A discussion of 'Statistical Mechanics of Complex Networks' Part I

Albert & Barabási

Review of Modern Physics, Vol. 74, 2002

イロト イヨト イヨト イヨト

Overview

Introduction Key Concepts Case Studies Random Graph Theory Conclusions

Introduction

Key Concepts

Small Word Networks Clustering Coefficient Scale-Free Networks

Case Studies

Random Graph Theory Erdös-Rényi model

Conclusions

- - 4 回 ト - 4 回 ト

Introduction

- cover only parts I, II, and IIIa (pages 1-9)
- more questions than answers...

イロン イヨン イヨン イヨン

Small Word Networks Clustering Coefficient Scale-Free Networks

Small World Networks

What is a small-world network?

- "relatively short" path between any two nodes
- "six degrees of separation"
- *distance* \equiv the shortest path between two nodes
- diameter of graph \equiv longest distance between any two nodes
- no hard definition, but diameter similar to random graph (~ ln N)

イロト イポト イヨト イヨト

Small Word Networks Clustering Coefficient Scale-Free Networks

Clustering Coefficient

How well do your friends know each other?

- ▶ a metric between 0.0 and 1.0
- ratio of edges (*E_i*) over maximum possible (complete subgraph)

► for each node :
$$C_i \equiv E_i / \binom{k_i}{2} = \frac{2E_i}{k_i(k_i-1)}$$

► for graph, take average over nodes $C = \frac{1}{N} \sum_{i=1}^{N} C_i$

Can be interpreted as

► the probability that two neighbor nodes are connected (p = C_i)

Small Word Networks Clustering Coefficient Scale-Free Networks

Clustering Coefficient Simulations

Albert & Barabási A discussion of 'Statistical Mechanics of Complex Networks' F

Small Word Networks Clustering Coefficient Scale-Free Networks

Clustering Coefficient Observations

Metric is convenient to define, but

- C = 1 does NOT imply that graph is completely connected
- C = 0 does NOT imply that all nodes are isolated
- C is NOT monotonic as more edges are added (!)

Shortcomings

- doesn't understand the notion of "components"
- uses only one "generation" of information
- "all-or-nothing" metric may be too crude (?)

Is this what we really want to measure ...?

イロト イポト イヨト イヨト

Small Word Networks Clustering Coefficient Scale-Free Networks

Weird Clustering Examples

- a collection of isolated 3-cycles has C = 1
- ▶ a *n*-dimensional grid has C = 0, although k = 2n
- example of graph where adding more edges lowers C
 - take two disconnected subgraphs and bridge them

イロト イポト イヨト イヨト

Small Word Networks Clustering Coefficient Scale-Free Networks

Clustering Examples

Consider a graph with N vertices arranged in

- ▶ 1-d ring: k=2, d(G) = N/2, $C = 0^{-1}$
- ▶ 2-d grid: k=4, $d(G) = \sqrt{2N}$, C = 0
- ▶ 3-d cube: k=6, $d(G) = \sqrt{3} N^{1/3}$, C = 0
- • •
- ▶ n-d hypercube: k=2n, $d(G) = \sqrt{n} N^{1/n}$, C = 0

Is the last considered a small-world network?

¹This is why Watts-Strogatz used a 1-d ring with 4 nearest neighbors to bump up C to 3/4.

Small Word Networks Clustering Coefficient Scale-Free Networks

Scale-Free Networks

Degree distributions

- not all nodes have same degree
- distribution function P(k) denotes probability that random node has k edges
- ▶ for random graphs, this is a Poisson distribution with a peak at ⟨k⟩ with value P(⟨k⟩)
- ▶ for some real networks, the tail of P(k) follows a power-law distribution:
 - $P(k) \sim 1/k^{\gamma}$ for $1 < \gamma < 3$
- other real networks exhibit exponential tails
- graphs with P(k) different than Poisson distribution are termed "scale-free"

Small Word Networks Clustering Coefficient Scale-Free Networks

Issues with Scale-Free Networks

- no hard definition
- why the big fuss? Because physics has properties with power-law tails... (statistical mechanics)
- where does the cut-off for k take effect...?
- the "tail" has tiny portion of nodes... is it really that relevant?

イロト イポト イヨト イヨト

Small Word Networks Clustering Coefficient Scale-Free Networks

Complex Network Cheat Sheet

	Random Graphs	"Real" Graphs
small-world	YES	YES
	$d(G) \sim \ln(N)$	$d(G) \sim d(G_{random})$
clustering coeff	LOW $(C - n) \ll 0.01$	HIGH
	$(c = p) \ll 0.01$	
scale-free	NO Poisson dist.	YES $P(k) \sim 1/k^{\gamma}$ for $1 < \gamma < 3$

・ロト ・回ト ・ヨト ・ヨト

æ

Small Word Networks **Clustering Coefficient** Scale-Free Networks

Complex Network Cheat Sheet

	Random Graph	s "Real" Graphs	<i>n</i> -d lattices
<i>structure</i> small-world	NO YES $d(G) \sim \ln(N)$	$\frac{\text{YES (?)}}{\text{YES}}$ $d(G) \sim d(G_{random})$	YES NO (?) $d(G) \sim N^{1/n}$
clustering coeff	LOW $(C = p) \ll 0.01$	HIGH ~ 1.0	0.0 2 <i>n</i> neighbors
scale-free	NO Poisson dist.	YES $P(k) \sim 1/k^{\gamma} ~~{ m for}~ 1 < \gamma < 3$	$YES_{P(2n) = 1, \ 0 \ \text{otherwise}}$
		<□> <□> <□> < □> < Ξ)	< ≣ < € < <
	Albert & Barabási	A discussion of 'Statistical Mechanics	of Complex Networks'

