DOE/EE-0675

Energy Storage R&D

U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121

FISCAL YEAR 2011 ANNUAL PROGRESS REPORT FOR ENERGY STORAGE R&D

January 2012

Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy

Table of Contents

I. INTRODUCTION	1
I.A Vehicle Technologies Program Overview	1
I.B Energy Storage Research & Development Overview	1
I.B.1 Programmatic Structure	1
I.B.2 Some Recent Highlights	3
I.B.3 Organization of this Report	6
II. AMERICAN RECOVERY & REINVESTMENT ACT (ARRA) OF 2009	7
II.A Integrated Battery Materials Production, Cell Manufacturing, and Battery Assembly Facilities	11
II.A.1 ARRA-supported Production Facility Project (Johnson Controls, Inc.)	11
II.A.2 Vertically Integrated Mass Production of Automotive Class Lithium-ion Batteries (A123Systems)	15
II.A.3 ARRA-supported Production Facility Project (Exide Technologies)	16
II.A.4 ARRA-supported Production Facility Project (East Penn Manufacturing Co., Inc.)	20
II.B Battery Cell and Pack Assembly Facilities	23
II.B.1 ARRA-supported Production Facility Project (Dow Kokam MI, LLC)	23
II.B.2 ARRA-supported Production Facility Project - Li-Ion Battery Manufacturing (LG Chem Michigan Ir	nc.) 25
II.B.3 ARRA-supported Lithium-ion Cell Production and Battery Pack Assembly (EnerDel, Inc.)	28
II.B.4 Li-Ion Battery Pack Manufacturing (General Motors, LLC)	31
II.B.5 Lithium-ion Cell Production and Battery Pack Assembly (Saft America, Inc.)	34
II.C Battery Materials Production Facilities	36
II.C.1 ARRA-supported Production Facilities (Celgard, LLC)	36
II.C.2 Advanced Cathode Materials Production Facility (Toda America Inc.)	39
II.C.3 ARRA-supported Production Facility Project (Chemetall Foote Corp.)	40
II.C.4 High-Volume Manufacturing of LiPF6 - A Critical Lithium-ion Battery Material (Honeywell)	42
II.C.5 Construction of a Li-ion Battery Cathode Production Plant (BASF)	45
II.C.6 ARRA-supported Nanoengineered Ultracapacitor Material Production Facility Project (EnerG2, Inc.)) 46
II.C.7 ARRA-supported Production Facility Project (Novolyte Technologies)	48
II.C.8 ARRA-supported Production Facility Project (FutureFuel Chemical Company)	50
II.C.9 ARRA-supported Production Facility Project (Pyrotek Incorporated)	53
II.C.10 Manufacture of Advanced Battery Components (HTTM LLC, H&T, Trans-Matic)	56
II.D Battery Recycling Facilities	59
II.D.1 ARRA-supported Production Facility Project (Toxco, Inc.)	59
II.E Battery Research Facilities	61
II.E.1 ARRA-supported Prototype Cell Fabrication Facility (ANL)	61
II.E.2 ARRA-supported Material Scale-Up Facility (ANL)	63
II.E.3 Post-test Laboratory Facility (ANL)	66
II.E.4 High-Energy Battery Testing Facility (INL)	69
II.E.5 Battery Thermal Test Laboratory (NREL)	72
II.E.6 Battery Abuse Test Facility (SNL)	75
III. ADVANCED BATTERY DEVELOPMENT, SYSTEMS ANALYSIS, AND TESTING	77
III.A Advanced Battery Development	80
III.A.I High Energy/EV Systems	83

III.A.1.1 EV Battery Development (Envia Systems)	83
III.A.1.2 EV Battery Development (Cobasys)	88
III.A.1.3 Development of High Performance Advanced Batteries for Electric Vehicle Applications (Quallion)	92
III.A.2 High Energy/PHEV Systems	95
III.A.2.1 Advanced High-Performance Batteries for Plug-In Hybrid Electric Vehicle Applications (JC	I) 95
III.A.2.2 Development of a High-Performance PHEV Battery Pack (LG Chem, Michigan)	101
III.A.2.3 PHEV Battery Development (A123 Systems)	103
III.A.3 High Power/HEV and LEESS Systems	108
III.A.3.1 HEV LEESS Battery Development (A123 Systems)	108
III.A.3.2 LEESS Battery Development (Maxwell)	113
III.A.3.3 Capacitor Development (NSWC)	117
III.A.4 Technology Assesment Programs	122
III.A.4.1 EV Technology Assessment Program (SK Energy)	122
III.A.4.2 EV Technology Assessment Program (K2 Energy)	123
III.A.4.3 EV Technology Assessment Program (Leyden Energy)	124
III.A.4.4 LEESS Technology Assessment Program (Actacell)	125
III.A.5 Development of Advanced Lithium-ion Battery Cell Materials	126
III.A.5.1 Next Generation Battery Materials (Amprius)	126
III.A.5.2 Development of Large Format Lithium-Ion Cells with Higher Energy Density (Dow Kokam LLC)	, 128
III.A.5.3 Innovative Cell Materials and Designs for 300 mile range EVs (Nanosys)	130
III.A.5.4 High Energy Novel Cathode / Alloy Automotive Cell (3M)	132
III.A.5.5 Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes (Applied Materials)	135
III.A.5.6 Solid Polymer Batteries for Electric Drive Vehicles (Seeo, Inc.)	136
III.A.5.7 Development of High-Energy Lithium Sulfur Cells (PSU)	138
III.A.6 Low-cost Processing	140
III.A.6.1 Advanced Manufacturing Process to Reduce Manufacturing Cost of Li-ion Cells (JCI)	140
III.A.6.2 Ultraviolet and Electron Beam curing technology to reduce electrode manufacturing cost (M UV International).	iltec 143
III.A.6.3 Dry Process Electrode Fabrication (A123Systems)	145
III.A.7 Inactive Materials/Components Reduction Techniques	147
III.A.7.1 Innovative Manufacturing and Materials for Low Cost Lithium Ion Batteries (Optodot Corporation)	147
III.A.7.2 Stand Alone Battery Thermal Management System (Denso)	149
III.B Advanced Materials and Processing	152
III.B.1 Multifunctional, Inorganic-Filled Separator Development for Large Format Li-ion Batteries (ENTE Membranes, LLC)	K 152
III.B.2 Advanced Negative Electrode Materials for PHEV Li-Ion Batteries (3M)	155
III.B.3 Stabilized Lithium Metal Powder (SLMP®), Enabling Material and Revolutionary Technology for Energy Li-ion Batteries (FMC).	High 159
III.B.4 Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes (Sion Power)	163
III.B.5 Process for Low-Cost Domestic Production of LIB Cathode Materials (BASF)	170
III.B.6 Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium-Ion Batter (Angstron)	ies 174

III B 7 New High-Energy Nanofiber Anode Materials (NCSU)	178
III B & Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives in Lithium-Ion Batteries (EnerDel)	183
III B 9 Internal Short Circuits in Lithium-Ion Cells for PHEVs (TIAX)	186
III.B.10 High Throughput Fabrication of 10 Year PHEV Battery Electrodes (A123Systems)	191
III.B.11 Small Business Innovative Research Projects (SBIR).	193
III.C Systems Analysis	195
III.C.1 PHEV Battery Cost Assessments (TIAX)	195
III.C.2 Battery Pack Requirements and Targets Validation (ANL)	198
III.C.3 Battery Life Trade-Off Studies (NREL)	203
III.C.4 Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (NREL)	206
III.C.5 Plug-In Electric Vehicle (PEV) Battery Second Use (NREL)	210
III.C.6 Battery Recycling (ANL)	213
III.C.7 Low Energy HEV Requirements Analysis (NREL)	218
III.C.8 PHEV Battery Cost Assessment (ANL)	222
III.D Battery Testing Activities	226
III.D.1 Battery Performance and Life Testing (ANL)	226
III.D.2 Advanced Energy Storage Life and Health Prognostics (INL)	229
III.D.3 Battery Performance and Life Testing (INL)	234
III.D.4 Battery Abuse Testing (SNL)	239
III.D.5 Developmental & Applied Diagnostic Testing (INL)	243
III.D.6 Battery Thermal Analysis and Characterization Activities (NREL)	248
III.D.7 Internal Short Circuit Test Development (SNL)	251
III.D.8 Development of an On-Demand Internal Short Circuit (NREL)	256
III.E Computer Aided Engineering of Batteries	259
III.E.1 Computer Aided Engineering of Batteries - CAEBAT (NREL)	259
III.E.2 Computer Aided Engineering of Batteries Effort (ORNL)	264
III.E.3 Development of Computer Aided Design Tools for Automotive Batteries (GM)	268
III.E.4 Development of Computer Aided Design Tools for Automotive Batteries (CD-Adapco)	271
III.E.5 Development of Computer Aided Design Tools for Automotive Batteries (EC Power)	274
III.E.6 Multi-Scale Multi-Dimensional (MSMD) Framework and Modeling Activities (NREL)	277
III.E.7 Lithium-Ion Abuse Model Development (NREL)	283
III.F Energy Storage R&D Collaborative Activities with the International Energy Agency (IEA), Canada, and Ch	1ina288
IV. APPLIED BATTERY RESEARCH FOR TRANSPORTATION	291
IV.A Introduction	293
IV.B Materials Research	296
IV.B.1 Cell Components and Composition	296
IV.B.1.1 Screen Electrode Materials and Cell Chemistries (ANL)	296
IV.B.1.2 Streamlining the Optimization of Li-Ion Battery Electrodes (ANL)	301
IV.B.1.3 Scale-Up of BATT Program Materials for Cell-Level Evaluation (LBNL)	306
IV.B.2 Applied Battery Research on Anodes	309
IV.B.2.1 Developing a New High Capacity Anode with Long Life (ANL)	309
IV.B.2.2 Develop Improved Methods of Making Inter-metallic Anodes (ANL)	312
IV.B.2.3 Spherical Carbon Anodes Fabricated by Autogenic Reactions (ANL)	317

IV.B.2.4 Functionalized Surface Modification Agents to Suppress Gassing Issue of Li4Ti5O12-Based Lithium-Ion Chemistry (ANL)	321
IV.B.3 Applied Battery Research on Cathodes	325
IV.B.3.1 Engineering of High Energy Cathode Material (ANL)	325
IV.B.3.2 Developing New High Energy Gradient Concentration Cathode Material (ANL)	330
IV.B.3.3 Design and Evaluation of Novel High Capacity Cathode Materials (ANL)	334
IV.B.3.4 Novel Composite Cathode Structures (ANL)	339
IV.B.3.5 Development of High-Capacity Cathode Materials with Integrated Structures (ANL)	345
IV.B.3.6 Cathode Processing Comparison Study (ANL)	349
IV.B.4 Applied Battery Research on Electrolytes	354
IV.B.4.1 Novel Electrolytes and Electrolyte Additives for PHEV Applications (ANL)	354
IV.B.4.2 Develop Electrolyte Additives (ANL)	359
IV.B.4.3 High Voltage Electrolyte for Lithium-ion Battery (ANL)	364
IV.B.4.4 High Voltage Electrolytes for Li-ion Batteries (ARL)	369
IV.B.4.5 Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range (JPL)	375
IV.B.4.6 Novel Phosphazene-Based Compounds to Enhance Electrolyte Safety and Stability for High Voltage Applications (INL)	382
IV.C Calendar and Cycle Life Studies	388
IV.C.1 Diagnostics and Modeling	388
IV.C.1.1 Electrochemistry Cell Model (ANL)	388
IV.C.1.2 Battery Design Modeling (ANL)	393
IV.C.1.3 Diagnostic Studies on Li-Battery Cells and Cell Components (ANL)	398
IV.C.1.4 Structural Investigations of Layered Oxide Materials for PHEV Applications (ANL)	403
IV.C.1.5 Electrochemistry Diagnostics of Baseline and New Materials (LBNL)	408
IV.C.1.6 Mechanistic, Molecular, and Thermodynamic Modeling/Diagnostics in support of ABR Cell Performance and Aging Studies (INL)	412
IV.C.1.7 Mechanistic, Molecular, and Thermodynamic Modeling/Diagnostics in support of ABR Cell Performance and Aging Studies (ORNL)	417
IV.C.2 Cell Fabrication and Testing	421
IV.C.2.1 Fabricate PHEV Cells for Testing & Diagnostics (ANL)	421
IV.C.2.2 Baseline PHEV Cell Life Testing (ANL)	426
IV.D Abuse Tolerance Studies	429
IV.D.1 Abuse Diagnostics	429
IV.D.1.1 Diagnostic Studies Supporting Improved Abuse Tolerance (BNL)	429
IV.D.2 Abuse Mitigation	436
IV.D.2.1 Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse (ANL	.) 436
IV.D.2.2 Impact of Materials on Abuse Response (SNL)	442
IV.D.2.3 Overcharge Protection for PHEV Cells (LBNL)	447
IV.E Applied Research Facilities	452
IV.E.1 Battery Materials Pilot Production Facility	452
IV.E.1.1 Process Development and Scale up of Advanced Cathode Materials (ANL)	452
IV.E.1.2 Process Development and Scale-up of Advanced Electrolyte Materials (ANL)	456
IV.E.2 Post-Test Diagnostics Facility	458
IV.E.2.1 Post-Test Diagnostics Facility: Instrumentation and Protocol Development Activities (ANL)	458

IV.E.3 Battery Electrode and Cell Production Facility	. 461
IV.E.3.1 Cell and Cell Component Manufacturing Equipment Modification and Process Development	
(ANL)	. 461
V. FOCUSED FUNDAMENTAL RESEARCH	. 466
V.A Introduction	. 467
V.B Cathode Development	. 470
V.B.1 First Principles Calculations and NMR Spectroscopy of Electrode Materials (MIT, SUNY)	. 470
V.B.2 Cell Analysis, High-energy Density Cathodes and Anodes (LBNL)	. 475
V.B.3 Olivines and Substituted Layered Materials (LBNL)	. 478
V.B.4 Stabilized Spinels and Nano Olivines (U. Texas)	. 483
V.B.5 The Synthesis and Characterization of Substituted Olivines and Manganese Oxides (SUNY)	. 488
V.B.6 Cell Analysis-Interfacial Processes: SEI Formation and Stability on Cycling (HQ)	. 492
V.B.7 The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium Positive Electrode Materials (MIT)	. 495
V.B.8 Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studie of Li-Air Batteries (BNL, U. Mass)	es . 503
V.B.9 Layered Cathode Materials (ANL)	. 508
V.B.10 Development of High Energy Cathode (PNNL).	. 513
V.B.11 Crystal Studies on High-energy Density Cathodes (LBNL)	. 518
V.B.12 Developing Materials for Lithium-Sulfur Batteries (ORNL)	. 524
V.B.13 Studies on the Local State of Charge (SOC) and Underlying Structures in Lithium Battery Electrodes (ORNL)	. 529
V.B.14 New Cathode Projects (LBNL)	. 533
V.C Anode Development	. 535
V.C.1 Nanoscale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries (U Pitt)	. 535
V.C.2 Interfacial Processes – Diagnostics (LBNL)	. 540
V.C.3 Search for New Anode Materials (UTA)	. 545
V.C.4 Nano-structured Materials as Anodes (SUNY)	. 548
V.C.5 Development of High Capacity Anodes (PNNL)	. 551
V.C.6 Advanced Binder for Electrode Materials (LBNL)	. 555
V.C.7 Three-Dimensional Anode Architectures and Materials (ANL)	. 560
V.C.8 Metal-Based High-Capacity Li-Ion Anodes (SUNY)	. 564
V.C.9 New Layered Nanolaminates for Use in Lithium Battery Anodes (Drexel U)	. 567
V.C.10 Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes (NREL, U Col)	. 571
V.C.11 Synthesis and Characterization of Si/SiOx-Graphene Nanocomposite Anodes and Polymer Binders (PSU)	. 576
V.C.12 Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries (SwRI)	. 580
V.C.13 Wiring Up Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes (Stanford U)	. 585
V.C.14 Hard Carbon Materials for High-Capacity Li-ion Battery Anodes (ORNL)	. 590
V.D Electrolyte Development	. 593
V.D.1 Polymer Electrolytes for Advanced Lithium Batteries (UC, Berkeley)	. 593
V.D.2 Interfacial Behavior of Electrolytes (LBNL)	. 597
V.D.3 Molecular Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode Interfaces (Univ Ut	ah)602
V.D.4 Bi-functional Electrolytes for Lithium-ion Batteries (CWRU)	. 605

