
U.S. Department of Labor

U.S. Department of Labor Hilda L. Solis, Secretary

U.S. Bureau of Labor Statistics
John M. Galvin, Acting Commissioner

The Monthly Labor Review is published monthly by the Bureau of Labor Statistics of the U.S. Department of Labor. The Review welcomes articles on employment and unemployment, compensation and working conditions, the labor force, labor-management relations, productivity and technology, occupational safety and health, demographic trends, and other economic developments.

The Review's audience includes economists, statisticians, labor relations practitioners (lawyers, arbitrators, etc.), sociologists, and other professionals concerned with labor-related issues. Because the Review presents topics in labor economics in less forbidding formats than some social science journals, its audience also includes laypersons who are interested in the topics, but are not professionally trained economists, statisticians, and so forth.

In writing articles for the Review, authors should aim at the generalists in the audience on the assumption that the specialist will understand. Authors should use the simplest exposition of the subject consonant with accuracy and adherence to scientific methods of data collection, analysis, and drawings of conclusions. Papers should be factual and analytical, not polemical in tone. Potential articles, as well as communications on editorial matters, should be submitted to:

Executive Editor
Monthly Labor Review
U.S. Bureau of Labor Statistics

Room 2850
Washington, DC 20212
Telephone: (202) 691-7911
Fax: (202) 691-5908
E-mail: mlr@bls.gov
The Secretary of Labor has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department.

The opinions, analysis, and conclusions put forth in articles written by non-BLS staff are solely the authors' and do not necessarily reflect those of the Bureau of Labor Statistics or the Department of Labor.

Unless stated otherwise, articles appearing in this publication are in the public domain and may be reproduced without express permission from the Editor-in-Chief. Please cite the specific issue of the Monthly Labor Review as the source.

Links to non-BLS Internet sites are provided for your convenience and do not constitute an endorsement.

Information is available to sensory impaired individuals upon request:
Voice phone: (202) 691-5200
Federal Relay Service: 1-800-877-8339 (toll free).

Cover Design by Keith Tapscott

Schedule of Economic News Releases, June 2012

Date	Time	Release
Friday, June 1, 2012	8:30 AM	Employment Situation for May 2012
Wednesday, June 6, 2012	8:30 AM	Productivity and Costs for First Quarter 2012
Thursday, June 7, 2012	10:00 AM	Employer Costs for Employee Compensation for March 2012
Friday, June 8, 2012	10:00 AM	Persons with a Disability: Labor Force Characteristics for 2011
Tuesday, June 12, 2012	8:30 AM	U.S. Import and Export Price Indexes for May 2012
Wednesday, June 13, 2012	8:30 AM	Producer Price Index for May 2012
Thursday, June 14, 2012	8:30 AM	Consumer Price Index for May 2012
Thursday, June 14, 2012	8:30 AM	Real Earnings for May 2012
Friday, June 15, 2012	10:00 AM	Regional and State Employment and Unemployment for May 2012
Tuesday, June 19, 2012	10:00 AM	Job Openings and Labor Turnover Survey for April 2012
Wednesday, June 20, 2012	10:00 AM	Mass Layoffs for May 2012
Friday, June 22, 2012	10:00 AM	American Time Use Survey for 2011
Wednesday, June 27, 2012	10:00 AM	Metropolitan Area Employment and Unemployment for May 2012
Thursday, June 28, 2012	10:00 AM	County Employment and Wages for Fourth Quarter 2011

Subscribe to the BLS Online Calendar Online calendar subscription-automatically updated:

If you use a recent version of an electronic calendar, you may be able to subscribe to the BLS Online Calendar.
See details below for users of different types of calendars.
Instructions for Outlook 2007 and Apple iCal Users:
Click on this link: webcal://www.bls.gov/schedule/news_release/bls.ics (Note: Link may seem to be broken if you do not have Outlook 2007 or Apple iCal installed.)
Instructions for Google Calendar, Mozilla, and Evolution Users:
Copy and paste the URL address http://www.bls.gov/schedule/news_
release/bls.ics into your calendar.
Note: We do not recommend using this online calendar with Outlook 2003 or older versions. The calendar will not update automatically in those applications.

The BLS calendar contains publication dates for most news releases scheduled to be issued by the BLS national office in upcoming months. It is updated as needed with additional news releases, usually at least a week before their scheduled publication date.

Volume 135, Number 5
May 2012
Older men: pushed into retirement in the 1970s and 1980s by the baby boomers?
The retirement age of older men dropped during the 1970-1990 period but has risen in recent decades

Diane J. Macunovich

Older workers and short-term jobs: employment patterns and determinants
The retirement patterns for older workers who have never held a full-time career job are just a diverse as those for individuals with career jobs
Kevin E. Cabill, Michael D. Giandrea, and Joseph F. Quinn

Measuring annual change in household wealth with the Consumer Expenditure Survey
 33

Comparing data from the Bureau's CE Survey with the Federal Reserve Board's Flow of Funds Accounts indicates that the CE effectively measures changes in household wealth Jeffrey D. Lundy

Regional Report

Multiple jobholding in states in 2011
Jim Campbell

Departments

Labor month in review 2
Précis 43
Book review 46
Current labor statistics 48

Older men: pushed into retirement in the 1970s and 1980s by the baby boomers?

During the 1970-1990 period, baby boomers competed with older workers for part-time and part-year jobs, and the retirement age dropped; in more recent decades, the availability of "bridge jobs" may help explain the increase in age at retirement

Diane J. Macunovich

Diane J. Macunovich is chair of the department of economics at the University of Redlands, Redlands, CA. Email: diane_macunovich@ redlands.edu.

The post-World War II baby boomers began entering the labor market in the late 1960 s, and their numbers swelled through the 1970s and into the 1980s. Their large size, relative to the size of the cohort of workers ages 45-54, forced a whole host of dislocations for the boomers: high unemployment, low relative wages, and increasing proportions forced into parttime and part-year work. ${ }^{1}$ As this article will show, these dislocations reverberated among older workers, too.
The peak of the baby boom had entered the labor force by 1985 , but the dislocations did not end there, because the bottleneck created by those in the peak continued to block the later-born boomers who followed. As a result, members of the baby boom did not escape the effects of their cohort's large size even in their thirties, and even members of the relatively smaller cohorts following the peak of the boom continued to find themselves pushed into part-time and part-year work. However, as relative cohort size eased in the 1990s, many of these effects began to ease as well. In particular, the proportion of men ages 25-34 working part year and/or part time fell from 27 percent in 1992 to 19 percent in 2007, a proportion similar to its level before the entry of the baby boom into the job market.
At the same time that this was happening, the retirement rate rose fairly dramatically
in the 1970 s and 1980 s among men ages 55 and older, and their labor force participation rates fell accordingly. As shown below, the retirement rates peaked in 1993 and have declined somewhat since then:

Percentage reporting themselves as retired			
	1968	1993	2009
Ages 55-61........	2	9	7
Ages 62-64......	10	33	23
Ages 65-69.......	31	60	49

In terms of the labor force participation rate, the decline for older men (whom we'll define for purposes of this article as ages 55-69) was steady from the 1970s into the early 1990s. But in the mid-1990s, this decline tapered off, and rates remained fairly constant for a few years, after which they began an increase that has continued largely unabated. The increase in the labor force participation rate among men ages 65-69 has been particularly marked.
Evidence suggests that the correspondence between these two phenomena-strong increases in the period before 1985 in both part-time/part-year work among men ages 25-54 and retirement rates among men ages 55 and older, and declines in both after 1995-is not coincidental. It has been demonstrated in a number of studies that, to a great extent, older men do not retire directly from their career jobs. Instead, they tend to move through part-time and/
or part-year bridge jobs before retiring; this is especially true for men in lower-wage jobs. And very often these bridge jobs do not occur in the same industry or even the same occupation as the career job, suggesting a fairly low level of transference of skills and human capital. Thus to at least some extent, these older men may have been competing for the same part-time, part-year jobs that the baby boomers were crowded into.
Early documentation of the increase in the retirement rate among older men was provided by Joseph F. Quinn in the late 1990 s. ${ }^{2}$ There is a voluminous literature on the rising patterns of retirement in the 1970s and 1980s among men ages 55-64, but much less attention has been paid to explaining the tapering off and decline in the retirement rate in the past two decades and to trends among men ages 65-69. This article is an attempt to address the long-term trend of labor force participation and retirement among men ages 55-69 in the approximately four decades from 1968 through 2009.

