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Introduction

I cover only parts I, II, and IIIa (pages 1-9)

I more questions than answers...
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Small World Networks

What is a small-world network?

I “relatively short” path between any two nodes

I ”six degrees of separation”

I distance ≡ the shortest path between two nodes

I diameter of graph ≡ longest distance between any two nodes

I no hard definition, but diameter similar to random graph
(∼ lnN)
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Clustering Coefficient

How well do your friends know each other?

I a metric between 0.0 and 1.0

I ratio of edges (Ei ) over maximum possible (complete
subgraph)

I for each node : Ci ≡ Ei/

(
ki

2

)
= 2Ei

ki (ki−1)

I for graph, take average over nodes C =
1

N

N∑
i=1

Ci

Can be interpreted as

I the probability that two neighbor nodes are connected
(p = Ci )
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Clustering Coefficient Simulations
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Clustering Coefficient Observations

Metric is convenient to define, but

I C = 1 does NOT imply that graph is completely connected

I C = 0 does NOT imply that all nodes are isolated

I C is NOT monotonic as more edges are added (!)

Shortcomings

I doesn’t understand the notion of “components”

I uses only one “generation” of information

I “all-or-nothing” metric may be too crude (?)

Is this what we really want to measure . . . ?
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Weird Clustering Examples

I a collection of isolated 3-cycles has C = 1

I a n-dimensional grid has C = 0, although k = 2n
I example of graph where adding more edges lowers C

I take two disconnected subgraphs and bridge them

Albert & Barabási A discussion of ‘Statistical Mechanics of Complex Networks’ Part I



Overview
Introduction

Key Concepts
Case Studies

Random Graph Theory
Conclusions

Small Word Networks
Clustering Coefficient
Scale-Free Networks

Clustering Examples

Consider a graph with N vertices arranged in

I 1-d ring: k=2, d(G ) = N/2, C = 0 1

I 2-d grid: k=4, d(G ) =
√

2N, C = 0

I 3-d cube: k=6, d(G ) =
√

3 N1/3, C = 0

I . . .

I n-d hypercube: k=2n, d(G ) =
√

n N1/n, C = 0

Is the last considered a small-world network?

1This is why Watts-Strogatz used a 1-d ring with 4 nearest neighbors to
bump up C to 3/4.
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Scale-Free Networks

Degree distributions

I not all nodes have same degree

I distribution function P(k) denotes probability that random
node has k edges

I for random graphs, this is a Poisson distribution with a peak
at 〈k〉 with value P(〈k〉)

I for some real networks, the tail of P(k) follows a power-law
distribution:

I P(k) ∼ 1/kγ for 1 < γ < 3

I other real networks exhibit exponential tails

I graphs with P(k) different than Poisson distribution are
termed ”scale-free”
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Issues with Scale-Free Networks

I no hard definition

I why the big fuss? Because physics has properties with
power-law tails... (statistical mechanics)

I where does the cut-off for k take effect...?

I the ”tail” has tiny portion of nodes... is it really that relevant?
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Complex Network Cheat Sheet

Random Graphs “Real” Graphs

small-world YES YES
d(G) ∼ ln(N) d(G) ∼ d(Grandom)

clustering coeff LOW HIGH
(C = p) � 0.01 ∼ 1.0

scale-free NO YES
Poisson dist. P(k) ∼ 1/kγ for 1 < γ < 3
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Complex Network Cheat Sheet

Random Graphs “Real” Graphs n-d lattices

structure NO YES (?) YES
small-world YES YES NO (?)

d(G) ∼ ln(N) d(G) ∼ d(Grandom) d(G) ∼ N1/n

clustering coeff LOW HIGH 0.0
(C = p) � 0.01 ∼ 1.0 2n neighbors

scale-free NO YES YES
Poisson dist. P(k) ∼ 1/kγ for 1 < γ < 3 P(2n) = 1, 0 otherwise
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Cases Studied

I WWW
I Internet
I movie actors
I science collaboration
I STDs
I cellular networks
I ecological networks
I phone call network
I citation networks
I linguistic networks
I power grid and neural nets
I protein folding
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WWW Studies

I at various levels (internet domain, site level, hyperlinks)
I at the hyperlink level:

I largest network studied (2002)
I directed graph, very unsymmetric (kout � kin)
I both Pout(k) and Pin(k) how power-law tails
I with γout ∼ 2.5± 0.25 and γin = 2.1

I Adamic (1999) computed clustering coefficients by making
each edge bidirectional (!)