V.D.5 Advanced Electrolyte and Electrolyte Additives (ANL)	609
V.D.6 Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for	
Lithium Battery Electrolytes (NCSU)	612
V.D.7 Development of Electrolytes for Lithium-ion Batteries (URI)	616
V.D.8 Sulfones with Additives as Electrolytes (ASU)	621
V.D.9 Long-lived Polymer Electrolytes (ORNL)	625
V.E Cell Analysis, Modeling, and Fabrication	628
V.E.1 Electrode Fabrication and Failure Analysis (LBNL)	628
V.E.2 Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer (UM)	632
V.E.3 Intercalation Kinetics and Ion Mobility in Electrode Materials (ORNL)	636
V.E.4 Modeling – Mathematical Modeling of Next-generation Li-ion Chemistries (LBNL)	641
V.E.5 Analysis and Simulation of Electrochemical Energy Systems (LBNL)	644
V.E.6 Investigation of Critical Parameters in Li-ion Battery Electrodes (LBNL)	647
V.E.7 Modeling - Predicting and Understanding New Li-ion Materials Using Ab Initio Atomistic	
Computational Methods (LBNL)	651
V.E.8 New Electrode Designs for Ultra-high Energy Density (MIT)	654
V.E.9 In Situ Electron Spectroscopy of Electrical Energy Storage Materials (ORNL)	658
V.F Energy Frontier Research Centers	661
V.F.1 Energy Frontier Research Center at ANL (ANL)	661
V.F.2 Novel In Situ Diagnostics Tools for Li-ion Battery Electrodes (LBNL)	666
V.G Integrated Lab-Industry Research Program (LBNL, ANL)	670
Appendix A: List of Contributors and Research Collaborators	676
Appendix B: Acronyms	683

List of Figures

Figure II - 1: American Recovery and Reinvestment Act (ARRA) 2009 grants distribution for battery and electric drive manufacturing.	9
Figure II - 2: Michigan Li-ion battery plant during construction – 1000 construction workers were employed in the construction of our Michigan plant.	13
Figure II - 3: Construction included the upfit of an existing building for Li-ion battery production, including the construction of new outbuildings to house equipment and materials.	13
Figure II - 4: This project helped fund the material characterization and test facilities that are critical to support advance energy production programs.	d 13
Figure II - 5: Johnson Controls' facilities include the equipment necessary to perform all relevant battery and cell tests, including cycle testing in controlled temperature environments.	. 13
Figure II - 6: Pilot scale equipment installed in controlled environments support the mass production programs	. 13
Figure II - 7: Equipment – Pack assembly was up and running within 10 months of receiving the award from the Department of Energy.	. 14
Figure II - 8: Complete battery packs and systems are assembled domestically prior to being sent to the customer	. 14
Figure II - 9: The Ford Transit Connect Electric features a 28 kWh Li-ion pack that was built in our Michigan plant Figure II - 10: Livonia Cell Assembly Line	. 14
Figure II - 11: New State-of-the-Art AGM Battery Assembly Operation in Columbus, Georgia Exide Battery Plant	16
Figure II - 12: New World-Class Continuous Plate Manufacturing Operation in Columbus, Georgia Exide Battery Plant	17
Figure II - 13: Ontimized Lead Plate Curing Operation in Columbus, Georgia Exide Battery Plant	17
Figure II - 14: Significant Additional Production Capacity in Battery Formation Department – Columbus, Georgia Exid Battery Plant.	e 17
Figure II - 15: Product Validation Trial Production has begun on the New Advanced AGM Battery Assembly Expansio Line – Columbus, Georgia Exide Battery Plant.	n 17
Figure II - 16: Emptied Building Site was readied for the New Advanced AGM Spiral Wound Battery Production Equipment.	18
Figure II - 17: New High Purity Lead Oxide Manufacturing Operation in the new AGM area in the Bristol, Tennessee Exide Battery Plant.	18
Figure II - 18: State of the Art Grid Manufacturing Operation in the new AGM Battery Operation in Bristol, Tennessee Exide Plant.	18
Figure II - 19: Automated Spiral Wound Plate Manufacturing Line in New Advanced AGM Battery Area in Bristol, Tennessee Exide Plant.	. 19
Figure II - 20: Overall View of new AGM Battery Production area in Bristol, Tennessee Exide Battery Plant	. 19
Figure II - 21: Facility 1 – Automotive Battery Plant A4 Equipment.	. 21
Figure II - 22: Facility 2 – Injection Molding Plants IM1/IM2 Equipment.	. 21
Figure II - 23: UltraBattery Test Vehicle (on site at East Penn Mfg).	. 22
Figure II - 24: Midland, Michigan Manufacturing Facility – Dow Kokam, LLC.	. 23
Figure II - 25: Midland, Michigan Manufacturing Facility – Dow Kokam, LLC (cont'd).	. 24
Figure II - 26: LG Chem, MI, Production Facility – Street View – Front of Main Building (1st Qtr. 2011).	. 26
Figure II - 27: LG Chem, MI, Production Facility – Street View – Rear (Electrode Building on Left) (1st Qtr. 2011)	. 26
Figure II - 28: LG Chem, MI, Production Facility – Arial View of Entire Facility (October, 2011)	. 26
Figure II - 29: LG Chem, MI, Production Facility – Pre-Aging Area Equipment.	. 26
Figure II - 30: LG Chem, MI, Production Facility – Formation Area Equipment.	. 27
Figure II - 31: LG Chem, MI, Production Facility – Li-Ion Battery Cell.	. 27

Figure II - 33: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Mt. Comfort Facility 28 Figure II - 34: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Facility Preparation – Mt. Comfort 29 Figure II - 36: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Formation Equipment – Mt. Comfort. 29 Figure II - 37: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Formation Equipment – Mt. Comfort. 29 Figure II - 38: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Assembly Equipment – Hague Rd. 29 Figure II - 39: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Unwinder Anode Coater – Hague Rd. 29 Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt. Comfort 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, Ml. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 49: Saft Factory of the Future – completed . 34 Figure II - 51: Completed warehouse (Phase 1 Project in Charlotte, N	igure II - 32: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Hague Rd. Facility.	28
Figure II - 34: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Dry-room Construction – Hague Rd 29 Figure II - 35: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Completed Dry-room – Hague Rd 29 Figure II - 37: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Formation Equipment – Mt. Comfort	igure II - 33: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Mt. Comfort Facility.	28
Figure II - 35: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Facility Preparation – Mt. Comfort	igure II - 34: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Dry-room Construction – Hague Rd.	29
Figure II - 36: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Completed Dry-room – Hague Rd	igure II - 35: EnerDel Lithium-ion Cell Production and Battery Pack Assembly - Facility Preparation - Mt. Comfort	29
Figure II - 37: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Formation Equipment – Mt. 29 Figure II - 38: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Assembly Equipment – Hague Rd. 29 Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Unwinder Anode Coater – Hague Rd.29 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt. Comfort. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.). 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 2 Project in Concord, N.C.). 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.). 37 Figure II - 54: Grand Opening with Secretary	'igure II - 36: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Completed Dry-room – Hague Rd	29
Figure II - 38: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Assembly Equipment – Hague Rd. 29 Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Unwinder Anode Coater – Hague Rd 29 30 Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt. Comfort. 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist 32 Figure II - 46: Battery Pack Lift Assist 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.). 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.). 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concor	igure II - 37: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Formation Equipment – Mt. Comfort.	29
Figure II - 39: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Unwinder Anode Coater – Hague Rd 29 Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt. 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 48: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Loppfe is Required in all Li-ion Batteries 42 Figure II - 56: Operations' install and star	igure II - 38: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Cell Assembly Equipment – Hague Rd.	29
Figure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt. 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed. 34 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Concord Building Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operation	igure II - 39: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Unwinder Anode Coater – Hague Rd.	29
Comfort 30 Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed marehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 2 Project in Concord, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 2 Project in Concord, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Fig	igure II - 40: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – Battery Module Assembly Line – Mt.	
Figure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell. 30 Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 45: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and starup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp.	Comfort.	30
Figure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack. 30 Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed. 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Acriaton's install and startup team (Phase 2 Project in Concord, N.C.) 38 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 </td <td>igure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell.</td> <td>30</td>	igure II - 41: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Li Ion Battery Cell.	30
Figure II - 43: Facility location in Brownstown Township, MI. 32 Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed. 34 Figure II - 51: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 38 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43	igure II - 42: EnerDel Lithium-ion Cell Production and Battery Pack Assembly – EnerDel Battery Pack	30
Figure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI. 32 Figure II - 45: Battery Pack Lift Assist. 32 Figure II - 46: Battery Pack Lift Assist. 32 Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 <td< td=""><td>igure II - 43: Facility location in Brownstown Township, MI.</td><td>32</td></td<>	igure II - 43: Facility location in Brownstown Township, MI.	32
Figure II - 45: Battery Pack Lift Assist32Figure II - 46: Battery Pack Assembly on Automated Guided Carts.32Figure II - 47: 2011 Chevrolet Volt Battery & Specifications.32Figure II - 47: 2011 Chevrolet Volt Battery & Specifications.32Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI.32Figure II - 49: Saft Factory of the Future – completed.34Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.)37Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.)37Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.)37Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.)37Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.)37Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.)37Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.)38Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 139Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp.41Figure II - 60: Honeywell Produces Key Raw Materials.42Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility.43Figure II - 62: Supfalo NY LiPF ₆ plant.43Figure II - 64: Current Picture of BASF Cathode Facility.45Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)46Figure II - 66: Kiln Reactor Commissioning. </td <td>igure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI.</td> <td>32</td>	igure II - 44: GM Brownstown Battery Assembly Plant, Brownstown Township, MI.	32
Figure II - 46: Battery Pack Assembly on Automated Guided Carts. 32 Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 47: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed	igure II - 45: Battery Pack Lift Assist.	32
Figure II - 47: 2011 Chevrolet Volt Battery & Specifications. 32 Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Pictur	igure II - 46: Battery Pack Assembly on Automated Guided Carts.	32
Figure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI. 32 Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1. 39 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44	igure II - 47: 2011 Chevrolet Volt Battery & Specifications.	32
Figure II - 49: Saft Factory of the Future – completed 34 Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 1 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Re	igure II - 48: 2011 Chevrolet Volt Battery in the GM Battery Systems Lab in Warren, MI	32
Figure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 50: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.) 46 <td>igure II - 49: Saft Factory of the Future – completed</td> <td>34</td>	igure II - 49: Saft Factory of the Future – completed	34
Figure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.)37Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.)37Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.)37Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.)37Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.)37Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.)38Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 139Figure II - 59: LiPF6 is Required in all Li-ion Batteries.42Figure II - 60: Honeywell Produces Key Raw Materials.42Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility.43Figure II - 62: Buffalo NY LiPF6 plant.43Figure II - 63: Special container for shipping finished product.44Figure II - 64: Current Picture of BASF Cathode Facility.45Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)46Figure II - 66: Kiln Reactor Commissioning.47	igure II - 50: Completed warehouse (Phase 1 Project in Charlotte, N.C.)	37
Figure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.) 37 Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.) 46 Figure II - 66: Kiln Reactor Commissioning. 47	igure II - 51: Fully formed flat sheet membrane from new equipment (Phase 1 Project in Charlotte, N.C.)	37
Figure II - 53: Concord Building (Phase 2 Project in Concord, N.C.) 37 Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.) 37 Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 38 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.) 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 52: Quality testing on the manufacturing floor (Phase 1 Project in Charlotte, N.C.)	37
Figure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.)37Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.)37Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.)38Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1.39Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp.41Figure II - 59: LiPF6 is Required in all Li-ion Batteries.42Figure II - 60: Honeywell Produces Key Raw Materials.42Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility.43Figure II - 63: Special container for shipping finished product.44Figure II - 64: Current Picture of BASF Cathode Facility.45Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)46Figure II - 66: Kiln Reactor Commissioning.47	igure II - 53: Concord Building (Phase 2 Project in Concord, N.C.)	37
Figure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.) 37 Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.) 38 Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1. 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.) 46 Figure II - 66: Kiln Reactor Commissioning. 47	igure II - 54: Grand Opening with Secretary Chu (Phase 2 Project in Concord, N.C.)	37
Figure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.)38Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1.39Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp.41Figure II - 59: LiPF6 is Required in all Li-ion Batteries.42Figure II - 60: Honeywell Produces Key Raw Materials.42Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility.43Figure II - 62: Buffalo NY LiPF ₆ plant.43Figure II - 63: Special container for shipping finished product.44Figure II - 64: Current Picture of BASF Cathode Facility.45Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)46Figure II - 66: Kiln Reactor Commissioning.47	igure II - 55: Equipment Installation Activity (Phase 2 Project in Concord, N.C.)	37
Figure II - 57: Toda America Inc. Battle Creek Facility, Phase 1. 39 Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	'igure II - 56: Operations' install and startup team (Phase 2 Project in Concord, N.C.)	38
Figure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp. 41 Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 57: Toda America Inc. Battle Creek Facility, Phase 1.	39
Figure II - 59: LiPF6 is Required in all Li-ion Batteries. 42 Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 58: ARRA-supported Production Facility Project – Chemetall Foote Corp.	41
Figure II - 60: Honeywell Produces Key Raw Materials. 42 Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 59: LiPF6 is Required in all Li-ion Batteries.	42
Figure II - 61: Aerial view of Honeywell's Buffalo, NY facility. 43 Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 60: Honeywell Produces Key Raw Materials	42
Figure II - 62: Buffalo NY LiPF ₆ plant. 43 Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 61: Aerial view of Honeywell's Buffalo, NY facility.	43
Figure II - 63: Special container for shipping finished product. 44 Figure II - 64: Current Picture of BASF Cathode Facility. 45 Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.). 46 Figure II - 66: Kiln Reactor Commissioning. 46 Figure II - 67: Process Gas Insulation 47	igure II - 62: Buffalo NY LiPF ₆ plant.	43
Figure II - 64: Current Picture of BASF Cathode Facility	igure II - 63: Special container for shipping finished product	44
Figure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)	igure II - 64: Current Picture of BASF Cathode Facility	45
Figure II - 66: Kiln Reactor Commissioning	'igure II - 65: Artist's Rendering of Albany, Oregon Plant Floor plan (EnerG2, Inc.)	46
Figure II - 67 [·] Process Gas Insulation 47	igure II - 66: Kiln Reactor Commissioning.	46
	igure II - 67: Process Gas Insulation.	47
Figure II - 68: Refrigeration Compressor Insulation	igure II - 68: Refrigeration Compressor Insulation.	47
Figure II - 69: Several examples of the 400 215-L Electrolytes shipping vessels purchased in 2010	igure II - 69: Several examples of the 400 215-L Electrolytes shipping vessels purchased in 2010.	49
Figure II - 70: Ion Chromatograph	igure II - 70: Ion Chromatograph.	49
Figure II - 71: Two examples of the small Electrolytes shipping vessels purchased in 2011	igure II - 71: Two examples of the small Electrolytes shipping vessels purchased in 2011.	49
Figure II - 72: FutureFuel – Loading Dock Foundation	igure II - 72: FutureFuel – Loading Dock Foundation.	50
Figure II - 73: FutureFuel – Loading Dock	igure II - 73: FutureFuel – Loading Dock	50

Figure II - 74: FutureFuel – Xylene Tanks-1	51
Figure II - 75: FutureFuel – Xylene Tanks-2.	51
Figure II - 76: FutureFuel – Dryer Baghouse-1.	51
Figure II - 77: FutureFuel – Dryer Baghouse-2.	51
Figure II - 78: FutureFuel – Pitch Loading Hopper	51
Figure II - 79: FutureFuel – Coke Loading Hopper	51
Figure II - 80: FutureFuel – Anode Material Bag Out.	52
Figure II - 81: FutureFuel – Anode Material.	52
Figure II - 82: Pyrotek Production Facility Project – Construction	54
Figure II - 83: Pyrotek Production Facility Project – Facilities	55
Figure II - 84: Pyrotek Production Facility Project – Equipment	55
Figure II - 85: HTTM LLC, H&T, Trans-Matic Manufacturing Facility	57
Figure II - 86: HTTM LLC, H&T, Trans-Matic Equipment – Battery Can Stamping Press	57
Figure II - 87: HTTM LLC, H&T, Trans-Matic Equipment – Battery Cover Assembly Equipment.	57
Figure II - 88: HTTM LLC, H&T, Trans-Matic Component Pre-Cleaner	58
Figure II - 89: HTTM LLC, H&T, Trans-Matic Website (www.httmllc.com)	58
Figure II - 90: Toxco – Site Development.	59
Figure II - 91: Toxco – Concrete Pad – Site Development Facilities	59
Figure II - 92: Toxco – Preliminary Building Site	60
Figure II - 93: Toxco – Base Construction	60
Figure II - 94: Maccor Series 4000 Automated Test System for testing and formation of prototype cells with environmental chambers and ovens.	61
Figure II - 95: Bruker D8 advanced powder diffraction system	62
Figure II - 96: ARC-254 from NETZSCH.	62
Figure II - 97: Solartron (Ametek) eight channel electrochemical test station and impedance analyzer.	62
Figure II - 98: MERF Construction site 5/6/2011	64
Figure II - 99: MERF Construction site 10/24/2011.	64
Figure II - 100: Electrolyte Materials Scale-up Facility.	64
Figure II - 101: Cathode Materials Scale-up Facility.	64
Figure II - 102: 20L Electrolyte Materials Reactor	64
Figure II - 103: ICP for Cathode Materials Analysis	65
Figure II - 104: XRD for Cathode Materials Analysis.	65
Figure II - 105: Redox Shuttle ANL-RS2, First Material Scaled in the Electrolyte Materials Lab.	65
Figure II - 106: Additional Electrolytes and Additives Scaled in the Electrolyte Materials Lab.	65
Figure II - 107: Overall design of the post-test facility. The large, open area at the top of the figure is not part of the post-test facility. The VersaProbe X-ray photoelectron spectrometer (XPS) was purchased with funds from the US Department of Defense.	st- 67
Figure II - 108: Photographs showing progress in modifying the laboratory space. Clockwise, from the upper left: starting condition; installing glove box in facility after renovation; installing the thermogravimetric analyzer in glo box; and attaching the XPS unit to the glove box.	ve 67
Figure II - 109: (a) The environmental SEM being calibrated and tested. (b) The XPS being tested.	68
Figure II - 110: Floor Plan for the High Energy Battery Test Facility	70
Figure II - 111: Street view of building under construction, new INL High Energy Testing Facility construction began in Aug. of 2011	n 70
Figure II - 112: Long view of the 10,000 sq. ft. foundation and start of wall construction process in Sept. 2011	70

