUCCESS;

}

4.22 Alltoall

int alltoall_is_short(int count, MPI_Datatype dtype, MPI_Comm comm)
{
int size;

MPI_Pack_size(1, dtype, comm, &size);
return(count * size < IMPI_COLL_CROSSOVER);

}

int MPI_Alltoall(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
MPI_Comm comm)

{
if (alltoall_is_short(scount, sdtype, comm))
alltoall_short(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);
else
alltoall_long(sbuf, scount, sdtype, rbuf, rcount, rdtype, root, comm);

}

int alltoall_long(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
MPI_Comm comm)

{
MPI_Request *reqs;
MPI_Status *stats;
MPI_Aint sextent, rextent;

414

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

int i, nprocs;

MPI_Comm_size(comm, &nprocs);
MPI_Type_extent(sdtype, &sextent);
MPI_Type_extent(rdtype, &rextent);

reqs = (MPI_Request *) malloc(2 * nprocs * sizeof(MPI_Request));
stats = (MPI_Status *) malloc(2 * nprocs * sizeof(MPI_Status));

for (i = 0; i < nprocs; i++) {
MPI_Irecv((char *) rbuf + i * rcount * rextent, rcount,

rdtype, i, IMPI_ALLTOALL_TAG, comm, &reqs[2*i]);
MPI_Isend((char *) sbuf + i * scount * sextent, scount,

sdtype, i, IMPI_ALLTOALL_TAG, comm, &reqs[2*i + 1]);
}

MPI_Waitall(2 * nprocs, reqs, stats);

free(reqs);
free(stats);
return MPI_SUCCESS;

}

int alltoall_short(void *sbuf, int scount, MPI_Datatype sdtype,
void *rbuf, int rcount, MPI_Datatype rdtype,
MPI_Comm comm)

{
MPI_Status status;
int i, j, myrank, nmasters, packsize, size;
int rootmaster, nroot;

MPI_Comm_rank(comm, &myrank);
MPI_Pack_size(scount, sdtype, comm, &packsize);

/* local phase */
do local all to all exchange;

/* global phase */
/* This phase rotates around the nodes treating each one in turn as
* the root. The root node master collects in turn the buffers
* destined for each other node and sends them in a single transfer
* to the node where a local operation scatters them to the local
* destination processes.
*/
nmasters = num_masters(comm);
for (i = 0; i < nmasters; i++) {
rootmaster = master_rank(i, comm);
nroot = num_local_to_master(i, comm);

if (are_local(myrank, rootmaster, comm)) {
for (j = 0; j < nmasters; j++) {
if (i == j) continue;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

415

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

if (myrank == rootmaster) {
size = nroot * num_local_to_master(j, comm) * packsize;
allocate a temporary buffer tmpbuf of size bytes;

}

gather into the tmpbuf at rootmaster all send buffers
destined from processes on node i to processes on node j, they
are concatenated in order of sender rank by receiver rank;

if (myrank == rootmaster) {
MPI_Send(tmpbuf, size, MPI_BYTE, master_rank(j, comm),

MPI_ALLTOALL_TAG, comm);
free tmpbuf;

}
}

} else {
/* not local to the rootmaster */
if (is_master(myrank, comm)) {

size = nroot * num_local_to_rank(myrank, comm) * packsize;
allocate a temporary buffer tmpbuf of size bytes;

MPI_Recv(tmpbuf, size, MPI_BYTE, rootmaster,
MPI_ALLTOALL_TAG, comm, &status);

}

scatter the packed send buffers received from rootmaster from
the tmpbuf of the local master to the local processes;

if (is_master(myrank, comm))
free tmpbuf;

}
}

return MPI_SUCCESS;
}

4.23 Alltoallv

int MPI_Alltoallv(void *sbuf, int *scounts, int *sdisps,
MPI_Datatype sdtype,
void *rbuf, int *rcounts, int *rdisps,
MPI_Datatype rdtype,
MPI_Comm comm)

{
MPI_Request *reqs;
MPI_Status *stats;
MPI_Aint sextent, rextent;
int i, nprocs;

