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Appendix A.  Waterborne Outbreaks Caused by Microbial Agents in Public
Water Systems 1991-2000

Year State Cases Etiology System Deficiency Location Source
1991 CA 15 Giardia NC 4 Recreation area Spring
1991 IL 386 AGI NC 5 School Well
1991 MI 1,320 AGI NC 2 Campground Well
1991 MI 33 AGI NC 2 Resort Well
1991 MN 30 AGI NC 2 Campground Well
1991 MN 30 AGI NC 4 Resort Well
1991 MN 17 AGI NC 2 Restaurant Well
1991 NM 38 AGI NC 2 Camp Well
1991 PA 170 AGI NC 3 Picnic Area Well
1991 PA 8 AGI NC 3 Restaurant Well
1991 PA 13 Giardia NC 3 Park Well
1991 PA 551 Cryptosporidium NC 3 Picnic Area Well
1991 PA 300 AGI NC 3 Camp Well
1991 PR 202 AGI C 4 Penitentiary River
1991 PR 9,847 AGI C 3 Community River
1992 ID 15 Giardia C 2 Trailer Park Well
1992 MN 250 AGI NC 3 Restaurant Lake
1992 NV 80 Giardia C 3 Community Lake
1992 NY 107 AGI NC 4 Restaurant Well
1992 NC 200 AGI NC 2 Restaurant Well
1992 OH 129 AGI NC 4 Campground Well
1992 OR 3,000 Cryptosporidium C 3 Community Spring
1992 OR Cryptosporidium C 3 Community River
1992 PA 5 AGI NC 3 Restaurant Well
1992 PA 28 AGI C 5 Park River
1992 PA 42 AGI NC 3 Camp Well
1992 PA 50 AGI NC 3 Camp Well
1992 PA 57 AGI NC 3 Camp Well
1992 PA 80 AGI NC 3 Camp Well
1992 WY 150 Shigella sonnei NC 2 Park Well
1993 MN 27 Cryptosporidium NC 5 Resort Lake
1993 MO 625 Salmonella

serotype
Typhimurium

C 4 Community Well

1993 NV 103 Cryptosporidium C 5 Community Lake
1993 NY 172 Campylobacter

jejuni
C 5 Subdivision Well

1993 PA 20 Giardia lamblia C 3 Trailer Park Well
1993 PA 65 AGI NC 3 Ski Resort Well
1993 SD 7 Giardia C 2 Subdivision Well
1993 SD 40 AGI NC 2 Resort Well
1993 WI 403,000 Cryptosporidium C 3 Community Lake
1994 IN 118 AGI NC 2 Restaurant Well
1994 ME 72 AGI NC 2 Camp Well
1994 MN 19 Campylobacter

jejuni
NC 2 Park Well

1994 NH 18 Giardia C 3 Community Reservoir
1994 NH 36 Giardia C 3 Community Lake
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1994 NY 230 Shigella sonnei NC 2 Camp Well
1994 Saipan 11 Non-01 Vibrio

cholerae
C 5 Bottled Water Wells

1994 PA 200 AGI NC 3 Resort Well
1994 TN 304 Giardia C 4 Correctional Facility Reservoir
1994 WA 134 Cryptosporidium C 2 Community Well
1995 ID 83 Shigella sonnei NC 2 Resort Well
1995 ID 18 AGI C 3 Community Well
1995 MN 33 E. coli O157:H7 NC 3 Camp Spring
1995 MT 450 AGI NC 2 Campground Well
1995 NY 1,449 Giardia C 3 Water utility Lake
1995 OK 10 Shigella sonnei NC 3 Store Well
1995 PA 19 AGI NC 2 Inn Well
1995 SD 48 AGI NC 2 Camp Well
1995 WA 87 Giardia C 4 Community Well
1995 WI 26 AGI NC 3 Restaurant Well
1995 WI 148 Small round

structured virus
C 4 School Lake

1996 ID 94 AGI NC 3 Camp Well
1996 NY 60 Plesiomonas

shigelloides
NC 3 Restaurant Spring

1996 WI 21 AGI NC 4 Restaurant Well
1997 CO 9 AGI NC 3 Cabins Spring
1997 NM 123 AGI NC 4 Country club Well
1997 NY 1,450 Norwalk-like

virus
NC 3 Ski resort Well

1997 NY 50 Giardia C 3 Community Lake
1997 OR 100 Giardia NC 4 Campground Well/Spring
1997 SD 16 AGI NC 3 Campground Well
1997 WA 4 E. coli O157:H7 NC 3 Trailer Park Well
1998 FL 7 Giardia C 2 Community Well
1998 MN 83 Shigella sonnei C 4 Fairgrounds Well
1998 OH 10 AGI C 4 Treatment plant Surface
1998 TX 1,400 Cryptosporidium C 3 Subdivision Well
1998 WY 157 E. coli O157:H7 C 2 Community Well/Spring
1999 CA 31 AGI NC 2 Camp Well
1999 FL 4 AGI C 2 Community Well
1999 FL 6 AGI C 4 Apartment River/stream
1999 FL 3 AGI C 4 Community Well
1999 MO 124 Salmonella

typhimurium
C 3 Community Well

1999 NM 70 Small round-
structured virus

NC 3 Camp Spring

1999 NY 781 E. coli O157:H7/
Campylobacter
jejuni

NC 2 Fairground Well

1999 TX 22 E. coli O157:H7 C 3 Community Well
1999 WA 68 AGI NC 2 Soccer match Well
2000 CA 147 Norwalk-like

virus
NC 2 Camp Well

2000 CO 27 Giardia NC 3 Resort River
2000 FL 19 AGI C 3 Trailer park Well
2000 FL 21 AGI C 3 Trailer park Well
2000 FL 5 Cryptosporidium C 4 Community Well
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2000 ID 15 Campylobacter
jejuni

NC 2 Camp Spring

2000 ID 65 AGI NC 2 Restaurant Well
2000 KS 86 Norwalk-like

virus
NC 2 Reception hall Well

2000 MN 12 Giardia NC 2 Camp Well
2000 OH 29 E. coli O157:H7 C 4 Fairground Surface
2000 WV 123 Norwalk-like

virus
NC 3 Camp Well

AGI = Acute gastrointestinal illness of unknown etiology.
NC = Non-community; C = community
Definitions of deficiencies: (1) Untreated surface water; (2) untreated ground water; (3) treatment deficiency (e.g.,
temporary interruption of disinfection, chronically inadequate disinfection, and inadequate or no filtration); (4)
distribution system deficiency (e.g., cross-connection, contamination of water mains during construction or repair,
and contamination of a storage facility); and (5) unknown or miscellaneous deficiency (e.g., contaminated bottled
water.

Sources: Moore et al. 1993, Kramer et al. 1996, Levy et al. 1998, Barwick et al. 2000, and Lee et al. 2002
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Appendix B.  Modeling Microbial Source Water Occurrence

Chapter 3 of this document discusses the primary sources of measurement data used by EPA to
characterize the occurrence of Cryptosporidium and other pathogens in surface water used as drinking
water sources.  That discussion addresses the methods that were used to collect and analyze those data.  It
also addresses the statistical models that EPA developed to use in conjunction with those measurement
data to derive a plausible range of estimates of the actual (but unknown) national distribution of
Cryptosporidium occurrence in the source waters used by public water supplies.  Modeling is necessary
because the national occurrence of Cryptosporidium cannot be fully revealed by the available
measurement data alone due to a variety of limitations and uncertainties inherent in those measurements.  

Chapter 4 of this document presents both descriptive summaries of the pathogen occurrence
measurement data collected by EPA, and the results of the statistical modeling performed by EPA to
characterize national occurrence based upon the measurement data.

The purpose of this Appendix is to provide additional technical detail on EPA’s approach to the
statistical modeling discussed in Chapter 3 and that was used to derive the occurrence information
presented in Chapter 4.  

This appendix also presents several evaluations done by EPA to examine the validity and
implications of some of the key assumptions made in the modeling that was performed.