Causes of changes in retirement rates

The most intensively examined factors with regard to early retirement appear to be changes in Social Security and pensions, and the availability of health insurance. Gary Engelhart and Anil Kumar found a statistically significant positive effect on labor force participation of the Senior Citizens' Freedom to Work Act of 2000, which abolished the Social Security earnings test for workers ages 65-69.3 In a cross-country comparative analysis, David Wise determined that public provision for financial support in retirement has substantially affected the trend toward earlier retirement. ${ }^{4}$ No attempt was made in that study to address the decline in rates that has occurred since the mid1990s. However, Alan Krueger and Jörn-Steffen Pischke previously had suggested that Social Security may not have played an important role in rising retirement rates in the 1970s and 1980s. Their analysis looked at the "notch babies" born 1917-1921; upon retirement, this cohort experienced a decline in Social Security benefits relative to expectations, and yet continued to retire at earlier ages. ${ }^{5}$
On the other hand, another study asserted that changes in pensions and Social Security accounted for about onequarter of the decline in retirement age in the 1970s and 1980s among men in their early sixties, but that these changes could not explain patterns among those ages 65 and over. ${ }^{6}$ Leora Friedberg and Anthony Webb reported in a 2005 article that the increasing prevalence of defined contribution plans since the 1980s has caused workers to retire 2 years later, on average, than when defined
benefit plans predominated. ${ }^{7}$ On a related note, Courtney C. Coile and Phillip P. Levine found that stock market exposure during the stock market boom and bust cycle between 1995 and 2002 had no significant effect on patterns of retirement. ${ }^{8}$
With regard to access to health insurance, Lynn A. Karoly and Jeannette A. Rogowski, using data from the Survey of Income and Program Participation, found a significant positive effect of the provision of postretirement health insurance on the likelihood of early retirement. ${ }^{9}$ This finding was echoed by David M. Blau and Donna B. Gilleskie using Health and Retirement Study data. ${ }^{10}$ Similarly, a later study of health insurance costs found that the cost of post-retirement health insurance premiums had a negative and significant effect on retirement rates. ${ }^{11}$
At least two other studies looked at the effect of local (state-level) economic conditions on the retirement behavior of older workers. Dan A. Black and Xiaoli Liang found a negative effect of industry-level shocks (steel, coal, and manufacturing generally) on employment, ${ }^{12}$ while a 2008 working paper discussed a significant effect of statelevel economic indicators on differences across states in the labor force participation of 55-64 year olds. ${ }^{13}$ However, neither the health insurance studies nor the state-level studies specifically addressed the changing pattern of labor force participation over time, which is that retirement rates have begun to decline after a long period of increase.
Of course, there are still other factors affecting a man's decision on whether or not to retire, such as the tendency of incomes to barely keep up with increases in the cost of living, ${ }^{14}$ the tendency of men to synchronize their retirement with that of their wives, and the effects of longer life expectancy on a man's ability to support himself in old age. In addition, men often go back to part-time work after retiring. ${ }^{15}$ Most relevant to the purposes of this study, however, is a set of papers that point to the increasing prevalence of "bridge" employment among older men-that is, the tendency to exit full-time, career jobs not directly into retirement, but rather into various forms of part-time work. Christopher J. Ruhm was perhaps the first to identify (and name) this phenomenon. In 1990, he reported finding that fewer than 40 percent of household heads retire directly from career jobs, and more than half partially retire-meaning that they move into part-time or part-year employment-at some point in their lives. He also stressed that this post-career work is frequently in jobs outside the industry and occupation of the career position. This may have changed, to some extent, in more recent years, however: 2008 working papers by Michael
D. Giandrea, Kevin E. Cahill, and Quinn suggest that transition within occupations may be more frequent-in particular, in moving to part-time self-employment-and younger cohorts seem to be following the same patterns as older cohorts. ${ }^{16}$ In a 1994 article, Franco Peracchi and Finis Welch emphasized the complexity of the patterns of transitions, with workers both entering and exiting retirement into these types of part-time work. In addition, they found that the prevalence of reduced labor force participation was greatest among low-wage workers, and that the patterns of decreased participation among older workers paralleled those among younger workers during the 1970s and 1980s. This suggests some common underlying factor or factors affecting both older and younger workers, at least among those in low-wage jobs.
In a 1995 study, Ruhm used data from the Retirement History Survey to study men in 1969 and used data from a Harris survey (commissioned by the Commonwealth Fund) to study men in 1989. In the earlier cohort, he found that 62 percent who had left career jobs at age 54 or 55 were employed again at the later survey date, but in the later cohort this figure dropped to 41 percent. He found that departures from career jobs at ages 58 to 63 correlate with high re-employment probabilities. ${ }^{17}$ Three other studies referred to this phenomenon as a "do-it-yourself" form of retirement. ${ }^{18}$ The latest of these studies used the Health and Retirement Study and found that two-thirds of younger retirees transition to part-time work from career jobs.

Bridge-jobs approach

The approach in the current study builds on this concept of "bridge jobs," especially the findings that

- the majority of these bridge jobs are not in the same industry or occupation as the career job, ${ }^{19}$ leading one to surmise that there is little transfer of skill or human capital from the career job to bridge job;
- the characteristics most highly correlated with the transition to bridge jobs are those associated with low-wage workers, ${ }^{20}$ which again suggests lower levels of skill or human capital;
- the proportion of workers transitioning to bridge jobs declined significantly during 1969-1989, a period when retirement rates were rising and labor force participation rates were falling, suggesting that access to bridge jobs may have declined during this period; and
- the patterns of transitions among older workers par-
alleled those among younger workers in the 1970s and 1980s. ${ }^{21}$

These findings lead to the hypothesis that there may be a high level of competition and substitutability between older and younger workers for the types of part-time jobs typical of bridge jobs, and that some common factor affected both older and younger workers to an increasing degree during the 1970s and 1980s, and then attenuated in the 1990s and 2000s.
The "culprit" identified in this study-the common factor affecting both younger and older workers-is the postWorld War II baby boom. Their large relative cohort size, as indicated by the large increase and then decrease in the total fertility rate (TFR) between 1946 and 1964, affected relative wages, unemployment, and the proportion of younger workers in part-time and/or part-year jobs, because of overcrowding in the cohort. ${ }^{22}$ The relative cohort size measure used here for older males is consequently the ratio of 25-34 year old men working part-time and/or part-year to the number of men ages 55-69 in the labor force. (See chart 1.) Given the possibility of endogeneity in the contemporaneous relative cohort size variable, with workers moving geographically in response to labor market conditions, relative cohort size is instrumented-approximated-using a 30 -year lag of the total fertility rate. The TFR 30 years earlier was the number of births to women of child bearing age, and 30 years later is a good representation of the ratio of men ages 25-34 relative to men ages 55-69. It has been used in previous studies as an exogenous instrument for relative cohort size. ${ }^{23}$
The rationale behind these measures is that older men are using part-time and part-year jobs as bridge jobs prior to retirement, and because there is little transfer of human capital from career jobs, older men are at least to some extent competing with younger men for these jobs. To the extent that older men find it difficult to find such jobs, they will be more likely to skip the bridge jobs and move directly into full retirement around the time they would otherwise have taken a bridge job-or, alternatively, they will be less likely to re-enter the labor force after retirement. Chart 1 displays the patterns of four labor force indicators for older men: average annual hours worked, the proportion not in the labor force, the proportion receiving Social Security benefits, and the proportion reporting themselves as retired. It should be noted that this last proportion is a self-reported variable that is derivative in the Current Population Survey (CPS). The CPS is not designed specifically to elicit statistics on retirement; rather, retirement is a reason that can be given for not

Chart 1. Labor force and retirement characteristics of men ages 55-69

NOTES: The relative wage is defined here as the average wage of part-year part-time workers relative to the average full-time wage of the previous 5 -year age group. That is, the assumption is that a worker, in deciding whether to take a bridge job at ages 65-69, will compare the wage that he could earn in that bridge job, relative to the wage he has been earning in a full-time career job, at age 60-64. Relative cohort size is defined as the number of men ages 25-34 working part-year and/or part-time, relative to the number of men ages 55-69 in the labor force. "Reporting themselves as retired" is a self-reported variable, and is derivative in the CPS. That is, the CPS is not designed specifically to elicit statistics on retirement; rather, retirement is a reason that can be given for not having worked in the previous year.

SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.
having worked in the previous year. It can be seen that major changes have occurred over the last 40 years, with older men withdrawing from the labor force in the period up to the mid-1980s, and reversing trends after the mid-1990s. The proportions out of the labor force rose from 12 percent, 28 percent, and 58 percent in 1968, to 24 percent, 53 percent, and 75 percent in 1985, for men ages 55-61, 62-64 and 65-69, respectively. The rate for men ages 55-61 then remained fairly constant, but the rates for the two older age groups declined to 44 percent and 64 percent by 2009. Average hours worked dropped by $8-15$ percent for the three age groups between 1968 and the mid-1980s, and then rebounded afterward, with a 24 percent increase for the 65-69 year old group in the period from 1990 to 2008.
Although some of the large changes that took place among people in the 62-64 and 65-69 age groups after 1990 can probably be explained by increases in the Social Security earnings threshold that occurred over the period, increases in the delayed retirement credit between 1990 and 2008, and the removal of the earnings test for workers ages 65-69 by the Senior Citizens' Freedom to Work Act in 2000, these Social Security changes cannot explain the
fact that the early declines in hours worked and increases in proportions reporting themselves as retired were halted well before 1990 .
Also displayed in chart 1 is the relative cohort size variable (RCS) used to approximate the forces hypothesized to be influencing all three age groups: the ratio of the number of men age 25-34 working part year and/or part time to the number of men in the labor force ages 55-69. (The number of men ages $25-34$ working part time or part year is shown in chart 2.) Superimposed on this pattern is a 30-year lag of the total fertility rate (TFR), which created the earlier pattern of births that produced the large cohort with its overcrowding and high proportions working part year and/or part time.
Finally, chart 1 displays men's relative hourly wages, which declined precipitously in the period prior to 1985 at the same time that labor force participation declined and rates of retirement rose. The relative wage for each age group is defined here as the average wage of part-year and/or part-time workers relative to the average full-time wage of the age group they were in 5 years earlier. That is, the assumption is that a worker, in deciding whether to take a bridge job at, say, ages $55-59$, will compare the

Chart 2. Men ages 25-34 working part year and/or part time, 1964-2009

[^0]wage that he could earn in that bridge job to the wage he has been earning in a full-time career job at ages 50-54. For men in the 55-61, 62-64 and 65-69 age groups, the ratio fell from $1.29,1.38$ and 1.18 in 1967 to $0.80,0.92$, and 0.85 at some time during the 1984-1987 period, respectively. It then recovered to $1.12,1.00$ and 1.11 in the 2001-2004 period, presumably as baby boomers moved on and the market for part-year, part-time jobs eased. Table 1 and chart 3 demonstrate the close inverse correspondence between the number of younger men working part year and/or part time, and these relative wages. The correspondence is weaker for men ages 62-64 (whose adjusted R -square is 0.41), but is considerably stronger for those ages 55-61 and 65-69 (with adjusted R-squares of 0.54 and 0.65 , respectively). The table demonstrates the close correspondence between observed and predicted values, using just the number of younger part-year, parttime workers as an explanatory variable.

Data and methodology

The data used in this analysis has been drawn exclusively from Current Population Survey (CPS) Annual Social and Economic Supplement data for 1968-2009, as prepared
in uniform files in CPS Utilities by Unicon. ${ }^{24}$ Data covered all men ages 25-34 and 55-69, with the 25-34 age group used for the numerator of a relative cohort size variable, and men ages 55-69 in the labor force for the remainder of the analyses. ${ }^{25}$
The methodology employed is that of a typical labor supply model, but with relative cohort size variables added. The relative cohort size variable used was calculated as the number of 25-34 year old men working part year and/or part time relative to the number of men in the labor force ages 55-69 in each year and state. ${ }^{26}$ Age-specific unemployment rates were calculated for each of the three groups-age 55-61, 62-64 and 65-69-calculated at the Metropolitan Statistical Area (MSA) level, ${ }^{27}$ and regressions were run using individual-level micro data with these state- and MSA-level variables attached to each record. In addition, each age-group's model was also tested with a 30 -year lag of the total fertility rate as an instrument for the relative cohort size measure. Summary statistics describing the data are presented in appendix tables A-1 through A-3.
Four models were estimated for four labor supply indicators, separately for each of the three age groups. (See box.)