Figure II - 113: View of large 500V test channel received in FY 2011 for the new laboratory. 2 units have been received with 4 additional units scheduled for FY12 delivery.	l . 71
Figure II - 114: Vibration testing system for full size vehicle battery pack testing received in FY 2011	. 71
Figure II - 115: TTF Laboratory before Construction.	. 73
Figure II - 116: TTF Laboratory Chilled Water and Electrical Installation.	. 73
Figure II - 117: TTF Laboratory after Construction and Equipment Installation	. 73
Figure II - 118: TTF Laboratory Environmental Chambers (3/5) with JCS and A123Systems PHEV battery packs under test.	. 73
Figure II - 119: TTF Laboratory Bitrode Battery Cyclers.	. 73
Figure II - 120: Thin film thermal conductivity meter, coin cell calorimeter, and bulk thermal conductivity meter (clockwise from upper left)	. 74
Figure II - 121: NREL-designed/fabricated cell calorimeter	. 74
Figure II - 122: Completed renovated test cell in the abuse facility	. 76
Figure II - 123: CT image of an 18650 lithium-ion cell with a large defect in the roll.	. 76
Figure III - 1: SEM image of cathode #8 used in cell build #2	. 85
Figure III - 2: C/3 discharge capacity of HCMRTM with two different electrolytes measured at various temperatures	. 85
Figure III - 3: Charge and Regen resistance measured from a 20Ah pouch cell from cell build iteration #1	. 86
Figure III - 4: Cycle Life Performance According to Current Density	. 89
Figure III - 5: Thermal Shrinkage of Polyolefin and Ceramic Coated Separators	. 89
Figure III - 6: Cycle life performance of Ext-NCM Coin Cells With Various Electrolyte Systems	. 90
Figure III - 7: Usage Simulation Based On Continuous Repetition of USABC Fast Charge Requirements and US06 Driv Pattern	/e . 91
Figure III - 8: Molding Parameter Optimization	. 91
Figure III - 9: Carbon Nanofiber Impregnated Soft Carbon (CN-SC) (top). Schematic (below). SEM of Actual Combination	. 93
Figure III - 10: Battery shown with COTS HP (top) and COTS HC (bottom).	. 93
Figure III - 11: Quallion HP Module, 9.7 kW and 207 A Max Discharge Current	. 94
Figure III - 12: Quallion HP Pouch Cell, 2300 mAh	. 94
Figure III - 13: Cycle life (4.1-2.7V) at 45°C on Gen1 VL9M* with various NMC materials	. 96
Figure III - 14: Mechanical design evolution	. 97
Figure III - 15: Preliminary prismatic cell mechanical design.	. 97
Figure III - 16: Commercial-intent design module	. 98
Figure III - 17: Commercial-intent design 20-mile system	. 98
Figure III - 18: Thermal interface shown between cells and heat sink	. 99
Figure III - 19: Bench test system (internal build) for thermal validation.	. 99
Figure III - 20: Cycling results demonstrate marked build over build improvement in capacity and resistance retention (pink representative of final deliverable)	. 99
Figure III - 21: Up to 70 °C, capacity loss after one month is only 5%	. 99
Figure III - 22: Progression of cost model output	100
Figure III - 23: Gen 1.0 Power and Energy, > 21 Months Storage at 35°C in USABC Calendar Life test	104
Figure III - 24: Gen 1.0 Available Energy, >21 Months Storage at 35°C in USABC Calendar Life Test	104
Figure III - 25: Gen 1 PHEV Cells, Comparison of Calendar Life Models	105
Figure III - 26: Gen1 versus Gen1.5 Calendar Life Projections	105
Figure III - 27: Gen1.5 Results on 10 Mile PHEV USABC Charge Depleting Regime	105
Figure III - 28: Gen1.5 Results on 40 Mile PHEV USABC Charge Depleting Regime	106

Figure III - 29: Modified Anode Formulations vs ASI Target	109
Figure III - 30: Capacity and Impedance for Modified Anode Formulation	110
Figure III - 31: Pulse Power Results at 23°C, in a 6 Ah HEV Cell	110
Figure III - 32: 45°C Cycle Life Testing of Trial Electrolytes in 6 Ah HEV Cells	111
Figure III - 33: Stacked Module Assembly for HEV LEESS Pack	111
Figure III - 34: A123 Systems HEV LEESS Program Plan	112
Figure III - 35: Gap chart showing progress towards program goals.	114
Figure III - 36: GEN 1 35 F lab cells delivered to INL for testing	115
Figure III - 37: First 250 F cell with dry process electrodes shows good stability when cycled to 4.0 V	115
Figure III - 38: Concept for mounting trays in pack.	116
Figure III - 39: Latest concept for 80 cell system.	116
Figure III - 40: The discharge voltage profiles of a 500F, Gen-1 electrolyte cell cycled at the 10C rate.	118
Figure III - 41: Effect of temperature on EIS data obtained on Gen-1 cell at 3.0 V.	119
Figure III - 42: Twenty-fifth cycle discharge profiles of a 3-electrode pouch cell containing electrodes harvested fro Gen-1, 500 F cell. Cell was cycled at 1 mA cm-2, 3.8 V to 2.2 V.	m a 120
Figure III - 43: DSC curves comparing the electrode materials, electrolyte, and separator of the 1st generation lithiu capacitor and a conventional, electric double layer capacitor	m ion 120
Figure III - 44: ARC data from LIC cells containing Gen-1 (a) and Gen-2 electrolyte (b).	120
Figure III - 45: SK 25 Ah pouch cell.	122
Figure III - 46: K2's LFP165HES 51 Ah Energy Module.	123
Figure III - 47: LFP45 45 Ah Flat Pack Automotive Cell.	123
Figure III - 48: Leyden 10 Ah Pouch Cell.	124
Figure III - 49: Actacell 8 Ah pouch cell.	125
Figure III - 50: Amprius Silicon-nanowire anode technology	126
Figure III - 51: The Amprius team composition	127
Figure III - 52: Comparative voltage curves for commercial NMC111 and 3M sample A	133
Figure III - 53: Comparison of cycling performance between with and without new additive of DS3	134
Figure III - 54: Nanocomposite sulfur cathode (PSU) and conventional sulfur cathode capacity.	139
Figure III - 55: 15Ah Baseline Cell Drawing	141
Figure III - 56: Example of Battery Cell Capacity Reduced at High Temperatures	150
Figure III - 57: Example of Battery Cell Capacity Reduced at Cold Temperatures	150
Figure III - 58: Typical State of the Art Liquid Cooled Battery System	151
Figure III - 59: 18650 cells with silica-filled separators	153
Figure III - 60: 18650 cells with unfilled polyolefin separators	154
Figure III - 61: Capacity retention for 18650 using 60:28:2:10 wt% of L-20772:CPG8:SuperPLi:LiPAA.	156
Figure III - 62: Charge Depleting Cycle Profile.	157
Figure III - 63: Change and Discharge Pulse Resistance after 250, 500 and 750 Charge Depleting Cycle	157
Figure III - 64: Fit of reversible volumetric capacity for the fully expanded alloy (Ah/L) to the designed experiment results. The map is for the optimally performing end-members. Data points show compositions tested in coin of Dashed circle shows current best candidate.	ells.
Figure III - 65: Effect of SLMP on delivered capacity for hard carbon/LiMn2O4 system	160
Figure III - 66: The 1st cycle capacity vs. voltage profiles for SiO/LiCoO ₂ baseline and SLMP-incorporated Cells	
Figure III - 67: Cycleability of SiO/LiCoO ₂ baseline and SLMP-incorporated Cells	161
Figure III - 68: First cycle efficiency improvement for Si-containing/LiMn ₂ O ₄ system	161
Figure III - 69: Cycleability testing for Si-containing/LiMn ₂ O ₄ system	161
5 5 5 6 6 2-7-5	

Figure III - 70: Anode specific capacity vs cycle.	. 164
Figure III - 71: Lithium surface after cycling.	. 164
Figure III - 72: Cells discharge profiles at 50th cycle at C/5 discharge rate with dual phase and single phase electrolytes	s.164
Figure III - 73: Thermal ramp test of fully charged 0.25 Ah cell after 10th cycle	. 165
Figure III - 74: Structural and electrical schemes for modeling of Dual-Phase electrolyte cell.	. 165
Figure III - 75: Current distribution over electrode area with terminal along the entire electrode (a) and with one point terminal connection (b)	165
Figure III - 76. Simulated Li anode thickness profiles after discharge at various electrodes length	166
Figure III - 77: Simulated Li thickness non-uniformity after discharge as function of cathode substrate thickness	166
Figure III - 78: Simulated Li anode thickness profiles at high depths of discharge and subsequent charge	166
Figure III - 79. Simulated cell Area Specific Resistance vs Li Denths of Discharge	167
Figure III - 80: a) Anode and cathode with terminals: b) 2.5 Ah cell	167
Figure III - 81: Dual-Phase electrolyte and estructure	168
Figure III - 82: a) 2.5 Ah format Dual-Phase Electrolyte cell discharge capacity vs cycle; b) 2.5 Ah format Dual-Phase	;
Electrolyte cell 5th cycle discharge profile.	. 108
Figure III - 83: Thermal ramp test of fully charged 2.5 An cells with and w/o Dual-Phase Electrolyte	. 108
Figure III - 84: Cycle Performance of BASF NCM 111 and BASF NCM424 at Room Temperature	. 172
Figure III - 85: Cycle Performance of BASF NCM 111 and BASF NCM 424 at 45°C	. 172
Figure III - 86: BASF Grade Comparisons	. 172
Figure III - 87: Cycle Performance of BASF HE-NCM at Room Temperature	. 173
Figure III - 88: 18650 type cells made of Silicon/CNF/graphene platelet based anode and LiFePO ₄ cathode	. 176
Figure III - 89: Rate performance (top) and low temperature performance (-20°C, bottom) of 18650 cells made of our silicon-based anode.	. 176
Figure III - 90: Schematic of Composite Nanofiber Anode.	. 179
Figure III - 91: Cycling performance of Si/C nanofiber anodes with different Si particle sizes. Si content in PAN precursor: 15 wt %; carbonization temperature: 700°C; electrolyte: 1 M LiPF ₆ in EC/EMC; and current density: 50 mA g-1	0 . 179
Figure III - 92: Cycling performance of Si/C nanofiber anodes from 10 wt % Si/PAN with two different surfactants: CTAB and NaD. Surfactant concentration: 0.01 mol/L; electrolyte: 1 M LiPF ₆ in EC/EMC; and current density: 1 mA g-1.	.00 . 180
Figure III - 93: Cycling performance of Si/C nanofiber anodes from 10 wt % Si/PAN with different concentrations of surfactant NaD. Electrolyte: 1 M LiPF ₆ in EC/EMC; and current density: 100 mA g-1	. 180
Figure III - 94: Cycling performance of Si/C nanofiber anodes prepared from 20 wt % Si/PAN using different carbonization temperatures. Electrolyte: 1 M LiPF ₆ in EC/EMC; and current density: 50 mA g-1	. 180
Figure III - 95: Photographs of different electrospinning machines and their spinning processes. (A) Lab-scale electrospinning device; (B) Elmarco's NanospiderTM electrospinning unit; and (C) Yflow's eSpinning unit	. 181
Figure III - 96: Cycling performance of Si/C nanofiber anodes prepared from lab-scale electrospinning device, Elmarco NanospiderTM electrospinning unit, and Yflow's eSpinning unit. Si content in Si/PAN precursor: 10 wt %; electrolyte: 1 M LiPF6 in EC/EMC; and current density: 100 mA g-1	o's . 181
Figure III - 97: Cell discharge voltage versus specific capacity for Si/C nanofiber anodes in 18650 cells at different discharge currents at room temperature. Si content in Si/PAN precursor: 10 wt %.	. 181
Figure III - 98: Cycling performance of Si/C nanofiber anodes prepared from 20 wt % Si/PAN precursor. First two cycles: full charge/discharge (cut-off voltages: 0.05 – 2.5 V). Following cycles: 70% state-of-charge swing, i.e., changing the current polarity if: 1) capacity reaches 70% of first-cycle capacity, or 2) voltage reaches cut-off value 0.05 – 2.5 V. Electrolyte: 1 M LiPF ₆ in EC/EMC; and current density: 50 mA g-1	es: . 182
Figure III - 99: LFP – graphite cell rebalancing using ANL-RS2. Top trace: Voltage of 2-cell series. Bottom traces: Voltages of each individual cell, initially at 40% and 80% states-of-charge.	. 184
Figure III - 100: FEA models for cylindrical and prismatic 33Ah cells	. 188

Figure III - 101: Surface temperature profiles for the cylindrical and prismatic cell geometries shown in Figure III - 10 at power values close to the threshold power conditions.	0, 188
Figure III - 102: Simulation results showing the effect of the choice of anode material on thermal runaway. The plot of the left shows the cell surface temperature time dependence for the two different anode sub-models shown on the right.	n 189
Figure III - 103: Photographs of key equipment for fabricating custom Li-ion cells	189
Figure III - 104: Battery remaining capacity at year 8 for hot-climate geographic scenario with battery temperature fix at 28°C ambient and nightly charging.	ed 204
Figure III - 105: Remaining capacity at the end of 8 years for various BTM and charging scenarios. Colored bars show average result for all 782 drive cycles; Error bars show result for 5th and 95th percentile drive cycles	204
Figure III - 106: Difference in life outcomes for opportunity charging behavior versus nightly charging behavior (aggressive-cooling, hot-climate scenario). A slight majority of PHEV40 drive cycles benefits from frequent charging, owing to shallower cycling.	205
Figure III - 107: Overview of battery ownership model	208
Figure III - 108: Sensitivity of vehicle levelized cost ratio to design variables	208
Figure III - 109: Projected initial battery discount due to second use	211
Figure III - 110: Projected second use battery sale price	211
Figure III - 111: Projected second use battery sale price	211
Figure III - 112: Allocation of second use batteries by year and application	212
Figure III - 113: Where Recycled Materials Could Enter Battery Production	215
Figure III - 114: Smelting Flow	216
Figure III - 115: Analysis results of simulated HEV ESS power pulses over the US06 drive cycle (corresponding to an use ESS energy window of roughly 165 Wh).	in- 219
Figure III - 116: HEV ESS power pulses over the UDDS already fall within the reduced power levels under consideration.	219
Figure III - 117: Indicates the amount of the large US06 regen power pulse that would cut off by capping the 10-sec charge power level at 20 kW.	220
Figure III - 118: ESS power pulse analysis over the US06 cycle for the restricted discharge power HEV model	220
Figure III - 119: Calculating the goal for the energy over which both power targets must be simultaneously met, based a reduced 10-sec charge power target of 20 kW.	on 220
Figure III - 120: Three example results from BatPaC v1.0 for an HEV (LMO/Gr), PHEV40 (NMC441/Gr) and EV100 (NMC441/Gr).	223
Figure III - 121: Year 2020 total cost breakdown, US\$4611 (top), price (mid), and materials (bottom) of an integrated PHEV40 battery pack based on 96 series conntected cells using high performance Li _{1.05} (Ni _{4/9} Mn _{4/9} Co _{1/9}) _{0.95} O ₂ vs Graphite for 17 kWh of total energy and 65 kW power	223
Figure III - 122: Potential cost savings from moving to large format cells and achieving large electrode thickness. The changes will require engineering advances to meet life goals. Calculation for a "Chevrolet Volt like" battery: Li _{1.06} Mn _{1.94} O ₂ vs Graphite 17 kWh and 100-kW.	se 224
Figure III - 123: Cost of additional designed power in a PHEV20 battery designed to achieve power at 80% of open circuit voltage. The inflection point in the curve is due to a maximum electrode thickness limitation, here set at 10 □m. Additional power may be inexpensive or free depending on the cell chemistry selected.)0 224
Figure III - 124: Path forward for lithium based batteries. The second half of the curve represents cell chemistries that may or may not ever reach a state of commercialization. Increasing in both positive and negative electrode capacitare necessary, along with an increasing cell voltage.	ties 225
Figure III - 125: Average, relative C/3 capacity vs. cycle count. As expected, the fit of the C/3 energy data yielded a similar equation with the same slope.	227
Figure III - 126: Average, relative resistance at 80% DOD vs. cycle count.	227
Figure III - 127: Average, relative peak power at 80% DOD calculated from the three USABC equations vs. cycle cou	nt.227
Figure III - 128: Average discharge capacity for BLE Sanyo cells	231

