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1 Preamble

Familiarity with the basic concepts and techniques from probability theory
and mathematical statistics can best be gained by studying suitable textbooks
and exercising those concepts and techniques by solving instructive problems.
The books by DeGroot and Schervish [2011], Hoel et al. [1971a], Hoel et al.
[1971b], Feller [1968], Lindley [1965a], and Lindley [1965b] are highly rec-
ommended for this purpose and appropriate for readers who will have studied
mathematical calculus in university courses for science and engineering majors.

This document aims to provide an overview of some of these concepts and tech-
niques that have proven useful in applications to the characterization, propaga-
tion, and interpretation of measurement uncertainty as described, for example,
by Morgan and Henrion [1992] and Taylor and Kuyatt [1994], and in guid-
ance documents produced by international organizations, including the Guide
to the expression of uncertainty in measurement (GUM) [Joint Committee for
Guides in Metrology, 2008a] and its supplements [Joint Committee for Guides
in Metrology, 2008b]. However, the examples do not all necessarily show a
direct connection to measurement science.

Our basic premises are that probability is best suited to express uncertainty
quantitatively, and that Bayesian statistical methods afford the best means to
exploit information about quantities of interest that originates from multiple
sources, including empirical data gathered for the purpose, and preexisting
expert knowledge.

Although there is nothing particularly controversial about the calculus of prob-
ability or about the mathematical methods of statistics, both the meaning of
probability and the interpretation of the products of statistical inference con-
tinue to be subjects of debate.

This debate is meta-probabilistic and meta-statistical, in the same sense as
metaphysics employs methods different from the methods of physics to study
the world. In fact, the debate is liveliest and most scholarly among profes-
sional philosophers [Fitelson, 2007]. However, probabilists and statisticians
often participate in it when they take off their professional hats and become
philosophers [Neyman, 1977], as any inquisitive person is wont to do, at one
time or another.

For this reason, we begin with an overview of some of the meanings that have
been assigned to probability (§2) before turning to the calculus of probability
(§3). In applications, the devices of this calculus are typically brought into
play when considering random variables and probability distributions (§4), in
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particular to characterize the probability distribution of functions of random
variables (§5). Statistical inference (§6) uses all of these devices to produce
probabilistic statements about unknown quantity values.

2 Probability

2.1 Meaning

In Truth and Probability [Ramsey, 1926, 1931], Frank Ramsey takes the view
that probability is “a branch of logic, the logic of partial belief and inconclu-
sive argument”. In this vein, and more generally, probabilities serve to quantify
uncertainty. For example, when one states that, with 99 % confidence, the dis-
tance between two geodesic marks is within 0.07 m of 936.84 m, one believes
that the actual distance most likely lies between 936.77m and 936.91 m, but
still entertains the possibility that it may lie elsewhere. Similarly, a weather
service announcement of 20% chance of rain tomorrow for a particular region
summarizes an assessment of uncertainty about what will come to pass.

Although relevant to the interpretation of measurement uncertainty, and gen-
erally to all applications of probability and statistics, the meaning of probability
really is a philosophical issue [Gillies, 2000, Hájek, 2007, Mellor, 2005]. And
while there is much disagreement about what probabilities mean, and how
they are created to begin with (interpretation and elicitation of probability),
there also is essentially universal agreement about how numerical assessments
of probability should be manipulated and combined (calculus of probability).

2.2 Chance and Propensity

Chances arise in connection with games of chance, and with phenomena that
conceivably can recur under essentially the same circumstances. Thus one
speaks of the chances of a pair of Kings in a poker hand, or of the chances
that the nucleus of an atom of a particular uranium isotope will emit an al-
pha particle within a given time interval, or of the chances that a person born
in France will have blood of type AB. Chances seem to be intrinsic properties
of objects or processes in specific environments, maybe propensities for some-
thing to happen: their most renowned theorists have been Hans Reichenbach
[Reichenbach, 1949], Richard von Mises [von Mises, 1981], and Karl Popper
[Popper, 1959].

possolo & toman page 5 of 44



tutorial for metrologists 2011-nov-21

2.3 Credence and Belief

Credences measure subjective beliefs. They are best illustrated in relation with
betting on the outcomes of events one is uncertain about. For example, in this
most memorable of bets offered when the thoroughbred Eclipse was about to
run against Gower, Tryal, Plume, and Chance in the second heat of the races on
May 3rd, 1769, at Epsom Downs: “Eclipse first, the rest nowhere”, with odds of
6-to-4 [Clee, 2007].

The strength or degree of these beliefs can be assessed numerically by tech-
niques that include the observation of betting behavior (actual or virtual), and
this assessment can be gauged, and improved, by application of scoring rules
[Lindley, 1985].

Dennis Lindley [Lindley, 1985] suggests that degrees of belief can be measured
by comparison with a standard, similarly to how length or mass are measured.
In general, subjective probabilities can be revealed by judicious application of
elicitation methods [Garthwaite et al., 2005].

Consider an urn that contains 100 balls that are identical but for their colors:
β are black and 100− β are white. The urn’s contents are thoroughly mixed,
and the standard is the probability of the event B of drawing a black ball.
Now, given an event E, for example that, somewhere in London, it will rain
tomorrow, whose probability he wishes to gauge, Peter will select a value for
β such that he regards gambling on B as equivalent to gambling on E (for the
same prize): in these circumstances, β/100 is Peter’s credence on E.

The beliefs that credences measure are subjective and personal, hence the prob-
abilities that gauge them purport to a relationship between a particular know-
ing subject and the object of this subject’s interest. These beliefs certainly are
informed by such knowledge as one may have about a situation, but they also
are tempered by one’s preferences or tastes, and do not require that a link be
drawn explicitly between that knowledge or sentiment and the corresponding
bet. Bruno de Finetti [de Finetti, 1937, 1990], Jimmie Savage [Savage, 1972],
and Dennis Lindley [Lindley, 2006] have been leading developers of the sub-
jective, personalistic viewpoint.

2.4 Epistemic Probability

Logical (or epistemic, that is, involving or relating to knowledge) probabilities
measure the degree to which the truth of a proposition justifies, warrants, or
rationally supports the truth of another [Carnap, 1962]. For example, when a
medical doctor concludes that a positive result in a tuberculin sensitivity test
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indicates tuberculosis with 62.5% probability (§3.6), or when measurements
made during a total eclipse of the sun overwhelmingly favor Einstein’s theory
of gravitation over Newton’s [Dyson et al., 1920].

The fact that scientists or judges may not necessarily or explicitly use probabil-
ities to convey their confidence in theories or in arguments [Glymour, 1980]
does not reduce the value that probabilities have in models for the rational
process of learning from experience, either for human subjects or for reasoning
machines that are programmed to make decisions in situations of uncertainty.
In this fashion, probability is an extension of deductive logic, and measures
degree of confirmation: it does this objectively because it does not involve sub-
jective personal opinion, hence is as incontrovertible as deduction by any of the
forms of classical logic.

The difficulty lies in specifying a starting point, a state of a priori ignorance
that is similarly objective and hence universally acceptable. Harold Jeffreys
[Jeffreys, 1961] provided maybe the first modern, thorough account of how
this may be done. He argued, and illustrated in many substantive examples,
that it is fit to address the widest range of scientific problems where one wishes
to exploit the information in observational data.

The interpretation of probability as an extension of logic makes it particularly
well-suited to applications in measurement science, where it is desirable to be
able to treat different uncertainty components, which may have been evaluated
using different methods, simultaneously, using a uniform vocabulary, and a sin-
gle set of technical tools. This concept underlies the treatment of measurement
uncertainty in the GUM and in its supplements. Richard Cox [Cox, 1946, 1961]
and Edwin Jaynes [Jaynes, 1958, 2003] have articulated cogent arguments in
support of this view, and José Bernardo [Bernardo, 1979] and James Berger
[Berger, 2006] have greatly expanded it.

2.5 Difficulties

Even in situations where, on first inspection, chances seem applicable, closer
inspection reveals that something else really is needed.

There may be no obvious reason to doubt that the chance is ½ that a coin tossed
to assign sides before a football game will land Heads up. However, if the coin
instead is spun on its edge on a table, that chance will be closer to either 1/3
or 2/3 than to ½ [Diaconis and Ylvisaker, 1985].

And when it is the magician Persi Warren [DeGroot, 1986] who tosses the coin,
then all bets are off because he can manage to toss it so that it always lands
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Heads up on his hand after he flips it in the air: while the unwary may be
willing to bet at even odds on the outcome, for Persi the probability is 1.