Equations for labor supply models

$$
\begin{align*}
& H=\beta_{0}+\beta_{1} \ln W+\beta_{2} I_{e}+\beta_{3} I_{o}+\beta_{4} R C S_{\text {State }}+\beta_{5} U_{M S A}+\beta_{6} M+\mathrm{B}^{\prime} X+u \tag{1}\\
& O L F=\gamma_{0}+\gamma_{1} \ln W+\gamma_{2} I_{e}+\gamma_{3} I_{o}+\gamma_{4} R C S_{\text {State }}+\gamma_{5} U_{M S A}+\gamma_{6} M+\Gamma^{\prime} X+u \tag{2}\\
& R=\alpha_{0}+\alpha_{1} \ln W+\alpha_{2} I_{e}+\alpha_{3} I_{o}+\alpha_{4} R C S_{\text {State }}+\alpha_{5} U_{M S A}+\alpha_{6} M+\mathrm{A}^{\prime} X+u \tag{3}\\
& R_{S S}=\delta_{0}+\delta_{1} \ln W+\delta_{2} I_{e}+\delta_{3} I_{o}+\delta_{4} R C S_{\text {State }}+\delta_{5} U_{M S A}+\delta_{6} M+\Delta^{\prime} X+u \tag{4}
\end{align*}
$$

where
H represents annual hours worked in the previous year (including those with zeroes);
$O L F$ represents a binary variable set to 1 for those out of the labor force;
R represents a binary variable set to 1 for those identifying themselves as retired. ${ }^{28}$
$R_{S S}$ represents a binary variable set to 1 for those receiving Social Security benefits;
W represents the man's own (instrumented) hourly wage, in constant 2008 dollars;
I_{e} represents the earnings of others in the family, defined as total family earnings minus own earnings, in constant 2008 dollars;
I_{o} represents other income, which comprises interest, dividends, and rent, in 2008 dollars;
$R C S_{\text {State }}$ represents the year- and state-specific relative cohort size;
$U_{M S A}$ represents the age- and MSA-specific unemployment rate, in the year prior to the survey;
M represents a binary variable set to 1 for those who are married with spouse present; and
X is a vector of control variables.

	Men ages 55-61	Men ages 62-64	Men ages 65-69
Number of men ages 25-34 working part year and/or part time	$\begin{aligned} & -0.087 \\ & (-7.26) \end{aligned}$	$\begin{aligned} & -0.073 \\ & (-5.62) \end{aligned}$	$\begin{aligned} & -0.108 \\ & (-9.26) \end{aligned}$
Adjusted R-square Number of observations	$\begin{array}{r} .5350 \\ 46 \end{array}$	$\begin{array}{r} .4050 \\ 46 \end{array}$	$\begin{array}{r} .6534 \\ 46 \end{array}$
Notes: All t-statistics are in parentheses. The relative wage is defined here as the average wage of part-year and/or part-time workers relative to the average full-time wage of the previous 5 -year age group. That is, the assumption is that a worker, in deciding whether to take a bridge job at ages		55-59, will compare the wage that he could earn in that bridge job relative to the wage he has been earning in a full-time career job, at ages 50-54. Sources: Current Population Survey Annual Social and Economic Supplement and author's calculations.	

The control variables included single-year age dummies, 4 education dummies (with 16 years as the reference group), 3 race dummies (with non-Hispanic Whites as reference group), 20 state dummies, ${ }^{29}$ a time trend, and 3 indicators of MSA status (principal city, balance of MSA, and non-MSA).
In addition, each of the models (1)-(4) was estimated for each age group, substituting a 30 -year lag of the total fertility rate for the potentially endogenous relative cohort size variable. RCS could be endogenous, especially at the state level, if individuals move in response to changes in economic conditions. The lagged TFR, in contrast, is completely exogenous because it was determined 30 years earlier. And as previously explained, since the TFR represents the number of births relative to the number of women of childbearing age, a 30 -year lag of the TFR will approximate the number of individuals ages 25-34 relative to those ages 55-69.
Finally, the models for those ages 62-64 and 65-69 were estimated with controls for the major changes in Social Security and age discrimination that occurred during the study period. For both age groups, these controls included a variable representing the changing levels of the age-specific earnings threshold imposed on the receipt of Social Security benefits. These thresholds are illustrated in chart 4. In addition, for those aged 65-69 the controls included

- a dummy for the years after 1990, the period in which the delayed retirement credit was increased;
- another for the period after 2000, when the Senior Citizens' Freedom to Work Act was passed, removing the earnings threshold for those ages 65-69; and
- two dummies, one for the years following 1978 and another for the years following 1986, when the Age Discrimination in Employment Act was implemented.

The methodology comprised three steps. In the first, hourly wages were calculated-in 2008 dollars, using the Consumer Price Index-as total annual wages and salary in
the previous year divided by annual hours worked, with the latter calculated as weeks worked times the usual number of hours worked per week in the previous year. ${ }^{30}$ The annual wages and salary were first multiplied by a factor of 1.45 if topcoded. ${ }^{31}$ The hourly wage was imputed for those with no reported wage, as well as for the selfemployed and those whose calculated wage fell outside the range of $\$ 2.50-\$ 250$ in 2008 dollars. The imputation process was based on separate regressions of the natural logarithm of wages (logwage) for those with fewer than 20 weeks worked and those with 20 or more weeks worked, separately for each age group. That is, it was assumed that wages should be imputed on the basis of the reported wage of those in groups with similar numbers of weeks worked. ${ }^{32}$
The imputation regressions were run separately in each of 14 groupings, with each grouping including 3 ages (for example, 55-57, 56-58, etc.). The 3 -year groupings were used to achieve larger sample sizes for the imputation process, and the CPS March Supplement Weights were normalized to sum to 1 in each year, so that each year carried equal weight in the regressions. The regressions each included 4 age dummies, 2 year dummies, 4 education dummies, 3 race dummies, 20 state dummies, and 3 indicators of MSA status.
Then in the second step, because observed wages are en-dogenous-they depend on a worker's occupation, industry, and hours worked-wages were instrumented. This was again done separately for each age group and time period by regressing logwage on 4 age dummies, 4 education dummies, 3 race dummies, 20 state dummies, and 3 indicators of MSA status. In addition, a series of dummy variables representing wage deciles was included, which served as excluded instruments in the final hours, participation, and retirement equations. As indicated in a 2007 study by Francine D. Blau and Lawrence M. Kahn, use of deciles "corrects to some degree for measurement error in the wage. ${ }^{33}$

The third step involved estimating each of the equations in (1)-(4) separately for each age group, over the entire 42 -year period. Equation (1) was treated as a weighted instrumental variable (IV) linear model, while equations (2), (3), and (4) were weighted IV binary probit models.

Results

The results of this procedure are presented in tables 2 and 3 for each of the three age groups, 55-61, 62-64 and 65-69. Table 2 presents more complete results for annual hours worked, using standardized coefficients in order to see the relative strengths of the different variables. Table 3 presents just the estimated (marginal) effects of the relative cohort size and total fertility rate variables for the three "retirement" variables: the propensity to be out of the labor force, the propensity to report oneself as retired, ${ }^{34}$ and the propensity to claim Social Security benefits.

In all cases, the coefficients on the RCS and TFR variables display the expected signs and all are highly significant. The variables have a strong negative effect on hours worked and positive effects on the probability of being out of the labor force, reporting themselves as retired, and claiming Social Security benefits. This is consistent with the hypothesis that overcrowding in the market for partyear and part-time jobs induces older men to reduce their labor force participation; that is, the competition for partyear and/or part-time jobs leads men to skip bridge jobs and move directly out of the labor force from career jobs.
The strength of the estimated effects varies across age groups and across the four variables. For the 65-69 age group, the effects are strongest on hours worked, with elasticities of -.371 (for RCS) and -.717 (for TFR), although these elasticities are reduced somewhat, to -.232 (for RCS) and -.640 (for TFR), when the Social Security Administration controls are added in. For the