Figure III - 129: Average power fade for BLE Sanyo cells	231
Figure III - 130: Average HCSD measurement at 50°C for the no-load cell group	232
Figure III - 131: HCSD real impedance correlated to the HPPC discharge resistance.	233
Figure III - 132: Typical effect of temperature on lithium ion battery resistance rise.	235
Figure III - 133: CPI 400-Volt Battery Pack	235
Figure III - 134: Quallion Li-Ion Module	235
Figure III - 135: Comparison of Charge Sustaining cycling to calendar life testing.	236
Figure III - 136: Cycle life aging as a function of temperature	236
Figure III - 137: Comparison of aging from calendar life and cycle life, with different rest times in between cycles	236
Figure III - 138: Calendar life aging as a function of state of charge	236
Figure III - 139: Typical effect of temperature for EV batteries	237
Figure III - 140: Typical effect of temperature for PHEV batteries	237
Figure III - 141: Typical effect of temperature for HEV batteries	238
Figure III - 142: Cell voltage (blue) and applied current (green) during a 2C overcharge test of a COTS 12 Ah cell	. 240
Figure III - 143: Cell voltage (blue) and cell skin temperature (red) during a 2C overcharge test of a COTS 12 Ah cell.	. 240
Figure III - 144: Still frame photograph of the failure event of a COTS 12 Ah cell subjected to a 2C overcharge abuse t in an 8 ft3 enclosure.	test 241
Figure III - 145: Total available power (W) for a series of 18650 ltihium-ion cells that are fresh (blue) and that have be calendar aged at 60°C for 1 and 2 months (red and green, respectively).	en 241
Figure III - 146: ARC profiles plotted as heating rate as a function of temperature for the fresh cell (blue) and 20% fad aged cell (green) populations.	ed 241
Figure III - 147: Test Element 3 Path Dependence Study (Sanyo Y) – Design of Experiment for Thermal Cycling Conditions	244
Figure III - 148: The Path Dependence of Capacity Loss Data	245
Figure III - 149: Accelerated Aging at High SOC Operations	245
Figure III - 150: Two Stage Capacity Degradation Curves showing Loss of Active Lithium	246
Figure III - 151: Performance Degradation Curves for Different Temperatures – Capacity Plots	246
Figure III - 152: Performance Degradation Curves for Different Temperatures – Energy/Power Plots	246
Figure III - 153: Heat generation from a PHEV cell.	249
Figure III - 154: Heat generation from a PHEV cell under low current discharge	249
Figure III - 155: Efficiency curve for an energy-storage system at the beginning of life and after limited cycling	249
Figure III - 156: Infrared image of a cell under constant current discharge	249
Figure III - 157: Thermal management system performance during higher temperature soak conditions	250
Figure III - 158: Cell voltage (open circuit) as a function of temperature for cells with gallium (blue trace) and bismuth alloy (red trace) defect particles	h- 252
Figure III - 159: CT image (left) and 2D x-ray image (right) of lithium-ion cells built with internal heaters	253
Figure III - 160: Cell voltage and temperature during an internal heater test	. 253
Figure III - 161: Cell voltage and temperature during a blunt rod test in the axial direction	254
Figure III - 162: Still photograph of cell shorting and runaway during the axial blunt rod test	254
Figure III - 163: Cell voltage and temperature during blunt rod tests in the transverse direction resulting in a (top) soft short and (bottom) hard short for the cells from the same manufacturer and lot	254
Figure III - 164. CT image of a cell post transverse blunt rod test showing can breech resulting in a soft short	255
Figure III - 165: ISC schematic (ton nicture) and ISC placed in a cell (bottom nicture)	257
Figure III - 166: Four Elements of the CAERAT Activity	260
Figure III - 167: Multi-scale physics in battery modeling from molecular modeling to pack and system level modeling	261
inguie in 107, mani-scale physics in battery modeling noin molecular modeling to pack and system level modeling.	01

Figure III - 168: Schematic of the modeling framework and interactions with other tasks within the CAEBAT progrand external activities.	am 265
Figure III - 169: Coupling scenarios in battery modeling. We will start with one-way and two-way loose coupling. I years as needed moved towards two-way tight coupling with Picard and Full-implicit methodologies	n later 266
Figure III - 170: Schematic of the OAS modeling framework encapsulating the various components through components adapters and link to the battery state through the state adaptors. The collection of the different tools, adaptors, a OAS framework will give one realization of VIBE (Virtual Integrated Battery Environment).	nent Ind 266
Figure III - 171: Sample results from the coupled DualFoil/thermal calculations showing the Lithium ion concentrat the electrodes, Temperature, potential in the electrodes and electrolyte for an unrolled cell (not to scale)	tion in 266
Figure III - 172: a) Schematic of the interface between DAKOTA and OAS modeling framework and b) Sample temperature profiles of unrolled cell as a function of variations in thermal conductivity and heat capacity	267
Figure III - 173: Battery Pack Design Tool Capability Areas	269
Figure III - 174: Battery Pack Design Tool Model Components	269
Figure III - 175: Schematic of the underlying modeling abstraction	272
Figure III - 176: Parameters used to describe the positive and negative electrodes in the host BDS code	272
Figure III - 177: Screenshots of spiral cells within STAR-CCM+ showing resolved current-carrying tabs	273
Figure III - 178: Cell resistance results for a study of positive tab position.	273
Figure III - 179: Current density on the inner and outer sides of the negative current collector	273
Figure III - 180: Temperature (K) contours for the 15 Ah stack electrode design (SED) at 6C discharge rate: (left) t=100s, and (right) t=300s.	275
Figure III - 181: Temperature contours (K) for the 3Ah rolled electrode design (RED) at 6C discharge rate: (left) t= and (right) t=200s.	100s, 275
Figure III - 182: Current density (A/m2) distribution for 3Ah RED at 6C discharge rate: (left) t=100s, and (right) t=2	200s.275
Figure III - 183: Separation of model domains corresponding to the length scales of physics resolved	277
Figure III - 184: Parallel and independent development of submodels in the MSMD framework	278
Figure III - 185: Schematic description of the 20-Ah stacked prismatic cell designs investigated (from Figure 3 in [1]) 279
Figure III - 186: Choices of models at each model domain (from Figure 4 in [1])	279
Figure III - 187: Contours of temperature at nine cross-sectioned surfaces in cell composite volume at the end of 5C constant current discharge (from Figure 10 in [1])	279
Figure III - 188: Contour of electrode plate ampere-hour throughput at the cell composite volume near bottom plane the cells during 15min PHEV10 drive with the US06 cycle (from Figure 18 in [1])	of 280
Figure III - 189: Schematics of wound cell jelly roll having two sets of electrode pairs on a single pair of current col sheets	lector 281
Figure III - 190: Schematics of wound cell jelly roll having two sets of electrode pairs on a single pair of current col sheets	lector 281
Figure III - 191: Steps to Convert an SEM Image to a computational mesh	284
Figure III - 192: Sample results from NREL's simulations in actual electrode geometries: this model was built using SEM image of an MCMB anode shown on the left; electrolyte distribution within a slice of the anode during overcharge is shown on the right.	g an 284
Figure III - 193: Comparison of the dendrite shape and size over an irregular particle: the image on the left is for 1.2 LiPF6 electrolyte in EC/EMC; the image on the right is for the same electrolyte in the presence of a hypothetic leveling agent.	2 M al 285
Figure III - 194: Comparison of overcharge reaction rates for different particle morphologies under 2-C rate charge 200%	to 285
Figure III - 195: Effect of bulk properties of the electrolyte on the size of lithium dendrites during overcharge	286
Figure III - 196: Effect of poor wetting of the particle surface on the lithium plating current during overcharge	286
Figure IV - 1: An overview of the major activities in the Advanced Battery Development program	294

Figure IV - 2: ABR process flow, showing introduction of new materials, electrode and cell modeling and design, cell building, testing and diagnostics.	295
Figure IV - 3: Specific capacity requirements for anode and cathode materials in high-energy lithium ion batteries	297
Figure IV - 4: Material screening procedure	298
Figure IV - 5: Voltage profile of HE5050 during formation in the half cell configuration	298
Figure IV - 6: Area specific impedance of graphite/HE5050 cell	299
Figure IV - 7: Cycle performance of HE5050 full cell	299
Figure IV - 8: Voltage profile of A12 graphite from ConocoPhillips	299
Figure IV - 9: Rate performance of A12 graphite from ConocoPhillips	299
Figure IV - 10: Schematic diagram of streamlining the optimization of electrode	302
Figure IV - 11: Four point probe electrode conductivity geometry	302
Figure IV - 12: Voltage profile of electrode at surface of electrode	303
Figure IV - 13: Current and voltage distribution around four probes	303
Figure IV - 14: Electrode conductivity of coating using polyester as substrate	304
Figure IV - 15: ASI of NCM electrode with and without carbon coating	304
Figure IV - 16: Analytical modeling of the Experimental data	305
Figure IV - 17: Electrode composition vs. overpotential at different discharge rates	305
Figure IV - 18: Cycling results of a Graphite/LiNi _{1/2} Mn _{3/2} O ₄ cell.	307
Figure IV - 19: (a). Rate capability of HQ-1 at different loadings, (b). Comparison of rate capabilities of different materials, (c). rate capability of different materials normalized with their specific surface area.	307
Figure IV - 20: Voltage profile of Li/50 wt% SiO-50 wt% Sn ₃₀ Co ₃₀ C ₄₀ half-cell at the 1st, 5th, 25th, 50th, and 100th cycles.	310
Figure IV - 21: Rate capability of Li/50 wt% MoO ₃ -50 wt% Sn ₃₀ Co ₃₀ C ₄₀ half-cell.	310
Figure IV - 22: Cycle performance of 50wt.% SiO-50wt.% Sn ₃₀ Co ₃₀ C ₄₀ prepared by Spex-milling and ultrahigh energy milling.	y 311
Figure IV - 23: Charge and discharge voltage profile of Cu6Sn5 versus lithium	312
Figure IV - 24: Volumetric capacity density of Cu6Sn5-based intermetallic alloys compared against graphite.	313
Figure IV - 25: Photo of rectangular bars cast from various intermetallic alloys used for mechanical property studies	314
Figure IV - 26: SEM photo of optimum Cu6Sn5 powder based on mechanical properties for discharge to Li ₂ CuSn	315
Figure IV - 27: (a) Scanning electron micrographs of autogenically as-prepared carbon spheres, and (b) as-prepared carbon spheres heated to 2800°C	318
Figure IV - 28: Raman spectra of (a) as prepared CS (top), CS-24 (middle) and CS-28 (bottom).	319
Figure IV - 29: (a) Capacity vs. cycle number of Li/CS cells (0.24 A/g (~1C) rate); 1.5 V – 10 mV); (b) Capacity vs. cycle number of Li/CSP-24 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CSP-28 cells (0.24 A/g (~1C) rate); (c	/g 319
Figure IV - 30: LTO/LMO pouch cells before (right) and after (left) 80 days of aging at 63°C. The electrolyte is 1.2 M LiPF6 in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) at ratio of 3:7	
Figure IV - 31: Results of GC-MS analysis showing majority of the gas is H2.	322
Figure IV - 32: Experimental set-up to measure the generated gas by reaction of lithiated LTO with electrolyte	323
Figure IV - 33: Gas evolution progress for different lithium salts in propylene carbonate: ethyl methyl carbonate: dieth carbonate: dimethyl carbonate (1:1:1:1). LiBF ₄ produce less gas than LiPF ₆ and Air Products salt ($Li_2B_{12}F_{12}H_3$)	iyl 323
Figure IV - 34: Proposed reaction mechanism. However, more work needs to be done to address salt effect	323
Figure IV - 35: The positive impact of our approach to significantly reduce the gas evolution in LTO/LiMn ₂ O ₄ cells ag at 55°C using chlorosilane treatment on Li ₄ Ti ₅ O ₁₂ .	ged 324
Figure IV - 36: XRD profile and SEM images of $Li_{1,2}Ni_{0,3}Mn_{0,6}O_{2,1}$	326
Figure IV - 37: Charge and discharge capacity of Li _x Ni _{0.3} Mn _{0.6} O _{2.1} (a: x=1.03, b: x=1.0, c: x=0.97, d: x=0.94, e: x=0.9 f: x=0.88)	1, 326

Figure IV - 38: Rate performance and ASI value of Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1}	327
Figure IV - 39: Cycle performance of Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} at C/3 rate and room temperature	327
Figure IV - 40: a) STEM image of an uncoated Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} particle in bright field mode. b) EDX spectrum v metal signals labeled.	vith 328
Figure IV - 41: a) STEM image of a Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} particle coated with Al ₂ O ₃ in bright field mode. b) EDX spe with metal signals labeled. Signal corresponding to Al is circled. Compositional EDX maps of the particle sur for individual elements: c) Mn, d) Ni, and e) Al. f) A composite image of a, c, d, and e illustrating the distinct coating along the edge of the particle.	ctrum face Al ₂ O ₃ 328
Figure IV - 42: Cycle performance of Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} with and without Al ₂ O ₃ ALD coating	328
Figure IV - 43: DSC result of Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} by Al ₂ O ₃ ALD coating	328
Figure IV - 44: Schematic of synthesis of co-precipitated transition metal precursors.	331
Figure IV - 45: Relative Mn concentration at the surfaces of precursors collected from the reactor at different times a determined by calculation using predetermined process conditions and measured using EDXS.	as 331
Figure IV - 46: SEMs of the exterior (A) and interior (B) of a precursor particle collected from the reactor between 4-5. The table contains relative transition metal composition of Mn as determined from EDXS at points indicat (B).	hours ted on 332
Figure IV - 47: Relative discharge capacities after 40 charge discharge cycles of Li half cells with cathodes comprise lithiated final materials synthesized using precursors collected from the indicated times	ed of 332
Figure IV - 48: AC impedance Nyquist plots of Li/Li ₅ FeO ₄ cells	335
Figure IV - 49: Voltage profiles of C6/Li ₅ FeO ₄ -LiV ₃ O ₈ full cells	336
Figure IV - 50: Initial charge voltage profiles for Li/LFO cells at different rates from 10 to 100 mA/g. 100 mA/g is C/6 rate.	about 336
Figure IV - 51: Cycle performance of Li/Si-carbon composite cell over a voltage window of 0 to 2.0 V,; current = 1 mAg-1 (C/6)	.50 337
Figure IV - 52: Raman spectra with 633 nm laser excitation within a sealed CaF ₂ sample holder under He	337
Figure IV - 53: LFO powders – left side (rust brown colored) is LFO exposed for 5 days in ambient laboratory air, a right side powder (gray colored) is the LFO stored in a vial in the dry room for 5 days	.nd 337
Figure IV - 54: Raman spectra of LFO powders -top is LFO exposed for 5 days in ambient laboratory air, and botton the LFO stored in a vial in the dry room for 5 days.	m is 337
Figure IV - 55: (a) X-ray powder diffraction patterns of Na _{0.9} Li _{0.3} Ni _{0.25} Mn _{0.75} O ₈ precursor (arrows mark minor impu and (b) ion-exchanged Li/Li _{1.32} Na _{0.02} Ni _{0.25} Mn _{0.75} O ₉ (IE-LNMO) product (inset is enlarged 20-24.5 o 20 section)	rities)) 341
Figure IV - 56: (a) 1st, 2nd, and 40th voltage profiles of Li/IE-LNMO cell between 4.8 V and 2.0 V (15 mA/g), (b) capacity versus cycle number, and inset is the capacity versus current rate, (c) derivative plot (dQ/dV) of the Li LNMO cell.	/IE- 341
Figure IV - 57: (a) FESEM of Li _{1.06} Na _{0.02} Ni _{0.21} Mn _{0.63} O ₂ (layered compound with a number of c-direction stacking fa and (b) HRTEM of Li ion-exchanged material perpendicular to the c-axis showing points of entry for fast Li ca insertion/de-insertion.	ults), tion 342
Figure IV - 58: DSC output of 4.6 V charged ion-exchanged cathode versus an Argonne composite 'layered- layered'ANL-NMC cathode: 0.5Li ₂ MnO ₃ •0.5LiNi _{0.44} Co _{0.25} Mn _{0.31} O ₂	343
Figure IV - 59: A compositional phase diagram of the 'layered-layered-spinel' Li ₂ MnO ₃ -LiMn _{0.5} Ni _{0.5} O ₂ -LiMn _{1.5} Ni ₀ system showing the region (red arrow) on the Li ₂ MnO ₃ •LiMn _{0.5} Ni _{0.5} O ₂ - LiMn _{1.5} Ni _{0.5} O ₄ tie line that produced the best electrode performance.	0.5O4 the 346
Figure IV - 60: Rate capability of 'layered-layered-spinel' electrodes, $Li_xNi_{0.25}Mn_{0.75}O_y$, for $1.2 \le x \le 1.5$; $2.0 \le y \le 2.5$.	346
Figure IV - 61: Differential capacity plots of lithium cells with Li _x Ni _{0.25} Mn _{0.75} O _y electrodes (0.5≤x≤1.5; 2.0≤y≤2.5) left, x=1.2; Top right, x=1.3; Bottom left, x=1.4; Bottom right, x=1.5	. Top 347
Figure IV - 62: Cycling data of a 'layered-layered' electrode 0.5Li ₂ MnO ₃ •0.5LiMn _{0.31} Co _{0.25} Ni _{0.44} O ₂ in a half-cell (b and in a full Li-ion cell (MCMB graphite anode) (red).	olue) 347