I Faloutsos (1999): an edge is drawn between two domains if
there is a least one route that connects them (!)
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Movie Actor Collaboration Network

Hooray for IMDb.com!

I Size: half a million actors (!) in 2000

I two actors have an edge if they worked together on a film

I model does not take into account weighted edges (such as #
of films worked on together)

I average distance is close to that of random graph
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Observations of Table I

I key values:
I size (N)
I average degree (〈k〉)
I average distance (`)

I C � Crand

I ` ≈ `rand

Things to look at:

I scatter plot of C vs. how ”dense” the graph is (〈k〉/N)

I scatter plot of density vs. `/`rand
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Observations of Table II

I γin = 2.1 is quite popular...

I 1 < γ < 3 for both γin and γout

I k (cut-off) seems pretty high, compared to 〈k〉
I `power is not as good an estimator as `rand ...
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Random Graph Models

Erdös-Rényi (1959)

I N nodes, n edges, chosen randomly from

(
N
2

)
possiblities

Binomial Model

I N nodes, every edge has p probability
I actual # of edges is a random variable

I Poisson distribution with expected value p(

(
N
2

)
)

I with p = n/

(
N
2

)
this is similar to Erdös-Rényi, but is it the

same?
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Graph Enumeration

An undirected graph with N vertices,

I has M ≡
(

N
2

)
= N(N − 1)/2 possible edges

I # of graphs with exactly n edges, is

(
N(N−1)

2
n

)
= HUGE!

Given

I

(
M
n

)
≡ M!

n!(M−n)!

I Stirling’s approximation: ln n! ≈ n(ln n − 1), for large N
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Erdös-Rényi model

Graph Enumeration

An undirected graph with N vertices,

I has M ≡
(

N
2

)
= N(N − 1)/2 possible edges

I # of graphs with exactly n edges, is

(
N(N−1)

2
n

)
= HUGE!

Given

I

(
M
n

)
≡ M!

n!(M−n)!

I Stirling’s approximation: ln n! ≈ n(ln n − 1), for large N

Albert & Barabási A discussion of ‘Statistical Mechanics of Complex Networks’ Part I



Overview
Introduction

Key Concepts
Case Studies

Random Graph Theory
Conclusions

Erdös-Rényi model

Graph Enumeration Examples

Name Vertices 〈k〉 # graphs

10 1 3× 109

100 1 ∼ 10211

1,000 1 ∼ 103,132

10,000 1 ∼ 1041,332

math authors 70,975 3.9 ∼ 101,200,000

movie actors 225,226 61 ∼ 1050,000,000

If every atom in the universe (∼ 1080) was a Petaflop computer, computing since the begining of time (13 billion

years ago) you would just need 10100 such universes to enumerate the (100, 〈1〉) case...
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Erdös-Rényi model

Do we really know the landscape?

HELP!

I we are looking at only tiny microcosm of graph space for
simulations

I how robust are our conclusions?

I importance sampling (?)

I concern with 1-d parameterization ala Watts-Strogatz...

I what if we made random changes to a ”real” network? How
long before it starts losing its ”realness”?

I would any of these metrics help...?
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Conclusions and Discussion

I is “small-world” really relevant...? (social networks rarely
interact beyond three links...)

I not clear if current metrics really capture the right thing...
I given (N,C , 〈k〉, γ, `) what can one say about a network?

I introduce new(?) metrics that better recognize components
and structure

I cluster coefficient should be extended for weighted,
bidirectional graphs

I power-tail distribution model needs high cut-off values for k
I what percentage of the available nodes is this?

Albert & Barabási A discussion of ‘Statistical Mechanics of Complex Networks’ Part I



Overview
Introduction

Key Concepts
Case Studies

Random Graph Theory
Conclusions

Conclusions ...?

Why is this so hard...?

I because we are trying to theoritize arbitrary structure . . .
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