Value	Men ages 55-61		Men ages 62-64				Men ages 65-69			
Lagged total fertility rate	$\begin{gathered} -.059 \\ (-23.3) \end{gathered}$	_	$\begin{array}{r} -.113 \\ (-27.7) \end{array}$	$-$	$\begin{array}{r} -.112 \\ (-27.0) \end{array}$	$-$	$\begin{array}{r} -.106 \\ (-30.6) \end{array}$	$-$	$\begin{gathered} -.094 \\ (-14.1) \end{gathered}$	$-$
Relative cohort size (state-year specific)	$-$	$\begin{array}{r} -.072 \\ (-26.6) \end{array}$	$-$	$\begin{array}{r} -.114 \\ (-26.5) \end{array}$	$-$	$\begin{array}{r} -.113 \\ (-25.9) \end{array}$	-	$\begin{array}{r} -.100 \\ (-28.1) \end{array}$	$-$	$\begin{array}{r} -.063 \\ (-13.5) \end{array}$
Logwage	$\begin{array}{r} .088 \\ (28.9) \end{array}$	$\begin{array}{r} .087 \\ (28.6) \end{array}$	$\begin{aligned} & .010 \\ & (2.3) \end{aligned}$	$\begin{aligned} & .008 \\ & (1.7) \end{aligned}$	$\begin{aligned} & .010 \\ & (2.3) \end{aligned}$	$\begin{aligned} & .008 \\ & (1.7) \end{aligned}$	$\begin{array}{r} -.055 \\ (-15.3) \end{array}$	$\begin{array}{r} -.058 \\ (-16.1) \end{array}$	$\begin{array}{r} -.057 \\ (-15.4) \end{array}$	$\begin{array}{r} -.059 \\ (-15.8) \end{array}$
Others' earnings (thousands)	$\begin{array}{r} .107 \\ (40.4) \end{array}$	$\begin{array}{r} .107 \\ (40.1) \end{array}$	$\begin{array}{r} .162 \\ (29.7) \end{array}$	$\begin{array}{r} .161 \\ (29.7) \end{array}$	$\begin{array}{r} .162 \\ (29.7) \end{array}$	$\begin{array}{r} .161 \\ (29.7) \end{array}$	$\begin{array}{r} 198 \\ (36.4) \end{array}$	$\begin{array}{r} .199 \\ (36.5) \end{array}$	$\begin{array}{r} .198 \\ (36.4) \end{array}$	$\begin{array}{r} .198 \\ (36.4) \end{array}$
Other income (thousands)	$\begin{aligned} & -.017 \\ & (-5.8) \end{aligned}$	$\begin{aligned} & -.018 \\ & (-6.1) \end{aligned}$	$\begin{aligned} & -.023 \\ & (-5.2) \end{aligned}$	$\begin{aligned} & -.027 \\ & (-6.0) \end{aligned}$	$\begin{aligned} & -.023 \\ & (-5.2) \end{aligned}$	$\begin{aligned} & -.027 \\ & (-6.0) \end{aligned}$	$\begin{aligned} & .007 \\ & (1.7) \end{aligned}$	$\begin{aligned} & .003 \\ & (0.6) \end{aligned}$	$\begin{aligned} & .007 \\ & (1.8) \end{aligned}$	$\begin{aligned} & .006 \\ & (1.4) \end{aligned}$
Married?	$\begin{array}{r} .116 \\ (40.8) \end{array}$	$\begin{array}{r} .117 \\ (41.0) \end{array}$	$\begin{array}{r} .074 \\ (17.8) \end{array}$	$\begin{aligned} & .025 \\ & (7.4) \end{aligned}$	$\begin{aligned} & .025 \\ & (7.5) \end{aligned}$	$\begin{aligned} & .025 \\ & (7.4) \end{aligned}$	$\begin{aligned} & .026 \\ & (7.5) \end{aligned}$			
Time trend	$\begin{array}{r} -.149 \\ (-55.4) \end{array}$	$\begin{array}{r} -.130 \\ (-50.9) \end{array}$	$\begin{array}{r} -.225 \\ (-50.8) \end{array}$	$\begin{array}{r} -.188 \\ (-44.3) \end{array}$	$\begin{array}{r} -.235 \\ (-16.3) \end{array}$	$\begin{array}{r} -.191 \\ (-13.0) \end{array}$	$\begin{array}{r} -.151 \\ (-37.5) \end{array}$	$\begin{array}{r} -.116 \\ (-30.5) \end{array}$	$\begin{array}{r} -.259 \\ (-18.4) \end{array}$	$\begin{array}{r} -.230 \\ (-16.4) \end{array}$
SSA earnings threshold	$-$	-	$-$	-	$\begin{aligned} & .010 \\ & \hline(0.7) \end{aligned}$	$\begin{aligned} & .003 \\ & (0.2) \end{aligned}$	-	-	$\begin{aligned} & -.016 \\ & (-2.4) \end{aligned}$	$\begin{aligned} & -.036 \\ & (-5.3) \end{aligned}$
Delayed retirement benefit 1990?	-	-	-	-	-	-	-	$-$	$\begin{aligned} & .008 \\ & (1.0) \end{aligned}$	$\begin{aligned} & .046 \\ & (6.5) \end{aligned}$
Freedom to Work Act 2000?							-	$-$	$\begin{aligned} & .042 \\ & (4.3) \end{aligned}$	$\begin{aligned} & .048 \\ & \hline(4.9) \end{aligned}$
Age discrimination in employment 1978?	-	-		-	-	-	-	$-$	$\begin{aligned} & .035 \\ & (4.6) \end{aligned}$	$\begin{aligned} & .013 \\ & (1.9) \end{aligned}$
Age discrimination in employment 1986?	-	$-$	-	$-$	$-$	$-$	-	-	$\begin{aligned} & .049 \\ & (6.9) \end{aligned}$	$\begin{aligned} & .022 \\ & (3.2) \end{aligned}$
Adjusted R-square	. 1148	. 1156	. 1258	. 1244	. 1258	. 1244	. 1177	. 1160	. 1186	. 1181
TFR elasticity	-. 152	-	-. 465	-	-. 463	-	-. 717	-	-. 640	-
Relative cohort size elasticity	-	-. 101	-	-. 254	-	-. 254	-	-. 371	-	-. 232
Number of observations	207,478	201,147	74,156	73,971	74,156	73,971	106,870	106,550	106,870	106,550

Notes: Reported hours worked are for years 1967-2008. Standardized coefficients and t-statistics are in parentheses. All regressions included 20 dummies for state groupings, age dummies, 4 education dummies, 3 race dummies, an MSA-specific unemployment rate, and 3 indicators of MSA resi-
dency status. Dash indicates not applicable.
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

55-61 age group, the estimated effects are strongest for the likelihood of reporting oneself as retired: . 373 (for RCS) and .802 (for TFR). For those ages 62-64, the effects are very strong for both the propensity to report oneself as retired, with elasticities of .396 for the RCS and .833 for the TFR, and the propensity to claim Social Security benefits, .327 for the RCS and .677 for the TFR. (These effects on reporting oneself as retired and claiming Social Security benefits were both after controlling for the Social Security earnings threshold; the effects are actually increased by adding this control.) Overall, the effects of the two cohort size variables are actually strongest for the $62-64$ age group. The weakest estimated elasticities were for hours worked among those in the 55-61 age group
(-. 09 for RCS and -.15 for TFR).
The estimated effect of the earnings threshold is not significant for any of the four variables for the 62-64 age group, ${ }^{35}$ but the earnings threshold exerted a negative effect on hours worked for the 65-69 age group (with a corresponding positive effect of the Freedom to Work Act after 2000). In the case of the other three variables for those ages 65-69, the threshold has a statistically significant positive effect only for the propensity to report oneself as retired, but only with the RCS-not with the TFR. Of the four dummy variables for those ages 65-69, only that for the Freedom to Work Act has consistently significant effects; the effects are positive for hours worked and negative for the other three variables.

Table 3. Independent variable binary probit estimated coefficients on relative cohort size measures for three retirement indicators (marginal effects)

Value	Men ages 55-61	Men ages 62-64		Men ages 65-69	
	Without SSA controls		With SSA controls	Without SSA controls	With SSA controls
Not in the labor force					
Lagged total fertility rate	$\begin{aligned} & 0.034 \\ & (19.4) \\ & {[.424]} \end{aligned}$	$\begin{aligned} & \hline 0.095 \\ & (26.4) \\ & {[.550]} \end{aligned}$	$\begin{aligned} & 0.095 \\ & (25.8) \\ & {[.546]} \end{aligned}$	$\begin{aligned} & \hline 0.064 \\ & (23.5) \\ & {[.251]} \end{aligned}$	$\begin{array}{r} 0.052 \\ (9.7) \\ {[.204]} \end{array}$
Relative cohort size (state-year specific)	$\begin{array}{r} .130 \\ (23.6) \\ {[.286]} \\ \hline \end{array}$	$\begin{array}{r} .306 \\ (26.1) \\ {[.309]} \end{array}$	$\begin{array}{r} .307 \\ (25.7) \\ {[.310]} \end{array}$	$\begin{array}{r} .215 \\ (23.6) \\ {[.148]} \end{array}$	$\begin{array}{r} .148 \\ (12.3) \\ {[.102]} \end{array}$
Retired (as self-reported) ${ }^{1}$					
Lagged total fertility rate	$\begin{aligned} & \hline 0.021 \\ & (21.1) \\ & {[.802]} \end{aligned}$	$\begin{aligned} & \hline 0.075 \\ & (24.8) \\ & {[.732]} \end{aligned}$	$\begin{aligned} & \hline 0.076 \\ & (24.6) \\ & {[.833]} \end{aligned}$	$\begin{aligned} & \hline 0.079 \\ & (26.2) \\ & {[.429]} \end{aligned}$	$\begin{array}{r} \hline 0.059 \\ (9.8) \\ {[.317]} \end{array}$
Relative cohort size (state-year specific)	$\begin{array}{r} .055 \\ (18.8) \\ {[.373]} \\ \hline \end{array}$	$\begin{array}{r} .202 \\ (21.3) \\ {[.392]} \end{array}$	$\begin{array}{r} .204 \\ (21.1) \\ {[.396]} \end{array}$	$\begin{array}{r} .226 \\ (23.1) \\ {[.216]} \\ \hline \end{array}$	$\begin{array}{r} .117 \\ (9.0) \\ {[.112]} \end{array}$
Claiming Social Security benefits					
Lagged total fertility rate	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.104 \\ & (29.1) \\ & {[.673]} \end{aligned}$	$\begin{aligned} & 0.105 \\ & (28.7) \\ & \text { [.677] } \end{aligned}$	$\begin{array}{r} 0.05 \\ (21.9) \\ {[.168]} \end{array}$	$\begin{aligned} & 0.065 \\ & (14.7) \\ & {[.219]} \end{aligned}$
Relative cohort size (state-year specific)	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} .287 \\ (24.8) \\ {[.326]} \\ \hline \end{array}$	$\begin{array}{r} .288 \\ (24.4) \\ {[.327]} \\ \hline \end{array}$	$\begin{array}{r} .133 \\ (17.5) \\ {[.079]} \\ \hline \end{array}$	$\begin{array}{r} .098 \\ (9.8) \\ {[.058]} \end{array}$

${ }^{1}$ Represents a binary variable set to 1 for those identifying themselves as retired. This is a self-reported variable, and is derivative in the CPS. That is, the CPS is not designed specifically to elicit statistics on retirement; rather, retirement is a reason that can be given for not having worked in the previous year.