Figure IV - 63:Top: Cycling data of lithium half cells with layered-layered NMC-ANL, LiFePO ₄ and blended cathodes Bottom: Rate capability of lithium cells containing a 'layered-layered' ANL-NMC cathode, with and without a LiFePO ₄ component.	s. . 348
Figure IV - 64: Schematic drawing of CSTR system used for this experiment	. 350
Figure IV - 65: Particle size distribution of samples collected at different reaction times.	. 350
Figure IV - 66: SEM images of samples collected at different reaction times	. 351
Figure IV - 67: Average particle size (D50) evolution as a function of time	. 351
Figure IV - 68: EDXS of collected samples	. 352
Figure IV - 69: X-ray diffraction patterns of samples from different collection times	. 352
Figure IV - 70: X-ray diffraction patterns of $Li_{1.5}(Ni_{0.3}Mn_{0.7})O_{2+\gamma}$. Inset is SEM image	. 352
Figure IV - 71: Cycling performance of Li _{1.5} (Ni _{0.3} Mn _{0.7})O _{2+γ} between 2-4.6 V	. 353
Figure IV - 72: Synthesis of the methyl ester derivative of GC	. 355
Figure IV - 73: Synthesis of the GCMC compound	. 355
Figure IV - 74: Cycling and EIS data from NCA//Graphite cells comparing the effects of 5wt% GCMC additive in the baseline electrolyte.	. 356
Figure IV - 75: Cycling data from NCA//Graphite coin cells containing 1.2M LiPF ₆ in GCMC:EMC=1:6 (by wt%)	. 356
Figure IV - 76: Substituted carboxylic ester-based compounds that have been identified as electrolyte additives	. 357
Figure IV - 77: Cycling and EIS data from NCA//Graphite cells comparing the effects of various additives with that of the baseline electrolyte	. 357
Figure IV - 78: Nitrogen -containing heteroaromatic-substituted carboxylic esters	. 357
Figure IV - 79: Cycling data from NCA//Graphite cells with and without the electrolyte additives shown in Figure IV - 78.	. 358
Figure IV - 80: Degree of unsaturation (DU) of representative SEI additives	. 360
Figure IV - 81: Capacity retention profiles of MCMB/ Li _{1.1} (Mn _{1/3} Ni _{1/3} Co _{1/3}) _{0.9} O ₂ coin cells showing the impact of OBD additive on capacity retention. The cells were cycled at 55 °C, and cut-off voltages were 2.7 and 4.2 V.) . 361
Figure IV - 82: Differential capacity profiles of MCMB/NCM cells in Gen 2 electrolyte with 0 to 1 wt% OBD. The cell were cycled at 55°C. The charge rate was C/10 with cut-off voltage 3 ~ 4 V.	ls . 361
Figure IV - 83: Nyquist plots for MCMB/NCM cells containing different amounts of OBD in electrolyte of 1.2M LiPFe with ethylene carbonate/diethyl carbonate (3:7 weight ratio).	6 . 362
Figure IV - 84: FTIR spectra of MCMB electrodes obtained from MCMB/NCM coin cells containing different amounts of OBD in electrolyte of 1.2M LiPF ₆ with EC/DEC (3:7 weight ratio) after formation cycles	s . 362
Figure IV - 85: Propsed ethylene phosphate-based compounds as potential SEI additives.	. 363
Figure IV - 86: 1H NMR of ethylene methyl phosphate.	. 363
Figure IV - 87: Ionic conductivity vs. temperature relationship of 1.0M LiPF ₆ TMS/1NM3 electrolyte	. 365
Figure IV - 88: (A) Typical LMO/LTO cell charge and discharge profiles using TMS/ethyl methyl carbonate (EMS) electrolyte in a ratio of 5/5 in weight; (B) Cycling performance with high current rate using of TMS/EMS electroly in LMO/LTO cell.	yte . 366
Figure IV - 89: NMC/MCMB cell cycling performance using 1.0M LiPF ₆ TMS/1NM3 (A) without additive, (B) with 2 VC, (C) with 2% LiDfOB, and (D) with 4% LiDfOB.	2% . 366
Figure IV - 90: Differential capacity profiles LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ (NMC)/MCMB cells with different concentrations of LiDfOB as additive in 1.0M LiPF ₆ TMS/1NM3 5/5 electrolyte.	367
Figure IV - 91: Fluorinated Compounds as High Voltage Electrolytes	. 367
Figure IV - 92: CV profiles of LNMO/Li half cell with different electrolytes (A, top, 1.2 M LiPF ₆ in EC/EMC 3:7) (b, lower left, 1.2 M LiPF ₆ in EC/EMC/D2 2:6:2) and (c, lower right, 1.2 M LiPF ₆ in EC/DMC/D2 2:6:2)	. 368
Figure IV - 93: Cycle performance of LNMO/LTO cell with fluorinated electrolytes 1.2 M LiPF6 in EC/EMC/D2 2:6:2 and 1.2 M LiPF ₆ in EC/EMC/D2 2:5:3 at room temperature and high temperature (55°C)	<u>2</u> . 368
Figure IV - 94: Capacity as a function of cycle number plots at room temperature for LiNi _{0.5} Mn _{1.5} O ₄ /Li half cells in 1 n LiPF ₆ /EC:EMC (3:7 w/o) with various fluorinated phosphate esters of different fluorine/hydrogen (F/H) ratios	n . 370

Figure IV - 95: A comparison of capacity retention of LiNi _{0.5} Mn _{1.5} O ₄ /A12 full cells in 1.2 M LiPF ₆ /EC:EMC (3:7 with and without 5 mM HFiP versus cycle number at 1C between 3.5 and 5.0 V at room temperature	v/o) 371
Figure IV - 96: A comparison of capacity retention of LiNi _{0.5} Mn _{1.5} O ₄ /A12 full cells in 0.8 m LiPF ₆ /EMC with and without 5 mM HFiP versus cycle number.	371
Figure IV - 97: Mössbauer spectrum of Fe-substituted LiCoPO ₄ .	371
Figure IV - 98: Long term cycling of Fe-substituted LiCoPO ₄ against Li in 1 m LiPF ₆ /EC:EMC (3:7 w/o) with 1% additive.	HFiP 372
Figure IV - 99: The lowest barrier pathway for oxidative decomposition reaction of PC-PF6- and PC-ClO4	372
Figure IV - 100: EIS characteristics of MCMB anodes from MCMB-LiNi _x Co _{1-x} O ₂ cells containing 1.0M LiPF ₆ EC+EMC+MB (20:20:60 vol %) electrolytes with and without additives after high temperature cycling	377
Figure IV - 101: EIS characteristics of LiNi _x Co _{1-x} O2 cathodes from MCMB-LiNi _x Co _{1-x} O ₂ cells containing 1.0M I EC+EMC+MB (20:20:60 vol %) electrolytes with and without additives after high temperature cycling	LiPF ₆ 377
Figure IV - 102: Tafel polarization measurements performed at 23°C on graphite electrodes in contact with different based electrolytes.	nt MB- 378
Figure IV - 103: Discharge rate characterization of a LiFePO ₄ -based A123 cell at -40°C using high rate (4.5C to 11 Cells contains 1.0M LiPF ₆ EC+EMC+MB (20:20:60 vol %) + 2% VC. Cell was charged at room temperature to discharge.	
Figure IV - 104: Discharge rate characterization of a LiFePO ₄ -based A123 cell at -40°C using high rate (4.5C to 11 Cells contains 1.0M LiPF ₆ EC+EMC+MB (20:20:60 vol %) + 4% FEC. Cell was charged at room temperatur to discharge.	
Figure IV - 105: Cycle life performance of LiFePO ₄ -based A123 cells containing various electrolytes at +40°C and +50°C	l 380
Figure IV - 106: Variable temperature cycling (+40° to -20°C) of LiFePO ₄ -based A123 cells containing 1.20M LiP EC+EMC+MB (20:20:60 vol %) + 2% VC and the baseline electrolyte	'F ₆ 380
Figure IV - 107: Cycle life performance of LTO/ LMNO cells containing various electrolytes.	381
Figure IV - 108: General Heterocyclic Phosphazene Structure	383
Figure IV - 109: Electrochemical Properties of SM-series Phosphazene Additives	384
Figure IV - 110: Summary of Stability Testing for Selected SM Compounds	385
Figure IV - 111: Early life Capacity Performance of Coin Cells: (A) Cell Polarization Evident at Highest Cycling R and Highest Additive Content (10%), and (B) Cell Polarization for the NMC/graphite set	Rate 386
Figure IV - 112: Results of DFT modeling of INL Early Ionic Liquid Phosphazene Additive	387
Figure IV - 113: Expansion of INL Capabilities to Synthesize Phosphazene Compounds	387
Figure IV - 114: Impact of electronic conductivity on particle performance	390
Figure IV - 115: Impact of particle shape on performance	390
Figure IV - 116: Li-ion cell discharge capacity as a function of electrode thickness.	391
Figure IV - 117: Cell and electrode impedance.	391
Figure IV - 118: a) assumed stiff pouch cell format b) schematic of baseline manufacturing facility	395
Figure IV - 119: Calculated (solid line) and experimental (open circles) area-specific impedance (ASI) for a NCA/Graphite couple with varying electrode loading. Model captures the physical origin of the ASI as a funct active material at constant C-rate.	tion of 395
Figure IV - 120: Calculated (solid line) and experimental (open circles) area-specific impedance (ASI) for a NCA/Graphite couple operated at increasing C-rate. The model is able to capture physical limitations within b	attery.396
Figure IV - 121: a) Battery price and b) mass as a function of demanded power (W) and energy (kWh) for an NMC333/Graphite couple. High power batteries with too low of energy (active material) will result in an unde (expensive) battery: an optimum design point exists.	esirable 396
Figure IV - 122: Price of LMR-NMC/Graphite	397
Figure IV - 123: AC impedance obtained on a NCA//graphite cell with a Li-Sn reference electrode. The data were obtained at 30°C, 3.75V full cell voltage, in the 100KHz-10 mHz frequency range	399

Figure IV - 124: (a) Capacity/capacity fade data obtained from capacity-voltage plots, and (b) impedance data from HPPC tests, from a cycle-life aged cell. All data were acquired at 30°C.	400
Figure IV - 125: Capacity-voltage, and corresponding dQ/dV, plots from harvested electrode vs. Li cells	400
Figure IV - 126: X-ray diffraction data obtained on the positive electrode	401
Figure IV - 127: Raman spectroscopy obtained on fresh and harvested negative electrodes	401
Figure IV - 128: First 2 cycles of a Li-metal cell containing a Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ -based positive electrode	401
Figure IV - 129: Electrochemical cycling data obtained on a Li-metal cell containing a Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ -base positive electrode.	ed 402
Figure IV - 130: HAADF-STEM image of Li _{1.2} Co _{0.4} Mn _{0.4} O ₂ , that reveal the coexistence of Li ₂ MnO ₃ -like (dot contr and LiCoO ₂ -like (continuous contrast) areas within (0001) transition metal planes	ast) 404
Figure IV - 131: (a) Schematic model structure of TM plane in Li _{1.2} Co _{0.4} Mn _{0.4} O ₂ showing coexistence of Co and Li domains. Big blue and magenta spheres represent Co and Mn atoms, respectively; small yellow spheres represe atoms. In-plane sections of the rhombohedral (R) and monoclinic (M) unit cells are indicated in the figure. Perfore boundary conditions connect the top and left edges of the figure with the bottom and right edges, respectively. Therefore, the particular model shown contains only one Co and two LiMn ₂ separate clusters. Additionally, projected atomic columns along <1-100> (e.g. left to right) contain approximately equal amounts of Co and X atoms, where X varies across columns following a Mn-Mn-Li sequence consistent with STEM results. (b) Illustration of the early stages of model generation showing one LiMn ₂ and one Co cluster randomly placed on board. Empty sites are indicated by faded colors.	Mn ₂ ent Li iodic the 405
Figure IV - 132: a) Charge-discharge profiles and (b) dQ/dV plots of Li(Li _{0.2} Mn _{0.4} Co _{0.4})O ₂ vs. Li cell between 2 and 4.7V.	1 405
Figure IV - 133: X-ray diffraction data on Li(Li _{0.2} Mn _{0.4} Co _{0.4})O ₂ samples. Data from LiCoO ₂ and Li ₂ MnO ₃ are show comparison.	vn for 406
Figure IV - 134: XAS data on as-prepared and cycled Li(Li _{0.2} Mn _{0.4} Co _{0.4})O ₂ samples. Data from LiMn ₂ O ₄ are shown comparison.	n for 406
Figure IV - 135: Z-contrast STEM (HAADF) image from cycled Li(Li _{0.2} Mn _{0.4} Co _{0.4})O ₂ samples.	406
Figure IV - 136: In situ Raman of PF ₆ - intercalation in carbon black	409
Figure IV - 137: CVs of carbon black electrodes before (A) and after (B) surface treatment with Ar/H ₂ at 900°C	409
Figure IV - 138: CV's of pristine Denka carbon black (a), and oxidized Denka carbon black	410
Figure IV - 139: Modeling Aging Cells as batch reactors	414
Figure IV - 140: C/25 Capacity Fade Curve	414
Figure IV - 141: C/1 Capacity Fade Curve	414
Figure IV - 142: Seasonal Temperature Profile Used for Aging Simulation (Phoenix)	415
Figure IV - 143: HEV cycle-life results for Gen2 cells aging (Phoenix monthly temperatures)	415
Figure IV - 144: HEV calendar-life results for Gen2 cells aging (Phoenix monthly temperatures)	415
Figure IV - 145: PD behavior in C/1 capacity loss in varying the SOC over four year simulation (Phoenix)	415
Figure IV - 146: PD simulations with thermal management scheme for Phoenix – C/25 Capacity Fade	415
Figure IV - 147: PD simulations with thermal management scheme for Phoenix – C/1 Capacity Fade	415
Figure IV - 148: Bar graph of AE activity for each charge and discharge step. A clear majority of events were obser during charging and a fatigue type AE activity onset was seen.	ved 418
Figure IV - 149: Bar graph of AE activity binned by cell potential. Three activity regions were noted including thos related to Ni oxidation (4.7V), Mn Jahn Teller distortion (2.7V), and cation ordering (4.0V). The 4.7V group sh the most dependence on cycle number and is likely the source of the fatigue onset type behavior.	e nowed 418
Figure IV - 150: Events registered with (a) 9.9 mA/g cycling and (b) 30 mA/g cycling. CCCV 2.4-4.8V. Note the m larger number of cracking events with rapid charging mostly occurring at delithiation. (c) Detailed view of individual events during charging/discharging at high rate.	uch
Figure IV - 151: Electrochemical hold and cracking events during the hold time.	419