MPI_Comm_size(comm, &nprocs);
MPI_Type_extent(sdtype, &sextent);
MPI_Type_extent(rdtype, &rextent);

416

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

reqs = (MPI_Request *) malloc(2 * nprocs * sizeof(MPI_Request));
stats = (MPI_Status *) malloc(2 * nprocs * sizeof(MPI_Status));

for (i = 0; i < nprocs; i++) {
MPI_Irecv((char *) rbuf + rdisps[i] * rextent, rcounts[i],

rdtype, i, IMPI_ALLTOALLV_TAG, comm, &reqs[2*i]);
MPI_Isend((char *) sbuf + sdisps[i] * sextent, scounts[i],

sdtype, i, IMPI_ALLTOALLV_TAG, comm, &reqs[2*i + 1]);
}

MPI_Waitall(2 * nprocs, reqs, stats);

free(reqs);
free(stats);
return MPI_SUCCESS;

}

4.24 Finalize

int MPI_Finalize(void)
{
MPI_Barrier(MPI_COMM_WORLD);
send finalize message to host;
do implementation dependent clean up;
return MPI_SUCCESS;

}

4.25 Constants

IMPI_UINT8_MAX 18446744073709551615
IMPI_MAX_CID 18446744073709551600

IMPI_BARRIER_TAG 110
IMPI_BCAST_TAG 120
IMPI_GATHER_TAG 130
IMPI_GATHERV_TAG 140
IMPI_SCATTER_TAG 150
IMPI_SCATTERV_TAG 160
IMPI_ALLTOALL_TAG 170
IMPI_ALLTOALLV_TAG 180
IMPI_REDUCE_TAG 190
IMPI_SCAN_TAG 200
IMPI_DUP_TAG 210
IMPI_MERGE_TAG 220
IMPI_COMM_FREE_TAG 230

IMPI_COLL_CROSSOVER 1024

IMPI_MAX_LINEAR_REDUCE 4
IMPI_MAX_LINEAR_GATHER 4
IMPI_MAX_LINEAR_BCAST 4
IMPI_MAX_LINEAR_BARRIER 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

417

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

4.26 Future work

The collectives are defined so that for each client there is one process, the master, which partici-
pates in the global communication phases. In cases where there are multiple hosts per client it is
reasonable to expect that better performance may be obtained by having multiple processes, one
per host, participating in the global communication phases. The current collectives can easily be
extended to this model by changing the definition of master process so that there is one per host
rather than one per client. In addition, to allow maximal exploitation of native communication, it
may be necessary to modify some of the collectives so that local phases remain defined between all
processes in a client rather than between all processes local to a host.

418

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Chapter 5

IMPI Conformance Testing

5.1 Summary

This chapter describes a Web-based IMPI conformance testing system. This testing system is in-
tended to assist implementors of IMPI and to verify compliance of their implementation to the
protocol defined in this document. Should a dispute occur over what the IMPI protocol specifies,
the IMPI document, not this tester, should be considered the final word. This is a work in progress,
comments and suggestions are welcome.

This tester is designed to verify the correct implementation of the IMPI specific protocols,
not to test an MPI implementation against the MPI specifications. The full testing of MPI is well
beyond the scope of this tester. The IMPI tester operates only within the C implementation of MPI.
The testing of IMPI within a Fortran or C++ environment is not yet planned.

To help describe this testing environment, some conformance testing terminology will be used.
The implementation of the IMPI protocol to be tested will be referred to as the Implementation
Under Test (IUT). The IUT will be running on a System Under Test (SUT). The SUT refers to all
the hardware and software needed to run the IUT. The person running the test will be called the
tester.

The steps taken by a tester to run the IMPI conformance tests are outlined below. Figure 5.1
shows this testing scheme graphically. The numbers in this figure indicate the order in which the
communications channels are established initially. The dashed lines are HTTP Web communica-
tion (connection-less communications, stateless). The solid lines are connection-oriented TCP/IP
sockets. The dotted line is direct tester interaction with the SUT.

� The Tester connects to the NIST IMPI web page at http://impi.nist.gov/IMPI.
(Figure 5.2) with a Java-enabled browser. The current version of the IMPI standard (this
document) is available from this web page.