This appendix is organized into the following major sections:

B.1 Model Overview
B.2 Model Structure
B.3 Model Inputs
B.4 Model Fitting and Outputs
B.5 Model Evaluations
B.6 Reduced-Form Model

As indicated in Chapter 3, EPA initially developed the full form of the microbial occurrence
model, which is described in sections B.1 through B.6, for filtered plants which comprise the majority of
all surface water systems in the U.S.  EPA also developed a reduced form of the model for unfiltered
plants primarily to better accommodate the more limited input data available for those plants compared to
the filtered plants.  For consistency sake in implementing these models for evaluating the impacts of
regulatory alternatives, EPA chose to also develop a reduced form of the model for filtered plants as well. 
The reduced-form model that was used for the economic impact analysis is described in Section B.6.

B.1 Model Overview

There are several related objectives of the Cryptosporidium occurrence modeling performed by
EPA.  Key among those objectives is to provide a scientifically defensible characterization of the national
distribution of this pathogen in surface waters that are used as a source by public drinking water systems. 
This information is critical for understanding the current risks of endemic cryptosporidiosis among those
served by surface water systems, and to estimate and compare the costs and benefits of reducing that risk
from the implementation of treatment changes to comply with several regulatory alternatives being
considered by EPA for the LT2ESWTR.  In addition to that overarching objective, the occurrence
modeling effort also identifies important relationships between pathogen occurrence and other specific
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characteristics of the source waters examined to help guide the development of regulatory and treatment
alternatives to most effectively eliminate or minimize the risks posed by Cryptosporidium for public
water supplies.

There are two main facets of the Cryptosporidium occurrence modeling.  The first focuses on
modeling the expected average concentration of Cryptosporidium at individual locations reflecting the
observed data, uncertainties and limitations of the sampling and analysis procedures, and possible
influence of other characteristics of the source water being considered.  The second facet of the modeling
focuses on characterizing the national distribution of the average levels of Cryptosporidium in source
waters used by public water systems based upon the aggregation of modeled levels at specific locations
obtained in the first stage of the modeling.

The modeling performed to characterize average Cryptosporidium at individual locations
involves the basic assumption that measurements taken at a individual locations will each follow a
Poisson distribution specific to that site. As discussed below, there are a number of general and specific
technical issues that must be addressed in deriving the specific Poisson distribution for each location.  

The modeling performed to characterize the national distribution of average Cryptosporidium
concentrations involves the assumption that the distribution of those individual location averages can be
characterized by a lognormal distribution.  

Another important consideration in modeling both the individual location averages and the
national distribution of those individual location averages is the recognition of the many limitations and
uncertainties in the underlying measurement data, as well as those resulting from other modeling
assumptions used by EPA.  Therefore, another key objective of the modeling approach used by EPA was
to capture and reflect that uncertainty in the model outputs.  As described more fully in the sections that
follow, the results of this modeling are not limited to a “best estimate” of occurrence, but rather these
results are presented as sets of plausible occurrence distributions that are consistent with the underlying
observations.

B.1.1 Overview of Modeling Occurrence at a Single Location

As discussed by Haas et al. (1999), the most appropriate probability distribution for
characterizing the occurrence of microorganisms in source water at a particular location is the Poisson
distribution.  The Poisson distribution is a fundamental probability distribution that is applied when the
average number of occurrences of a discrete event is the result of a large collection of situations in which
that event could occur, and a very small probability for it to occur in any one specific situation.  It is used
extensively to address problems that arise in the counting of relatively rare and independent events
occurring in some unit interval of time, length, area, or volume (Sachs 1984).

Some examples of discrete, independent events occurring in some unit interval that may be
appropriately described by the Poisson distribution are radioactive disintegration (time interval), material
irregularities in a wire or surface (length or area interval), and raisins in raisin bread (volume interval).  

The Poisson distribution is commonly expressed mathematically as:

P X x
e
x

x

( | )
!

= =
−

λ
λ λ
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This equation describes the probability that in some randomly selected interval (or volume or
area) the observed number of events X will equal some specified value x, given that the known average
(or expected) number of events is equal to the value λ.  The only parameter of the Poisson distribution is
λ, the average (or expected) number of events in that unit interval.

The occurrence of microorganisms in a unit volume of water is also a type of phenomenon that
can be appropriately described by the Poisson distribution.  EPA has used the Cryptosporidium
monitoring data obtained from the Information Collection Rule (ICR) monitoring program, the ICR
Supplemental Surveys, and the Poisson distribution assumption to derive estimates of the average
Cryptosporidium concentrations in the source waters used by the plants included in those surveys.  More
specifically, EPA has used these monitoring data and model assumptions to derive a range of plausible
estimates of the underlying source water occurrence of Cryptosporidium that are consistent with the
observations and that also reflect the limitations and uncertainties inherent in collecting and analyzing
those data.  

A basic type of question about Cryptosporidium occurrence in the source water used by an
individual plant that the Poisson distribution is suited to answer would be the following:

If the actual average concentration of Cryptosporidium in the source water is 1 oocysts
per liter, what is the probability that an analyst examining a randomly selected one liter
volume of water will observe exactly one oocyst?  Or two oocysts?  Or zero oocyts?

If, as stated above, the known underlying concentration of Cryptosporidium is 1 oocyst per liter,
then one would compute from the Poisson distribution that the probability of observing exactly 1 oocyst
in a randomly collected 1-liter sample is the following:
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That is, given that the actual average Cryptosporidium concentration is 1 oocyst per liter, it would
be expected that one will actually observe exactly 1 oocyst in a randomly selected 1-liter sample only
about 37 percent of the time.  

Similarly, the expectation of observing zero oocysts in a liter sample given a 1 oocyst per liter
average is the following:
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That is, under these circumstances it is just as likely to observe zero oocysts in a random 1-liter
sample as it is to observe 1 oocyst in that sample, even when the known underlying concentration is 1
oocyst per liter.  Note that under these assumptions, there is an approximately 18 percent chance of
observing exactly 2 oocysts, and approximately 6 percent chance of observing 3 oocysts, leaving about a
2 percent chance of observing 4 or more oocysts in any randomly selected 1-liter sample.
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In the above example, the assumed actual concentration of Cryptosporidium of 1 oocyst per liter
is the upper end of the range expected to be encountered in source waters.  A more typical source water
concentration would be 0.1 oocyst per liter.  In the ICR, the median sample volume analyzed was
approximately 3 liters.  With a concentration of 0.1 oocycst per liter and a 3-liter sample, the expected
count (λ) is 0.3 (=0.1 * 3).  Using the Poisson distribution, the probability of seeing zero oocysts in a
randomly drawn 3-liter sample is the following:

P X
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That is, even though Cryptosporidium is present at a concentration of 0.1 oocyst per liter, just
over 74 percent of all randomly selected 3-liter samples are expected to result in observations
(measurements) of zero.  The expectation of a observing substantial number of zero count measurements
even when Cryptosporidium is present in the source water is an important factor to keep in mind when
considering how the Poisson model is actually used in the occurrence modeling.

The use of the Poisson distribution as shown in the above examples allows one to calculate the
probability of observing a particular number of events (in this case, counts of Cryptosporidium oocysts
present in some unit volume of water) when one already knows the model’s parameter λ (in this case, the
expected count of Cryptosporidium in that unit volume of source water—which is to say, the average
concentration of Cryptosporidium in association with some specified sample volume).  However, what is
actually needed by EPA are estimates of the average Cryptosporidium concentrations in the sampled
source waters that have resulted in the observed occurrence data at various locations studied in the ICR
and ICRSS.  Therefore, the modeling effort undertaken by EPA in this first facet of the overall modeling
process is focused on estimating the Poisson distribution λ parameters—or more specifically, the
underlying concentrations reflected in those parameters—based upon the observed measurement data
from the ICR and ICRSS.

The process of estimating the λ parameter for a Poisson distribution can often be a challenge
because one of the characteristics that gives rise to the Poisson distribution is that the events being
characterized are relatively rare.  Ideally, one would be able to make a large number of reliable and
representative observations so that a sufficient number of the rare events are observed in order to estimate
the value of the λ parameter with a high degree of confidence.  In many cases, however, there are
limitations on the number of observations that can be made and uncertainties inherent in the collection
and measurement of the data that are used to derive the model parameter.  