Figure IV - 152: An isoplot of in situ XRD data collected during the cycling of a tin thin film electrode. Clear transition between the white tin LisSn, B-LiSn, and LisSn, phases are seen	15 420
Figure IV - 153: Equipment layout in Cell Fabrication Facility	420
Figure IV - 155: Equipment layout in Centra unreation ratematic and intermittent coating canabilities	423
Figure IV - 155: Hot roll press capable of 1.5 tons/cm force and 120°C roll temperature	423
Figure IV - 156: High energy/shear planetary mixer from Ross with a 2 liter chamber capacity	423
Figure IV - 157: Cell Formation and Cycling Lab	423
Figure IV - 158: First cell build and test fixture used	424
Figure IV - 159: Capacity summary of first cell build made by the Cell Fabrication Facility	424
Figure IV - 160: HPPC impedance summary of first cell build made by the Cell Fabrication Facility	. 424
Figure IV - 161: HPPC impedance summary of second cell build made by the Cell Fabrication Facility.	. 425
Figure IV - 162: Relative ASI vs. calendar time	. 428
Figure IV - 163: Relative C/1 capacity vs. calendar time	. 428
Figure IV - 164: Relative C/25 capacity vs. calendar time	. 428
Figure IV - 165: TR-XRD of charged $Li_{0.33}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (G2) during heating	. 431
Figure IV - 166: TR-XRD of charged $Li_{0.33}Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ (G3) during heating	. 431
Figure IV - 167: SAEDP of an overcharged Li _x Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂ particle. (b-c) Dark field images using reflections of (100O1 and (c) 2-20S. The dash lines indicate the same position in (b) and (c). (d) HRTEM image from the edge of the particle. The insets at the right-middle and the right-bottom are the diffractograms from the red and blue circled areas, respectively.	b) f d . 432
Figure IV - 168: Thermal decomposition mechanism of overcharged Li _x Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ (Gen 2) and Li _x Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂ (Gen3) particles during heating.	. 432
Figure IV - 169: Thermal stability study of fully charged Li _{1.2} Ni _{0.13} Co _{0.07} Mn _{0.6} O ₂ electrode without Al ₂ O ₃ surface coatiusing ALD.	ing . 433
Figure IV - 170: Thermal stability study of fully charged Li _{1.2} Ni _{0.13} Co _{0.07} Mn _{0.6} O ₂ electrode with Al ₂ O ₃ surface coating using ALD. The phase transition temperature to Fm3m phase is increased by almost 100°C comparing to the uncoated electrode.	.433
Figure IV - 171: Raman spectroscopy of four graphitic anode materials.	. 437
Figure IV - 172: XRD patterns of four graphitic anode materials using high-energy X-ray beam ($\lambda = 0.10978$ Å).	438
Figure IV - 173: DSC profile of thermal decomposition of delithiated NMC with the presence of (a) EC/EMC; (b) EC; EMC; (d) TBMPTFSI; (e) EC/EMC/LiPF ₆ ; (f) EC/LiPF ₆ ; (g) EMC/LiPF ₆ ; and (h) TBMPTFSI/LiPF ₆	(c) . 439
Figure IV - 174: In situ high energy X-ray diffraction setup to investigate the thermal decomposition of delithiated cathode during thermal ramping.	. 439
Figure IV - 175: Cyclic voltammogram of 0.01M ANL-2 in 1.2 M LiPF ₆ in EC/EMC (3:7) at various rates using a Pt/Li/Li three-electrode system.	. 440
Figure IV - 176: Voltage and capacity profiles of MCMB/LiFePO ₄ cells containing 0.4 M ANL-2 in Gen 2 electrolyte during the course of 0-960 h. Charging rate is C/2 and overcharge ratio is 100%	. 440
Figure IV - 177: Charge/discharge capacity of a Li ₄ Ti ₅ O ₁₂ /LiFePO ₄ lithium-ion cell during overcharge test	. 441
Figure IV - 178: Gas pressure as a function of temperature for neat EC (blue) and 1.2 M LiPF ₆ (red) samples in a bomb calorimetry experiment	, . 443
Figure IV - 179: Calorimetry measurements of moles of gas evolved per mole of electrolyte for neat carbonate solvents and LiPF6-based electrolyte solutions.	; . 443
Figure IV - 180: ARC profiles of NMC111 cells with 1.2 M LiPF ₆ in EC:EMC (3:7) and EC:PC:DMC (1:1:3) electrolytes	. 444
Figure IV - 181: DSC profiles of NMC433 and NMC111 at 4.3 V in 1.2 M LiPF ₆ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7)	A . 444
Figure IV - 182: ARC profiles for NMC433 18650 cells in 1.2 M LiPF ₆ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7) at 4.3 V	. 445

Figure IV - 183: Photograph of 18650 cells built at SNL	445
Figure IV - 184: Voltage as a function of capacity (Ah) showing charge and discharge capacity curves for NMC111 18650 cells	445
Figure IV - 185: Percent capacity retention as a functional of cycle number for an NMC111 18650 cell	445
Figure IV - 186: (a) P3BT nanorods and (b) P3BT nanotubes prepared by electro-templating. Images were recorded a the removal of AAO templates.	fter 448
Figure IV - 187: (a) Voltage profile of the P3BT nanotube/AAO composite at the indicated current densities and (b) comparison of the sustainable current densities of the various P3BT composites	448
Figure IV - 188: SEM image of porous PFO polymer fibers prepared by an electrospinning method.	449
Figure IV - 189: Galvanostatic oxidation of the PFO fibers in 1M LiPF ₆ in 1:1 EC: PC. The image was taken under an optical microscope at 100x magnification.	1 449
Figure IV - 190: Cyclic voltammetry of PFOP in 1M LiPF ₆ in 1:1 EC: PC for 30 cycles: a) high voltage and b) low voltage region. Scan rate was 5 mV/s	450
Figure IV - 191: Variable rate charge-discharge curves for unprotected and protected Li/Li _{1.05} Mn _{1.95} O ₄ "Swagelok-typ cells	e" 450
Figure IV - 192: Polymer-protected Li/Li _{1.05} Mn _{1.95} O ₄ pouch cells: a) voltage profile comparison between the two types pouch cells and b) charge-discharge cycling of a "sandwich-type" pouch cell	s of 451
Figure IV - 193: Cathode capacity after preliminary process optimization.	454
Figure IV - 194: Coin cell cycle performance.	454
Figure IV - 195: Precursor particle growth issue	455
Figure IV - 196: Top view of the glove box. GB-1 is on the reader's left; GB-2, on the right.	459
Figure IV - 197: Post-test analysis workflow diagram. Rectangular boxes indicate processes and samples. Ovals indic analysis techniques.	ate 459
Figure IV - 198: Conoco Philips A12 Graphite Electrode made by the cell fabrication facility	462
Figure IV - 199: Toda HE5050 NMC Electrode made by the cell fabrication facility	462
Figure IV - 200: Rate Capability Study of industrially made electrodes and cell fabrication facility made electrodes	463
Figure IV - 201: HPPC testing of industrially made electrodes and cell fabrication facility made electrodes.	463
Figure IV - 202: $Li_{1,2}Ni_{0,3}Mn_{0,6}O_{2,1}$ Powder	463
Figure IV - 203: Li _{1.2} Ni _{0.3} Mn _{0.6} O _{2.1} As-Coated Electrode Surface	463
Figure IV - 204: Li _{1 2} Ni _{0 3} Mn _{0 6} O _{2 1} As-Coated Electrode Cross Section	464
Figure IV - 205: $\text{Li}_{12}\text{Ni}_{03}\text{Mn}_{06}\text{O}_{21}$ Final Electrode Surface	464
Figure IV - 206: Li ₁ 2Ni ₀ 3Mn ₀ 6O ₂₁ Final Electrode Cross Section	464
Figure IV - 207: $Li_{1,2}Ni_{0,3}Mn_{0,6}O_{2,1}$ Smaller sized powder	465
Figure V - 1: BATT Overview	467
Figure V - 2. BATT Focus Aleas Figure V - 3: Morphologies of stoichiometric LiFePO ₄ seen as a function of reaction time and their corresponding electrochemical performance.	408
Figure V - 4: (top) Energy barriers for Li migration in $LiNi_{0.5}Mn_{1.5}O_4$. (bottom): Capacity at high rates for cathodes m with micron sized $LiNi_{0.5}Mn_{1.5}O_4$.	nade 472
Figure V - 5: Fragment of the crystal structure of $Li_{12}Si_7$ showing the Si_4 stars and the Si_5 rings (black) and Li atoms in light/dark blue.	1 472
Figure V - 6: Experimental one-pulse spectrum (top) and ²⁹ Si 2D INADEQUATE NMR spectrum of $Li_{12}Si_7$ at 233 K. Figure V - 7: Stability of the generic $A_3M(YO_3)(XO_4)$ compositions (with A=Na,Li, M= and Y=C,B) in the sidorenkit crystal structure. The color is a measure of thermodynamic stability. Light (dark) colors indicate instability (stability). Figure V - 8: SEM images of (a) the nanoporous LiCoPO ₄ /C particles; (b) the surface of a single particle; (c, d) broker particles, showing the 3D interconnected pores.	472 e 473 1 476
Figure V - 9: (a) Charge-discharge profiles at C/10, (inset) capacity retention and coulombic efficiency at C/10; (b) Discharge profiles at varying rates.	476

Figure V - 10: Surface of the fresh electrode	176 176
Figure $V = 11$. Top and side views of the trench	170
Figure V = 12: (a) Images of the cross section at depths of 1.5, 2.5, 4.0, 5.2, 7.5 μ m.	ŧ//
Figure V - 13: High resolution XRD patterns of $Li[Ni_{0.45}Co_{0.1-y}Al_yMn_{0.45}]O_2$ compounds: a) full patterns with inset	1
showing superstructure peaks b) detail showing 003 peaks, and c) detail showing peak splitting in the 10% AI substitute	ed
sample, indicative of a monoclinic distortion.	1/9
Figure V - 14: First cycles of lithium cells charged and discharged between 4.7-2.0V at 0.1 mA/cm ² containing	
$L_{1+x}[N_{10,33}Co_{0,33-y}T_{1y}Mn_{0,33}]_{1-x}O_2$ cathodes; (top) baseline material, $L_1[N_{1/3}Co_{1/3}Mn_{1/3}]O_2$, (x=0, y=0) (middle)	
stoichiometric Ti-substituted material (x=0 and y= 0.02) and (bottom) lithium-excess material (x= 0.05 and y= 0.03)4	180
Figure V - 15: SEM images of (a) nanoporous $L_1CoPO_4/2.4\%C$ composite particles; (b) the surface of a single particle;	
(c, d) particles broken open to show the 3D interconnected pores	180
Figure V - 16: (a) TEM image of a fractured LiCoPO ₄ /C particle, showing the pore structure; and (b) the nanocrystallin	ie
character of the composites; (c, d) HRTEM images of the fracture edge and the inside of a nanopore, the amorphous	
carbon coating on both the outer surface and the inner pore walls	180
Figure V - 17: a) Cycling data for Li/1M LiPF ₆ in 1:1 DEC/EC with 1 wt.% LiBOB/nanoporous LiCoPO ₄ cells at C/10	1
rate, and, (b) discharges at rates varying from C/10 to 10C.	181
Figure V - 18: SEM images of spray pyrolyzed LiNi _{0.5} Mn _{1.5} O ₄ samples: (a) 1 µm particles made using 2.4 MHz nozzle	
and 1M nitrate precursors at 700°C. (b) sample "a" heated to 900°C for fifteen minutes. (c) 10 µm particles made using	5
120 kHz nozzle and 1M nitrate precursors at 700°C. (d) sample "c" heated to 800°C for four hours. (e) sample "c" heat	ed
to 900°C for 15 minutes. (f) sample c heated to 900°C for four hours. (g) burst particles made using 2.4 MHz nozzle an	ıd
3M nitrate precursors at 700°C. (h) sample "g" heated to 900°C for fifteen minutes.	181
Figure V - 19: TOF-SIMS depth profile of the LiMn ₁ $Ni_{0.42}$ Fe _{0.08} O ₄ sample. 4	184
Figure V - 20: Charge-discharge profiles and SEM images of the LiMn ₁ $_{\rm SNi0}$ $_{\rm SO4}$ samples with different morphologies 4	185
Figure V - 21: Cyclability of the various LiMn $_{1.5}$ Ni _{0.5} O ₄ samples with different morphologies 4	185
Figure V - 22: XRD natterns of (a) triclinic. (b) orthorhombic and (c) tetragonal LiVOPO $_4$	186
Figure V - 23. High-rate cycling of LiNi $_0$ Mn_0 (Co $_0$ 20) using carbon nanotube mesh grid	189
Figure V - 24: Differential scanning calorimetry at 10° /min of delithiated Li ₁ Ni _{0.1} /Mn _{0.5} ($Mn_{0.5}$ ($N = 0.0048$,
0.08) compared with the more stable NMC electrodes LiNi _{0.22} Mn _{0.22} Co _{0.22} O ₂ and LiNi _{0.36} Co _{0.08} O ₂ (V_{10}) O_{10}	190
Figure V - 25: Comparison of the cycling performance for the C-coated Lip FeP_2O_2 material panosized by Primet using	
the EC/DMC electrolyte and the sulfone-based electrolyte from PNNL. The loading of the active material is around 4 n	nσ
for the EC/DMC and 5.3 mg for the sulfone with the electrode area of 1.2 cm ² . The cycling rate is $C/20$	190
Figure V - 26. First few cycles of Li/EC-DEC 1M LiPE $_{c}$ / LiFePO $_{d}$ (LMNO) Inset: elemental manning of LFP-coated	
spinel LMNO	193
Figure V - 27. Rate canability of LMNO compared to LiFePO ₄ (LMNO) in EC-DEC-LiPE ₄	193
Figure V - 28: Cycling of Li/EC-DEC-1M LiPE/SiOx Gr (1:1) cell at C/6	193
Figure V - 29: Reference electrode of SiO:Gr and fully discharged (5mV) in EC-DEC-1M LiPE	194
Figure V - 30: Voltage capacity profiles for "AlPO4" -coated LiCoO2 electrodes cycled in lithium cells with LiPE and	
LiClO ₄ in EC:DMC C/5	196
Figure V - 31. Voltage capacity profiles for hare LiCoO2 electrodes cycled in lithium cells with LiPE and LiClO4 in	.,0
FC:DMC C/5	196
Figure V - 32: CO 2n and O1s spectra for coated and hare LiCoO ₂ electrodes cycled in LiPE ₄ or LiClO ₄ 4	197
Figure V - 33: Ragone plot for Li- Ω^2 cells with Vulcan carbon (VC) electrode by pristine electrode weight in black	.,
circles: by discharged electrode weight in black triangles) Au/C electrode by pristine electrode weight in orange circles	ç.
by discharged electrode weight in orange triangles) and conventional Li-LiCoO2 cell reported previously in blue square	es.
(Tarascon et al. Chemsuschem 2008)	198
Figure V - 34 ^o XRD patterns of pristing and discharged electrodes supported on a Celgard 480 separator (100 and	170
2000 mA/gcarbon for VC (a) and Au/C (b). The reflections appeared in the pristing VC electrode came from Celgard	
C480 and those appeared in the pristing Au/C electrode came from Au nanonarticles and Celgard C480	198
Figure V - 35° (a) O K edge and (b) Li K edge XANES FY spectra of reference compounds Li2O2 Li2O LiCoO2 and	1
discharged VC and Au/C electrodes at 100 mA/gearbon	199
Figure V - 36° O Is photoemission lines of pristine and discharged carbon Pt/C and Au/C electrodes along with Li2O	.,,
and Li2O2 standards	199
Figure V - 37° Li 1s photoemission lines of pristine and discharged carbon Pt/C and Au/C electrodes along with Li2O	.,,
and Li2O2 standards	199

Figure V - 38: (a) TEM image of 40 wt% Co_3O_4/C (b) Li_2O_2 oxidation curves of pure Carbon, Pt/C, and Co_3O_4/C in 1 M LiTESLDME at 5 mV/s	1
Figure V = 30: (a) HRTEM of 0.51 i. MnO. + 0.51 i.NiCoMnO. layered layered materials (b) selected area	,0
diffraction nattern from Fig. (a) (b) EFT of Fig. (a) (d) inverse Fourier transformation of (c) that are unique to L i MnO.	
which are shown in the inset (a) and (f) highlight parts of (d) showing well defined Li MnO symmetry 50	3, 01
Figure V $A0$: The schematic of experimental set up for in situ VPD studies during chemical lithium extraction 50)1)4
Figure V = 40. The schematic of experimental set-up for in situ AKD studies during chemical minimum extraction $J_{\rm c}$	74
beginning of reaction: (b) contour plot of neak intensities as a function of reaction time (c) XRD pattern for final EePO.	
at the end of reaction	1
Figure V - 42: (a) The TEM image of morphology of mesonorous LiMn _e Fe_{0} (PO ₄ Meso-46 sample: (b) The charge-	74
discharge canacity of the Meso-46 at different rates)5
Figure V - 43. In situ XRD patterns of LiMn $_{4}$ Fe ₀ (PO ₄ with mesonorous structure during first discharge 50)5
Figure V - 44: In situ XRD patterns of LiMn $_0.4$ F $_{0.6}$ PO ₄ without mesoporous structure during first discharge)5
Figure V - 45: Ex situ XAS spectra at Ni K-edge of high energy Li1 2Ni0 2Mn0.6O2 cathode before cycling and after	
1st 2nd and 3rd charge and discharge 50)5
Figure V - 46. Ex situ XAS spectra at Mn K-edge of high energy $L_{1/2}Ni_0 Mn_0 O_2$ cathode before cycling and after 1 st .	
2^{nd} and 3^{rd} charge and discharge 50)6
Figure V - 47: Constant-current (1 mAcm ⁻²) discharge of Li-O ₂ cells using electrolyte with and without	
perfluorotributylamine (FTBA) additives)6
Figure V - 48: Plots of Li/Li ₂ MnO ₃ •LiNi _{0.44} Co _{0.25} Mn _{0.31} O ₂ cells cycled between 4.6 and 2.0 V. \sim C/15 rate. at (a) room	
temperature and (b) 55° C. (c) dO/dV plots of (b))9
Figure V - 49: Top: Comparative rate study of uncoated and TiO ₂ -coated NMC electrodes vs. Li metal at 15, 30, 75.	.,
150 300 and 750 mA/g at RT. Bottom: Corresponding rate study at 55°C 51	10
Figure V - 50: (a) Surface coordination numbers: (b) Mn oxidation states of $LiMn_2O_4$	11
Figure V - 51. In situ hot-stage XRD characterization of (a) the charged MnPO ₄ electrode and (b) the MnPO ₄ :H ₂ O	
nowder under an UHP-Ar atmosphere (heating rate: 5° C /min)	14
Figure V - 52. Rietveld refinement of XRD data of the Li MnPO series. Refinements for $x = 0.8$ and 1.1 compositions	
are done using two phases LiMnPO ₄ and Mn ₂ P ₂ O ₇ Mn ₂ P ₂ O ₇ peaks are marked with blue arrows. Green arrows indicate	е
small impurity peaks of $L_{i_2}PO_4$. Red arrows indicate unidentified impurities in $L_{i_0} \le MnPO_4$.	15
Figure V - 53: Cycling stability of Li _x MnPO ₄ ($0.5 \le x \le 1.2$) between 2.0 and 4.5 V at C/20 rate. (1C=150 mA/g)	15
Figure V - 54: a) SEM image of LiNi ₀ $_5$ Mn ₁ $_5$ O ₄ : b) and c) electron diffraction patterns of LiNi ₀ $_5$ Mn ₁ $_5$ O ₄ in the [001] and	d
[110] zone, respectively: d)SEM image of LiNi _{0.45} Cr _{0.05} Mn _{1.5} O ₄ : e) and f) electron diffraction patterns of LiNi _{0.45}	
$Cr_{0.05}Mn_{1.5}O_4$ in the [001] and [110] zones, respectively	16
Figure V - 55: Comparison of a) cycling stability for $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ and $\text{LiNi}_{0.45}\text{Cr}_{0.05}\text{Mn}_{1.5}\text{O}_4$ and b) voltage profiles of	
$LiNi_{0.45}$ Cr _{0.05} Mn _{1.5} O ₄ tested with and without LiBOB. 51	16
Figure V - 56: Comparison of the rate capabilities of novel organic cathodes with more than one redox center	17
Figure V - 57: a) Charge-discharge profiles, b) dQ/dV plots for the first two cycles. Filled symbols: first cycle; open	
symbols: second cycle, and c) rate comparison of the oxides at the indicated current densities. Data for x=0 and 0.14 are	Э
shown in black and red, respectively	19
Figure V - 58: XRD patterns of the LiNi0.5Mn1.5O4 crystals synthesized at indicated temperatures. Arrows indicate peak	S
from the rock-salt type impurity phase	20
Figure V - 59: SEM images of LiNi0.5Mn1.5O4 crystals prepared from a) oxide precursors in eutectic LiCl-KCl mixture, b	b)
nitrate precursors in a LiCl flux, and c) nitrate precursors in eutectic LiCl-KCl mixture	20
Figure V - 60: FTIR spectra of the LiNi _{0.5} Mn _{1.5} O ₄ crystals. Arrows indicate peaks from the ordered structure	20
Figure V - 61: Rate capability comparison of LiNi0.5Mn1.5O4 crystals. Results obtained from half-cell testing with Li foil	1
as counter and reference electrodes, and 1M LiPF ₆ in 1:1 ethylene carbonate: diethylene carbonate as electrolyte 52	21
Figure V - 62: a) XRD patterns and b) lattice parameter and Mn ³⁺ content in LiNi _x Mn _{2-x} O ₄ (0.3≤x≤0.5) crystals	22
Figure V - 63: a) FTIR spectra and b) peak ratio of 590/620 and Mn ³⁺ content in LiNi _x Mn _{2-x} O ₄ (0.3≤x≤0.5) crystals52	22
Figure V - 64: Cycle performance of Li-S batteries with/without electrolyte additives	25
Figure V - 65: Cycling performance of S/C composites with 50% sulfur loading. Carbon hosts have pore volumes of 2.3	35
and 1.12 cm ³ /g. Surface areas are ~ 800 m ² /g for both materials. Capacity is normalized by the sulfur alone	26
Figure V - 66: (a) Voltage profiles of Li-S cell with phosphorous sulfide additive. (b) cycling performance at 0.1 C in 1	m
LiTFSI	27
Figure V - 67: (a) Voltage profile of first charge/ discharge cycle of Li-S cell with a pre-formed SEI on Li anode. (b)	
coulombic efficiency and cycling performance of the cell after the blockage of polysulfide shuttle	27