And there are situations that naturally lend themselves to, or that even seem to
require, multiple interpretations. Take the 20 % chance of rain: does this mean
that, of all days when the weather conditions have been similar to today’s in the
region the forecast purports to, it has rained some time during the following
day with historical frequency of 20 %? Or is this the result of a probabilistic
forecast that is to be interpreted epistemically? Maybe it means something else
altogether, like: of all things that will fall from the sky tomorrow, 1 in 5 will be
a raindrop.

2.6 Role of Context

The use of probability as an extension of logic ensures that different people who
have the same information (empirical or other) about a measurand should pro-
duce the same inferences about it. Example §2.7 illustrates the fact that con-
textual information relating to a proposition, situation, or event, will influence
probabilistic assessments to the extent that different people with different in-
formation may, while all acting rationally, produce different uncertainty assess-
ments, and hence different probabilities, for the same proposition, situation, or
event.

When probabilities express subjective beliefs, or when they express states of
incomplete or imperfect knowledge, different people typically will assign dif-
ferent probabilities to the same statements or events. If they have to reach a
consensus on a course of action that is informed by their plural, varied assess-
ments, then they have to engage in a harmonization exercise that preserves
the internal coherence of their individual positions. Both statisticians [Stone,
1961, Morris, 1977, Lindley, 1983, Clemen and Winkler, 1999] and philoso-
phers [Bovens and Rabinowicz, 2006, Hartmann and Sprenger, 2011] have
addressed this topic.

2.7 example: Prospecting

James and Claire, who both make investments in mining prospects, have been
told that samples from a region surveyed recently have mass fractions of tita-
nium averaging 3g kg−1, give or take 1g kg−1 (where “give or take” means that
the true mass fraction of titanium in the region sampled is between 2g kg−1

and 4 gkg−1 with 95 % probability). James, however, has also been told that
the samples are of a sandstone with grains of ilmenite. On this basis, James may
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assign a much higher probability than Claire to the proposition that asserts that
the region sampled includes an economically viable deposit of titanium ore.

3 Probability Calculus

3.1 Axioms

Once numeric probabilities are in hand, irrespective of how they may be in-
terpreted, the same set of rules, or axioms, is used to combine them. We for-
mulate these axioms in the context where probability is regarded as measuring
degree of (rational) belief in the truth of propositions, given a particular body
of knowledge and universe of discourse, H, that makes all the participating
elements meaningful.

Let A and B denote propositions whose probabilities Pr(A |H) and Pr(B |H)
express degrees of belief about their truth given (or, conditionally upon) the
context defined by H. The notation Pr(B |A and H) denotes the conditional
probability of B, assuming that A is true and given the context defined by H.
Note that Pr(B |A and H) is not necessarily 0 when Pr(A |H) = 0: for example,
the probability is 0 that a point chosen uniformly at random over the surface of
the earth will be on the equator; yet the probability is ½ that, conditionally on
its being on the equator, its longitude is between 0° and 180° West of the prime
meridian at Greenwich, UK.

The axioms for the calculus of probability are these:

Convexity: Pr(A |H) is a number between 0 and 1, and it is 1 if
and only if H logically implies A;

Addition: Pr(A or B |H) = Pr(A |H) + Pr(B |H)− Pr(A and B |H),
where the expression “A or B” is true if and only if A, B, or
both are true;

Multiplication: Pr(A and B |H) = Pr(B |A and H)Pr(A |H).

Since the roles of A and B are interchangeable, the multiplication axiom obvi-
ously can also be written as Pr(A and B |H) = Pr(A |B and H)Pr(B |H).
Most accounts of mathematical probability theory use an additional rule (count-
able additivity) that ensures that the probability that at least one proposition is
true, among countably infinitely many mutually exclusive propositions, equals
the sum of their individual probabilities [Casella and Berger, 2002, Definition
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1.2.4]. (“Countably infinitely many” means “as many as there are integer num-
bers”.)

When the context that H defines is obvious, often one suppresses explicit refer-
ence to it, as in this derivation: if eA denotes the negation of A, then Convexity
and the Addition Rule imply that 1 = Pr(A or eA) = Pr(A) +Pr(eA) because one
but not both of A and eA must be true.

3.2 Independence

The concept of independence pervades much of probability theory. Two propo-
sitions A and B are independent if the probability that both are true equals
the product of their individual probabilities of being true. If A asserts that
there is a Queen in Alexandra’s poker hand, and B asserts that Beatrice’s com-
prises red cards only, both hands having been dealt from the same deck, then
A and B are independent. Intuitively, if knowledge of the truth of one propo-
sition influences the assessment of probability of another, then they are de-
pendent: in particular, two mutually exclusive propositions are dependent. If
Pr(B |A and H) = Pr(B |H), then A and B are independent given H.

3.3 Extending the Conversation

When considering the probability of a proposition, it often proves advantageous
to consider the truth or falsity of another one, somehow related to the first
[Lindley, 2006, §5.6]. To assess the probability Pr(+) of a positive tuberculin
skin test (§3.6), it is convenient to consider how the test performs separately
in persons infected or not infected with Mycobacterium tuberculosis: if I de-
notes infection, then Pr(+) = Pr(+ | I)Pr(I) +Pr(+ |eI)Pr(eI), where Pr(+ |eI) is
the probability of a false positive, and 1− Pr(+ | I) is the probability of a false
negative, both more accessible than Pr(+).

3.4 Coherence

If an ideal reasoning agent (human or machine) assigns probabilities to events
or to the truth of propositions according to the foregoing axioms, then this
agent’s beliefs are said to be coherent. In these circumstances, if probabilities
are used to inform bets concerning the truth of propositions in the universe of
discourse where these probabilities are meaningful, then it is impossible (for a
“bookie”) to devise a collection of bets that bring an assured loss to this agent
(a so-called “Dutch Book”).
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Now, suppose that, having ascertained the truth of a proposition A, one pro-
duces Pr(C |A) as assessment of C ’s truth on the evidence provided by A. Next,
one determines that B, too, is true and revises this last assessment of C ’s truth to
become Pr(C |B and A). The process whereby probabilities are updated is coher-
ently extensible if the resulting assessment is the same irrespective of whether
the evidence provided by A and B is brought to bear either sequentially, as just
considered, or simultaneously. The incorporation of information from multi-
ple sources, and the corresponding propagation of uncertainty, that is carried
out by application of Bayes’ formula, which is described next and illustrated in
examples §3.6 and §6.7, is coherently extensible.

3.5 Bayes’s Formula

If exactly one (that is, one and one only) among propositions A1, . . . , An can be
true, and B is another proposition with positive probability, then

Pr(A j|B) =
Pr(B|A j)Pr(A j)

∑n
i=1 Pr(B|Ai)Pr(Ai)

, for j = 1, . . . , n. (1)

This follows from the axioms above because Pr(A j|B) = Pr(A j and B)/Pr(B)
(Multiplication axiom), whose numerator equals Pr(B|A j)Pr(A j) (Multiplica-
tion axiom), and whose denominator equals Pr(B|A1)Pr(A1) . . . Pr(B|An)Pr(An)
(“extending the conversation”, as in §3.3).

3.6 example: Tuberculin Test

Richard has been advised that his tuberculin skin test has returned a positive re-
sult. The tuberculin skin test has a reported false-negative rate of 25 % during
the initial evaluation of persons with active tuberculosis [American Thoracic
Society, 1999, Holden et al., 1971]: this means that the probability is 0.25 that
the test will yield a negative (−) response when administered to an infected
person (I), Pr(−| I) = 0.25. Therefore, the probability is only 0.75 that infec-
tion will yield a positive test result. In populations where cross-reactivity with
other mycobacteria is common, the test’s false-positive rate is 5%: that is, the
conditional probability of a positive result (+) for a person that is not infected
(eI) is Pr(+ |eI) = 0.05.

Richard happens to live in an area where tuberculosis has a prevalence of 10%.
Given the positive result of the test he underwent, the probability that he is
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infected is

Pr(I |+) =
Pr(+ | I)Pr(I)

Pr(+ | I)Pr(I) + Pr(+ |eI)Pr(eI)

=
(0.75× 0.10)

(0.75× 0.10) + (0.05× 0.90)
= 0.625.

Common sense suggests that the diagnostic value of the test should depend on
its false-negative and false-positive rates, as well as on the prevalence of the dis-
ease: Bayes’ formula states exactly how these ingredients should be combined
to produce Pr(I |+), which expresses that diagnostic value quantitatively.

Richard has the tuberculin skin test repeated, and this second test also turns
out positive. To incorporate this additional piece of evidence into the probabil-
ity that Richard is infected, first we summarize the state of knowledge (about
whether he is infected) determined by the result from the first test. This is
done by defining Q(I) = Pr(I |+) = 0.625 and Q(eI) = 1−Q(I) = 0.375, and
using them in the role that the overall probability of infection (10 %) or non-
infection (90%) played prior to Richard’s first test, when all one knew about
his condition was that he was a member of a population where the prevalence
of tuberculosis was 10 %.