Several such difficulties occur in the case of Cryptosporidium measurements in the ICR and
ICRSS data.  Key among the difficulties encountered are the relatively small (and nonuniform) sample
volumes collected in those studies, the limited number of total samples taken, and measurement
difficulties that result in less than 100 percent recovery (counting) of all of the oocysts that are actually
present in a sample.  These difficulties, and the efforts taken by EPA to overcome them, are discussed in
the next several sections of this appendix.
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B.1.2 Overview of Modeling National Occurrence 

Because the ICR and ICRSS do not provide data for Cryptosporidium occurrence at all times for
all source waters used by public water systems, it is necessary to consider the occurrence data and
modeling results for the individual locations included in those surveys as representative samples.

EPA has used the basic assumption that the national distribution of plant-mean Cryptosporidium
levels can be modeled as a lognormal distribution.  The lognormal distribution is another fundamental
probability distribution that is used commonly and effectively to characterize environmental contaminant
occurrence.  The basic characteristic of a lognormal distribution is that the logarithms of the values being
evaluated (in this case, the plant-mean concentrations of Cryptosporidium in source waters) are normally
distributed.  One property of the lognormal distribution that makes it particularly well-suited to describing
phenomena like environmental contaminant occurrence data is that it is bounded by zero on the low end
and it reflects a “right-skewed” distribution—that is, it has a tail in the upper end—that is consistent with
having a small proportion of values with relatively high values.  The lognormal distribution has two
parameters, the log mean (usually referred to as mu or µ) and the log standard deviation (usually referred
to as sigma or σ).  

In addition to a set of estimates of the plant-mean Cryptosporidium levels at the various sample
locations from the first aspect of the modeling, the model also derives the parameters of a lognormal
distribution that is consistent with those modeled plant-mean values.  In the overall modeling framework,
this process is repeated a large number of times to capture the uncertainty in both the estimates of the
plant-means at individual locations and the uncertainty associated with estimating the lognormal
distribution parameters.  However, this process does not capture the following types of uncertainty: model
uncertainty, uncertainty in the analytical method, and uncertainty associated with assuming that small
systems are like medium and large systems.  Note, as with all modeling efforts of this type, the scope of
the uncertainty analysis is constrained by the specific distributional assumptions adopted in performing
the hierarchical modeling, and therefore results obtained from the analysis represent a lower bound on the
overall uncertainty.

B.1.3 Basis for Modeling

There are two features of the underlying data that suggest that modeling is an appropriate
approach to estimating national occurrence.  These are small sample volumes and low recovery rates,
both of which operate to produce low counts of Cryptosporidium oocysts.

The first of these, small sample volumes, was touched on somewhat in the general description
given above of the difficulties in parameterizing a Poisson distribution model. As noted there, the median
sample volume size in the ICR was only 3 liters, and if the “true” underlying average concentration in the
source water is 0.1 oocyst per liter, it is expected from the Poisson distribution that no Cryptosporidium
oocysts would be observed in approximately 74 percent of the samples.  

The second aspect of the measurement process is that the recovery rate for the methods was less
than 100 percent.  As discussed in Chapter 3, the mean recovery for the ICR method was 11.6 percent and
for the ICRSS method was 43 percent.  Therefore, this suggests that most of the oocysts present in the
source water samples collected in these surveys many not have been counted in the assays performed.

A simple simulation analysis was performed to show the potential combined effect of both a
relatively low sample volumes and the low recovery rate in the ICR across a range of possible
“true”Cryptosporidium concentrations in a source water.  Based on analyses of spiked samples using the
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Recovery Rate

ICR methods, the recovery rate for the Cryptosporidium was modeled as a beta distribution with
parameters α=1.44, β=11.20 (mean = 0.114 or 11.4 percent recovery) (Messner, 2000).  Note that the beta
distribution is the natural distribution for describing a continuous random variable with a value between
zero and one.  This implies that, on average, an oocyst actually present in a water sample would only be
counted as such about 11 percent of the time.  Note that the mean of the beta distribution, 11.4, differs
slightly from the mean of 11.6 based on the spiked study.

Exhibit B.1a shows the distribution of recovery rates as the density function of a beta distribution
having the parameters α=1.44, β=11.20.

Exhibit B.1a 
Recovery Rate Distribution Described by a Beta Density Function 

with Parameters α=1.44, β=11.20 (average = 0.114)

 
Exhibit B.1b depicts the combined effect of small volume assayed and low, variable recovery

across a range of possible “true” source water concentrations of Cryptosporidium.  These possible “true”
average Cryptosporidium concentrations in the sampled water are shown on the x-axis of Exhibit B.1. 
The probability of observing zero oocysts in a 3-liter sample drawn from a source water having a specific
underyling actual concentration is shown on the y-axis.  
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Exhibit B.1b

Expected Probability of Observing a Zero Count as a Function of Actual Oocyst
Concentration, When 3 Liter Sample is Assayed and Recovery is Beta (1.44, 11.2)

As indicated by the two examples featured by the vertical and horizontal lines on the graph, a 3-
liter sample drawn from a source water having 0.1 oocysts per liter, and a recovery rate varying about a
mean of 11.4%, is expected to yield a zero count with probability 0.97.  Even when the actual
concentration is an order of magnitude higher at 1 oocyst per liter, the Exhibit shows that a 3-liter sample
will yield a zero with probability 0.73.

An alternative view of this is provided in Exhibit B.1c.  This graph displays the probability of
observing all zeroes in 18 samples of 3 L each given the ‘true’ concentration shown on the x-axis and an
average recovery rate of 11.4%.  For example, if the concentration is 0.01 oocysts per L, then the
probability of observing zero oocysts in a single sample is 1-exp[(-(3)(0.01)(0.114)] = 0.0034.  The
probability of observing zeroes in all 18 samples is (1-0.0034)18 = 0.94.
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Exhibit B.1c Probability of Observing All Zeroes in 18 Samples of 3 L Each for the
Given Oocyst Concentration and Assuming 11.4% Average Recovery Rate  

As noted previously, EPA developed the occurrence model to accommodate a number of
limitations and uncertainties, including the effect of small sample volumes and low recovery rates, in
order to characterize a range of plausible actual average concentrations of Cryptosporidium in sampled
source waters that are consistent with the relatively low incidence of oocysts observed in those surveys.

B.2  Model Structure

There are three levels to the occurrence model; these levels are depicted in Exhibit B.2.  At the
lowest level are the modeled features of individual measurements.  These include the observed
measurement results (microbial counts, volumes assayed, turbidity values, and source water type) and the
unobserved true concentrations, measurement recoveries, and residuals (εij = difference between
model-predicted and true concentration).  These low-level variables are indexed by both i (location) and j
(month).  The middle level of the model includes effects for locations, months, and source water types. 
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Each mid-level variable has only one index.  The highest level of parameters includes an intercept term
(β0 = overall mean of log-concentrations), a turbidity effect, and four precisions that define how
lower-level effects are distributed.  These high-level parameters are global and require no indices.

Exhibit B.2  Components of the Three Primary Levels of the Occurrence Model

TOP LEVEL
C Precisions = φMSW, φloc, φmonth, φresid

C Turbidity Effect = βturb

C Intercept = β0

MIDDLE LEVEL
C Source Water Type Effects = βMSW ~ Normal(mean 0, precision φMSW)
C Locational Effects = εi ~ Normal(mean 0, precision φloc)
C Month Effects = εj ~ Normal(mean 0, precision φmonth)

BOTTOM LEVEL
C Unobserved Components

C Microbial Concentration = Cij 
C Measurement System Recovery = rij

C Residual = εij = ln(Cij) - model-predicted Concentrationij
C Observed Components

C Volume Assayed = Vij
C Turbidity = turbij (and standardized value tij)
C Source Water Type = MSWij
C Microbial Counts = Yij ~ Poisson(Cij * rij * Vij)
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B.2.1 Expected Counts

The observed counts, Yi,j, are modeled as Poisson random variables:

Yi,j ~ Poisson(λi,j) 

Where: i = 1 to number of sample locations (350),
  j = 1 to number of sample periods (18) 

This part of the model can be described as a two-dimensional grid of sample locations (rows) and
sample periods (columns), with a different expected count, λi,j for each cell in the grid.  Each expected
count is modeled as a function of four parameters:

λi,j = (Concentrationi,j × Volumei,j × Recoveryi,j) + FP

The three subscripted parameters vary with each individual test result.  For a given sample tested from
location i and time period j:

Source Water Concentration (Concentrationi,j)—the actual (but unknown and therefore modeled)
underlying concentration of microbes in the source from which the sample was drawn.