Figure V - 68: Raman maps showing local SOC varition across NCA electrodes cycled at 4.1 V under constant current	
condition at 3C with 1 hour PS. SOC plots show the local inhomogeneity across the electrode surface and could vary	
under electrochemical conditions.	530
Figure V - 69: Micro-Raman mapping of the pristine Li _{1.2} Ni _{0.175} Co _{0.1} Mn _{0.525} O ₂ electrode	530
Figure V - 70: Capacity as a function of Cycle number for pristine Li _{1.2} Ni _{0.175} Co _{0.1} Mn _{0.525} O ₂ with 1.5 wt% CNF	530
Figure V - 71: Voltage profile at 1 st , 5 th , 50 th , 100 th and 200 th cycles	530
Figure V - 72: (a) Cycle life comparison between standard binder carbon black composition and with CNF addition an	d
(b) the corresponding rate performance comparison.	531
Figure V - 73: CV studies on $Li_{1,2}Ni_{0,175}Co_{0,1}Mn_{0,525}O_2$. first cycle anodic and cathodic peaks shown as red dashed lin	e,
the second through fifth CV curves are shown as solid lines.	531
Figure V - 74: Variation of specific capacity vs. cycle numbers of nc-Si/CNT on INCONEL 600 cycled at a current rat	es
of 100 mA/g. 200 mA/g and 400 mA/g.	537
Figure V - 75: Variation of specific capacity vs. cycle number of C/Si/CA composite cycled at C/5 rate	537
Figure V - 76: Charge capacities of Si/C based composite using PVDF, and the two novel polymer binders	538
Figure V - 77: Cycling data for the deposited amorphous film cycled at ~400 mA/g.	538
Figure V - 78: CV of LiNi0 5Mn1 5O4 powder pressed onto Al foil	541
Figure V - 79: (a-g) Baseline subtracted Raman spectra of a LixNi _{0.5} Mn _{1.5} O ₄ particle during CV scan (labels correspondence)	nd
to Figure V - 78)	541
Figure V - 80: Current (left axis) and fluorescence intensity (right axis) vs. time during three CVs between 3.5 and 5.0	V
at 0.05 mV/s	, 542
Figure V - 81. Structure of Lithium/aqueous cathode cell and its charge/discharge behavior	546
Figure V - 82. Relationship of conductivity and x in Li ₂ $La_2 Zr_2$ $Ta_0 \Omega_{12}$	547
Figure V - 83. Lithium insertion and delivery rates from the Sn-Co amorphous material (top to bottom is a-d in	517
discussion)	549
Figure V - 84: Stable cycling of SiO -based anodes with a rigid structural skeleton and continuous conductive carbon	547
right v - 64. Shable eyening of Stox based anodes with a right structural skeleton and continuous conductive carbon	552
Figure V - 85: a) Stable cycling of Si anodes with rigid skeleton support and continuous conductive carbon coating. G	bod
cycling stability and high capacity (~ 650 mAh/g anode in 90 cycles at 1 A/g) were obtained using commercial Si powder. b) Si anode cycling at different current densities from 0.5 A/g to 8 A/g. c) Si anode cycling stability with and without FEC as the electrolyte additive (as in (a). Capacities were calculated based on the full weight of the electrode, including carbon additive and binders.	553
Figure V - 86. Structure characterization of porous Si with a 10-nm pore size a) TFM image shows the carbon coated	on
norous Si b) Pore size and nore volume change of the norous Si before and after carbon coating	554
Figure V - 87 . Cycle stability of anodes of norous Si with different nore sizes a) Cycle stability at a low current dense	itv
a_1 (100 mÅ/g b) Cycle stability at high current density of 1 Å/g	554
Figure V - 88: Molecular structure of conductive polymer binder	556
Figure V - 80: Carbon- 1s XAS spectra collected on a series of polymers	556
Figure V - 90: The initial cycling behaviors of Si particles in different conductive matrixes against lithium metal count	er
electrodes at C/10 rate	557
Figure V - 91. TFM images of Si nanonarticles $[(a)$ and $(b)]$ as received from commercial supplier showing SiO ₂ layer	. on
the surface and $[(c)]$ and $(d)]$ after 30 min of HE etching to remove the SiO ₂ surface layer	557
the surface and [(c) and (d)] after 50 min of the element to remove the 5102 surface rayer.	557
Figure $V = 92$: SiO ₂ content in the samples determined using TGA as a function of etching time	557
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode (a) and (a-1) As-received Si (b) and	d
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching. (Specific capacities in (a) (b) and (c) are base	u
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are based on gross Si particle weight specific capacities in (a, 1) (b, 1) and (c, 1) are based on pure Si weight after discounting	
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ \rightarrow	558
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ Figure V - 94: A SEM image of the copper cost of silicon particle (20, 25 µm) after appealing	558 561
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 μm) after annealing. Figure V - 95: Demonstration of how silicon is bound to the copper foil (adaption of view) after annealing.	558 561
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 µm) after annealing Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing	558 561 561
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 µm) after annealing Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing. Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials	558 561 561 561
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 µm) after annealing Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing. Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials. Figure V - 97: The cycling capacity of a series of CuSi ₄ electrodes cycles to LiSi, Li ₃ Si ₄ , and LiSi ₂ Figure V - 08: The avaling machine for CuSi alpetrades avaled to the comparition LiSi.	558 561 561 561 562
 Figure V - 92: SiO₂ content in the samples, determined using TGA, as a function of etching time. Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO₂.). Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 μm) after annealing. Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing. Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials. Figure V - 97: The cycling capacity of a series of CuSi₄ electrodes cycles to LiSi, Li₃Si₄, and LiSi₂. Figure V - 98: The cycling profile for CuSi₄ electrodes cycled to the composition LiSi₂. 	558 561 561 562 562 562
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 µm) after annealing Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials. Figure V - 97: The cycling capacity of a series of CuSi ₄ electrodes cycles to LiSi, Li ₃ Si ₄ , and LiSi ₂ . Figure V - 98: The cycling profile for CuSi ₄ electrodes cycled to the composition LiSi ₂ . Figure V - 99: SEM images of the two types of Cu substrates generated for the micro-tomography study.	558 561 561 562 562 562 563
Figure V - 92: SiO ₂ content in the samples, determined using TGA, as a function of etching time Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are base on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO ₂ .) Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 μ m) after annealing Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing. Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials. Figure V - 97: The cycling capacity of a series of CuSi ₄ electrodes cycles to LiSi, Li ₃ Si ₄ , and LiSi ₂ . Figure V - 98: The cycling profile for CuSi ₄ electrodes cycled to the composition LiSi ₂ . Figure V - 99: SEM images of the two types of Cu substrates generated for the micro-tomography study. Figure V - 100: Capacity retention on cycling of Sn-Fe formed by titanium reduction using hard iron grinding media a cycled between 0.01 and 1.2 cycles at 0.2 m A/cm ²	558 561 561 562 562 562 563 nd

Figure V - 101: Lithium removal from the Sn-Fe electrode synthesized by titanium reduction in soft-iron media. (a) cycled between 0.01 and 1.2 volts, (b) between 0.01 and 1.5 volts, and (c) Ragone plots comparing this material with t SONY SnCo anode.	the . 565
Figure V - 102: Lithium insertion into the Sn-Fe electrode synthesized by titanium reduction in soft-iron media. (a) cycled between 0.01 and 1.2 volts, (b) between 0.01 and 1.5 volts, and (c) Ragone plots comparing this material with t SONY SnCo anode.	the .565
Figure V - 103: Rate capability of Si/MgO/graphite electrode between 0.01 V and 1.5 V. (a) capacity cycling at different current density; (b) lithium insertion/removal curve at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm ² . The first cycle current density was 0.3 mA/cm ² . For current = 1.5, 3, 8 mA/cm ² , the Li/SMOG half cell was discharged to 0.01 V and held at 0.01 V for 2 hours before charged	ent
Figure V - 104: TEM images of exfoliated MXene nanosheets. (a) TEM micrographs of exfoliated 2-D nanosheets of C-O-F. (b) Exfoliated 2-D nanosheets; inset SAD shows hexagonal basal plane. (c) HRTEM image showing the separation of individual sheets after ultra-sonic treatment. (d) HRTEM image of bilayer $Ti_3C_2(OH)_xF_y$.	Ti-
Figure V - 105: TEM images of exfoliated MXene nanosheets. HRTEM image of a bilayer $Ti_3C_2(OH)_xF_y$. (a) Conical scroll of about 20 nm in outer diameter. (b) Cross sectional TEM image of a scroll with inner radius less than 20 nm. (TEM micrographs for stacked layers of Ti-C-O-F. Those are similar to multilayer graphene or exfoliated graphite that finds use in electrochemical storage. (d) The same as c but at a higher magnification.	(c) : .569
Figure V - 106: Lithiation and de-lithiation charge density as a function of the cycle number for pristine Ti_3AlC_2 and exfoliated Ti_3AlC_2 (Ti_3C_2 MXene).	. 569
exfoliated Ti_3C_2 grain was taken at Drexel University by B. Anasori	570 f
optimized a-Si and d) corresponding Raman spectrum. Figure V - 109: Cycling performance of a 15 µm thick electrode containing 60:20:20 Si:AB:PVDF compared to our no 30-40 µm thick electrodes fabricated with a novel technique.	573 ew 574
Figure V - 110: a) Durable cycling performance and Coulombic efficiency of an ALD coated nano-Si electrode employing the novel matrix with copper employed as both the conductive additive and binder. b) Voltage discharge ar charge profiles of both bare and coated electrodes at cycle 50.	nd .574
Figure V - 111: Cycling performance of NG and $LiCoO_2$ full cells where various electrodes are coated with Al_2O_3 Figure V - 112: TEM images of (a) as-prepared Si nanoparticles and (b) Si-graphene nanocomposites	575 577
nanoparticles and Si-graphene nanocomposites	.577 1.5
V; (b) Cycling performance of Si-graphene nanocomposites at a high current density of 2000 mA/g Figure V - 115: Silane-PEO containing copolymers Figure V - 116: Comparison of PVDF and CMC/SBR binders with Radel and S-Radel	578 578 579
Figure V - 117: PXRD pattern of Ba ₈ Al ₈ Si ₃₆ Figure V - 118: Image of barium-intercalated silicon clathrate (Type I, Ba ₈ Si ₄₆) pellets formed from the high-pressure	.581 e,
Figure V - 119: Powder X-ray diffraction pattern of the 5 GPa product is compared with that of BaSi ₂ and the position major reflections theoretically predicted for pure Ba ₈ Si ₄₆ .	581 1s of .582
Figure V - 120: (A) PEMS deposition chamber and setup for depositing nano-particles of silicon clathrate (guest free) into a pool of IL. (B) Image of deposition plasma directed over pool of IL. (C) Image of IL pool following PEMS deposition and recovered IL containing nano-particles of silicon clathrate (D)) 582
Figure V - 121: Image of empty Si_{46} produced by PEMS. Figure V - 122: Raman spectropic analysis of the Si_{46} produced by PEMS deposition into an ionic liquid	.582 .583
Figure V - 123: Energy change of Si_{46} due to Ba guest atoms of Al substitution of the Si framework. Figure V - 124: Cyclic voltammetry of $Ba_8Al_8Si_{38}$ for the reductive intercalation and oxidative deintercalation of Li ⁺ after the formation of a stable SEI.	.583
Figure V - 125: Specific capacity with cycling for anodes with different Si particle sizes bound together with inorganic glue	c .586 m
Figure V - 127: Hollow Si nanoparticle synthesis and images.	. 586 . 587
Figure V - 128: Electrochemical performance of hollow Si nanoparticles.	588

