
The NIST Data Flow System II: A Standardized Interface for Distributed
Multimedia Applications

A. Fillinger, L. Diduch, I. Hamchi, M. Hoarau, S. Degré, V. Stanford
National Institute of Standards and Technology

{antoine, ldiduch, ihamchi, mhoarau, sdegre, vstanford}@nist.gov

Abstract

Modern multimedia applications use an increasing
number of sensors including cameras, microphones
and microphone arrays. These applications must
acquire and process data from sensors in real-time,
which is usually beyond the capabilities of single
machines. We present our distributed sensor data
transport middleware, the NIST Data Flow System II,
which offers network transparent services for data
acquisition and processing across a local network of
computers. An application is thus represented as a
data flow graph, with streaming media flowing
between the different computational components. This
is highlighted by presenting a multimedia application
tracking persons using a sensor fusion of audio and
video streams.

1. The NIST Data Flow System II

The NIST Data Flow System II (NDFS II) is a
middleware for sensor data acquisition, transport and
distributed processing. It was originally developed to
support research on pervasive environments such as
smart spaces. It also facilitates the development of
complex multimedia applications with very high
bandwidth requirements.

The data flow system is dynamic, so computing
nodes can join or leave the network at any time. Its
decentralized architecture has proven to be robust
under load, and is more fault-tolerant than the version
one. Its cross-platform capabilities allow it to run on
Linux, Microsoft Windows XP and Mac OS X, and
data can be transported between these operating
systems.

The version II system was developed in C++ and
therefore offers an object oriented API. Its binding
language capabilities also allow development of
computational or data acquisition nodes in Java.

Data transport is optimized for high performance
within a host using shared memory and between

multiple hosts via TCP/IP wrapped in the Adaptive
Communication Environment (ACE) interface[1].

Utilities, such as the Control Center, are provided
to ease the use of the system, manage the complex
multi node interactions, and operational status of the
multimodal environments. The Control Center
presents a GUI that allows creation and management
of NDFS II applications. It gives the user the ability to
build an application graph, i.e. to connect client nodes
together and to associate each of them to a particular
host. Once the distributed application is created, it
can be controlled from a single computer using the
Control Center from either a web browser, or a
desktop of Windows, OS X, or Linux. A whole
application graph can be started, stopped, and
monitored, and individual node/client faults
displayed, processed, and remedied at the Control
Center in real-time.

2. 2. The Multimedia Demonstration

We demonstrate the capabilities of the data flow by
presenting a multimedia person tracking application.
This demonstration runs on several laptop computers
and acquires and processes the data from two sensors:
a video camera and a 64 channel microphone array[2].
The application is represented by a distributed graph
containing video and audio pipelines merging in a
final fusion step as shown on Figure 1. The pipelines
are composed of several computing nodes, each
implementing a specific functionality, and the flows
to connect them.

Tracking is done in two ways: on one hand, the
application acquires video data from the camera to
perform face tracking of persons in the field of view,
and on the other hand multichannel audio data is used
to track the dominant sound source paths; which are
assumed to be the speaker paths.

In order to track sound source paths, we first
capture multichannel audio data from the microphone
array (Capture_Audio_Array client node), then we

This paper is authored by an employee(s) of the United
States Government and is in the public domain.

Figure 1. The multimedia application graph. This graph uses distributed systems to acquire
multichannel audio, and video, data to localize and track faces, and speakers as they move.

process this data with a preemphasis and FIR
bandpass filters (Prefilter_Multichannel_Audio).

Next, a delay-and-sum beamforming algorithm,
Transform_To_Beamspace, computes energy as a
function of angle of incidence to provide directions of
the sound sources. Using time averaged direction
histories we track the dominant sound source path by
applying a multi stage decision line tracking
algorithm[3], Track_Speaker_Positions.

Figure 2. View of sound direction history in
beamspace from the multichannel audio.

In the video pipeline, the captured video stream
(Capture_Camera_Video) is used to detect faces
applying the well known Viola-Jones algorithm
(Detect_Faces). In order to track the face positions,
the history of the face positions over time are mapped
to a direction (Map_Positions) and processed using
the same multi stage decision line tracking algorithm
(Track_Face_Position) used in the audio pipeline.

In a last step, the tracking results from the audio
and video pipelines are fused and displayed
(Synchronized_Tracking_Display) as seen at right in
Figure 1. By correlating the results of the two
pipelines it is then possible to identify active speakers.

The two pipelines, which have very different
sampling and data-rates, can be fused either
synchronously or asynchronously. In this
demonstration we use the NDFS II ad hoc stream
synchronization capabilities to accomplish the
necessary time coherent fusion.

To monitor the internal states of the processing
pipelines, several displays are connected at different
points of the data flow. We represent raw data in
Display-Multichannel-Audio (Figure 5); beaformed
data in Display-Beamspace (Figure 3); beamformed
delayed data in Display-Time-Delayed-Beamspace
(Figure 2); face position and video data Display-
Detected-Faces (Figure 4 at right) and face position
history Displayed-Time-Delayed-Face-Position at left.

Figure 3. Polar coordinate view of current
sound direction from the NIST Mk-III Array.

This paper is authored by an employee(s) of the United
States Government and is in the public domain.

Figure 4. The face position track history as a function of time(left), and an example video
frame with the current regions of interest marked bounding boxes (right).

Figure 5. View of the 64 audio channels from
the NIST Mk-III array used to compute the

beamspace representation in Figure 2.

3. Disclaimer and Statements

The NIST Data Flow System II software (NDFS II)
was developed at the National Institute of Standards
and Technology (NIST) by employees of the Federal
Government in the course of their official duties.
Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright
protection and is in the public domain.

Certain commercial products may be identified in
order to adequately specify or describe the subject
matter of this work. This implies no recommendation

or endorsement by the National Institute of Standards
and Technology, nor does it imply that such products
are necessarily the best available for the purpose.

The Data Flow is an experimental system. NIST
assumes no responsibility whatsoever for its use by
other parties, and makes no guarantees, expressed or
implied, about its fitness for any particular purpose.

The National Institute of Standards and
Technology and the Smart Spaces Project would
appreciate acknowledgments if the tools are used.

4. References

[1] D. Schmidt, The ADAPTIVE Communication
Environment - An Object-Oriented Network Programming
Toolkit for Developing Communication Software, Sun Users
Group, and http://www.cs.wustl.edu/~schmidt/PDF/SUG-
94.pdf, 1994.

[2] Vincent M. Stanford, John S. Garofolo, Olivier Galibert,
Martial Michel, Christopher Laprun, The NIST smart space
and meeting room projects: signals, acquisition,
annotation, and metrics, Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Hong Kong, April 2003, Vol. 4, pages 6-10.

[3] J-C. Di Martino, J.P. Haton, and A. Laporte, “Lofargram
Line Tracking by Multistage Decision Process”, Acoustics,
Speech, and Signal Processing, ICASSP-93, Minneapolis,
MN, USA, 27-30 Apr 1993, pp. 317-320.

This paper is authored by an employee(s) of the United
States Government and is in the public domain.