Sample Volume Analyzed (Volumei,j)—the sample volume analyzed. 

Recovery Rate (Recoveryi,j)—the predicted ratio of microbes detected to microbes present in the
sample (as a percent). 

The fourth parameter is the same for all samples:

False Positives (FP)—a model adjustment for the possibility of false positives, or detections of
microbes that are not actually present in the sample (e.g., algae or other constituents in the water
may be mistaken for a Cryptosporidium oocyst).

As noted previously, the Concentrationi,j parameters are unknown and estimating these from the
data is the major focus of the model.  The Volumei,j values, on the other hand, are known.  These are the
sample volumes analyzed, along with sample counts, in the ICR and ICRSS.  Because sample volume
analyzed varied widely, and larger samples will contain more microbes, on average, for a given true
concentration, these sample volumes are important predictors of the expected counts.  

The Recoveryi,j, values are not known, but are simulated based on results from test method
evaluations.  For each test method employed in the ICR and ICRSS, recovery was evaluated by testing
“spiked” samples with known concentrations.  These experiments allowed for direct estimation of the
number of microbes detected versus the number actually present in the sample.  From these experiments,
a recovery rate distribution was estimated for each analytical method to capture the typical variation in
recovery rates, and the modeled Recoveryi,j values are drawn randomly from these distributions.  

The FP adjustment is derived from: 1) an assumed false positive rate, fp, for a given test method,
and 2) the average number of microbes detected (positives) per sample in the data set.  For example, if fp
is assumed to be 1 percent, and a given data set shows a total of 100 microbes detected in 1000 samples,
FP would be set equal to 0.001 (0.01 false positives per positive × 0.1 positives per sample = 0.001 false
positives per sample).  
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Based on expert understanding of the analytical method results, reasonable false positive rates
were tested during model development.  The value used is shown in section B.3.3. 

B.2.3 Modeling Contributions to Concentration

The modeling of expected counts provides a basic probability structure that links the primary data
(sample volumes and laboratory counts of oocysts) to the values of primary interest—possible true source
water microbial concentrations.  In this next step, these possible true source water concentrations are
further broken down as follows:

Concentrationi,j = R × exp(β0 + β1ti,j + β2:5MSWi,j + εi + εj + εi,j)

Where:
• R = 0 for Zi fraction of concentrations, and 1 for (1-Zi) fraction of concentrations
• Zi = Assumed true zero probability.

• β0 = an intercept term that reflects overall log concentration across all i locations and j sample
periods.  Other parameters model deviations from this overall mean.

• β1 = Regression parameter for turbidity.

• ti,j = Log10 of observed turbidity value (in nephelometric turbidity units (NTU), at location (i)
and sample period (j).  Measured turbidity values are standardized (re-scaled by adding a
constant to have overall mean zero and standard deviation of one) before input to the model. 
This preserves e^β0 as the natural log of the overall median concentration, and also allows for
easy interpretation of the magnitude of β1 estimates (relative to the other model parameter
estimates, which are all on the microbe concentration scale, not the turbidity scale).

• MSWi,j = Type of source water (mixed surface water) – 1) surface flowing stream, 2) surface
reservoir/lake, 3) ground water under the influence of surface water, 4) mixed surface and
groundwater.

• β2:5 = The MSW fixed effects.  The β’s allow each MSW class to have a different
concentration.

• εi = The location random effect that allows each location to have a different concentration
(it’s a “random” rather than “fixed” effect because we are more interested in how these
location effects are distributed than in any particular estimated εi).

• εj = Monthly random effect that allows each sample period to have a different concentration. 
An important distinction is that εi and εj are crossed, not nested, effects, which means that the
εj measure monthly effects common to all locations and not just within a particular location.

• εi,j = Residual term that embodies all other variation and uncertainty.

The true zero parameter accounts for the possibility that a particular water source is entirely free
of a particular microbe.  Since the exponential term in this equation for concentration is always greater
than zero, the exponential term is multiplied by a 0/1 random variable, R, that is governed by a “true zero
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probability” model parameter.  This parameter can be easily varied to explore model sensitivity to
changes in the assumed “true zero” probability rate.

Note that when R is set equal to one (the usual case) the natural log of concentration is modeled
as a linear function:

ln(Concentrationi,j) = β0 + β1ti,j + β2:6MSWi,j + εi + εj + εi,j

Prior distributions are required for the unknown β parameters and for the variance (precision)
parameters on the ε distributions since Bayesian techniques are used to estimate their true values.  In these
models, broad uncertainty is expressed by using widely dispersed prior distributions that allow the
modeled results to rely largely on the data to drive the parameter estimates. 

B.3 Model Inputs

Given the complexity of the occurrence model, it is easy to lose track of exactly where the data
inputs end and the model assumptions begin.  To reinforce these distinctions, this section summarizes the
inputs to the Cryptosporidium occurrence models discussed.  Much of this information has been discussed
earlier in this appendix and also in Chapters 3 and 4 of the document.  Rather than address it all in detail
again, the goal here is to primarily list all the inputs concisely, in one place, and in a logical framework
that clarifies how each contributes to the overall modeling.

B.3.1 Survey Data: Counts, Sample Volumes, Turbidity, and Source Water Type 

There are six inputs that come directly from the ICR and ICR Supplemental Surveys.  The following
comprise the raw data inputs:

1) Microbial counts
2) Associated sample volumes
3) Associated turbidity measurement
4) MSW categorization (e.g., flowing river/stream, reservoir/lake)
5) Sample location
6) Sample month

B.3.2 Simulated Test Method Recovery Rate

This is a simulated, random input to each model.  Recovery values are sampled from the
following probability distributions:

ICR: beta distribution with parameters α=1.44, β=11.20 (mean = 0.114 or 11.4 percent)
ICRSS: beta distribution with parameters α=2, β=3 (mean = 0.400 or 40 percent)

The beta distribution generates values between zero and one.  Here it used to characterize a range
of recovery rates from zero (no oocysts ever detected, regardless of how many are in the test sample) to
one (all oocysts in the sample are detected).  Based on spiked sample evaluations, these beta distribution
parameters were chosen to closely approximate, based on the best available estimates, the true range of
recovery rates in actual Cryptosporidium testing (including sample to sample variation in this true rate). 
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For both the ICR and ICRSS, there are slight differences in the measured and modeled means (11.6 vs.
11.4 percent for the ICR and 43 vs. 40 percent for the ICRSS).

B.3.3 Tuneable Model Inputs: False Positives, True Zero

There are two “tuneable” inputs to the occurrence models: 1) the false positive rate, and 2) the
true proportion of systems with source water that is completely free of the target microbe.  These model
parameters could be easily changed in the model development process to both reflect expert opinion and
to assess the impact of changing the parameter on overall model results.

False positive rates were based largely on expert opinion.  In both ICR and ICRSS modeling, a
false positive rate of 0.01 was assumed for total Cryptosporidium counts (the category of count
summarized in Chapter 4 modeled distribution curves for plant-mean concentration).

In developing the model, several values for true zero were tested, ranging from 0 to 50 percent. 
Experts believed true zero concentrations rarely occur and based on initial model run results, chose 0.001
percent for the input to the model.

B.3.4 Prior Distributions for Parameters

As discussed elsewhere, parameters in Bayesian models are random variables characterized by
probability distributions.  Initially, the researcher chooses a probability distribution for each estimated
model parameter based on previously available information.  These are referred to prior distributions or,
simply, “priors.”  In the case of multi-parameter models, a joint prior distribution captures expected
correlations among these parameters.  