Figure V - 129: (A) Cycle performance of MC550 under different rate conditions and (B) comparison of cell perfor between mesoporous carbon MC550 and non-porous carbon C550 under same rate conditions (the electrode area is 1.327cm ²).	mance
Figure V - 130: (A) Cycle performance of MC550 with Polypyrrole (PPy) surface coating (10wt% and 20wt%) und different rate conditions; (B) Cycle performance of MC550 with carbon nanotube (CNT) doping (10wt% and 20wt under different rate conditions	ler %) 591
Figure V - 131: (A) First cycle of MC550 with 10wt% surface coating of single ion conductors under the rate of C/ Cycle performance of MC550 with 10wt% surface coating of single ion conductors under different rate conditions. Figure V - 132: Comparison of the rate capability of different commercial carbons with the house synthesized	20 (B) 592
mesoporous carbon. Natural graphite, potaot graphite and mesophase graphite all come from Pred. Materials. MCN	1B 502
(Mesocation MicroBeads) comes from MTT Corporation. Figure V 122: Seenning electron micrographs of senerators with word fraction $\Box = 0.42$ et a) $\alpha = 0.12$ b) $\alpha = 0.2$	392
= 0.43 and d) α = 2.02 obtained by cryofracturing washed out films. (Images taken from Wong et al., paper under	2 C) U
review.)	594
Figure V = 134: Synthesis of P3H1-D-PEO Figure V = 135: Average encodifie connections for the first 10 evalue of 10 colls	595
Figure V - 135: Average spectric capacities for the first to cycles of to cents. Figure V - 136: Methods of immobilizing electrolyte anions in lithium ion batteries. (a) Polyelectrolyte ionomers for as separators and binders; (b) surface modified carbons for incorporation into composite electrodes to control lithiu concentration.	or use m ion 598
Figure V - 137: New salts synthesized and tested in FY10.	599
Figure V - 138: Structure of Polyether-polysufone Single ion conductor (PS-TFSI)	599
Figure V - 139: Conductivities of polyelectrolyte gels as a function of temperature. Gels are prepared with EC:EM solvent.	C 600
Figure V - 140: Nyquist plot of impedance of PS-TFSI Single-ion conductor gel against Li metal	601
Figure V - 141: Nyquist plots of Half cells of LiFePO ₄ one with a single-ion conductor separator and binder and on a binary salt electrolyte	e with 601
Figure V - 142: Discharge capacity as a function of rate comparison for single ion conductors versus binary salt	
electrolytes	601
Figure V - 143: Voltammetry of Polysulfone SIC gel in Li/SIC/LiFePO ₄ cell	601
Figure V - 144: Synthesis of LiBOBPHO-R (R = Ph, 2-MePh).	606
Figure V - 145: Synthesis of lithium CTB ($R = Me$, Et; $R' = Ph$, 4-MePh, 4-MeOPh, Me, Bu, Cy, OH)	606
Figure V - 146: Synthesis of lithium CBPO	606
Figure V - 147: Molecular structure of the compounds in Table V - 3.	606
Figure V - 148: TGA of the first generation FRIons.	607
Figure V - 149: Capacity versus cycle number for the specified electrolyte formulations	607
Figure V - 150: In situ ΔR/R vs wavenumber for various sampling potentials, samp, as specified. See text for detail Figure V - 151: Differential capacity profiles of Li/MCMB with 1.2M LiPF ₆ EC/EMC 3/7+2% additive	s 608 610
Figure V - 152: Illustration of the dissociation of the ally group from a 1,3,5-triallyl-[1,3,5]triazinane-2,4,6-trione	(11
Figure V - 153: Capacity retention of MCMB/NCM cells cycled between 3 and 4.0V at 55 °C in electrolyte of 1.2N	611 4
LIPF ₆ EC/EMC 3/ / with no and various amount of the 111 additive	611
Figure V - 154: Examples of anions synthesized	613
Figure V = 155: IGA neating traces of the satis.	613
Figure V = 150: Ion coordination in the crystal structure of LIETAC (LI-purple, O-red, N-olue, F-green)	013
Figure V = 157. Phase diagrams for (AN)n-LIF51 and (ADN)n-LIFF0 IIIXIUICS.	014
Figure V = 150. I have diagrams for (AN)II-LIDFOD and (ADN)II-LIDFOD mixtures	N_
hlue B-tan E-green)	, 11- 615
Figure V - 160: Ion coordination in the crystal structures of (ADN):LiDFOB (Li-purple, O-red, N-blue, B-tan, F-gr	een).
Figure V - 161: C/20 charging to 4.75 & 5.30V and hold at same V. LNio Mnt Okt Scan (5mV/S) and hold (4.75 &	, 015 Z
5.30V) on Pt; LiPF ₆ /EC/EMC.	617
Figure V - 162: Specific capacity of LiNi _{0.5} Mn _{1.5} O ₄ cells containing standard electrolyte and added LiBOB.	617
Figure V - 163: First charge-discharge curve for LiPF4(C2O4) and LiPF ₆ electrolytes.	618
Figure V - 164: XPS analysis of graphite/LiFePO ₄ cells	618
Figure V - 165: Cycling performance of graphite /LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ cells with different electrolytes	619

Figure V - 166. Cycling performance of Si/Li half cells containing various electrolytes	619
Figure V - 167: Arrhenius plot comparison of conductivities of 1M LiPE in 1.1 EC-DMC, commercial sulfolane solve	ents
with those in the newly synthesized solvents and their mixtures in DMC	622
Figure V - 168: Conductivities of sulfolane-DMC mixtures	523
Figure V - 169: Walden plot for assessing ionicities	523
Figure V - 170: Conductivities with EMS and FMS co-solvents	523
Figure V - 171: Oxidative stabilities of EMS and FMS	524
Figure V - 172: Li deposition and stripping at a graphite anode sulfolane:MFS as solvent	524
Figure V - 173: CV for 1M LiPF ₆ -EMS-MSF (1:1 by wt) on LNMO cathode. Scan rate 0.2mV/sec. Working electrode:	
LNMO composite placed on Al substrate, Li ref and counter electrode	524
Figure V - 174: Nanoporous film, w/ XRD analysis, showing ~20nm pores in continuous film structure	524
Figure V - 175: Dendrite growth sequence (Courtesy Rosso et. al.)	525
Figure V - 176: UES, Inc. Tandetron. The accelerator tank is in the foreground and the specimen target chamber is the	
disk shaped object partially visible at the end of the beamline. ϵ	526
Figure V - 177: Opened specimen handling target chamber, denoted as a wafer handler. In this photograph several 10 c	m
specimens for demonstration are shown in specimen positions.	526
Figure V - 178: The temperature dependence of the ionic conductivities of the membranes after irradiation at a fixed ion	n
beam energy of 1 MeV and at different doses (A); and under different ion beam energies at a fixed ion beam dose of	
$5x10^{13} \text{ ion/cm}^2(B)$	527
Figure V - 179: The typical cycling profile of (A) reference and (B) the sample irradiated at the beam energy of 1 Mev	
and dose of 1x10 ¹³ ion/cm ² under the cycling sequence of 2 hour charge, 1 hour rest, 2 hour discharge and 1 hour rest.	527
Figure V - 180: Fraction of capacity shift per cycle as a result of side reactions.	529
Figure V - 181: Cycling results of a Li/LiNi _{1/2} Mn _{3/2} O ₄ cell6	530
Figure V - 182: Cathode and anode capacity shift per cycle and the difference between the two, which is equivalent to t	the
cell capacity fade ϵ	530
Figure V - 183: Fraction of transition metals lost from a sample of fresh LiNi _{1/2} Mn _{3/2} O ₄ when immersed in electrolyte f	for
1, 4, and 9 weeks	530
Figure V - 184: (a) aggregated structure (b) voxel mesh (c) tetrahedral mesh6	533
Figure V - 185: reaction current density	533
Figure V - 186: (a) capacity change (b) frequency response function6	533
Figure V - 187: Stress (a) without SEI (b) with SEI (c) stress at SEI layer6	534
Figure V - 188: Resistance change	534
Figure V - 189: XPS spectra for the cycled sample	534
Figure V - 190: Thin film of LiCoO ₂ 6	537
Figure V - 191: In-plane (a) and out-of-plane (b) ES amplitudes measured on LiCoO ₂ thin film6	537
Figure V - 192: ESM of LiCoO ₂ grains: a) OP at RT; b) OP at 150°C; c) Topography of the sample; d) IP at RT; e) IP a	at
150°C; f) Hysteresis loops from voltage spectroscopy	538
Figure V - 193: Modulus-depth data from the nanoindentation experiments ϵ	538
Figure V - 194: ESM study of the indented thin film LiCoO ₂ cathode: a) indented region; b) analyzed area; c) loop	
opening; d) corresponding loops	539
Figure V - 195: Effect of mechanical damage on the ESM activity: a) 400 nm deep indentation; b) 200 nm deep	
indentation. The indented areas are marked with circles ϵ	539
Figure V - 196: ESM of NCM grains: a) deflection; b) out-of-plane amplitude; c) in-plane amplitude6	539
Figure V - 197: Experimental charge and discharge curves on a NMC thin electrode (~6 µm) at various rates. The charge	ge
and discharge curves, obtained in separate experiments, are plotted together to compare the differences	542
Figure V - 198: Estimated lithium diffusion coefficient as a function of state of charge (SOC). The charge data (S
obtained by charging the electrode with several current interruptions, and the discharge data (\Box) was obtained by	
discharging the electrode with several current interruptions to estimate the diffusion coefficients at various SOC	542
Figure V - 199: Model results that show a difference in rate capability depending on the previous cycling history. The	
electrode is taken to 50% SOC from either the fully-charged state (black line) or from the fully-discharged state (red lin	ne)
at a rate of C/25. The electrode is then subjected to open-circuit relaxation, after which a high rate (5C) discharge is	
conducted	543
Figure V - 200: Calculated stress in graphite active material (AM) and PVdF binder (B) as a function of discharge	
current f	543

Figure V - 201: Steady-state current vs. voltage after different lengths of passivation holds. Markers are measurement dashed lines are model fits. Both the exchange current density i_0 and the through-film limiting current i_{lim} decrease. Do is measured at 900 rpm with 1.1 mM ferrocene/ferrocenium hexafluorophosphate	s, ata 645
Figure V - 202: Nyquist plot of electrode after different lengths of passivation holds. Longer passivation times cause higher impedance.	645
Figure V - 203: Bode plot of electrode after different lengths of passivation holds. The high-frequency peak depends of passivation time, but the low-frequency peak does not.	on 645
Figure V - 204: Comparison of through-film ferrocene impedance on the edge and basal planes of graphite Figure V - 205: (Left bottom) Bright field image of a LiNi _{0.5} Mn _{1.5} O ₄ particle containing different crystallites. (Left top Electron diffraction patterns of each crystallite, showing the structure of a rock salt and a spinel phase, respectively. (Bight) First cycle of a LiNi. Mn. O. mede at $900^{\circ}C$ (red) and $1000^{\circ}C$ (black)	646))
Figure V - 206: (Top) μ -XAS map of NiO electrodes reduced halfway at C/20 and 1C rate. (Bottom) %Ni ⁰ resulting fr the linear combination fit of XANE spectra at different points on the map	049 :0m 650
Figure V - 207: The voltage profiles for ordered (red) and 4 different disordered' (yellow, green, blue and magenta)	652
Figure V - 208: Tuning the Li-C absorption energy as a function of Li content using the Grimme vdW formulation	652 652
Figure V - 209: Announcement of the Materials Project www.materialsproject.org Figure V - 210: Cross-sections of directionally freeze-cast and sintered LiCoO_2 electrodes, viewed parallel to the solidifying ice front. The left panels show additive-free samples freeze-dried at 5 and $1 \square \text{C/min}$, in which the slower freezing rate is seen to produce greater uniaxial alignment of porosity. The right panels show the effects of 5 wt%	653
ethanol and sugar additive, which respectively produce coarser and finer aligned microstructures	655
Figure V - 211: Cross-section of directionally freeze-cast and sintered $L_1N_{10.5}Mn_{1.5}O_4$ Figure V - 212: Specific capacity vs. C-rate for sintered $LiCoO_2$ electrodes prepared with and without aligned low-	655
Figure V - 213: SEM micrograph of a MEMS-based silicon microchip used to enclose the liquid electrolyte	659
Figure V - 214: Experimental setup of the in situ electrochemical cell TEM holder, microfluidic syringe pump to deliv	er
liquid electrolyte to the cell and potentiostat for electrochemical testing Figure V - 215: a) SEM micrograph of battery electrodes (HOPG anode and LiCoO ₂ cathode) attached to biasing microchips and across the SiN _x membrane b) charging curve, c) bright-field TEM image of HOPG anode before	659
experiment and d) snapshot acquired during in situ electrochemistry experiment depicting the formation of the SEI on surface of the graphite anode	the 659
Figure V - 216: Charge/discharge curve between 4.6 and 2.0 V (15 mA/g) for LNP-treated LCMO electrodes. Number	red
points indicate predetermined states of charge at which cells were prepared for XAS measurements.	663
Figure V - 217: (a) Co K-edge XANES showing LNP-treated LCMO at all points of charge in Figure V - 216 and untreated LCMO. The inset in (a) shows a magnified view of the Co K pre-edge region for all points of charge. (b) Magnitude of the Fourier transformed Mn K-edge data for LNP-treated LCMO, untreated LCMO, and a Li ₂ MnO ₃	
reference.	663
Figure V - 218: (a) Ni K-edge XANES of LNP-treated LCMO electrodes at charge points 1 and 4 in Figure V - 216, at a Ni ²⁺ reference. (b) Ni K-edge XANES at points 1, 2 and 3, and Ni ³⁺ and Ni ⁴⁺ references	na 664
Figure V - 219: Partially delithiated LiFePO ₄ below (a) and above (b) the Fe K-edge and the corresponding phasemap	(c)
with the distribution of phases within the crystals.	667
Figure V - 220: Morphology changes in a NiO particle during electrochemical cycling	668
Figure V - 221: XRS data at the C K edge for pristine and lithiated HOPG	668
Figure V - 222: SEM image of the a-TiO ₂ particles (20-25 μ m) used for the synthesis	671
Figure V - 223: MAS-NMR spectra of LATP sintering as a function of temperature.	672
Figure V - 224: (top) Sintered LATP plate, (b) close-up of sintered plate morphology	672
Figure V - 225: Cycling of a lithium-lithium symmetrical cell using 0.6L ₁₃ PO ₄ •0.4L ₁₄ SiO ₄ with boron-based sintering	as
Figure V - 226: Nyquist plot of a 4 electrode Devanathan-Stachurski cell. All four electrodes were lithium. The	672
Figure V - 227: Nyquist plot of Li/Li cell with a Polysulfone-TFSI polyelectrolyte used as a gel with EC/EMC solvent	0/3 i. 672
Figure V - 228: Nyquist plot of Li/LTO cells with (top) no coating on the lithium anode over 50 cycles. and (b) a TMS	5- 5-
based coating on the lithium metal surface.	674
Figure V - 229: Cycling plots of Li/LTO cells comparing two different cells with no coating on the lithium anode, and two cells with a TMS-based coating on the lithium metal surface.	(b) 675

List of Tables

Table II - 1: Recovery Act Awards for Electric Drive Vehicle Battery and Component Manufacturing Initiative.	10
Table II - 2: Status of equipment purchases.	68
Table II - 3: Key Equipment Listing	76
Table II - 4: Project Schedule.	76
Table III - 1: Summary Requirements for EV Batteries.	80
Table III - 2: Summary Requirements for PHEV Batteries.	81
Table III - 3: Energy Storage Targets for Power Assist Hybrid Electric Vehicles.	81
Table III - 4: Specific capacities and average voltage of cathode #8 used in cell build iteration #1 & #2 from half-cell coin cells	84
Table III - 5° Summary of cell build iterations, cathode material to be scaled-up and ship dates	85
Table III - 6: Summary of cell results obtained from 20Ah cells from cell build #1	86
Table III - 7: Specific Power of Modules for Discharge FVPC Test	93
Table III - 8: Performance Targets for Deliverables	94
Table III - 9: Summary of program AT results (multiple chemistries and packaging)	
Table III - 10: Summary of final AT results for prismatic cell (effect of ceramic content of various components)	98
Table III - 11: 10 Mile PHEV Gan Analysis	106
Table III - 12 ⁻ 40 Mile PHEV Gan Analysis	107
Table III - 13: 683P Module Abuse Test Results	107
Table III - 14: Preliminary HEV LEESS Gan Analysis	112
Table III - 15: Percentage of 1 6 V Drop Attributed to the Individual Electrodes in LIC Cells	119
Table III - 16: CEF's for various cathode materials	. 133
Table III - 17: The Capacity Loss between the NMC442 and Coated NMC442 after floating at 4.7V and 60°C for 200	hr
(vs. graphite anode)	133
Table III - 18: Comparison of Impedance and Battery Size Factor for alloy and graphite cells.	157
Table III - 19: Percent Static Capacity decrease after 250, 500 and 750 Charge Depleting Cycle.	157
Table III - 20: Theoretical Cost Analysis for NCM Compositions	171
Table III - 21: Vehicle and battery model parameters	204
Table III - 22: Lithium demand with maximum use of electric vehicles	214
Table III - 23: Potential U.S. Demand for other Battery Materials	214
Table III - 24: Comparison of Recycling Processes	216
Table III - 25: Sanyo SA cell test matrix for memory study	230
Table III - 26: Sanyo SA cell test matrix for HCSD study	230
Table III - 27: Sanyo SA cell test matrix for memory study	232
Table III - 28: Sanyo SA cell test matrix for HCSD study	233
Table III - 29: Increase in interfacial impedance (per EIS) for selected aging conditions within thermal cycling matrix.	. 245
Table III - 30: List of Cells for the Test Model	272
Table III - 31: NREL-developed cell domain model options	278
Table IV - 1: 1st Cycle (10% excess anode)	308
Table IV - 2: Mechanical Properties of Lithiated Copper Tin alloys	314

Table IV - 3: Optimum Particle Sizes Calculated for Halfway and Full Lithiation	315
Table IV - 4: Estimated Electrode Capacity Density for Five Electrodes	315
Table IV - 5: Concentration of transition metal ions after cycling at 55°C (µg metal detected on MCMB surface /g cathode)	347
Table IV - 6: Rate capability of first cell build positive electrode material.	424
Table IV - 7: Rate capability of second cell build positive electrode material.	425
Table IV - 8: Cell distribution	427
Table IV - 9: Initial values from cells used in the calendar life test.	427
Table IV - 10: Physical and Chemical Properties of Carbon anodes investigated	437
Table IV - 11: The Status of Milestones for Process Development and Scale-up of Advanced Electrolyte Materials	457
Table V - 1: Charge-Discharge Performance for 1st and 10th cycle for Silane-PEO (Si PEO) and sulfonate-PEO (S PE copolymer binders	CO) 579
Table V - 2: Average diffusion coefficient, Davg, and PDIdiffusion of the relaxation distribution functions for the polymers used in this study [see ref. 4 for details].	594
Table V - 3: Heat Release Data	606
Table V - 4: Change in surface atomic concentration of each element	633
Table V - 5: Change in surface atomic concentration of each element	635
Table V - 6: SEI element quantity change	635
Table V - 7: Results of the Rietveld refinement of neutron diffraction data combined with transmission electron microscopy.	648