Again applying Bayes’ theorem, and assuming that the two tests are indepen-
dent, the revised probability that Richard is infected after two positive tests
is

Q(I |+) =
Pr(+ | I)Q(I)

Pr(+ | I)Q(I) + Pr(+ |eI)Q(eI)

=
(0.75× 0.625)

(0.75× 0.625) + (0.05× 0.375)
= 0.962.

If, instead, one had been initially told that Richard had had two independent,
positive tuberculin skin tests, then the calculation would have been:

Pr(I | ++) =
Pr(++ | I)Pr(I)

Pr(++ | I)Pr(I) + Pr(++ |eI)Pr(eI)

=
(0.752× 0.10)

(0.752× 0.10) + (0.052× 0.90)
= 0.962.

This example illustrates the fact that Bayes’ theorem produces the same prob-
ability irrespective of whether the information is incorporated sequentially, or
all at once.
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3.7 Growth of Knowledge

The example in §3.6 illustrated how the probability of Richard being infected
increased (relative to the overall probability of infection in the town where he
lives) as a first, and then a second tuberculin test turned out positive. However,
even if he is infected, by chance alone a test may turn out negative. In a
sequence of tests, therefore, the probability of his being infected may oscillate,
increasing when a test turns out positive, decreasing when some subsequent
test turns out negative.

Therefore, the question naturally arises of whether a person employing the
Bayesian method of exploiting information, and incorporating it into the cur-
rent state of knowledge, ever will, in situations of uncertainty, arrive at con-
clusions with overwhelming confidence. Jimmie Savage proved rigorously that
the answer is “yes” with great generality: “with observation of an abundance of
relevant data, the person is almost certain to become highly convinced of the
truth, and [. . . ] he himself knows this to be the case” [Savage, 1972, §3.6].

The restriction to “relevant data” is critical: in relation with the tuberculin
test, if it happened that Pr(+ | I) = Pr(+ |eI) = ½, then the test would have no
discriminatory power, and in fact would be irrelevant to learning about disease
status.

4 Random Variables and Probability Distributions

4.1 Random Variables

The notion of random variable originates in games of chance, like roulette,
whose outcomes are unpredictable. Its rigorous mathematical definition (mea-
surable function from one probability space into another) is unlikely to be of
great interest to the metrologist. Instead, one may like to keep in mind its
heuristic meaning: the value of a quantity that has a probability distribution
as an attribute whose role is to describe the uncertainty associated with that
value.

4.2 example: Roulette

In the version of roulette played in Monte Carlo, the possible outcomes are
numbers in the set X = {0,1, . . . , 36} (usually one disregards other possible,
but “uninteresting” outcomes, including those where the ball exits the wheel
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and lands elsewhere, or where it lands inside the wheel but in none of its
numbered pockets). Once those 37 numbers are deemed to be equally likely,
one can speak of a random variable that is equal to 0 with probability 1/37, or
that is odd with probability 18/37. (Note that these statements are meaningful
irrespective of whether the event in question will happen in the future, or has
happened already, provided one does not know its actual outcome yet).

4.3 example: Light Bulb

The GE A19 Party Light 25W incandescent light bulb has expected lifetime
2000 h: this is usually taken to mean that, if a brand new bulb is turned on
and left on supplied with constant 120V electrical current until it burns out, its
actual lifetime may be described as a realized value (realization, or outcome) of
a random variable with an exponential probability distribution (§4.10) whose
expected value is 2000 h — this is denoted η in §4.10, and in general it needs
to be estimated from experimental data.

The concept of random variable applies just as well to domains of discourse
unrelated to games of chance, hence can be used to suggest uncertainty about
the value of a quantity, irrespective of the source of this uncertainty, including
situations where there is nothing “random” (in the sense of “chancy”) in play.

4.4 Notational Convention

For the most part, upper case letters (Roman or Greek) denote generic quantity
values modeled as random variables, and their lowercase counterparts denote
particular values.

Upper case letters like X or X1, X2, . . . , and Y , denote generic random variables,
without implying that any of the former necessarily play the role of input quan-
tity values (as defined in the international vocabulary of metrology (VIM) Joint
Committee for Guides in Metrology [2008c], VIM 2.50), or that the latter nec-
essarily plays the role of output quantity values (VIM 2.51) in a measurement
model (VIM 2.48).

The probabilities most commonly encountered in metrological practice concern
sets of numbers that a quantity value may take: in this case, if X denotes a
random variable whose values belong to a set X , and A is a subset of X , then
Pr(X ∈ A) denotes the probability that X ’s value lies in A. For example, if X
represents the length (expressed in meter, say) of a gauge block, thenX would
be the set of all possible values of length, and A could be the subset of such
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values between 0.0423 m and 0.0427m, say.

4.5 Probability Distributions

Given a random variable X one can then define a function PX such that PX (A) =
Pr(X ∈ A) for all A⊂X to which a probability can be assigned. This PX is called
X ’s probability distribution.

If X is countable (that is, either finite or infinite but with as many elements
as there are positive integers), then one says that X has a discrete distribution,
which is fully specified by the probability it assigns to each value in X . For ex-
ample, the outcome of a roulette wheel is a random variable whose probability
distribution is discrete.

IfX is uncountable (that is, it has as many elements as there are real numbers)
and Pr(X = x) = 0 for all x ∈ X , then one says that X has a continuous
distribution. For example, the lifetime of an incandescent light bulb that does
light up and then is constantly left on until it burns out is a random variable
with a continuous distribution.

A distribution may be neither discrete nor continuous, but of a mixed type
instead: for example, when a random variable is equal to 0 with probability ε >
0, and has an exponential distribution (see §4.10) with probability 1−ε. Since
a brand new light bulb has a positive probability of burning out the instant
it is turned on, its lifetime may more realistically be modeled as a random
variable that has an “atom” of probability at 0, and is exponential with the
complementary probability.

4.6 Probability Distribution Function

The probability distribution of a random variable X whose possible values are
real numbers, can be succinctly described by its probability distribution function,
which is the function PX such that PX (x) = Pr(X ¶ x) for every real number x .

Note that the symbol we use here to denote the probability distribution func-
tion, is the same that we used in §4.5 to denote the probability distribution
itself. Any confusion this may cause will be promptly resolved by examining
the argument of PX : if it is a set, then we mean the distribution itself, while
if it is a number or a vector with numerical components, then we mean the
probability distribution function.

For example, if X is real-valued and x is a particular real number, then in
PX (x) = PX ((−∞, x]) the PX on the left hand side refers to the probability
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distribution function, while the PX on the right hand side refers to the distribu-
tion itself because (−∞, x] denotes the set of all real numbers no greater than
x . Since the distribution function determines the distribution, the confusion is
harmless.

4.7 Probability Density Function

If X has a discrete distribution (§4.5), then its probability density (also known
as its probability mass function) is the function pX such that pX (x) = Pr(X = x)
for x ∈ X .

If X is uncountable and X ’s distribution is continuous and sufficiently smooth
(in the sense described next), then the corresponding probability density func-
tion (PDF) is defined similarly to a material object’s mass density, as follows.

Consider the simplest case, where X is an interval of real numbers, and sup-
pose that x is one point in the interior of this interval. Now suppose that
δ1 > δ2 > . . . is an infinite sequence of positive numbers decreasing to zero.
If X ’s probability distribution is sufficiently smooth, then the limit pX (x) =
limn→∞

�

PX (x + δn)− PX (x − δn)
�

/(2δn) exists. The function pX so defined
is X ’s probability density function. If the distribution function is differentiable,
then the probability density is the derivative of the probability distribution func-
tion, pX = P ′X .

Both the probability distribution function and the probability density function
have multivariate counterparts.

4.8 Expected Value, Variance, and Standard Deviation

The expectation (expected value, or mean value) of a (scalar or vector valued)
function ϕ of a random variable X that takes values in a set X is E(ϕ(X ))
=
∫

X ϕ(x)pX (x)dx if X has a continuous probability distribution with density
pX , or E(ϕ(X )) =

∑

x∈X ϕ(x)pX (x) if X has a discrete distribution. Note that
E(ϕ(X )) can be computed without determining the probability distribution of
the random variable ϕ(X ) explicitly.

E(X ) indicates X ’s location, or the center of its probability distribution: there-
fore it is a most succinct summary of this distribution, and it is the best estimate
of X ’s value in the sense that it has the smallest mean squared error.

The median is another indication of location for a scalar random variable: it is
any value ξ such that Pr(X ¶ ξ) ¾ ½ and Pr(X ¾ ξ) ¾ ½, and it need not be
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unique. The median is the best estimate of X ’s value in the sense that it has the
smallest absolute deviation.