Once prior distributions are defined, the method of Bayesian inference uses data to update them. 
The result is a joint “posterior” probability distribution for all the model parameters, one that combines
information from the prior distribution and the data to describe the likely range of true parameter values
and relationships among these values.  

This Bayesian framework allows for expert opinion, independent of the data, to impact parameter
estimates by way of the prior distributions.  It is also possible, however, to choose prior distributions that
have little or no influence on results.  This latter approach, which is driven almost entirely by the data,
was adopted in this modeling effort.  Broad prior distributions were chosen to reflect considerable
uncertainty about parameter values at the outset of the surveys.

Given this use of these “minimally informative” prior distributions, it is important to emphasize
that these priors are not really an “input” to the model in the same sense as the ICR data, the simulated
recovery values, and the tuneable model parameters discussed above.  Instead, these priors are more
accurately thought of as a flexible structure on top of which parameter estimates are built.

B.3.4.1 Prior Distributions for Cryptosporidium Modeling

The next two sections document the prior distributions used in Cryptosporidium modeling.  Note
that these parameter values are on the log-scale for concentration.  So, for example, the prior distribution
for β0, the overall mean concentration in the model, is centered at zero, or 100 = 1 oocyst/100L in terms of
actual concentration.  
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Another potentially confusing concept is the specification of variances or “spread” parameters for
the prior distributions in the model.  There are two key points to keep in mind.  First, because it makes the
Bayesian math easier, these spread parameters are defined in terms of the distribution’s precision, which
is the inverse of the variance:

precision = 1/σ2 

The most intuitive measure of spread, the standard deviation, is related to precision as follows:

standard deviation = σ = 1/precision1/2

Note that this inverse proportion means that larger precision values correspond to smaller
standard deviations, and vice versa.

Second, in the model the four precision parameters—prec1 through prec4—are “meta-parameters”
that are not describing any real-world variation in concentration.  Instead, they characterize uncertainty in
estimated parameter values.  For example, prec4, the spread parameter for the prior distribution of β0, the
overall mean concentration, does not characterize the spread of plant mean concentrations around β0 but,
instead, uncertainty in our estimate of β0’s true value. 

Following each prior definition listed below, the range in parentheses captures, roughly, the 1st

and 99th percentiles of the distribution.  The corresponding 1st and 99th percentiles of the standard
deviation computed from the precision as shown above are provided in the brackets.  These ranges show
that these prior distributions, for the most part, define a very broad range of possible parameter values,
and that the prior probability is roughly equal across these ranges.  Because there is so little information
in these prior distributions, the resulting parameter estimates are driven almost entirely by the data.

This model for log concentration is defined in section B.2.3.  Prior distributions for the model
parameters are defined below (see previous section for explanation):

β0 ~ Normal(µ = 0, precision = prec4), (10-3.2 to 10+3.2), Overall mean concentration
β1 ~ Normal(µ = 0, precision = prec4), (10-3.2 to 10+3.2), Slope for standardized turbidity
β2:6 ~ Normal(µ = 0, precision = prec4), (10-3.2 to 10+3.2), MSW class effects
εi ~ Normal(µ = 0, precision = prec1), (10-1.2 to 10+1.2), for i = 1 to number of plants
εj ~ Normal(µ = 0, precision = prec2), (10-1.2 to 10+1.2), for j = 1 to number of months 
εij ~ Normal(µ = 0, precision = prec3), (10-5.2 to 10+5.2), for all i,j

prec1 ~ Gamma(α = 2, τ = 0.2), (0.7, 33); [0.17, 1.2] 
prec2 ~ Gamma(α = 2, τ = 0.2), (0.7, 33); [0.17, 1.2]
prec3 ~ Gamma(α = 2, τ = 4), (0.04, 1.6); [0.79, 5.0]
prec4 ~ Gamma(α = 2, τ = 2), (0.08, 3.3); [0.55, 3.5]

B.3.4.2 Comparison of Prior and Posterior Distributions

Exhibit B.3 provides a comparison of prior distributions used in the modeling with the resulting
posterior distributions.  

In this comparison, we expect to see an extreme contrast, with the posterior being much narrower
than the original prior.  When this happens, it suggests that model parameter estimates are insensitive to
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Exhibit B.3  Comparison of Prior Distributions with Resulting Posterior
Distributions

our choice of prior distribution (that is, they are based largely on the data).  When this is not the
case—when the posterior resembles the prior—we question whether our choice of prior has had undue
influence on resulting parameter estimates.  In Exhibit B.3, some prior distributions are so broad, relative
to the resulting posterior distributions, that we see only a small portion of the prior distribution in the plot
(for example the flat line at the bottom of the posterior distribution for ei).
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Comparison of Prior Distributions with Resulting Posterior Distributions
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B.4  Model Fitting and Outputs

The hierarchical Bayesian model was fit to ICR and ICR Supplemental Survey data using an
iterative technique known as Markov Chain Monte Carlo (MCMC).  This computationally intensive
method was carried out using WinBUGS, a software platform developed jointly by the UK Medical
Research Council, Biostatistics Unit and the Imperial College School of Medicine at St. Mary’s, London. 
WinBUGS is documented at: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.

At each step in the bayesian model using MCMC, a single value is drawn from the current
distribution for each parameter, with each draw, in turn, conditional on the current distributions for all the
other parameters.  So the result of a single step is a complete set of parameter values, and, in the limit,
these sets of sampled parameter values converge, in distribution, to the target posterior distribution.  

There is typically an initial “burn-in” period in which the model fitting takes place, and the
sampled values from these iterations are eventually discarded.  In our Cryptosporidium modeling, this
burn-in period was always 400 iterations.  

After the burn-in period, when the algorithm has converged to a stable distribution, sampled
values are retained, and these empirical distributions (parameter values sampled from the posterior
distribution) are used to derive parameter estimates.  In Cryptosporidium modeling, 5,000 iterations were
run following the burn-in period and, from these values, every tenth set was saved (to avoid auto-
correlation between values) for a total sample size of 500 per parameter.  

B.4.1 Plant-Mean Distributions

Exhibits 4.10, 4.11, and 4.14 summarize modeled Cryptosporidium plant-means from each of the
three primary occurrence data sets.  To obtain these estimates, the average plant-mean concentration is
computed at each sampled model iteration, from the set of 12 concentrations drawn from the bayesian
model using MCMC for each plant in that iteration.  The result is 500 distributions of the average plant-
mean concentrations.  Observed values from the surveys were used to obtain the simulated sets of 12
samples for each plant that were then used to calculate the means for the plants.  The estimates of the
means of each plant were then used to compute the parameters of the lognormal distribution of means
characterizing plant to plant variability.  Uncertainty in the true distribution is reflected by the set of 500
such distributions that are generated.  In the exhibits, then, each table row gives the overall mean, median,
and 90th percentile from these 500 distributions.

B.4.2 Plant-Mean Distribution Curves

Chapter 4 and Appendix E present cumulative distribution curves for plant-mean concentrations
(e.g., Exhibit 4.9).  These are obtained from the model, again, through the bayesian model using MCMC
sampling algorithm.  At each iteration, a mean concentration is computed as described above in B.4.1 for
each plant based on the current sample-set of parameter estimates.  This collection of sampled plant
means is then compared to 41 reference concentrations, one at a time, and the proportion of plant-means
falling below each of these reference concentration is computed.  The result is a 41-point cumulative
distribution curve from each bayesian model using MCMC iteration, or a total of 500 such curves.  

Each of the cumulative distribution plots in Chapter 4 and Appendix E summarizes one such set
of 500 cumulative distribution curves.  The center curve in each plot connects the median (middle) value,
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across the 500 sampled values, at each of the 41 reference concentrations.  In the same way, the dotted-
line curves connect the 5th and 95th percentiles.

B.5  Model Evaluations

In each analysis, a single data set (ICR, ICRSS Large Systems, or ICRSS Medium Systems) was
used to estimate occurrence of either Cryptosporidium or Giardia in drinking water sources.  Each
analysis produced a large sample of occurrence distributions.  Each individual occurrence distribution
provides one plausible picture of the variability of average concentration among the nation’s drinking
water sources.  A large “sample” of such distributions reveals uncertainty, due to limited data in the
“true” distribution of variability.  The following subsections discuss mixing and autocorrelation, internal
and external model checks, and checks for bias in annual estimates due to seasonality.