� Follow the IMPI Test Tool link to the main IMPI Test Tool page. This page gives a short
description of the major parts of the IMPI testing software: the Test Interpreter, the Test Tool
Applet, the Test Scripts, and the Test Server.

� Follow the Test Interpreter link to obtain the current version of the test interpreter. The user
must compile and link this interpreter for the IUT on the SUT before continuing with the
tests.

� Follow the Test Scripts link to view the source to the test scripts and descriptions of the
available tests.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

419

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

� Follow the Test Tool Applet link when you are ready to begin testing. This page gives
detailed instructions on running the tests.

� Selecting the Run the IMPI Test Tool Applet link will initiate the IMPI Test Tool (a java
client applet) which will be down-loaded and run on the tester’s browser (see Figure 5.4).
This applet establishes a permanent1 TCP/IP connection with an instance of the IMPI Test
Manager (the test server) on the NIST IMPI Web server. Test requests and results will be
exchanged over this socket.

� The tester can choose the configuration of clients, hosts, and processes to be tested through
the Test Tool. This includes choosing where the impirun -server process will be run,
how many clients there will be, how many of these clients will be on the NIST side (simulated
clients), how many hosts will be on each simulated client, how many processes will be on
each of these simulated hosts, and what rank to assign to the first simulated client.

This does not allow some valid configurations to be specified, such as varying the number
of hosts per simulated client. If this becomes necessary for the proper testing of the IMPI
protocol, then this interface will be modified to allow more general configurations.

� Once the configuration of clients and hosts is specified, the IMPI Test Tool allows the tester to
run the IMPI Startup protocol only, for early testing of an implementation. The Run Startup
Only button on the Test Tool initiates this test. This option runs through the startup on each
client with each process printing its rank to stdout for confirmation of the ordering within
MPI COMM WORLD. Each process exits before starting the test interpreter. When running
startup-only, the NIST side sends a trace of the progress of the startup protocol to the Test
Tool so that errors in the Startup processing can be more easily identified. This tracing does
not occur otherwise.

The MPI routines exercised under this option are MPI Init, MPI Comm size,
MPI Comm rank, and MPI Finalize. Unfortunately, MPI Finalize is not a local op-
eration in IMPI since it executes an MPI Barrier. So for startup-only to complete cleanly,
the SUT must have this collective operation already implemented. This should still be useful
to the tester early in the implementation, even if the tester hangs in the MPI Finalize call
each time.

Errors that occur during the startup communications will be reported to the tester through the
Test Tool and possibly also through stdout on the SUT.

� The complete set of test scripts is made available if the Run Startup & Prepare for Scripts
button is pressed instead of the Run Startup Only button.

� Immediately after either the Run Startup Only or the Run Startup & Prepare for Scripts
buttons has been pressed, A sample impirun command line is shown to the tester, in
the scrolling output window on the Test Tool. This command line includes the specific
HOST:PORT needed as a command-line parameter to the IMPI clients. The tester must
then run the IMPI test interpreter on the SUT using this command-line, or the equivalent
command-line if the IUT uses a different syntax.

In the future, a command-line template may be made available so that the tester can specify
the required syntax for the IUT, with place holders for varying parameters such as the number

1This connection will be disconnected after a predetermined timeout period of inactivity.

420

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

of processes. This will allow the Test Tool to display the command-lines in the correct syntax
for the IUT. This should help avoid errors in starting the IUT correctly for the various tests to
be performed. Of course until then, the tester can write a script to parse the sample command
line and call their own mpiexec or mpirun routine properly.

Manager
Test

IMPI
Model

Client (User)
HOST

PORT

Home Page
IMPI Test

NIST Web Server

5

System Under Test

Test Interpreter

IMPI
MPI

4

1

Load Interface
2

Socket
3

Java-Enabled

impirun -client 1 HOST:PORT -np 1 test-interp

Applet
Test Tool

Web Browser

Figure 5.1: IMPI Test Architecture

Figure 5.3 shows the levels of communications protocols involved in this testing. We are most
interested in verifying the operation of the IMPI level of this communications stack so the tests
originate in the MPI level (an upper-tester). We also have a lower-tester that is able to examine the
IMPI protocol packets as they are received from the SUT. This lower-tester has been implemented
by instrumenting the Model IMPI implementation directly. The Model IMPI implementation is part
of the IMPI Test Manager.