Neither the mean nor the median need be “representative” values of the distri-
bution. For example, when X denotes a proportion whose most common values
are close to 0 or to 1 and its mean is close to ½, then values close to the mean
are very unlikely. E(X ) need not exist (in the sense that the defining integral
or sum may fail to converge).

E(X k), where k is a positive integer, is called X ’s kth moment. The variance of
X is σ2 = V(X ) = E[(X − E(X ))2], or, equivalently, the difference between its
second moment and the square of its first moment. The positive square root of
the variance, σ, is the standard deviation of X .

4.9 example: Poisson Distribution

The only values that a Poisson distributed random variable X can take are
the non-negative integers: 0, 1, 2, . . . , and the probability that its value is
x is pX (x) = λx e−λ/x!, where λ is some given positive number, and x! =
x(x −1) . . . 1. This model distributes its unit of probability into infinitely many
lumps, one at each non-negative integer, so that pX (x) decreases rapidly with
increasing x , and pX (0) + pX (1) + pX (2) + · · · = 1. Both the expected value
and the variance equal λ. The number of alpha particles emitted by a sample
containing the radionuclide 210Po, during a period of t seconds that is a small
fraction of this isotope’s half-life (138 days), is a value of a Poisson random
variable with mean proportional to t.

4.10 example: Exponential Distribution

Suppose that X represents the lifetime (thousands of hours) of an incandescent
light bulb, such that, for 0< a < b, Pr(a < X < b) = exp(−a/η)− exp(−b/η),
for some given number η > 0: note that, as a decreases toward 0, and b
increases without limit, Pr(a < X < b) approaches 1. Focus on a particu-
lar number x > 0, and consider the ratio Pr(x − δ < X < x + δ)/(2δ) =
exp(−x/η)[exp(δ/η) − exp(−δ/η)]/(2δ) for some δ > 0. As δ decreases
to 0 this ratio approaches (1/η)exp(−x/η). Therefore, the function pX such
that pX (x) = (1/η)exp(−x/η) is the probability density of the exponential
distribution. In this case, the probability distribution function is PX such that
PX (x) = Pr(X ¶ x) = 1 − exp(−x/η). X ’s mean value is E(X ) = η, and its
variance is V(X ) = η2. Figure 1 illustrates both the distribution function and
the density for the case where η= 2000h.
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Figure 1: Exponential Distribution with Mean 2000 h. The left panel shows
a portion of the graph of the probability distribution function. The right panel
shows the corresponding portion of the graph of the probability density func-
tion. The area of the shaded region equals the probability of a value between
1000 h and 4000h: this is PX (4000)− PX (1000) = exp(−1/2)− exp(−4/2) ≈
0.47. Note that the vertical scales in the left and right panels are different.

4.11 Joint, Marginal, and Conditional Distributions

Suppose that X represents a bivariate quantity value, for example, the Cartesian
coordinates (U , V ) of a point inside a circle of unit radius centered at (0,0). In
this case the range X of X = (U , V ) is this unit circle. The joint probability
distribution of U and V describes a state of knowledge about the location of X :
for example, that more likely than not X is less than ½ away from the center of
the circle: statements of this kind involve U and V together (that is, jointly).

The marginal probability distributions of U and V are the probability distribu-
tions that characterize the state of knowledge about each of them separately
from the other: for example, that more likely than not −½ < U <½, irrespec-
tive of V .

Clearly, the marginal distributions have to be consistent with the joint distri-
bution, and while it is true that the joint distribution determines the marginal
distributions, the reverse is not true, in that typically there are many joint dis-
tributions consistent with given marginal distributions [Possolo, 2010].

Now, suppose one knows that U = 2/3. This implies that −
p

5/3 < V <p
5/3, hence that X = (U , V ) is somewhere on a particular chord C of the unit

circle. The conditional probability distribution of V given that U = 2/3 is a
(univariate) probability distribution over this chord.
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4.12 example: Shark’s Fin

The random variables X and Y take values in the interval (1, 2) and have joint
probability density function pX ,Y such that pX ,Y (x , y) = (x + y)/3 for 1 ¶
x , y ¶ 2 and is zero otherwise (Figure 2): since pX ,Y ¾ 0 and

∫ 2

1

∫ 2

1
pX ,Y (x , y)dxdy =

1, pX ,Y is a bona fide (bivariate) probability density.

The density of the marginal distribution of X is px(x) =
∫ 2

1
pX ,Y (x , y)dy =

x/3+ 1/2, and similarly for Y . And the density of the conditional distribution
of Y given X = x is pY |X (y|x) = pX ,Y (x , y)/pX (x) = (x + y)/(x + 3/2).

To determine the probability density of R= Y /X , also depicted in Figure 2, note
that ½¶ R¶ 2. First, consider the case ½< r ¶ 1: Pr(R¶ r) = (2r − 1)2/(2r)
and pR(r) = (4r2 − 1)/(2r2). Next, consider the case 1 < r ¶ 2: Pr(R ¶ r) =
1− (2− r)2/(2r) and pR(r) = (4− r2)/(2r2).
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Figure 2: Shark’s Fin. The left panel shows the probability density of the joint
distribution of X and Y defined in §4.12. In the middle panel, the dashed
(blue) line has slope ½< r < 1, and the points inside the small (blue) triangle
have coordinates that satisfy the conditions 1 < x , y < 2 and y/x < r < 1.
The dotted (red) line has slope 1< r < 2, and the points inside the large (red)
triangle have coordinates that satisfy the conditions 1 < x , y < 2 and y/x >
r > 1. The right panel shows the probability density function of R= Y /X .

4.13 Independent Random Variables

The (scalar or vectorial) random variables X and Y are independent if and
only if Pr(X ∈ A and Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B) for all subsets A and B
in their respective ranges (to which probabilities can be coherently assigned.)
Suppose X and Y have joint probability distribution with probability density
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function pX ,Y , and marginal density functions pX and pY : the random variables
are independent if and only if pX ,Y = pX pY .

4.14 example: Unit Circle

Suppose that the probability distribution of a point is uniform inside the circle
of unit radius centered at the origin (0,0) of the Euclidean plane. This means
that the probability that a point with Cartesian coordinates (X , Y ) should lie in
a subset S of this circle is proportional to S’s area, but is otherwise independent
of S’s shape or location within the circle. The probability density function of the
joint distribution of X and Y is the function pX ,Y such that pX ,Y (x , y) = 1/π if
x2+ y2 < 1, and pX ,Y (x , y) = 0 otherwise. The random variables X and Y are
dependent (§4.13): for example, if one is told that X >½, then one can surely
conclude that −

p
3/2< Y <

p
3/2. The marginal distribution of X has density

pX such that pX (x) = (2/π)
∫

p
1−x2

0
dy = (2/π)

p

1− x2 for −1 < x < 1. X
has expected value 0 and standard deviation ½. Owing to symmetry, X and Y
have identical marginal distributions.

4.15 Correlations and Copulas

If two or more of the random variables are dependent, then modeling their in-
dividual probability distributions will not suffice to specify their joint behavior:
their joint probability distribution is needed.

One commonly used metric of dependence between two random variables X
and Y is Pearson’s product-moment correlation coefficient, defined as ρ(X , Y ) =
E[(X−E(X ))(Y−E(Y ))]/

p

V(X )V(Y ). However, it is possible for the variables
to be dependent and still have ρ(X , Y ) = 0.

When the only information in hand are the expected values, standard devia-
tions, and correlations, and still one needs a joint distribution consistent with
this information, then the usual course of action is to assign distributions to
them individually, and then manufacturing a joint distribution using a copula
[Possolo, 2010]— there is, however, a multitude of different copulas that can
be used for this purpose, and the choice that must be made generally is influ-
ential.
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5 Functions of Random Variables

5.1 Overview

If a random variable Y is a function of other random variables, Y = ϕ(X1, . . . , Xn),
then ϕ and the joint probability distribution of X1, . . . , Xn determine the prob-
ability distribution of Y .

If only the means, standard deviations, and correlations of X1, . . . , Xn are known,
then it still is possible to derive approximations to the mean and standard de-
viation of Y , by application of the Delta Method.

If the joint probability distribution of X1, . . . , Xn is known, then it may be possi-
ble to determine the probability distribution of Y analytically, using the change
of variables formula.

In general, it is possible to obtain a sample from Y ’s distribution by taking a
sample from the joint distribution of X1, . . . , Xn and applying ϕ to each element
of this sample (§5.8). The results may then be summarized in several different
ways: one of them is an estimate of the probability density of Y [Silverman,
1986], a procedure that is implemented in function density of the R envi-
ronment for statistical programming and graphics [R Development Core Team,
2010].