B.5.1 Mixing and Autocorrelation

Because the bayesian model using MCMC fitting is an iterative process, sampled parameter
values from nearby iterations are often correlated.  When present, this auto-correlation can result in
parameter distributions that systematically under-estimate the variance of the target posterior distribution. 
To avoid this problem, it is standard practice in the bayesian model using MCMC sampling to skip
iterations between samples.  In the modeling documented here, samples were always drawn from every
tenth iteration, since lag plots consistently showed little evidence of auto-correlation at this spacing.

B.5.2 Internal Model Check

Exhibits 4.9, 4.12, and 4.13 summarize the fit of modeled plant-mean distributions to observed
sample distributions.  In each exhibit, one for each of the three primary data sets, the dashed line shows
the distribution of observed plant-mean concentrations.  As discussed in Section B.4.2, the solid line and
dotted lines, together, summarize a collection of 500 modeled occurrence distributions.

In the lower half of each distribution, the effect of limited sample volumes is clear.  Modeling
predicts smooth distributions through these very low concentrations, while the observed distribution
curve is constrained by “detection limits”, and never drops below the overall proportion of zero-count
locations.  In the upper half of each distribution, though, the observed data curves generally fall within the
90 percent modeled limits suggesting a good fit, model to data.

B.5.3 External Model Check

To investigate the predictive value of the Cryptosporidium modeling, the following external
model check was carried out: 

1) Fit the model (Section B.3) to the first 12 months of ICR Cryptosporidium data only.

2) Use the fitted model from Step 1 along with the input values from months 13 to 18 (sample
volume, turbidity, etc) to predict oocyst counts for months 13 to 18.

3) Compare the predicted counts for months 13 to 18 to the actual, observed counts for these
months.
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Results are summarized in Exhibit B.4 in the form of cumulative count distributions.  On both
plots, the circles represent the actual sample counts over the last 6 months of the ICR.  The various lines
capture different statistics for the modeled counts.  Agreement is good.  

Exhibit B.4  Results from External Model Check

Total Count for Months 13 - 18
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B.5.4 Check for Bias in Annual Estimates Due to Seasonality

Microbial concentrations are thought to be related to the frequency and intensity of rainfall,
especially for water systems that are fed by flowing rivers and streams.  In attempting to estimate annual
occurrence from an 18-month survey, such effects introduce the potential for seasonal bias.  This is
because, for each location in the survey, we capture one complete annual cycle plus one half-year block. 
Unless the half-year block fairly represents the typical full-year cycle at a given location (is not
disproportionately from any season), we run the risk of over or under-estimating annual occurrence at this
location.  In going from individual location estimates to a national distribution of plant means, such errors
would have to “cancel” each other perfectly to avoid bias.

In Section 4.6, we present some evidence of seasonal trends in Cryptosporidium occurrence.  As a
result, we are not able to rule out the possibility of such a bias, due to seasonal effects, in our estimates of
annual average Cryptosporidium occurrence rates from the ICR.  Note that this potential problem is only
relevant to the 18-month ICR Survey.  The ICR Supplemental Survey was carried out over a 12-month
period, covering one annual cycle.

This section summarizes attempts to measure how big such a bias might be and whether it could
have a significant impact at the next level, where Cryptosporidium occurrence models serve as input to
the LT2ESWTR Economic Analysis.  The basic approach is to construct alternative, unbiased estimates
of the national plant-mean distribution based on 12-month intervals.  Because they are based on less data,
these alternative estimates are in some ways inferior to our primary 18-month estimate, but they are free
from potential bias due to seasonal effects.  We then compare these alternate distributions, based on 12
consecutive months, to our primary distribution, based on 18 consecutive months, to assess the likely
magnitude of any such bias.  

Within the 18-month ICR monitoring period, there are seven overlapping 12-month intervals:
July 1997 to June 1998, August 1997 to July 1998, … , and January 1998 to December 1998.  Estimates
of occurrence based on any one of these intervals will be free of any bias from seasonal effects, since each
captures one complete cycle of seasons.  

There are two ways to obtain these 12-month plant mean distributions.  In the first approach,
model parameters are estimated using all 18 months of data.  Since the model includes a set of parameters
that measures each monthly effect, it is possible to construct plant-mean estimates by month from these
18-month parameter estimates, and then group these monthly means into consecutive 12-month
collections.  The second method is to simply subset the data into 12- month periods and model each
period separately.  Since there are pros and cons to each approach, the model check was carried out both
ways.

In both cases, the comparison of 18-month and 12-month plant-mean curves will be confounded,
to some extent, by the differences in number of months sampled (n=12 means will vary more than n=18
means, all other things being equal).  Also, the second approach might show slightly more spread in
estimated plant means than the first due to smaller-data-set parameter estimates.  

Exhibit B.5 shows the results from the first method, and Exhibit B.5 results from the second. 
Both show little difference between the 12-month and 18-month distribution curves.  Although
differences are clearly greater in the second approach (Exhibit B.6), they are small enough to be caused
by the sample-size effects discussed above.  
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Exhibit B.6  Annual CDFs Based on 12-Month Data Sets

B.6 Reduced-Form Model

The occurrence model described in the preceding sections of this appendix was used to develop
the information for filtered systems in Chapters 3 and 4.  EPA has also developed and implemented a
reduced form of the model (also referred to as the “simplified” model), which was used to provide the
information in Chapters 3 and 4 on unfiltered systems.  The output of the reduced model was also used as
the direct input to the cost and benefit analyses for both filtered and unfiltered systems in the economic
analyses of LT2ESWTR regulatory options.

The reduced form of the model was developed because of limitations observed in the national
occurrence distributions for unfiltered systems generated by the full form of the model.  While those
distributions appeared reasonable across most of the range, it appeared that the upper tails were
overstating the possible occurrence of average Cryptosporidium levels in source water used by unfiltered
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systems.  EPA considered a number of alternatives, such as truncating or modifying the upper tail of the
unfiltered system distributions, including some modifications to the model to reflect some particular
aspects related to the data available for the unfiltered systems.

Unfiltered systems are locations that, at the time of the ICR survey, met strict source water purity
standards that excluded them from the regulatory requirement to filter.  In light of  this prior knowledge,
it makes sense to estimate occurrence independently for this class of system.  The ICRSS also included a
few unfiltered plants, but too few to model separately, leaving ICR data as the only useful source for
unfiltered system occurrence estimates.

The full model described in the previous section includes a large number of parameters: six β
terms, a second set of parameters representing every location in the survey, a third representing every
sample month, and, finally, an even larger collection of residual terms.  The large number of filtered
plants in the ICR survey (n=338) provides enough data to comfortably estimate all these independent
parameters.  However, the data from the much smaller sample of unfiltered plants (n=12) is too sparse.
The number of modeled parameters begins to approach the number of independent data points,
diminishing the usefulness of parameters as representations of more general patterns.

Moreover, measured turbidity values for these unfiltered locations are all very low, with little
variation among them.  This makes sense in light of the regulatory requirements for avoiding filtration.
On the standardized scale, the average plant-mean turbidity for ICR unfiltered plants was -1.5, versus
0.08 for filtered plants.

For the economic analysis of the LT2ESWTR, EPA used the reduced form model to predict both
filtered systems’ and unfiltered systems’ occurrence distributions.  While the simple model was initially
developed for unfiltered systems, it was also able to produce the data needed as input to the risk
assessment model.  Note, the risk assessment model for the LT2ESWTR uses 1,000 log-normal
distributions of plant-mean to reflect both variability and uncertainty in Cryptosporidium national
occurrence (plant to plant variability in each distribution, uncertainty from the set of 1,000 of these
distributions).  Each of the 1,000 distributions of plant means represents a plausible national distribution
of plant means based on underlying data.   EPA compared the occurrence estimates of the full model and
simple model when considering which to use in the economic analysis, and determined there was no
significant difference between the two.   