Once the tester starts the IMPI test interpreter on the SUT, the IMPI startup protocol begins
between the IUT and the Model IMPI implementation running on the NIST IMPI test server. If the
startup protocol succeeds, the IMPI Test Manager will present to the tester a menu of options. The
format used to display this menu will likely change as the number of available tests increases. If the
startup protocol fails, error recovery will be attempted and as much information as possible about
the startup negotiations will be provided.

Assuming the startup protocol succeeded, the tester may select a test or group of tests to be
run. The Test Manager will then begin running the tests by sending each test, one at a time, to the
processes running on the SUT. Each test will determine the result, either Pass/Fail/Indeterminate,
and this result will be sent to the Test Tool for display (see Figure 5.4). Once all of the requested
tests have been run, the tester may select more tests or discontinue testing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

421

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

Figure 5.2: IMPI Home Page

For each test, the tester may obtain, through the IMPI web page, the source for the script that
is being interpreted. We might eventually also provide hyper-links into the IMPI or MPI documents
for the text that specifies the part or parts of the protocol that this code is intended to test. To keep
a permanent record of the results of the tests run, the Results window in the Test Tool (see Figure
5.4) can be mailed to the tester, or the contents of this window can be cut directly from the window
and pasted elsewhere.

If you are running many tests, it helps performance to periodically clear the Results window.
The buffering of unlimited amounts of output tends to slow down the Test Tool.

The full testing of the IUT must include varying the impirun command-line options. The
command-line can specify the relative ranks of the SUT nodes within the MPI COMM WORLD group.
Also, tests must be made using a single node of the SUT as well as multiple nodes. The tester must
therefore follow instructions given in the Test Tool as to the proper impirun command-line to
execute each time the test interpreter is started. Although it would be preferable to automate this,

422

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

we do not yet, and probably will never, have this capability. However, we will at least provide the
tester with command-lines in the Test Tool window to cut & paste.

Starting with Java SDK version 1.1, it will be possible to gain access to the disks on the
machine running the Test Tool, as well as run external programs on that machine. This will be
allowed if the tester certifies that the Test Manager is trusted. How this will be implemented in the
browsers is not yet known. Many Web browsers in use are still using Java SDK 1.0, and those that
have been updated to version 1.1 have not implemented this feature, so this is not yet an option.
Even with this ability, it is not clear that we will be able to automate the running of impirun on
the SUT.

Tests will also be provided to allow additional IMPI/MPI implementations to participate in the
tests, in addition to the IUT. These tests will be needed to fully exercise the IMPI/MPI protocols.

MPI

IMPI

Test Tool

Test
Interpreter

. . .

IMPI

. . .

MPI

. . .

Upper Tester

Test
Interpreter

Model
IMPI

Lower Tester

Test Manager

. . .

. . .

System Under Test

Network

Interpreter
Test

IMPI

Figure 5.3: IMPI Test Communications Stack

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

423

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

5.2 Test Tool Applet

Figure 5.4 shows a sample of the current interface. The Test Tool is shown here after running 2 col-
lective communications tests, one for MPI Barrier() and one for MPI Bcast(). The green
(or gray if you do not have a color copy of this document) highlighting of the test names indicate that
the tests have passed. Tests that fail would be highlighted in red and tests that have indeterminate re-
sults would be highlighted in yellow. The most up-to-date instructions on using the tester can always
be found on the IMPI web site at http://impi.nist.gov/IMPI/ImpiTIAIntro.html.

Figure 5.4: The Test Tool

424

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

5.3 Test Interpreter

Tests are written as scripts that are interpreted within a standard C MPI program on the system under
test. These test scripts are delivered to the MPI processes as arrays of characters via MPI Send().
The first test to be run each time the interpreter is started is a test that is embedded in the interpreter.
This initial test verifies that this delivery mechanism is working. If this initial test fails, no other
tests are attempted and diagnostic messages are sent to the Test Tool. For the special case of the
Startup Only testing, this initial test of communications is not attempted.