5.2 Delta Method

If X is a random variable with mean µ and variance σ2, ϕ is a differentiable
real-valued function of a real variable whose first derivative does not vanish
at µ, and Y = ϕ(X ), then E(Y ) ≈ ϕ(µ), and V(Y ) ≈ [ϕ′(µ)]2σ2. (This re-
sults from the so-called Taylor approximation that replaces ϕ by a straight line
tangent to its graph at µ.)

If X = (V1 + · · ·+ Vm)/m is an average of independent, identically distributed
random variables with finite variance, then

p
m(ϕ(Vm)−ϕ(µ)) also is approx-

imately Gaussian with mean 0 and standard deviation |ϕ′(µ)|σ, where |ϕ′(µ)|
denotes the absolute value of the first derivative of ϕ evaluated at µ. The
quality of the approximation improves with increasing m.

5.3 Delta Method — Degeneracy

When ϕ′(µ) = 0 and ϕ′′(µ) exists and is not zero, X = (V1 + · · ·+ Vm)/m is
an average of independent, identically distributed random variables with fi-
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nite variance, and m is large, then the probability distribution of m(ϕ(X ) −
ϕ(µ)) is approximately like that of σ2ϕ′′(µ)Z2/2, where Z denotes a Gaus-
sian (or, normal) random variable with mean 0 and standard deviation 1.
Since the variance of Z2 is 2, the standard deviation of ϕ(Vm) is approximately
σ2|ϕ′′(µ)|/

p
2, rather different from what applies in the conditions of §5.2.

5.4 example: Radiant Power

Consider a surface whose reflectance is Lambertian: that is, light falling on
it is scattered in such a way that the surface’s brightness apparent to an ob-
server is the same regardless of the observer’s angle of view. The radiant power
W emitted by such surface that is measured by a sensor aimed at angle A to
the surface’s normal is proportional to cos(A), hence one writes W = κ cos(A)
[Cannon, 1998, Köhler, 1998].

If knowledge about the value of A is modeled by a Gaussian distribution with
mean α > 0 and standard measurement uncertainty u(A) (both expressed in
radians), then §5.2 (with m = 1) suggests that knowledge of W should be
described approximately by a Gaussian distribution with mean κ cos(α) and
standard measurement uncertainty κu(A) sin(α).

If, for example, α = π/3rad, κ = 2 W, and u(A) = π/100rad, then the approx-
imation to W ’s distribution that the Delta Method suggests, of a Gaussian distri-
bution with mean cos(π/3) = 0.5 W and standard deviation 2(π/100) sin(π/3) =
0.0544 W, is remarkably accurate (Figure 3).

When the detector is aimed squarely at the target, that is α = 0, this approx-
imation no longer works because the first derivative of the cosine vanishes at
0, which is the degenerate case that §5.3 contemplates. In this case, W ’s stan-
dard measurement uncertainty is approximately κu2(A)/

p
2. For κ = 2 W and

u(A) = π/100rad, this equals 0.0014W, which is accurate to the two signifi-
cant digits shown. However, Figure 3 shows that, in this case, the Delta Method
produces a poor approximation.

When α = 0, the probability density of W is markedly asymmetrical, and the
meaning of W ’s standard deviation is rather different from its meaning when
α > 0. Indeed, when α = 0 the probability that W should lie within one
standard deviation of its expected value is 88 % approximately.
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Figure 3: Radiant Power. Probability density of the radiant power W =
κ cos(A) emitted by a Lambertian surface that is measured by a sensor aimed
at an angle A to the surface’s normal, when A has a Gaussian distribution with
mean α = π/3rad (left panel) or α = 0 rad (right panel), and standard devia-
tion σ = π/100 rad. In both cases, the thick blue line is the exact density, and
the thin red line is the Delta Method approximation.

5.5 Delta Method — Multivariate

The Delta Method can be extended to apply to a function of several random
variables. Suppose that X1 = (V1,1+· · ·+Vm1,1), . . . , Xn = (V1,n+· · ·+Vmn,n) are
averages of sets of random variables whose variances are finite. The variables
in each set are independent and identically distributed, those in set 1 ¶ j ¶ n
having mean µ j and variance σ2

j . However, variables in different sets may be
dependent, hence the {X j} may be dependent, too. Let Σ denote the n × n
symmetrical matrix whose element σ j1 j2 = E

�

(Vm, j1 − µ j1)(Vi, j2 − µ j2)
�

is the
covariance between X j1 and X j2 , for 1¶ j1, j2 ¶ n.

Now, consider the random variable Y = ϕ(X1, . . . , Xn), where ϕ denotes a
real-valued function of n variables whose first partial derivatives are contin-
uous and none vanishes at µ1, . . . ,µn. If τ2 =

∑n
j1=1

∑n
j2=1σ j1 j2(∂ ϕ/∂ µ j1)(µ)

(∂ ϕ/∂ µ j2)(µ) is finite, then
p

m(ϕ(Y )−ϕ(µ1, . . . ,µn)) also is approximately
Gaussian with mean 0 and variance τ2.

If X1, . . . , Xn are uncorrelated and have means µ1, . . . ,µn and standard devi-
ations σ1, . . . ,σn, then the Delta Method approximation reduces to a well-
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known formula first presented by Gauss [Gauss, 1823, §18, Problema]: V(Y )≈
c2
1σ

2
1 + · · ·+ c2

nσ
2
n, where the sensitivity coefficient c j = ∂ ϕ(x1, . . . , xn)/∂ x j is

the value at (x1, . . . , xn) of the jth partial derivative of ϕ with respect to x j .

5.6 example: Beer-Lambert-Bouguer Law

If a beam of monochromatic light of power I0 (W) travels a path of length L
(m) through a solution containing a solute whose molar absorptivity for that
light is E (L mol−1 m−1), and whose molar concentration is C (molL−1), then
the beam’s power is reduced to I (W) such that I = I010ELC . Application of
Gauss’s formula (§5.5) to C = log10(I0/I)/(EL) yields:

V(C)≈

σ2
I0

I2
0

+
σ2

I

I2

(EL log10)2
+
�σ2

E

E2 +
σ2

L

L2

�

log2
10(I/I0)

5.7 example: Darcy’s Law

Darcy’s law relates the dynamic viscosity H of a fluid to the volumetric rate of
discharge Q (volume per unit of time) when the fluid flows through a perme-
able cylindrical medium of cross-section A and intrinsic permeability K under a
pressure drop of ∆ along a length L, as follows: H = KA∆/(QL).

To compute an approximation to the standard deviation of H, one may use
the formula from §5.5 directly, or first take the logarithm of both sides, which
linearizes the relationship, log(H) = log(K)+ log(A)+ log(∆)− log(Q)− log(L).
Applied to these logarithms, the formula from §5.5 is exact. The approximation
is then done for each term separately, using the univariate Delta Method.

Since V(log(η)) ≈ V(η)/η2, and similarly for the other logarithmic terms,
V(η)/η2 ≈ V(κ)/κ2 · · · + V(L)/L2. In other words, the square of the coeffi-
cient of variation of η is approximately equal to the sum of the squares of the
variation coefficients of the other variables.

5.8 Monte Carlo Method

The Monte Carlo method offers several important advantages over the Delta
Method described in §5.2 and §5.5: (i) it can produce as many correct sig-
nificant digits in its results as may be required; (ii) it does not involve the
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computation of derivatives, either analytically or numerically; (iii) it is applica-
ble in many situations where the Delta Method is not; (iv) it provides a picture
of the whole probability distribution of a function of several random variables,
not just an approximation to it, or to its mean and standard deviation.

The Monte Carlo method in general dates back to the middle of the twenti-
eth century [Metropolis and Ulam, 1949, Metropolis et al., 1953]. A variant
used in mathematical statistics is known as the parametric bootstrap [Efron and
Tibshirani, 1993]. This involves using random draws from a (possibly multi-
variate) probability distribution whose parameters have been replaced by es-
timates thereof (for example, means of posterior probability distributions, §6)
to ascertain the probability distribution of a function of one (or more) random
variables. Morgan and Henrion [1992] and Joint Committee for Guides in
Metrology [2008b] describe how it may be employed to evaluate measurement
uncertainty, and provide illustrative examples.

The procedure comprises the following steps:

MC1 Define the joint probability distribution of X1, . . . , Xn.

MC2 Choose a suitably large positive integer K and draw a sample of size K
from this joint distribution to obtain (x11, . . . , xn1), . . . , (x1K , . . . , xnK).
(If X1, . . . , Xn happen to be independent, then this amounts to drawing
a sample of size K from the distribution of each of them separately.)

MC3 Compute y1 = ϕ(x11, . . . , xn1), . . . , yK = ϕ(x1K , . . . , xnK), which are a
sample from Y ’s distribution.