Notes: Regarding marginal effects, t-statistics are in parentheses, and
elasticities are in brackets. All regressions included the variables displayed in table 1 plus 20 dummies for state groupings, age dummies, 4 education dummies, 3 race dummies, an MSA-specific unemployment rate, and 3 indicators of MSA residency status. Dash indicates not applicable.
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

In terms of own-wage elasticities, there is a marked difference across age groups. For hours worked, the effect is strongly positive for those ages 55-61, barely significant for those ages $62-64$, and strongly negative for those ages $65-69$, as shown on table 2 . Conversely, in results available from the author, the effect on the propensity to be out of the labor force, and to report oneself as retired, is strongly negative for those ages 55-61, not significant for those ages $62-64$, and strongly positive for those ages 65-69. There is a consistent, strongly negative effect in the older age groups for the propensity to claim Social Security benefits.
Marriage has consistent strong effects across all three age groups for hours worked (positive) and propensity to be out of the labor force (negative). In terms of the propensity to report oneself as retired, the effect for the two older age groups is not significant, and it is only barely negatively significant for the 55-61 age group. For claiming Social Security benefits, the effect is strongly negative for those ages 62-64, and strongly positive for those ages 65-69. The effect of "others' earnings," presumably in most cases a wife's earnings, is consistently and significantly positive for hours worked for all age groups, and is negative for the
three retirement indicators. These two effects-the effect of marriage generally and of a wife's employment-suggest support for the hypothesis that men tend not to retire when their wives are still in the labor force.
As might be expected, other income, including such items as interest, rent, and dividends, has a negative effect on hours worked and a positive effect on the other three variables for the two younger age groups. For those ages 65-69, however, the effects are only significant for the two retirement variables. The effect of the time trend is strongly negative on hours worked and positive on the other three indicators, even after controlling for other variables.
Table 4 is an attempt to estimate the real-world significance of the relative cohort size variables. The table indicates the maximum positive and negative changes that occurred in each of the four variables for each age group (using the means reported in appendix tables A-1 through A-3), and then estimates the percentage of those changes that might be attributed to changes in the two relative cohort size variables, using the estimated marginal effects of the RCS variables. In the case of annual hours worked,

Chart 4. Social Security earnings thresholds for workers ages 62-64 and 65-69

SOURCE: Social Security Administration,"Annual Statistical Supplement 2010, table 2.A29.
the decreases occurred in the first half of the study period, while the increases occurred in the second half of the period. The opposite is true for the other three variables.
Overall, the effects seem to be most realistic for the first half of the period, when hours worked were declining and the other three variables were increasing. In that period, each of the RCS and TFR variables is estimated to account for an average of about 29 percent of the observed changes over all four variables and three age groups. The lowest proportions were for those reporting themselves as retired, where each of the two cohort size variables accounted for about 22 percent of the observed changes.
In general, the two variables overpredict changes in the second half of the period, when hours worked were increasing and the other three variables were decreasing. On average, the RCS explains 124 percent of the changes in the second half of the period, while the TFR explains 171 percent of the observed changes in that period. However, looking just at the two older age groups, the RCS explains an average of 80 percent of the observed second-half changes, while the TFR explains 138 percent. Excluding
the proportion reporting themselves as retired, for the two older age groups in the second half of the period, the RCS explains 72 percent of the observed changes, while the TFR explains 120 percent of the observed changes. This tendency to overpredict in the second half of the period could be the effect of a "stickiness" in behavior once the pattern of earlier retirement had been set by the earlier cohorts.
Recapping the results in table 4, for the two older age groups, the RCS appears to provide the most realistic estimates, as it predicts 29 percent of the changes in the first half of the period and 80 percent of the changes in the second half of the period.
Finally, table 5 looks at the potential explanatory power of the relative cohort size variables for men with lower levels of education-that is, fewer than thirteen years, or at most a high school education. The hypothesis in estimating these effects was that, if bridge jobs are generally lower-skilled jobs, then men with lower levels of education would be more likely to move into them. Thus the competition with younger workers might be greater for

Table 4. Potential explanatory power of the relative cohort size variables for men ages 55-69							
Category		Men ages 55-61		Men ages 62-64		Men ages 65-69	
	Max increase	Max decrease	Max increase	Max decrease	Max increase	Max decrease	
Average annual hours worked	63.3	305.3	183.8	664.2	184.0	393.8	
Percent explained by changes in RCS	169.3	37.3	100.0	29.4	54.6	26.9	
Percent explained by changes in TFR	167.3	20.9	119.6	19.9	128.9	44.7	
Proportion not in the labor force	.133	.010	.268	.091	.164	.097	
Percent explained by changes in RCS	31.1	390.0	36.6	101.0	33.8	54.2	
Percent explained by changes in TFR	17.3	380.0	23.9	116.6	40.8	92.8	
Proportion reporting themselves as retired'	.080	.010	.242	.055	.243	.044	
Percent explained by changes in RCS	21.9	170.0	26.8	110.9	18.0	94.4	
Percent explained by changes in TFR	17.2	230.0	21.1	153.1	30.9	229.7	
Proportion claiming Social Security benefits	-	-	.247	.123	.147	.067	
Percent explained by changes in RCS	-	-	37.2	70.0	24.9	51.9	
Percent explained by changes in TFR	-	-	28.4	94.9	56.9	168.2	

${ }^{1}$ Represents a binary variable set to 1 for those identifying themselves as retired in a CPS question about why they did not work in the previous year.
NOTES: This table uses the averages and proportions reported in tables A-1 through A-3 and estimated marginal effects from the regressions reported in tables 2 and 3. For men ages 62-64 and 65-69, the marginals
used are those estimated in equations controlling for the various changes in Social Security regulations. The estimated effects are larger when these changes are not controlled for. Dash indicates not applicable.
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

Table 5. Potential explanatory power of the relative cohort size variables for men ages 55-69 with fewer than 13 years of education

Category	Men ages 55-61		Men ages 62-64		Men ages 65-69	
	Max increase	Max decrease	Max increase	Max decrease	Max increase	Max decrease
Average annual hours worked Percent explained by changes in RCS Percent explained by changes in TFR	$\begin{array}{r} 61.9 \\ 183.6 \\ 278.2 \end{array}$	$\begin{array}{r} 417.5 \\ 28.9 \\ 31.1 \end{array}$	$\begin{aligned} & 162.6 \\ & 116.6 \\ & 229.1 \end{aligned}$	$\begin{array}{r} 756.8 \\ 26.6 \\ 37.1 \end{array}$	$\begin{array}{r} 152.4 \\ 57.2 \\ 175.3 \end{array}$	$\begin{array}{r} 420.6 \\ 22.0 \\ 47.9 \end{array}$
Proportion not in the labor force Percent explained by changes in RCS Percent explained by changes in TFR	$\begin{aligned} & .146 \\ & 32.4 \\ & 33.4 \end{aligned}$	$\begin{array}{r} 0 \\ \left.{ }^{(2}\right) \end{array}$	$\begin{aligned} & .198 \\ & 49.8 \\ & 66.1 \end{aligned}$	$\begin{array}{r} .080 \\ 115.9 \\ 217.1 \end{array}$	$\begin{aligned} & .074 \\ & 66.2 \\ & 91.4 \end{aligned}$	$\begin{array}{r} .069 \\ 66.7 \\ 130.0 \end{array}$
Proportion reporting themselves as retired ${ }^{1}$ Percent explained by changes in RCS Percent explained by changes in TFR	$\begin{aligned} & .080 \\ & 25.0 \\ & 39.2 \end{aligned}$	$\begin{array}{r} .022 \\ 90.9 \\ 189.1 \end{array}$	$\begin{aligned} & .242 \\ & 30.3 \\ & 46.6 \end{aligned}$	$\begin{array}{r} .068 \\ 101.7 \\ 219.7 \end{array}$	$\begin{gathered} .261 \\ 18.1 \\ 30.4 \end{gathered}$	$\begin{array}{r} .071 \\ 63.0 \\ 150.4 \end{array}$
Proportion claiming Social Security benefits Percent explained by changes in RCS Percent explained by changes in TFR	—	—	$\begin{aligned} & .289 \\ & 33.8 \\ & 52.3 \end{aligned}$	$\begin{array}{r} .113 \\ 81.2 \\ 177.4 \end{array}$	$\begin{aligned} & .149 \\ & 74.1 \\ & 54.9 \end{aligned}$	$\begin{array}{r} .073 \\ 41.8 \\ 151.0 \end{array}$

[^1]the author. For men ages 62-64 and 65-69, the marginals used are those estimated in equations controlling for the various changes in Social Security regulations. The estimated effects are larger when these effects are not controlled for. Dash indicates not applicable.
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.
this group. In addition, this group might be less likely to have adequate savings or pensions for support in retirement, and therefore might be more likely to move into bridge jobs rather than directly into retirement.
Table 5 is based on separate regressions, not shown here, but available from the author on request. The averages and proportions observed over the years for those with lower levels of education are reported in appendix table A-4. Using both the marginal effects in the estimated equations and the observed changes in the relative cohort size variables, table 5 attempts to explain the changes observed in
table A-4. In general, the explanatory power of the relative cohort size variables is better for this group, with changes in the RCS explaining about 37 percent of the changes in the first half of the period (compared with 29 percent for men at all levels of education) and 92 percent in the second half of the period (compared with 124 percent for all men). Changes in the TFR explain about 34 percent in the first half (compared with 29 percent for all men) and 192 percent in the second half (compared with 171 percent for all men). The best explanatory power for this education group occurs with the RCS for the two older age groups, in
this case for the proportion out of the labor force (58 percent in the first half and 91 percent in the second) and the proportion claiming Social Security benefits (54 percent in the first half and 62 percent in the second.)

THIS STUDY HAS MADE USE of a measure of relative cohort size: the number of 25-34 year old men working part year and/or part time relative to the number of 55-69 year old men in the labor force. For purposes of analysis, the measure was calculated, using March Current Population Survey (CPS) data, for each man at the level of his state. This relative cohort size measure might be thought of as a direct function of a 30 -year lag of the total fertility rate, a measure often used to illustrate the effects of the postWorld War II baby boom. This correspondence relates to the fact that the TFR indicates the number of children per woman of childbearing age, so that a 30 -year lag can be thought of as an exogenous representation of the ratio of 25-34 year olds relative to 55-69 year olds.
More importantly, the relative cohort size measure has been shown here to be a highly significant factor-both statistically and substantively-affecting older men's annual hours worked, labor force participation, propensity to report themselves as retired, and propensity to claim Social Security benefits. In general terms, relative cohort size can be said to have generated about 29 percent of the observed changes in these variables in the period up to about 1990. The variable does, however, somewhat overpredict observed changes in the period since 1990, with the ratio of 25-34 year old part-time workers relative to 55-69 year olds in the labor force overpredicting by 24 percent the observed changes in these four variables in the later period.

Notes

[^2]For men with at most a high school education-such men are most likely to work in bridge jobs-the explanatory power of the relative cohort size variable is somewhat better, explaining about 37 percent of changes in the early period and 92 percent in the second. The explanatory power is best for men in the age groups 62-64 and 65-69; for the proportion out of the labor force and proportion claiming Social Security benefits among these age groups, the RCS variable explains on average 56 percent of changes in the first part of the study period and 76 percent in the second period.
However, a significant portion of the sharp decline in annual hours worked and labor force participation in the 1970s remains unexplained, indicating the considerable role played by the other factors that have been identified as important in affecting older men's decision to retire: access to health insurance, and changes in Social Security and pensions.
We have begun to experience the entry of the "echo boom" into the labor market, and one might initially expect that this would once again tend to motivate older workers to retire at higher rates as the echo boom moves into its twenties and thirties. However, the ratio of these young workers to older workers will remain low because the older workers will themselves be members of the large baby boom cohort. Hence, it remains to be seen whether it is the absolute or the relative size of the younger cohort which is significant in affecting patterns in the older cohort, or whether the large size of the retiring cohort itself may affect its labor force participation patterns. Any attempt to tease out the effects will have to differentiate them from the effects of the recent recession and diminution of 401(k)s.