The following provides additional detail about the reduced-form model and the comparison
between the full model and reduced-form model.

B.6.1 Expected Counts in Reduced-Form Model

At this level, the reduced-form model is the same as the full model. The observed counts, Yi,j, are
modeled as Poisson random variables and the expected counts are built from concentration, volume, and
recovery:

Yi,j ~ Poisson(λi,j) 

λi,j = Concentrationi,j × Volumei,j × Recoveryi,j 

The only difference here is the lack of an assumed false positive contribution (FP) to the count means.  In
earlier work with the full model, the  impact of this false positive term was negligible over the range of
likely values, so it was dropped from this simpler model.



Occurrence and Exposure Assessment 
for the LT2ESWTR December 2005B-24

B.6.2 Reduced-Form Model Estimates of the Distribution of Plant-Mean Concentrations

In the full model, estimated concentrations are broken down into a number of underlying effects
and parameters are estimated to model the impact of each general effect on concentration.  In the
reduced-form model, the focus shifts to modeling the distribution of estimated concentrations, both within
a particular location (over time) and from location-to-location.

The reduced model is similar to the full model described in B.2.3:

Concentrationi,j = exp(βFilt + β1* Unfiltered?i,j + εi + εij),

Where:

C βFilt is an intercept term, the median occurrence level among filtered plants
C β1 is a fixed effect for plants that do not filter.  A negative value for this parameter would predict

lower median occurrence in the source waters of plants that filter.
C Unfiltered?i,j = 1 if plant i does not use filtration during month j and 0, otherwise.  
C εi = random effect for location.  This allows different source waters to have different occurrence

levels
C εij = residual term that embodies other variation

The reduced model is simpler because it predicts different occurrence levels for only two types of
water (filtered and unfiltered) and includes no effects for months.  There are only two precision terms,
prec1 describing normally distributed εi and prec2 describing normally distributed εij.  

Thus, each filtered plant will have geometric mean defined by βFilt and the plant-specific effect, εi. 
Concentrations at filtered plant i would be lognormally distributed so that the natural log concentration is
normally distributed with mean βFilt + εi and variance 1/prec2.

ln(Ci,j) ~ N(βFilt + εi, prec2)

The random effects εi describe variability from location-to-location among plants that filter and
also among unfiltered plants.  These are normally distributed about zero with variance 1/prec1.

εi ~ N(0, prec1)

Within a plant (either filtered or unfiltered), random effects εi,j describe how concentration varies
over time.  Within a plant, these effects are normally distributed with variance 1/prec2.

εi,j ~ N(0, prec2)

For unfiltered plants, the model equations are nearly identical.  Unfiltered plants will have
medians defined by βUnfilt = βFilt + β1.  In the discussion that follows, priors, likelihoods, and estimates for
unfiltered systems are expressed in terms of βUnfilt rather than βFilt + β1. 
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B.6.3 Reduced-Form Model Prior Distributions

In the reduced-form model, it is necessary to use prior distributions for the fixed effects (βFilt and
βUnfilt) and precisions (prec1 and prec2).  As in the full model, these prior distributions were selected to be
as broad as possible, reflecting genuine uncertainty about these true values and allowing the data to drive
their posterior distributions.

Prior distributions for the model parameters are defined below:

βUnfilt ~ N(0,σ2 = 10,000)
βFilt ~ N(0, σ2 = 10,000)
prec1 ~ Gamma(α= 2, τ= 0.2), which has 98% probability mass in [0.7, 33]
prec2 ~ Gamma(α= 2, τ = 2), which has 98% probability mass in [0.08, 3,3]

In the initial modeling work, separate precision terms were assigned to filtered and unfiltered
plants.  Although that setup was theoretically reasonable, the small number of unfiltered plants failed to
support estimating their precision parameters.  There was insufficient evidence to reject the notion that
unfiltered and filtered plants have common precision parameters (i.e., the hypotheses that the two kinds of
systems have equal between-plant and within-plant variances could not be rejected).  As a result,
parameter prec1 describes between-plant variability, while parameter prec2 describes within-plant
variability for both filtered and unfiltered plants.

Accordingly, the model uses all of the data (both filtered and unfiltered) to estimate these two
precision parameters.  The overall group medians (βFilt and βUnfilt), however, are estimated independently.

B.6.4 Comparison of Full Model to Reduced-Form Model

To ensure that the reduced-form model did not differ from the full model in a manner that would
affect the estimated plant-mean distributions used in subsequent economic analyses, EPA conducted a
comparative analysis.  To capture uncertainty and variability of the occurrence estimates, the risk model
uses 1,000 plant-mean occurrence distributions.  These distributions comprise the individual plant-means
(350 plant-means for the ICR data set and 40 for each the ICRSSL and ICRSSM data sets).  Exhibit B.7
shows the individual plant-means predicted by the full model versus the simple model and indicates how
closely the two models correlate, with respect to plant-mean estimates.  

The plant-means fall on the line where the full model and simple model predicted the same
values.  There is a small difference around the 0.01 oocyst/L level, where the simple model predicts 
slightly lower concentrations than the full model does. 
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Exhibit C.1  Boxplot Diagram

 Appendix C.  Boxplots of Observed ICR Data

Observed data are graphically presented using the following distributions:

• Boxplots of monthly distributions (18 months of data)

• Boxplots of annual cumulative distributions (7 running annuals from the 6 quarters of data)

• Annual cumulative distributions (7 running annuals from the 6 quarters of data)

Exhibit C.1 presents an example of the boxplot diagrams used to present the data in Appendix C. 
The boxplot identifies the mean, median, minimum point, maximum point, and 10th, 25th, 75th, and 90th

percentiles.  The data points located below the 5th percentile and above the 95th percentile are plotted
individually.

At the bottom of each boxplot diagram for the Information Collection Rule (ICR) data, the
number of samples taken (N), the number of non-detects (N-Dct), and the standard deviation (Std) are
given for each month or year of sampling. If no standard deviation is shown, this means the standard
deviation is too large to display (>999).  This happens only for coliform bacteria. ICR Sampling began in
July 1997 (noted as JL1 in the monthly boxplots) and ended in December 1998 (DC2).  The annual
boxplots contain all the monthly data for a given 12-month period (e.g., July 1997-June 1998 (J-J),
August 1997-July 1998 (A-J)).
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Exhibit C.2  Exhibit List

Exhibit Pathogen

C-3 Cryptosporidium Total

C-4 Cryptosporidium Non-Empty

C-5 Cryptosporidium - With Internal Structure

C-6 Giardia Total

C-7 Giardia - Non-Empty

C-8 Giardia - Internal Structure

C-9 Giardia - Greater than One Internal Structure

C-10 Viruses

C-11 Total Coliform

C-12 Fecal Coliforms

C-13 E. Coli

For each protozoan and for coliform bacteria, data are separated by source water type and by
filtration status.  There was insufficient data to generate boxplots for viruses in unfiltered systems.
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Appendix D.  Graphs of Observed Supplemental Survey Data

D.1  Exhibit List

Exhibit Title

D.2 Monthly Mean Cryptosporidium Concentration
by Source Water Type

D.3 Monthly Mean Giardia Concentration by
Source Water Type

D.4 Monthly Mean Total Coliform Concentration by
Source Water Type

D.5 Monthly Mean Fecal Coliform Concentration by
Source Water Type

D.6 Monthly Mean E. coli Concentration by
Source Water Type
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Exhibit D.2 ICR Supplemental Surveys Monthly Mean Cryptosporidium
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Mean Total, Non-Empty, Internal, and Internal >1 Giardia  Concentration
By Month for All Surface Waters
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Exhibit D.3 ICR Supplemental Surveys Monthly Mean Giardia Concentration by Source
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Mean Total Coliform Concentration by Month for All Source Waters 
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Exhibit D.4 ICR Supplemental Surveys Monthly Mean Total Coliform Concentration by
Source Water Type
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Mean Fecal Coliform Concentration by Month for Flowing Stream Systems
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Mean Fecal Coliform Concentration by Month for All Source Waters
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Exhibit D.5 ICR Supplemental Surveys Monthly Mean Fecal Coliform Concentration by
Source Water Type
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Mean E. coli Concentration by Month for All Source Waters 
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Exhibit D.6 ICR Supplemental Surveys Monthly Mean E. coli Concentration by Source
Water Type
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Appendix E.  Bayesian Analysis Cumulative Distribution Functions