MC4 Summarize this sample in one or more of these different ways:

MC4.a — Probability Density The most inclusive summarization is in
the form of an estimate of Y ’s probability density function: this may
be either a simple histogram, or a kernel density estimate [Silver-
man, 1986].

MC4.b — Mean and Standard Deviation The mean and standard devi-
ation of Y are estimated by the mean and the standard deviation of
{y1, . . . , yK}. (To ascertain the number of significant digits in this
mean and standard deviation, hence to decide whether K is large
enough for the intended purpose, or should be increased, one may
employ either the adaptive procedure explained in the Supplement
1 to the GUM [Joint Committee for Guides in Metrology, 2008b,
7.9], or resort to the non-parametric statistical bootstrap or to other
resampling methods [Davison and Hinkley, 1997].)

possolo & toman page 25 of 44



tutorial for metrologists 2011-nov-21

MC4.c — Probability Interval If y(1) ¶ y(2) ¶ · · · ¶ y(K) denote the re-
sult of ordering y1, . . . , yK from smallest to largest, then the interval
(y(Kα/2), y(K(1−α/2))) includes Y ’s true value with probability 1− α.
(Since Kα/2 and K(1−α/2) need not be integers, the end-points of
this coverage interval may be calculated by interpolation of adjacent
y(i)s.)

5.9 example: Volume of Cylinder

The radius R and the height H of a cylinder are values of independent random
variables with exponential probability distributions with mean 1 m. To char-
acterize the probability distribution of its volume V = πR2H, draw a sample
of size 107 from the joint distribution of R and H, and compute the volume
corresponding to each pair of sampled values (r, h) to obtain a sample of the
same size from the distribution of V . The average and standard deviation of
these values are 6.3m3 and 21 m3, and they are estimates (whose two most
significant digits are exact) of the mean and standard deviation of V . Figure 4
depicts an estimate of the corresponding probability density.
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Figure 4: Cylinder Volume. Kernel density estimate [Silverman, 1986] of the
probability density of the volume of a cylinder whose radius and height are re-
alized values of independent, exponentially distributed random variables with
mean 1 m.

possolo & toman page 26 of 44



tutorial for metrologists 2011-nov-21

5.10 Change-of-Variable Formula — Univariate

Suppose that X is a random variable with a continuous distribution and values
inX , with probability distribution function PX and probability density function
pX , and consider the random variable Y = ϕ(X ) where ϕ denotes a real-valued
function of a real variable. Let Y denote the set where Y takes its values, and
let PY and pY denote Y ’s probability distribution function and probability den-
sity function, respectively. In these circumstances [Casella and Berger, 2002,
Chapter 2].

• If ϕ is increasing on X and ψ denotes its inverse, then PY (y) = Pr(Y ¶
y) = Pr(X ¶ ψ(y)) = PX [ψ(y)] for y ∈ Y ; and if ϕ is decreasing, then
PY (y) = 1− PX [ψ(y)].

• If ϕ is either increasing or decreasing onX (but not both), and its inverse
ψ has a continuous first derivative ψ̇, then pY (y) = pX [ψ(y)]|ψ̇(y)|, for
y ∈ Y , where |ψ̇(y)| denotes the absolute value of the derivative of ψ at
y .

5.11 example: Oscillating Mirror

A horizontal beam of light emerges from a tiny hole in a wall and travels along
a 1 m long path at right angles to the wall, towards a flat mirror that oscillates
freely around a vertical axis. When the mirror’s surface normal makes an angle
A with the beam, its reflection hits the wall at distance D = tan(A) from the
hole (positive to the right of the hole and negative to the left). If A is uniformly
(or, rectangularly) distributed between −π/2 rad and π/2rad, then PD(d) =
Pr(D ¶ d) = Pr(A ¶ arctan(d)) = (arctan(d) + π/2)/π, and D’s probability
density is pD such that pD(d) = 1/[π(1+ d2)] for −∞ < d < ∞. As it turns
out, both the mean and the standard deviation of D are infinite [Feller, 1971,
Page 51].

5.12 Change-of-Variable Formula — Multivariate

Suppose that X1, . . . , Xn are random variables and consider Yj = ϕ j(X1, . . . , Xn)
for j = 1, . . . , n, and where ϕ1, . . . ,ϕn are real-valued functions of n real vari-
ables each.

Suppose also that (i) the vector X = (X1, . . . , Xn) takes values in an open subset
X of n-dimensional Euclidean space, and has a continuous joint probability
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distribution with probability density function pX ; (ii) the vector-valued function
ϕ = (ϕ1, . . . ,ϕn) is invertible, and the inverseψ= (ψ1, . . . ,ψn) has a Jacobian
determinant Jψ that does not vanish on Y .

CV1 Solve the n equations y1 = ϕ1(x1, . . . , xn), . . . , yn = ϕn(x1, . . . , xn), for
x1, . . . , xn, to obtain the inverse transformation such that x1 =ψ1(y1, . . . , yn),
. . . , xn =ψn(y1, . . . , yn).

CV2 Find ψ̇i j , the partial derivative of ψi with respect to its jth argument,
for i, j = 1, . . . , n, and compute the Jacobian determinant of the inverse
transformation at y = (y1, . . . , yn):

Jψ(y) = det













ψ̇11(y) ψ̇12(y) . . . ψ̇1n(y)
ψ̇21(y) ψ̇22(y) . . . ψ̇2n(y)

...
...

. . .
...

ψ̇n1(y) ψ̇n2(y) . . . ψ̇nn(y)













CV3 The density the joint probability distribution of the random vector Y is pY
such that

pY (y) = pX
�

ψ(y)
�

�

�Jψ(y)
�

� . (2)

Note that Jψ(y) is a scalar, and
�

�Jψ(y)
�

� denotes its absolute value.

CV4 The probability density of Y1 is pY1
(y1) =

∫

. . .
∫

g(y1, y2, . . . , yn)dy2 . . . dyn,
where the n− 1 integrals are over the ranges of Y2, . . . , Yn.

5.13 example: Linear Combinations of Gaussian Random Variables

Suppose that U and V are independent, Gaussian random variables with mean
0 and variance 1, and let S = aU + bV , and T = bU − aV , for given real
numbers a and b. The inverse transformation maps (s, t) onto

�

(as+ bt)/(a2+
b2), (bs− at)/(a2+ b2)

�

, and has Jacobian determinant det
�

a b
b −a

�

/(a2+ b2)
whose absolute value is 1/(a2 + b2). Since the density of the joint probability
distribution of U and V is pU ,V (u, v) = exp(−(u2+ v2)/2)/(2π), application of
the multivariate change-of-variable formula yields

pS,T (s, t) =

exp

¨

−
s2

2(a2+ b2)

«

p

2π(a2+ b2)

exp

¨

−
t2

2(a2+ b2)

«

p

2π(a2+ b2)
.

possolo & toman page 28 of 44



tutorial for metrologists 2011-nov-21

But this means that S and T also are independent and Gaussian with mean 0
and variance a2+b2. On the one hand, this result is surprising because S and T
both are functions of the same random variables. On the other hand it is hardly
surprising because the transformation amounts to a rotation of the coordinate
axes, followed by a global dilation. Since the joint distribution of U and V is
circularly symmetric relative to (0,0), so will the joint distribution of S and T
be, which implies independence and the same functional form for the density,
up to a difference in scale.

5.14 example: Ratio of Exponential Lifetimes

To compute the probability density of the ratio R = X/Y of two independent
and exponentially distributed random variables X and Y with mean 1/λ, define
the function ϕ such that ϕ(x , y) = (x/y, y), whose inverse is ψ(r, s) = (rs, s),
with Jacobian determinant Jψ(r, s) = det

� s r
0 1
�

= s > 0. The multivariate
change-of-variable formula then yields pR,S(r, s) = sλ2 exp

�

−λ(1+r)s
�

for the
density of the joint distribution of R= X/Y and S = Y . The (marginal) density
of R is pR(r) =

∫∞
0

pR,S(r, s)ds = 1/(1+ r)2, for r > 0, being 0 otherwise.

pR indeed is a probability density function because it is a non-negative function
and

∫∞
0

dr/(1+ r)2 = 1− limr→∞ 1/(1+ r) = 1. However, since
∫∞

0
rdr/(1+

r)2 = limr→∞ log(1+ r) =∞, neither the mean nor the variance of R is finite.
The Delta Method, however, would have suggested that E(X/Y ) ≈ 1 and that
the coefficient of variation (ratio of the standard deviation to the mean) of X/Y
is
p

2 approximately.