[^3]
Retirement Patterns Among Men

${ }^{9}$ Lynn A. Karoly and Jeannette A. Rogowski,"The Effects of Access to Post-Retirement Health Insurance on the Decision to Retire Early," Industrial and Labor Relations Review, October 1994, pp. 103-123.
${ }^{10}$ David M. Blau and Donna B.Gilleskie, "Retiree Health Insurance and the Labor Force Behavior of Older Men in the 1990s," The Review of Economics and Statistics, February 2001, pp. 64-80.
${ }^{11}$ Richard W. Johnson, Amy J. Davidoff, and Kevin Perese, "Health Insurance Costs and Early Retirement Decisions," Industrial and Labor Relations Revierw, Cornell University, July 2003, pp. 716-729.
${ }^{12}$ Dan A. Black and Xiaoli B. Liang, "Local Labor Market Conditions and Retirement Behavior," Working Paper 2005-08, Center for Retirement Research at Boston College, May 2005.
${ }^{13}$ Alicia H.Munnell, Mauricio Soto, Robert K. Triest, and Natalia A. Zhivan, How Much Do State Economics and Other Characteristics Affect Retirement Behavior? Working Paper 2008-12, Center for Retirement Research at Boston College, 2008.
${ }^{14}$ The average income of men ages 45-54 increased between 1970 and 2010 by only 2.5 percent in real terms. Over a 40 -year timespan, we would expect improvements in productivity to lead to more growth than this.
${ }^{15}$ Kevin E. Cahill, Michael D. Giandrea, and Joseph F. Quinn, "Reentering the labor force after retirement," Montbly Labor Review, June 2011, pp. 34-41.
${ }^{16}$ Michael D. Giandrea, Kevin E. Cahill, and Joseph F. Quinn, SelfEmployment Transitions Among Older American Workers with Career Jobs, Boston College Working Papers in Economics, no. 684, 2008; and Bridge Jobs: A Comparison Across Cohorts, Boston College Working Papers in Economics, no. 670, 2008.
${ }^{17}$ Christopher J. Ruhm, "Secular changes in the work and retirement patterns of older men," The Journal of Human Resources, Spring 1995, pp. 362-385.
${ }^{18}$ Quinn, New Paths to Retirement and Has the Early Retirement Trend Reversed? Giandria et al., A Micro-Level Analysis of Recent Trends in Labor Force Participation among Older Workers, Working Paper 200808, Center for Retirement Research at Boston College, 2008.
${ }^{19}$ Christopher J. Ruhm, "Bridge jobs and partial retirement," Journal of Labor Economics, University of Chicago Press, October 1990, pp. 482-501.
${ }^{20}$ Franco Peracchi and Finis Welch, "Trends in labor force transitions of older men and women," Journal of Labor Economics, April 1994, pp. 210-242.
${ }^{21}$ Peracchi and Welch, "Trends in labor force transitions."
${ }^{22}$ Macunovich, "The Fortunes of One's Birth" and Birth Quake.
${ }^{23}$ See Macunovich, "The Fortunes of One's Birth."
${ }^{24}$ Data used from Unicon Corporation's CPS utilities were for the years 1968-2009.
${ }^{25}$ Those in the military were excluded from the analysis, however.
${ }^{26}$ There were 51 separate jurisdictions (50 states and the District of Columbia) identified from 1977 to 2009, 22 from 1973 to 1976, and 30 from 1968 to 1972.
${ }^{27}$ MSA was not available prior to 1977, so state-level variables were used, specific to each age group, for those years. After 2004, BLS changed from MSAs to Consolidated Statistical Areas (CSA). The resulting number of levels used in each year was 21 for 1969-1976, 45 for 1977-1985, 248 for 1986-2004, 281 for 2005, and 265 for 2006-2009. For those not living in an MSA, the state-level variable was used.
${ }^{28}$ As noted previously, the binary variable "retired" is a self-reported variable that is is derivative in the CPS. The CPS is not designed specifically to elicit statistics on retirement; rather, retirement is a reason that can be given for not having worked in the previous year.
${ }^{29}$ There were 21 state groupings that were consistently available during all 42 years.
${ }^{30}$ Because the variable "hours worked per week in the previous year" was not available prior to 1976 and weeks worked in the previous year were available only in groupings, an imputation algorithm developed by Finis Welch in 1979 was used to allocate hours and weeks worked for these years. Details are available from the author upon request. Also, see Finis Welch, "Effects of Cohort Size on Earnings: The Baby Boom Babies'Financial Bust,"Journal of Political Economy, The University of Chicago Press, October 1979, pp. S65-S97.
${ }^{31}$ This technique was used by Francine D. Blau and Lawrence M. Kahn in "Changes in the Labor Supply Behavior of Married Women, 1980-2000," Journal of Labor Economics, University of Chicago Press, July 2007, pp. 393-438.
${ }^{32}$ The same technique was used in Blau and Kahn, "Changes in the Labor Supply Behavior."
${ }^{33}$ Blau and Kahn, "Changes in the Labor Supply Behavior," p. 406.
${ }^{34}$ See endnote 26.
${ }^{35}$ The detailed regression results for the three variables reported in table 3 are available from the author upon request.

APPENDIX: Supplementary tables

Table A-1. Summary statistics for men ages 55-61

Category	1969-1971	1974-1976	1979-1981	1984-1986	1989-1991	1994-1996	1999-2001	2007-2009	1968-2009
Average annual hours worked ${ }^{1}$	1,942.9	1,795.9	1,732.9	1626.0	1,637.6	1,606.7	1,670.0	1,636.6	1,704.7
Proportion not in the labor force	. 124	. 176	. 211	. 243	. 241	. 257	. 255	. 247	. 219
Proportion retired ${ }^{2}$. 018	. 035	. 056	. 085	. 091	. 096	. 098	. 086	. 071
Relative cohort size ${ }^{3}$. 295	. 422	. 559	. 669	. 624	. 613	. 364	. 314	. 498
Lagged total fertility rate	2.236	2.588	3.085	3.519	3.600	2.906	2.366	1.791	2.731
Unemployment rate	. 033	. 043	. 035	. 054	. 048	. 048	. 033	. 050	. 044
Logwage	2.924	3.021	3.100	3.070	3.061	3.056	3.097	3.079	3.063
Other's earnings ${ }^{4}$	21,074	20,862	22,394	22,470	26,083	25,785	29,767	31,242	25,653
Other income ${ }^{5}$	-	-	4,830	6,467	6,783	6,204	7,405	5,310	4,743
Proportion married	. 867	. 828	. 828	. 819	. 792	. 786	. 748	. 715	. 798
Fewer than 12 years of school	. 548	. 446	. 368	. 343	. 268	. 203	. 144	. 104	. 295
12 years of school	. 265	. 335	. 334	. 335	. 363	. 341	. 333	. 294	. 322
13-15 years of school	. 086	. 101	. 125	. 119	. 139	. 204	. 224	. 267	. 163
16 years of school	. 053	. 065	. 098	. 106	. 108	. 141	. 159	. 199	. 119
More than 16 years of school	. 048	. 053	. 075	. 097	. 122	. 111	. 140	. 136	. 101
Black	. 026	. 077	. 083	. 090	. 093	. 091	. 088	. 097	. 081
Hispanic	. 008	. 025	. 033	. 045	. 060	. 065	. 075	. 087	. 051
Other	. 003	. 011	. 015	. 019	. 025	. 032	. 042	. 054	. 026
Sample size	13,973	12,467	16,566	14,960	13,212	11,682	11,901	22,463	209,436

${ }^{1}$ Includes those with 0 hours. Hours were imputed for years before 1976 using the algorithm from Finis Welch, "Effects of Cohort Size on Earnings: The Baby Boom Babies' Financial Bust," Journal of Political Economy, October 1979.
${ }^{2}$ As self-reported: reason given for not working.
${ }^{3}$ Number of men ages 25-34 working part time and/or part year divided
by number of men in the labor force ages 55-69.
${ }^{4}$ Total family earnings minus own earnings.
${ }^{5}$ Interest, dividends, and rent. Data not available in first two periods.
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

Table A-2. Summary statistics for men ages 62-64

Category	1969-1971	1974-1976	1979-1981	1984-1986	1989-1991	1994-1996	1999-2001	2007-2009	1968-2009
Average annual hours worked ${ }^{1}$	1,611.3	1,355.6	1,212.6	1,044.8	995.1	947.1	1,040.0	1,130.9	1,163.0
Proportion not in labor force	. 295	. 411	. 464	. 533	. 548	. 563	. 523	. 472	. 472
Proportion retired ${ }^{2}$. 093	. 135	. 204	. 284	. 317	. 335	. 309	. 280	. 280
Proportion claiming Social Security benefits	. 253	. 371	. 429	. 476	. 491	. 500	. 469	. 377	. 422
Relative cohort size ${ }^{3}$. 295	. 422	. 559	. 669	. 624	. 613	. 364	. 314	. 498
Lagged total fertility rate	2.236	2.588	3.085	3.519	3.600	2.906	2.366	1.791	2.731
Unemployment rate	. 028	. 048	. 039	. 051	. 041	. 050	. 033	. 048	. 043
Logwage	2.882	2.941	3.011	3.004	3.076	2.855	3.007	3.123	3.001
Others' earnings ${ }^{4}$	17,878	17,791	18,759	17,730	20,477	19,739	25,078	26,483	20,763
Other income ${ }^{5}$	-	-	5,549	7,859	8,454	6,424	6,934	6,433	5,358
Proportion married	. 831	. 823	. 824	. 808	. 805	. 796	. 774	. 754	. 801
Fewer than 12 years of school	. 612	. 543	. 435	. 368	. 331	. 242	. 198	. 116	. 347
12 years of school	. 210	. 266	. 322	. 337	. 322	. 329	. 334	. 287	. 307
13-15 years of school	. 079	. 091	. 116	. 117	. 138	. 190	. 208	. 248	. 148
16 years of school	. 099	. 050	. 071	. 098	. 113	. 130	. 141	. 194	. 107
More than 16 years of school	. 049	. 050	. 056	. 080	. 096	. 109	. 119	. 155	. 091
Black	. 025	. 087	. 081	. 084	. 089	. 087	. 085	. 082	. 078
Hispanic	. 006	. 025	. 026	. 042	. 048	. 061	. 074	. 078	. 046
Other	. 003	. 008	. 012	. 020	. 022	. 022	. 039	. 048	. 024
Sample size	8,495	10,707	10,402	9,801	8,956	7,378	6,771	12,282	128,820