Once the basic delivery of test scripts has been verified, the tester may select tests to be run.
At this point, in the event of a test failure, it is most important to help testers diagnose the error. For
this reason, the contents of each script will be available on request via the Test Tool. This section
describes the operation of the interpreter and the language that it accepts so that the tester can read
these scripts and hopefully diagnose the failure. Error messages produced by these scripts will also
be more understandable given the test script that produced them.

The test interpreter is a C/MPI program that runs on the SUT. This program runs a loop that
repeatedly receives and interprets small scripts that superficially look like standard C and MPI code.
The interpreter repeats this loop until a script calls a special function which signals the interpreter
to exit. The language that the interpreter understands is limited to a small subset of C with MPI
function calls available. The MPI routines in the interpreter are wrappers to the actual MPI library
routines in the IUT. Declarations for variables and single dimensioned arrays of the basic data
types are allowed as well as control structures such as if, while, and for. In addition to the MPI
routines, other routines are available such as printf() for printing to stdout and report()
for passing information to the Test Manager. Details of the language accepted by this interpreter are
available in the source code. A test is comprised of a block of statements in this language. Some
sample tests are shown below.

The same interpreter, with some modifications, is executed within one or more simulated MPI
processes which are running as part of the Test Manager. These simulated MPI processes execute
the same script as the IUT. The MPI routines in this case are linked to routines, internal to the
Test Manager, which implement the communications between the simulated processes as well as
external MPI processes. Other modifications to the interpreter allow these simulated MPI processes
to interact directly with the Test Manager, supplying test status and error information as the script
is interpreted.

Upon completion of each test script, a short handshake protocol is executed. This synchronizes
the processes between tests, although it is not a complete barrier. As part of this handshake, each
process informs the master process of the level (integer) of the most severe error encountered during
the execution of the current test script. In this context, the master process is the process with the
lowest MPI COMM WORLD rank on the NIST side, and has no relation to the IMPI defined master
processes. In this end-of-test handshake, the master process sends a ”DONE” message to every
rank. They recv and verify this and send back ”done”. The master rank receives and verifies each
”done” message. See the end of test handshake() routine in sutInterp.c for more
details. If a test script appears to have completed but the tester is hung, the processes may be stuck
in this final handshaking protocol indicating that one or more processes have not made it to the end
of the current test script.

To distinguish between the completion of the current test script and the completion of the final
handshake, observe the following printouts:
At the end of a test script, the message:

END EXECUTING rank r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

425

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

will be printed, where r is the process rank. This is printed before the final handshake.
After the final handshake, the message:

.................... script name rank r done
will be printed.

Here is a simple test that exercises MPI Send. Some of the comments refer to the test while
other comments refer to the syntax of the interpreted language.

{
int i; /* Only one declaration allowed per line */
int in;
int my_rank;
int nprocs;
int status[3];
int nerrors;

/* Note: & not used in interpreter (no pointers). */
MPI_Comm_rank(MPI_COMM_WORLD, my_rank);
MPI_Comm_size(MPI_COMM_WORLD, nprocs);

if (my_rank > 0) {

/* All but node 0 sends their rank to node 0. */
MPI_Send(my_rank, 1, MPI_INT, 0, my_rank, MPI_COMM_WORLD);

} else {

nerrors = 0;
for (i=1; i<nprocs; i++) {
MPI_Recv(in, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, status);
if (status[MPI_TAG] != status[MPI_SOURCE]) {
nerrors = nerrors + 1; /* ++ and -- are not available */

/* report() acts like a printf statement when executed
* on the IUT. Otherwise, report() sends this info to the
* Test Manager, which will pass this info on to the
* Test Tool. All numeric values are printed using the
* %f format.
*/
report("Error: source:%.0f != Tag:%.0f",

status[MPI_SOURCE], status[MPI_TAG]);