5.15 example: Polar Coordinates

The inverse of the transformation that maps the polar coordinates (r,α) of a
point in the Euclidean plane to its Cartesian coordinates (x , y) is ψ such that
ψ(r, a) = (r cos a, r sin a) for r > 0 and 0< a < 2π, with Jacobian determinant
Jψ(r,α) = r. If X and Y are independent Gaussian random variables with
mean 0 and variance 1, then the probability density of (R, A) is pR,A(r,α) =
r exp(−r2/2)/(2π). Since

∫∞
0

r exp(−r2/2) = 1, it follows that R and A are

independent, the former having a Rayleigh distribution with mean
p

π/2, the
latter a uniform distribution between 0 and 2π.
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6 Statistical Inference

The statistical inferences we are primarily interested in are probabilistic state-
ments about the unknown value of a quantity, produced by application of a
statistical method. In the example of §6.6, one of the inferences is this state-
ment: the probability is 95 % that the difference between the numbers of hours
gained with the two soporifics is between 0.7h and 2.5 h.

Another common inference is an estimate of the value of a quantity, which must
be qualified with an assessment of the associated uncertainty. In the example of
§6.8, a typical inference of this kind would be this: the difference in mean levels
of thyroxine in the serum of two groups of children diagnosed with hypothyroidism
is estimated as 14nmol/L with standard uncertainty 18nmol/L (Figure 6).

In our treatment of this example, the inference is based entirely on a small set of
empirical data, and on a particular choice of statistical model used to describe
the dispersion of the data, and to characterize the fact that no knowledge other
than the data was brought into play.

Statistical methods different from the one we used could have been employed:
some of these would produce the same result (in particular those illustrated
when this dataset was first described [Student, 1908, Fisher, 1973]), while
others would have produced different results.

Even when the result is the same, it may be variously interpreted:

• For some that statement means that if the same sampling and study
method is used repeatedly, and each time the resulting dataset is mod-
eled and analyzed in the same way to produce an interval like the one
above, then about 95 % of the resulting intervals will include the true
difference sought — with no guarantee or implication that the interval
that was obtained is one of these;

• For others (among whom we stand) that statement expresses the degree
of belief one is entitled to have about the true difference lying between
0.7h and 2.5 h specifically, in light of all the relevant information in hand.

6.1 Bayesian Inference

Bayesian inference [Bernardo and Smith, 2000, Lindley, 2006, Robert, 2007]
is a class of statistical procedures that serve to blend preexisting information
about the value of a quantity with fresh information in empirical data.

The defining traits of a Bayesian procedure are these:
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(i) All quantity values that are the objects of interest but are accessible to di-
rect observation (non-observables) are modeled as values of non-observable
random variables whose (prior, or a priori) distributions encode and con-
vey states of incomplete knowledge about those values;

(ii) The empirical data (observables) are modeled as realized values of ran-
dom variables whose probability distributions depend on those objects of
interest;

(iii) Preexisting information about those objects of interest is updated in light
of the fresh empirical data by application of Bayes rule, and the results
are encapsulated in a (posterior, or a posteriori) probability distribution;

(iv) Selected aspects of this distribution are then abstracted from it and used
to characterize the objects of interest and to describe the state of knowl-
edge about them.

6.2 Prior Distribution

Let θ denote the value of the quantity of interest, which we model as realized
value of a random variable Θ with probability density function pΘ that encodes
the state of knowledge about θ prior to obtaining fresh data, and which must
be defined even if there is no prior knowledge.

Defining such pΘ often is a challenging task. If in fact there exists substantial
prior knowledge about θ , then it needs to be elicited from experts in the matter
and encapsulated in the form of a particular probability density: Garthwaite
et al. [2005] review how this may be done. For example, when measuring the
mass fraction of titanium in a mineral specimen, then knowledge of the species
(ilmenite, titanite, rutile, etc.) of the specimen is highly informative about that
mass fraction. Familiarity with the process of analytical chemistry employed to
make the measurement may indicate the dispersion of values to be expected.

In some cases, essentially no prior knowledge exists about θ , or none is deemed
reliable enough to be taken into account. In such cases, a so-called non-
informative prior distribution needs to be produced and assigned to Θ that
reflects this state of affairs: if θ is univariate (that is, a single number), then the
rules developed by Jeffreys [1961] often prove satisfactory; if θ is multivariate
(that is, a numerical vector), then the so-called reference prior distributions are
recommended [Bernardo and Smith, 2007] (these reduce to Jeffreys’s in the
univariate case).
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These rules often produce a pΘ that is improper, in the sense that
∫

H p(θ)dθ
diverges to infinity, where H denotes the range of Θ. (If Θ should have a
discrete distribution then this integral is replaced by a sum.) Fortunately, once
used in Bayes Rule (§3.5 and §6.4), improper priors often lead to proper pos-
terior probability distributions.

6.3 Likelihood Function

The empirical data x (which may be a single number, a numerical vector, or
a data structure of still greater complexity) are modeled as realized values of
a random variable X whose probability density describes the corresponding
dispersion of values.

This density must depend on θ , which is another way of saying that the data are
informative about θ (otherwise there would be nothing to be gained by observ-
ing them). In fact, this is the density of the conditional probability distribution
of X given that Θ = θ . Choosing a specific functional form for it generally
is a non-trivial exercise: it involves defining a statistical model that correctly
captures the dispersion of values likely to be obtained in the experiment that
produces them.

Once the data x are in hand, pX |Θ(x |θ) becomes a function of θ alone, being
largest for values of θ that make the data appear most likely. As such, it still
is non-negative, but its integral (or sum, if X ’s distribution should be discrete)
over the range of Θ, need not be 1.

6.4 Posterior Distribution

Suppose that both X given that Θ = θ and Θ have continuous distributions
with densities pX |Θ and pΘ. In these circumstances, Bayes rule becomes

pΘ|X (θ) =
pX |Θ(x |θ)pΘ(θ)

∫

H pX |Θ(x |s)pΘ(s)ds
. (3)

The function pΘ|X , which is defined over the range of Θ for each fixed value x ,
is the density of the posterior distribution of the value of the quantity of interest
Θ given the data.

In some cases this can be computed in closed form, in many others it cannot.
In all cases it is possible to obtain a sample from this posterior distribution
by application of a procedure known as Markov Chain Monte Carlo (MCMC)
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[Gelman et al., 2003]. This sample can then be summarized as described in
§5.8.

6.5 example: Viral Load

Once infected by influenza A virus, an epithelial cell of the upper respiratory
tract releases θ virions on average, which may then go on to infect other cells.
This number θ depends on the volume of the cell, and we will treat it as realized
value of a non-observable random variable with an exponential distribution
whose expected value, 1/γ for some 0 < γ < 1, is known. Given θ , the actual
number of virions that are released is x , and this is like a realized value of a
Poisson random variable with mean θ .

Suppose that the prior density is pΘ(θ) = γexp(−γθ), and the likelihood func-
tion is Lx(θ) = pX |Θ(x |θ) = θ x exp(−θ)/x!, for θ > 0. The posterior dis-
tribution of Θ given x belongs to the gamma family, and has expected value
(x + 1)/(γ+ 1), variance (x + 1)/(γ+ 1)2, and density

pΘ|X (θ |x) =
θ x e−θ

x!
γe−γθ

∫∞
0

sx e−s

x!
γe−γsds

=
(γ+ 1)x+1θ x e−θ(γ+1)

x!
.

6.6 example: Sleep Hours

The differences between the numbers of additional hours of sleep that ten pa-
tients gained when using two soporific drugs, described in examples given by
Student [1908] and [Fisher, 1973, §24], were 1.2 h, 2.4h, 1.3h, 1.3 h, 0.0h,
1.0 h, 1.8h, 0.8 h, 4.6h, and 1.4 h.

Suppose that, given µ and σ, these are realized values of independent Gaussian
random variables with mean µ and variance σ2. Let x = 1.58h denote their
average, and s2 = 1.51 h2 denote the sum of their squared deviations from x
divided by 9. In these circumstances, the likelihood function is Lx ,s2(µ,σ2) =
(2πσ2)−n/2 exp{−[n(x −µ)2+ (n− 1)s2]/(2σ2)}.
Assume, in addition, that µ and σ are realized values of non-observable ran-
dom variables M and Σ that are independent a priori and such that M and
logΣ are uniformly distributed between −∞ and +∞ (both improper prior
distributions). Then, given x and s, (µ− x)/(s/

p
n) is like a realized value of

a random variable with a Student’s t distribution with n − 1 = 9 degrees of
freedom, and (n− 1)s2/σ2 is like a realized value of a random variable with
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a chi-squared distribution with n− 1 degrees of freedom [Box and Tiao, 1973,
Theorem 2.2.1].

Therefore, the expected value of the posterior distribution of the mean dif-
ference of hours of sleep gained is eµ = 1.58h, and the standard deviation is
�

s/
p

n
��

p

(n− 1)/(n− 3)
�

= 0.441 h. A 95 % probability interval for µ ranges
from 0.7 h to 2.5h, and a similar one for σ ranges from 0.8h to 2.2 h.