[^4]Table A-3. Summary statistics for men ages 65-69

Category	1969-1971	1974-1976	1979-1981	1984-1986	1989-1991	1994-1996	1999-2001	2007-2009	1968-2009
Average annual hours worked ${ }^{1}$	863.7	637.8	541.0	469.9	518.6	538.8	574.8	653.9	585.1
Proportion not in the labor force	. 584	. 676	. 713	. 748	. 732	. 727	. 701	. 651	. 697
Proportion retired ${ }^{2}$. 317	. 414	. 476	. 562	. 559	. 560	. 548	. 516	. 503
Proportion receiving Social Security benefits	. 703	. 794	. 836	. 850	. 832	. 841	. 823	. 783	. 812
Relative cohort size ${ }^{3}$. 295	. 422	. 559	. 669	. 624	. 613	. 364	. 314	. 498
Lagged total fertility rate	2.236	2.588	3.085	3.519	3.600	2.906	2.366	1.791	2.731
Unemployment rate	. 040	. 062	. 045	. 042	. 032	. 035	. 033	. 051	. 044
Logwage	2.681	2.762	2.815	2.894	2.873	2.923	2.967	2.905	2.861
Other's earnings ${ }^{4}$	12,309	11,698	11,398	11,236	12,761	13,769	16,347	17,475	13,237
Other income ${ }^{5}$	-	-	7,166	9,589	10,223	7,818	10,279	8,287	6,914
Proportion married	. 778	. 814	. 798	. 796	. 794	. 777	. 778	. 767	. 788
Fewer than 12 years of school	. 696	. 609	. 544	. 440	. 377	. 300	. 237	. 156	. 409
12 years of school	. 157	. 207	. 260	. 326	. 320	. 324	. 326	. 339	. 287
13-15 years of school	. 056	. 081	. 089	. 103	. 125	. 174	. 199	. 210	. 133
16 years of school	. 054	. 058	. 059	. 064	. 097	. 116	. 139	. 154	. 095
More than 16 years of school	. 037	. 045	. 048	. 067	. 081	. 086	. 099	. 141	. 076
Black	. 025	. 089	. 087	. 080	. 081	. 078	. 089	. 081	. 079
Hispanic	. 006	. 023	. 028	. 035	. 045	. 058	. 067	. 073	. 042
Other	. 003	. 010	. 015	. 019	. 027	. 023	. 039	. 054	. 025
Sample size	6,524	8,877	8,537	7,990	7,736	6,503	5,540	9,110	106,870

[^5]
Table A-4. Labor force characteristics for men with fewer than 13 years of education

Category	1969-1971	1974-1976	1979-1981	1984-1986	1989-1991	1994-1996	1999-2001	2007-2009	1968-2009
Men ages 55-61									
Annual hours worked	1,893.4	1,741.0	1,634.2	1,516.5	1,512.9	1,475.9	1,485.7	1,414.0	1,579.2
Proportion not in the labor force	. 134	. 193	. 244	. 279	. 280	. 300	. 319	. 329	. 262
Proportion reporting themselves as retired	. 017	. 032	. 060	. 089	. 097	. 079	. 089	. 075	. 067
Men ages 62-64									
Annual hours worked	1,550.4	1,288.7	1,124.8	919.1	881.7	793.6	910.3	956.2	1,046.1
Proportion not in the labor force	. 321	. 440	. 498	. 588	. 601	. 638	. 589	. 558	. 529
Proportion reporting themselves as retired	. 096	. 134	. 213	. 302	. 338	. 324	. 294	. 270	. 249
Proportion claiming Social Security benefits	. 275	. 398	. 470	. 526	. 545	. 564	. 529	. 451	. 473
Men ages 65-69									
Annual hours worked	807.9	564.3	474.1	392.5	396.7	387.3	446.0	539.7	493.9
Proportion not in the labor force	. 603	. 711	. 746	. 785	. 773	. 785	. 750	. 716	. 737
Proportion reporting themselves as retired	. 323	. 424	. 489	. 584	. 581	. 562	. 546	. 513	. 511
Proportion claiming Social Security benefits	. 729	. 824	. 858	. 878	. 860	. 870	. 844	. 805	. 837
SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.									

Older workers and short-term jobs: patterns and determinants

Data from the longitudinal Health and Retirement Study indicate that, among older Americans with work experience since age 50, approximately 12 percent of men and 32 percent of women never held a full-time career job; the retirement patterns of these non-full-time career older workers are diverse, just as they are for individuals with career jobs

Kevin E. Cahill,
Michael D. Giandrea, and
Joseph F. Quinn

Kevin E. Cahill is a research

 economist at the Sloan Center on Aging \& Work at Boston College, Chestnut Hill, MA; Joseph F. Quinn is the James P. McIntyre Professor of Economics in the Department of Economics at Boston College and is also affiliated with the Sloan Center on Aging \& Work; Michael D. Giandrea is a research economist in the Office of Productivity and Technology, Bureau of Labor Statistics, Washington, DC. Email: giandrea.michael@bls. gov. All views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the Bureau of Labor Statistics. The Alfred P Sloan Foundation supported this research through a grant to the Sloan Center on Aging \& Work at Boston College.TThe retirement patterns of career workers have been studied extensively. One of the main findings of this literature is that a majority of older Americans with career jobs make at least one job change prior to leaving the labor force; only a minority leave a career job and the labor force simultaneously. ${ }^{1}$ Kevin Cahill, Michael Giandrea, and Joseph Quinn found that 60 percent of older workers who left full-time career employment moved to short-duration or parttime employment (known as bridge jobs) before exiting the labor force. ${ }^{2}$ In another paper, these authors found that a substantial minority (approximately 10 percent) of individuals with wage-and-salary career jobs move into self-employment later in life. ${ }^{3}$ Likewise, evidence suggests that many workers (approximately 15 percent) with career jobs reenter the labor force after "retiring," that these reentry decisions are often voluntary, and that they are frequently anticipated prior to the workers' leaving career employment. ${ }^{4}$ Collectively, these findings suggest that many career workers change jobs later in life and exit the labor force gradually.

An important question is whether the findings also apply to individuals who have never held a full-time career job. This question is relevant because a sizable fraction of older American workers-approximately 12 percent of men and about one-third of women-did not have a career job. ${ }^{5}$ Thus, policy decisions based upon the existing literature may have different and unintended consequences for workers with intermittent work histories and a more tenuous connection to the labor force. For example, policies that promote work later in life are often proposed as a way to alleviate the financial burden of an aging population. As the ratio of workers to retirees shifts from about 3 to 1 today to near 2 to 1 by 2030, policymakers may keep looking for ways to encourage continued labor force participation among individuals who have reached traditional retirement ages. ${ }^{6}$

Retirement studies often analyze factors, such as wealth, private pensions, and employerprovided health insurance, that are more likely to be important to full-time career workers than they are to others. For example, Courtney Coile and Phillip Levine used data from the Health and Retirement Study, the Current Population Survey, and the Survey of Consumer Finances to examine the effect of wealth on labor force activ-
ity, ${ }^{7}$ and several studies from the 1990s addressed the role of defined-benefit pensions in the labor force behavior of older workers. ${ }^{8}$ More recent studies have examined the impact of defined-contribution plans on retirement outcomes, but these, too, are still unlikely to apply to many non-full-time career workers. ${ }^{9}$ Similarly, many studies have focused on the impact of health insurance on the work-vs.-leisure decisions of older Americans, but this coverage is also unlikely to apply to most parttime or short-duration workers. ${ }^{10}$

Other studies that do address topics related to noncareer workers by and large do not focus on older individuals, or they focus on short-term involuntary job losses late in life. For example, examining how intermittent work histories affect the wages of women, Julie Hotchkiss and Melinda Pitts found that intermittency resulted in a wage penalty even at low levels of labor force absence. ${ }^{11}$ In another study, Jay Stewart used data from the Current Population Survey and the National Longitudinal Survey of Youth to examine the work histories of noncareer men and found that it was generally the same cadre of men who did not work from year to year. Stewart, however, did not follow these men through retirement. ${ }^{12}$ Two other papers, one by Julie Whittaker and the other by Sewin Chan and Ann Huff Stevens, focus on unemployment among older workers and the likelihood that they will drop out of the labor force permanently after a spell of unemployment. ${ }^{13}$ Although these two papers examine the role that retirement income sources play in the labor force outcomes of older workers, a topic that is relevant to the present study, the research presented in them focuses on individuals who experienced a spell of nonemployment later in life, as opposed to those with an entire work history without full-time career employment.

This article combines two strands of the literature by examining the labor force behavior of older individuals with a history of short-duration jobs and comparing their behavior with that of older career workers. The next section provides a brief description of the dataset used—the Health and Retirement Study (HRS)—and the research methods employed. The third section examines demographic and economic characteristics and labor force outcomes, by career job status, and the last section summarizes and discusses the main findings.

Data and methods

The HRS is a rich, nationally representative dataset with an initial base of more than 12,600 individuals
born between 1931 and 1941 (hence aged 51-61 in 1992). ${ }^{14}$ The data are longitudinal, with interviews conducted every 2 years since 1992. Attrition across waves ranged from 4 percent to 9 percent per year, and after 16 years about 62 percent of the original HRS core sample remained.

The analysis that follows focuses on men and women who have never held a full-time career job, defined here as a job in which an individual works 1,600 or more hours per year for at least 10 years. To identify these individuals, information from the initial 1992 interview is combined with employment information from subsequent interviews to construct a labor force history for each individual. Questions in the first interview ask about a respondent's current job and all previous jobs that lasted 5 or more years. If a respondent was not working at the time of the first interview, he or she was asked about the most recent job held, if any. The large majority of men and women responding to the HRS had work experience later in life, as shown in table 1. More than 90 percent of men and nearly 80 percent of women had worked since age 50 . Those with work experience since age 50 were stratified according to whether they had ever held a full-time career job. A sizable minority of individuals with work experience after age 50-12 percent of men and 32 percent of women-had not held a full-time career position.