Exhibit E.1  Table of Graphs

Exhibit Number Data Source Source Water Pathogen

2 ICR All Crypto-Total

3 ICR All Crypto-Non-Empty

4 ICR All Crypto-Internal Structure

5 ICR Flowing Stream Crypto-Total

6 ICR Flowing Stream Crypto-Non-Empty

7 ICR Flowing Stream Crypto-Internal Structure

8 ICR Reservoir/Lake Crypto-Total

9 ICR RL Crypto-Non-Empty

10 ICR RL Crypto-Internal Structure

11 ICR All Giardia-Total

12 ICR All Giardia-Non-Empty

13 ICR All Giardia-Internal Structure

14 ICR Flowing Stream Giardia-Total

15 ICR Flowing Stream Giardia-Non-Empty

16 ICR Flowing Stream Giardia-Internal Structure

17 ICR RL Giardia-Total

18 ICR RL Giardia-Non-Empty

19 ICR RL Giardia-Internal Structure

20 Supplemental Survey
- Large Plants

All Crypto-Total

21 Supplemental Survey
- Medium Plants

All Crypto-Total

22 Supplemental Survey 
- Large Plants

All Crypto-Non-Empty

23 Supplemental Survey
- Medium Plants

All Crypto-Non-Empty

24 Supplemental Survey 
- Large Plants

All Crypto-Internal Structure

25 Supplemental Survey
- Medium Plants

All Crypto-Internal Structure



Exhibit Number Data Source Source Water Pathogen
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26 Supplemental Survey 
- Large Plants

Flowing Stream Crypto-Total

27 Supplemental Survey
- Medium Plants

Flowing Stream Crypto-Total

28 Supplemental Survey 
- Large Plants

Flowing Stream Crypto-Non-Empty

29 Supplemental Survey
- Medium Plants

Flowing Stream Crypto-Non-Empty

30 Supplemental Survey 
- Large Plants

Flowing Stream Crypto-Internal Structure

31 Supplemental Survey
- Medium Plants

Flowing Stream Crypto-Internal Structure

32 Supplemental Survey 
- Large Plants

Reservoir/Lake Crypto-Total

33 Supplemental Survey
- Medium Plants

Reservoir/Lake Crypto-Total

34 Supplemental Survey 
- Large Plants

Reservoir/Lake Crypto-Non-Empty

35 Supplemental Survey
- Medium Plants

Reservoir/Lake Crypto-Non-Empty

36 Supplemental Survey 
- Large Plants

Reservoir/Lake Crypto-Internal Structure

37 Supplemental Survey
- Medium Plants

Reservoir/Lake Crypto-Internal Structure
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 226 (of 350) raw rates of zero

Exhibit E-3 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in All Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 196 (of 350) raw rates of zero

Exhibit E-2 Cumulative Distribution of Total Cryptosporidium Oocysts in All Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 314 (of 350) raw rates of zero

Exhibit E-4 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in All Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 97 (of 163) raw rates of zero

Exhibit E-6 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in Flowing Stream Plants

ICR Modeled Data

Concentration (oocysts/L)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

1e-005 0.0001 0.001 0.01 0.1 1 10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Empirical CDF,  18 per. data, adj for 11% recovery

<- 77 (of 163) raw rates of zero

Exhibit E-5 Cumulative Distribution of Total Cryptosporidium Oocysts in Flowing Stream Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 144 (of 163) raw rates of zero

Exhibit E-7 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in Flowing Stream Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 164 (of 222) raw rates of zero

Exhibit E-9 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in RL Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 11% recovery

<- 154 (of 222) raw rates of zero

Exhibit E-8 Cumulative Distribution of Total Cryptosporidium Oocysts in Reservoir/Lake Plants

ICR Modeled Data
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<- 207 (of 222) raw rates of zero

Exhibit E-10 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in RL Plants

ICR Modeled Data
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 122 (of 350) raw rates of zero

Exhibit E-11 Cumulative Distribution of Total Giardia Cysts in All Plants 
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 161 (of 350) raw rates of zero

Exhibit E-12 Cumulative Distribution of Non-Empty Giardia Cysts in All Plants 
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 287 (of 350) raw rates of zero

Exhibit E-13 Cumulative Distribution of Giardia Cysts with Internal Structures in All Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 44 (of 163) raw rates of zero

Exhibit E-14 Cumulative Distribution of Total Giardia Cysts in Flowing Stream Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 63 (of 163) raw rates of zero

Exhibit E-15 Cumulative Distribution of Non-Empty Giardia Cysts in Flowing Stream Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 125 (of 163) raw rates of zero

Exhibit E-16 Cumulative Distribution of Giardia Cysts with Internal Structures in Flowing Stream Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 107 (of 222) raw rates of zero

Exhibit E-17 Cumulative Distribution of Total Giardia Cysts in Reservoir/Lake Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 135 (of 222) raw rates of zero

Exhibit E-18 Cumulative Distribution of Non-Empty Giardia Cysts in RL Plants
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Empirical CDF,  18 per. data, adj for 26% recovery

<- 200 (of 222) raw rates of zero

Exhibit E-19 Cumulative Distribution of Giardia Cysts with Internal Structures in RL Plants
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 6 (of 40) raw rates of zero

Exhibit E-21 Cumulative Distribution of Total Cryptosporidium Oocysts in All Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 6 (of 40) raw rates of zero

Exhibit E-20 Cumulative Distribution of Total Cryptosporidium Oocysts in All Plants

ICRSS (Large Plants) Modeled Data

Concentration (oocysts/L)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

1e-005 0.0001 0.001 0.01 0.1 1 10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Empirical CDF,  24 per. data, adj for 40% recovery

<- 6 (of 40) raw rates of zero

Exhibit E-22 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in All Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 20 (of 40) raw rates of zero

Exhibit E-24 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in All Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 8 (of 40) raw rates of zero

Exhibit E-23 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in All Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 19 (of 40) raw rates of zero

Exhibit E-25 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in All Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 1 (of 16) raw rates of zero

Exhibit E-26 Cumulative Distribution of Total Cryptosporidium Oocysts in Flowing Stream Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 1 (of 16) raw rates of zero

Exhibit E-28 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in Flowing Stream Plants

ICRSS (Large Plants) Modeled Data

Concentration (oocysts/L)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

1e-005 0.0001 0.001 0.01 0.1 1 10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Empirical CDF,  24 per. data, adj for 40% recovery

<- 0 (of 17) raw rates of zero

Exhibit E-27 Cumulative Distribution of Total Cryptosporidium Oocysts in Flowing Stream Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 0 (of 17) raw rates of zero

Exhibit E-29 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in Flowing Stream Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 7 (of 16) raw rates of zero

Exhibit E-30 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in Flowing Stream Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 4 (of 17) raw rates of zero

Exhibit E-31 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in Flowing Stream Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 4 (of 22) raw rates of zero

Exhibit E-32 Cumulative Distribution of Total Cryptosporidium Oocysts in Reservoir/Lake Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 4 (of 22) raw rates of zero

Exhibit E-34 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in Reservoir/Lake Plants

ICRSS (Large Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 5 (of 19) raw rates of zero

Exhibit E-33 Cumulative Distribution of Total Cryptosporidium Oocysts in Reservoir/Lake Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 6 (of 19) raw rates of zero

Exhibit E-35 Cumulative Distribution of Non-Empty Cryptosporidium Oocysts in Reservoir/Lake Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 12 (of 19) raw rates of zero

Exhibit E-37 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in Reservoir/Lake Plants

ICRSS (Medium Plants) Modeled Data
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Empirical CDF,  24 per. data, adj for 40% recovery

<- 12 (of 22) raw rates of zero

Exhibit E-36 Cumulative Distribution of Cryptosporidium Oocysts with Internal Structures in Reservoir/Lake Plants

ICRSS (Large Plants) Modeled Data