F

Cases Studied

- WWW
- Internet
- movie actors
- science collaboration
- STDs
- cellular networks
- ecological networks
- phone call network
- citation networks
- linguistic networks
- power grid and neural nets
- protein folding

・ロン ・回と ・ヨン・

WWW Studies

- at various levels (internet domain, site level, hyperlinks)
- at the hyperlink level:
 - largest network studied (2002)
 - ▶ directed graph, very unsymmetric (k_{out} ≪ k_{in})
 - both $P_{out}(k)$ and $P_{in}(k)$ how power-law tails
 - with $\gamma_{out} \sim 2.5 \pm 0.25$ and $\gamma_{in} = 2.1$
- Adamic (1999) computed clustering coefficients by making each edge bidirectional (!)
- Faloutsos (1999): an edge is drawn between two domains if there is a least one route that connects them (!)

(ロ) (同) (E) (E) (E)

Movie Actor Collaboration Network

Hooray for IMDb.com!

- Size: half a million actors (!) in 2000
- two actors have an edge if they worked together on a film
- model does not take into account weighted edges (such as # of films worked on together)
- average distance is close to that of random graph

・ロン ・回と ・ヨン・

Observations of Table I

- key values:
 - ► size (N)
 - ▶ average degree (⟨k⟩)
 - ▶ average distance (ℓ)
- ► C ≫ C_{rand}
- $\ell \approx \ell_{rand}$

Things to look at:

- ▶ scatter plot of C vs. how "dense" the graph is $(\langle k \rangle / N)$
- scatter plot of density vs. ℓ/ℓ_{rand}

イロン イヨン イヨン イヨン

Observations of Table II

- ▶ γ_{in} = 2.1 is quite popular...
- ▶ $1 < \gamma < 3$ for both $\gamma_{\textit{in}}$ and $\gamma_{\textit{out}}$
- **k** (cut-off) seems pretty high, compared to $\langle k \rangle$
- ▶ ℓ_{power} is not as good an estimator as ℓ_{rand} ...

・ロット (四) (日) (日)

Erdös-Rényi model

Random Graph Models

Erdös-Rényi (1959)

• N nodes, n edges, chosen randomly from $\binom{N}{2}$ possiblities

Binomial Model

- N nodes, every edge has p probability
- actual # of edges is a random variable
 - Poisson distribution with expected value $p(\binom{N}{2})$

• with
$$p = n / \binom{N}{2}$$
 this is **similar** to Erdös-Rényi, but is it the same?

ヘロン 人間 とくほど くほとう

Erdös-Rényi model

Graph Enumeration

An undirected graph with N vertices,

► has
$$M \equiv \binom{N}{2} = N(N-1)/2$$
 possible edges

• # of graphs with exactly *n* edges, is $\begin{pmatrix} N(N) \\ n \end{pmatrix}$

$$\left(\frac{N-1}{2}{n}\right) = HUGE!$$

・ロン ・回と ・ヨン ・ヨン

Erdös-Rényi model

Graph Enumeration

An undirected graph with N vertices,

▶ has
$$M \equiv \binom{N}{2} = N(N-1)/2$$
 possible edges

• # of graphs with exactly *n* edges, is $\begin{pmatrix} N(N-1) \\ 2 \\ n \end{pmatrix}$

$$\left(= \frac{1}{1} \right) = HUGE!$$

・ロト ・回ト ・ヨト ・ヨト

Given

$$\blacktriangleright \begin{pmatrix} M \\ n \end{pmatrix} \equiv \frac{M!}{n!(M-n)!}$$

• Stirling's approximation: $\ln n! \approx n(\ln n - 1)$, for large N

Erdös-Rényi model

Graph Enumeration Examples

Name	Vertices	$\langle k \rangle$	# graphs
	10	1	$3 imes 10^9$
	100	1	$\sim 10^{211}$
	1,000	1	$\sim 10^{3,132}$
	10,000	1	$\sim 10^{41,332}$
math authors	70,975	3.9	$\sim 10^{1,200,000}$
movie actors	225,226	61	$\sim 10^{50,000,000}$

If every atom in the universe ($\sim 10^{80}$) was a Petaflop computer, computing since the begining of time (13 billion years ago) you would just need 10¹⁰⁰ such universes to enumerate the (100, (1)) case...

イロン イヨン イヨン イヨン

Erdös-Rényi model

Do we really know the landscape?

HELP!

- we are looking at only tiny microcosm of graph space for simulations
- how robust are our conclusions?
- importance sampling (?)
- concern with 1-d parameterization ala Watts-Strogatz...
- what if we made random changes to a "real" network? How long before it starts losing its "realness"?
- would any of these metrics help...?

・ロン ・回と ・ヨン ・ヨン

Conclusions and Discussion

- is "small-world" really relevant...? (social networks rarely interact beyond three links...)
- not clear if current metrics really capture the right thing...
 - given $(N, C, \langle k \rangle, \gamma, \ell)$ what can one say about a network?
- introduce new(?) metrics that better recognize components and structure
 - cluster coefficient should be extended for weighted, bidirectional graphs
- power-tail distribution model needs high cut-off values for k
 - what percentage of the available nodes is this?

(ロ) (同) (E) (E) (E)

Conclusions ...?

Why is this so hard...?

because we are trying to theoritize arbitrary structure

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・