} else if (in != status[MPI_TAG]) {
nerrors = nerrors + 1;
report("Error: received:%.0f != Source,Tag:%.0f",

in, status[MPI_TAG]);
}

}
if (nerrors == 0) {
report("Result: Pass");

} else {
report("Result: Fail: %.0f error out of %.0f messages",

426

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

nerrors, nprocs-1);
}

}
} /* end of script */

For the preceding test to pass, MPI process rank 0 must receive a message from each other
process with the tag and the single integer both matching the source process rank. This test will
usually be run with rank 0 owned by the Test Manager, although this is not required. Tests may have
requirements as to the number of processes and the ordering of them in MPI COMM WORLD. These
restrictions must be enforced by the script itself when the tests are executed; the Test Manager has
no specific information about these scripts to allow it to allow or deny any particular test.

{
int i;
int p;
int a[5];
int answer;
int correct_answer;
int root;
int rank;
int nprocs;
int scale;

root = 0;
MPI_Comm_rank(MPI_COMM_WORLD, rank);
MPI_Comm_size(MPI_COMM_WORLD, nprocs);

if (nprocs > 5) {
report("Test skipped. Too many processes");
return;

}

scale = 1;
for (i=0;i<rank;i=i+1) {
scale = scale * 10;

}

for (i=0;i<5;i=i+1) {
a[i] = scale;

}
MPI_Reduce(a, answer, 10, MPI_INT, MPI_SUM, root, MPI_COMM_WORLD);
if (rank == root) {
/* Calculate the correct answer */
scale = 1;
correct_answer = 0;
for (p=0;p<nprocs;p=p+1) {
correct_answer = correct_answer + 5 * scale;
scale = scale * 10;

}
if (answer != correct_answer) {
report("Result: Fail, expected %.0f != %.0f",

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

427

Volume 105, Number 3, May-June 2000

Journal of Research of the National Institute of Standards and Technology

correct_answer, answer);
} else {
report("Result: Pass");

}
}

}

Each node in the preceding test fills an array and then calls the MPI Reduce() routine. The
correct answer is computed, based on the number of nodes involved in the test, and the root node
verifies that the correct value has been received. The Test Manager’s simulated MPI processes
actively participate in the algorithms used to perform this, and other, collective operations.

The interpreter must be able to execute test scripts that exercise all aspects of the IMPI pro-
tocols. Many test scripts have been written and more will be added as needed. The first tests
implemented focussed on the IMPI start-up protocol and the basic MPI routines, MPI Init(),
MPI Finalize(), MPI Send(), and MPI Recv(). As of this writing, this tester can also
exercise MPI Sendrecv(), the non-blocking point-to-point routines MPI Isend() and MPI -
Irecv(), MPI Iprobe(), all of the collective communications routines, as well as the com-
municator handling routines MPI Comm create(), MPI Comm dup(), MPI Comm split(),
MPI Intercomm create(), and MPI Comm Intercomm merge(). The are over 100 test
scripts currently available to exercise these routines. All scripts are available online at the NIST
IMPI web site.

5.4 Test Manager

Note that the Test Manager itself knows very little about the test scripts and what they are designed
to test. All of this information is implicit in the test scripts. These scripts are interpreted on all of
the MPI processes including the Test Manager’s simulated MPI processes.

On the NIST Web server, which runs the Test Manager, each test script is stored as a single
ASCII file. During testing, these scripts are read from the disk and sent to each of the MPI processes
as input to the interpreter. The Test Manager maintains a queue of requested tests and, in order to
meet the configuration requirements of the requested tests, may prompt the tester as needed to
restart the interpreter on the SUT. The interpreter must be restarted each time a set of tests is to be
run which requires a different configuration of processes than the current configuration.

The Test Manager’s version of the test script interpreter includes support subroutines, like
report(), which accepts messages (text strings) from the simulated MPI processes and sends
these messages on to the Test Tool applet for display, so that the tester can monitor the progress of
the tests.

Bibliography
[1] Message Passing Interface Forum. MPI-2: A Message-Passing Interface standard. The Inter-

national Journal of Supercomputer Applicatons and High Performance Computing, 12(1-2),
1998.

428

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