Suppose that Mx ,s and Σx ,s are the counterparts of M and Σ once the infor-
mation in the data has been taken into account: that is, their probability dis-
tribution is the joint (or, bivariate) posterior probability distribution given the
data. Even though M and Σ were assumed to be independent a priori, Mx ,s
and Σx ,s turn out to be dependent a posteriori (that is, given the data), but
their correlation is zero [Lindley, 1965b, §5.4].

6.7 example: Hurricanes

A major hurricane has category 3, 4, or 5 on the Saffir-Simpson Hurricane Scale
[Simpson, 1974]: its central pressure is no more than 945mbar (94 500 Pa), it
has winds of at least 111 mile/hour (49.6m s−1), generates sea surges of 9 feet
(2.7 m) or greater, and has the potential to cause extensive damage.

The numbers of major hurricanes that struck the U.S. mainland directly, in each
decade starting with 1851–1860 and ending with 1991–2010, are: 6, 1, 7, 5, 8,
4, 7, 5, 8, 10, 8, 6, 4, 4, 5, 7 [Blake et al., 2011]. Let n= 16 denote the number
of decades, x1, . . . , xn denote the corresponding counts, and s = x1 + · · ·+ xn.
Suppose that one wishes to predict y , the number of such hurricanes in the
decade 2011–2020.

Assume that the mean number of such hurricanes per decade will have re-
mained constant between 1851 and 2010 (certainly a questionable assump-
tion), with unknown value λ, and that, conditionally on this value, x1, . . . , xn,
and y are realized values of independent Poisson random variables X1, . . . , Xn
(observable), Y (non-observable), all with mean value λ: their common prob-
ability density is pX |Λ(k|λ) = λk exp(−λ)/k! for k = 0, 1,2, . . . . This model is
commonly used for phenomena that result from the cumulative effect of many
improbable events [Feller, 1968, XI.6b].

Even though the goal is to predict Y , the fact that there is no a priori knowledge
about λ other than that it must be positive, requires that this be modeled as the
(non-observable) value of a random variable Λ whose probability distribution
must reflect this ignorance. (According to the Bayesian paradigm, all states
of knowledge, even complete ignorance, have to be modeled using probability
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distributions.)

If the prior distribution chosen for Λ is the reference prior distribution [Berger,
2006, Bernardo, 1979, Bernardo and Smith, 2000], then the value of its prob-
ability density pΛ at λ should be proportional to 1/

p
λ [Bernardo and Smith,

2000, A.2], an improper prior probability density. However, the corresponding
posterior distribution for Λ is proper, in fact it is a gamma distribution with
expected value (s+½)/n and probability density function pΛ|X1,...,Xn

such that

pΛ|X1,...,Xn
(λ|x1, . . . , xn) =

λs exp(−λn)
x1! . . . xn!

1
p
λ

∫ +∞

0

ls exp(−ln)
x1! . . . xn!

1
p

l
dl

=
ns+½

Γ(s+½)
λs−½ exp(−λn).

(4)

However, what is needed for the aforementioned prediction is the conditional
distribution of Y given the observed counts: the so-called predictive distribution
[Schervish, 1995, Page 18]. If π denotes the corresponding density, then

π(y | x1, . . . , xn) =

∫ +∞

0

g(y |λ)pΛ|X1,...,Xn
(λ | x1, . . . , xn)dλ

=
ns+½

Γ(s+½)
Γ(y + s+½)

y!(n+ 1)y+s+½ . (5)

This defines a discrete probability distribution on the non-negative integers,
often called a Poisson-gamma mixture distribution [Bernardo and Smith, 2000,
§3.2.2]. For our data, since π achieves a maximum at y = 5 (Figure 5), this
is the (a posteriori) most likely number Y of major hurricanes that will hit
the U.S. mainland in 2011–2020. The mean of the posterior distribution is 6.
Since the probability is 0.956 that Y ’s value lies between 2 and 11 (inclusive),
the interval whose end-points are 2 and 11 is a 95.6% coverage interval for Y .

6.8 example: Hypothyroidism

[Altman, 1991, Table 9.6] lists measurement results from Hulse et al. [1979],
for the concentration of thyroxine in the serum of sixteen children diagnosed
with hypothyroidism, of which nine had slight or no symptoms, and the other
seven had marked symptoms. The values measured for the former, all in units
of nmol/L, were 34, 45, 49, 55, 58, 59, 60, 62, and 86; and for the latter they
were 5, 8, 18, 24, 60, 84, and 96. The averages are x = 56.4 and y = 42.1,
and the standard deviations are s = 14.2 and t = 37.5.
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Figure 5: Hurricanes. Predictive probabilities for the number of major hurri-
canes that will hit the U.S. mainland in 2001–2010. The vertical axis indicates
values of π(y | x1, . . . , xn) from equation (5). The most likely number is 5, the
expected number is 6, and the probability is 0.956 that the number will be
between 2 and 11 (inclusive) (red bars).

Our goal is to produce a probability interval for the difference between the
corresponding means, µ and ν , say, when nothing is assumed known a priori
either about these means or about the corresponding standard deviations, σ
and τ, which may be different.

Given the values of these four parameters, suppose that the values measured in
the m= 9 children with slight or no symptoms are observed values of indepen-
dent Gaussian random variables U1, . . . , Um with common mean µ and standard
deviation σ, and that those measured in the n= 7 children with marked symp-
toms are observed values of independent Gaussian random variables V1, . . . , Vn,
also independent of the {Ui}, with common mean ν and standard deviation τ.

The problem of constructing a probability interval for µ − ν under these cir-
cumstances is known as the Behrens-Fisher problem [Ghosh and Kim, 2001].
For the Bayesian solution, we regard µ, ν , σ and τ as realized values of non-
observable random variables M , N , Σ, and T , assumed independent a priori
and such that M , N , logΣ, and log T all are uniformly distributed over the real
numbers (hence have improper prior distributions). The corresponding pos-
terior distributions all are proper provided m ¾ 2 and n ¾ 2. However, the
density of the posterior probability distribution of M−N given the data cannot
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be computed in closed form.

This problem in Bayesian inference, and other problems much more demand-
ing than this, can be solved using the MCMC sampling technique mentioned
in §6.4, for which there exist several generic software implementations: we
obtained the results presented below using function metrop of the R package
mcmc [Geyer, 2010]. Typically, all that is needed is the logarithm of the numer-
ator of Bayes formula (3). Leaving out constants that do not involve µ, ν , σ or
τ, this is

−(m+1) log(σ)−(n+1) log(τ)−
m(µ− x)2+ (m− 1)s2

2σ2 −
n(ν − y)2+ (n− 1)t2

2τ2 .

MCMC produces a sample of suitably large size K from the joint posterior distri-
bution of M , N , Σ, and T , given the data, say (µ1,ν1,σ1,τ1), . . . , (µK ,νK ,σK ,τK).
The 95 % probability interval for the difference in mean levels of thyroxine in
the serum of the two groups, which extends from −22nmol/L to 51nmol/L,
and Figure 6, are based on a sample of size K = 4.5×106. The probability den-
sity in this figure, and that probability interval, were computed as described in
MC4.c and MC4.d of §5.8, only applied to the differences {µk − νk}.
In this particular case it is possible to ascertain the correctness of the results
owing to an interesting, albeit surprising result: the posterior means are in-
dependent a posteriori, and have probability distributions that are re-scaled,
shifted versions of Student’s t distributions with m − 1 and n − 1 degrees of
freedom [Box and Tiao, 1973, 2.5.2]. Therefore, by application of the Monte
Carlo method of §5.8, one may obtain a sample from the posterior distribution
of the difference M − T independently of the MCMC procedure: the results
are depicted in Figure 6 (where they are labeled “Jeffreys (Exact)”), and are
essentially indistinguishable from the results of MCMC.

This same figure shows yet another posterior density that differs hardly at all
from the posterior density corresponding to Jeffreys’s prior: this alternative re-
sult corresponds to the “matching” prior distribution (also improper) derived by
Ghosh and Kim [2001], whose density is proportional to (σ2/m+τ2/n)/(στ)3.
This illustrates a generally good practice: that the sensitivity of the results of
Bayesian analysis should be evaluated by comparing how they vary when dif-
ferent but comparably acceptable priors are used.
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Figure 6: Hypothyroidism. Probability density of the posterior distribution
of the difference in mean levels of thyroxine in the serum of two groups of
children diagnosed with hypothyroidism: computed via MCMC using either
Jeffreys’s prior or the “matching” prior of Ghosh and Kim [2001], alongside
the exact version corresponding to Jeffreys’s prior. The posterior mean and
standard deviation are 14 nmol/L and 18nmol/L.
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