Results

Demographic and economic characteristics by full-time career job status. The demographic and economic characteristics

Table 1. Sample size, by gender, survey participation, and work status, respondents ages 51-61 in 1992

Survey participation and work status	Total	Men	Women
Participated in first wave:			
n	12,652	5,869	6,873
Worked since age 50:			
n	10,639	5,353	5,286
Percentage of all respondents	84	91	78
No full-time career job in work history:			
n	2,298	633	1,665
Percentage of respondents who have worked since age 50	22	12	32
Full-time career job in work history:			
n	8,312	4,719	3,593
Percentage of respondents who have worked since age 50	78	88	68

[^6]examined, stratified by gender and full-time career job status, are based on responses from the first interview in 1992. On average, for HRS respondents in 1992 who had worked since age 50 , those who had never held a full-time career job were older and in poorer health than those who did hold a full-time career job, and the former also were less likely to have a college degree. (See table 2.) ${ }^{15}$ Men without full-time career job experience were less likely to
be married than men with such experience, but their female counterparts were slightly more likely to be married. One-half of the men who never had a full-time career job had an employed spouse, compared with 57 percent of those with full-time career job experience. This statistic may indicate that employment and attachment to the labor force are complementary among spouses, as some of the literature suggests. ${ }^{16}$ The lower marriage rates among

Table 2. Demographic characteristics in 1992, by gender and full-time career job status, respondents with work experience since age 50
[In percent]

Characteristic	Total	Men			Women		
		All men	No full-time career job in work history	Full-time career job in work history	All women	No full-time career job in work history	Full-time career job in work history
Age: ${ }^{1}$							
Younger than 54	37	29	20	30	45	33	51
54-57	29	29	27	30	29	32	27
58-61	25	25	31	25	25	33	21
62 and older	9	17	22	16	2	2	2
Subjective health status: ${ }^{1}$							
Excellent or very good	54	52	36	54	56	48	59
Good	29	30	33	30	27	27	28
Fair or poor	18	18	31	17	17	25	13
Educational attainment: ${ }^{1}$							
College degree	19	22	18	23	16	12	18
Less than college degree	81	78	82	77	84	88	82
Marital status: ${ }^{1}$							
Married	82	88	81	89	75	77	74
Not married	18	12	19	11	25	23	26
Children: ${ }^{2}$							
Dependent children	15	17	19	16	14	12	15
No dependent children	85	83	81	84	86	88	85
Spouse's health status: ${ }^{3}$							
Excellent or very good	53	56	48	56	51	50	51
Good	28	27	29	27	29	31	29
Fair or poor	18	17	23	16	20	19	20
Spouse's employment status: ${ }^{3}$							
Employed spouse	55	56	50	57	55	53	55
No employed spouse	45	44	50	43	45	47	45
n	10,639	5,352	633	4,719	5,258	1,665	3,593

[^7]
among men.

[^8]women likely reflect a combination of women marrying older men, on average, and higher mortality rates among men.

The economic characteristics of the HRS respondents as of 1992 are presented in table 3. Men and women without a full-time career job in their work history were less likely than those with career jobs to have health insurance and also much less likely to have a defined-benefit or a defined-contribution pension on the job they reported in the first wave. In fact, two-thirds of these men and more than three-quarters of the women had no pension, compared with 31 percent of the men and 39 percent of the women with career job experience.

Consistent with their lower levels of education, men and women who never held a full-time career job were almost twice as likely as those with a full-time career job to be employed in a blue-collar position that did not require highly skilled labor. ${ }^{17}$ Moreover, the wage distributions of those with and those without a full-time career job in their work history were significantly different for both men and women. Men who never had a full-time career job were 3 times as likely as full-time career men to be making $\$ 6$ to $\$ 10$ per hour on their 1992 job and were half as likely to be earning between $\$ 20$ and $\$ 50$ per hour. Women who never held a full-time career job were about twice as likely as women who did to earn between $\$ 6$ and $\$ 10$ per hour and nearly half as likely to earn between $\$ 20$ and $\$ 50$ per hour.

Individuals without full-time career jobs also had lower levels of wealth than others. More than one-half of the men with no full-time career job in their work history had nonpension financial wealth of less than $\$ 25,000$, compared with about one-third of men with a career job. At the other end of the wealth spectrum, less than one-quarter of the men with no full-time career job in their work history had nonpension financial wealth of $\$ 100,000$ or more, compared with more than one-third of men with full-time career job experience. Among men, increased labor force attachment is associated with increased nonpension wealth, a relationship consistent with more and larger paychecks providing increased opportunities for saving. Among women, however, differences in nonpension financial wealth by full-time career job status were much less pronounced. This finding may reflect the extent to which wealth among women is dependent on marital status.

Retirement outcomes. The labor force outcomes examined in this article include work status and work intensity (i.e., part-time versus full-time work) at the time of each biennial HRS interview and the number and types
of job switches since the first interview. Not surprisingly, respondents were less likely to be working in later survey waves, regardless of career job status. (See chart 1). The patterns for men and women were remarkably similar, although women were somewhat more likely to be working in most survey years, reflecting in part the facts that (1) women with work experience since age 50 were, as a whole, younger than their male counterparts and (2) the spouses could be younger than the minimum age in the age range for respondents. In all survey years for both men and women, individuals with a full-time career job in their work history were significantly more likely to be working than those without.

Although the work status patterns of HRS respondents were similar by full-time career job status (i.e., a gradual monotonic decline in employment with age), those with and those without full-time career jobs in their work histories had different experiences with respect to part-time employment. (See chart 2.) As the respondents aged, parttime employment became increasingly common among individuals with a full-time career job in their work history, with substantial numbers of them moving into parttime work. When the career job respondents were 51 to 61 years old in 1992, only 10 percent of the men and 15 percent of the women were working part time. These percentages increased steadily to 50 or more percent (of a reduced number who were working at all) by 2008. In contrast, at the time of the first interview, the percentage of individuals who had never had a full-time career job and who were working part time was much higher (66 percent among men and 84 percent among women), and the percentage remained high and relatively stable (near 60 percent or above for men and 75 percent or above for women) through 2008. Those without full-time job experience are primarily part-time workers when they reach age 50 and beyond.

Job switching is also an important part of labor force transitions later in life. Table 4 shows the number of job switches since 1992 among those respondents who were working at the time of the first interview. Overall, men and women without full-time career jobs were significantly less likely to still be on their 1992 job (or to be last observed on their 1992 job) in 2008 and were significantly more likely to have left the labor force directly from their 1992 job, compared with those who had had a full-time career job in their work history. These two differences in behavior largely offset each other, so the numbers of job switches since 1992 were similar by career job status for both men and women: about one-third had one or two job switches, and relatively few respondents- 6 or 7 percent-had more

Table 3. Economic characteristics in 1992, by gender and full-time career job status, respondents with work experience since age 50
[In percent]

Characteristic	Total	Men			Women		
		All men	No full-time career job in work history	Full-time career job in work history	All women	No full-time career job in work history	Full-time career job in work history
Health insurance status: ${ }^{1}$							
Not covered on first-wave job	14	13	28	11	14	21	11
Covered and would maintain coverage	78	79	67	80	78	76	79
Covered and would lose coverage	8	9	5	9	8	3	10
Pension status: ${ }^{1}$							
Defined benefit only	37	44	20	47	30	14	38
Defined contribution only	16	16	11	17	17	9	21
Defined benefit and defined contribution	4	5	3	5	2	1	3
No pension	43	35	67	31	51	77	39
Worker status: ${ }^{2}$							
Self-employed	14	18	21	17	11	12	10
Wage and salary	86	82	79	83	89	88	90
Occupation status: ${ }^{1}$							
White collar, highly skilled	31	32	28	33	29	20	31
White collar, other	26	16	16	16	37	32	38
Blue collar, highly skilled	24	37	32	38	11	9	11
Blue collar, other	19	15	25	14	24	39	20
Wage rate: ${ }^{1}$							
\$6.00-\$9.99/hour	17	12	30	10	22	37	18
\$10.00-\$19.99/hour	29	21	26	21	36	36	36
\$20.00-\$49.99/hour	38	44	23	46	33	20	37
\$50.00/hour or more	16	23	21	23	8	7	9
Wealth:3							
\$0 or less	9	8	19	6	11	13	10
\$1-\$24,999	32	30	37	30	33	33	33
\$25,000-\$49,999	13	14	11	14	13	11	14
\$50,000-\$99,999	15	15	11	16	14	13	15
\$100,00-\$499,999	24	25	16	26	23	22	23
\$500,00 or more	7	8	7	8	6	8	5
Homeownership status: ${ }^{3}$							
Do not own home	18	16	30	15	19	22	18
Own home	82	84	70	85	81	78	82
n	10,639	5,352	633	4,719	5,258	1,665	3,593

[^9]${ }^{3}$ Difference by full-time career job status is significant at $p<.01$ among both men and women.

NOTE: Detailed entries may not sum to totals because of rounding. Sample size for health insurance status is 4,959 for men and 4,767 for women. Sample size for occupation status is 4,159 for men and 4,058 for women.

SOURCE: Authors' calculations based on Health and Retirement Study.

Chart 1. Percentage working, by full-time career job status, 1992-2008, respondents who have worked since age 50

[^10]Chart 2. Percentage working part time, by full-time career job status, 1992-2008, respondents who are working in each wave

SOURCE: Authors' calculations based on Health and Retirement Study.

Table 4. Number of observed job switches since 1992, by gender and full-time career job status, respondents working in 1992

[In percent]							
First-wave job status and number of job switches ${ }^{1}$	Total	Men			Women		
		All men	No full-time career job in work history	Full-time career job in work history	All women	No full-time career job in work history	Full-time career job in work history
Still on, or last observed on, first-wave job	17	17	8	18	16	11	18
Exited directly from first-wave job	43	43	53	42	43	50	42
Number of job switches:							
1	23	24	26	24	23	23	23
2	10	10	8	10	10	10	10
3	4	4	3	4	4	3	4
4 or more	3	2	3	2	3	3	3
n	8,206	4,173	371	3,802	4,033	921	3,112

${ }^{1}$ Difference by full-time career job status is significant at $p<.01$ among both men and women.

NOTE: Detailed entries may not sum to totals because of rounding. SOURCE: Authors' calculations based on Health and Retirement Study.
than two job changes, since the first interview.
Table 5 details the types of job changes among those who were working in 1992 . Slightly more than one-third of men and women who had work experience since age 50 and who were working full time in 1992 moved from full-time to part-time work, with non-full-time career job respondents being somewhat more likely than career respondents to do so. Switches from self-employment to wage-and-salary work were more than twice as likely as switches from wage-and-salary employment to selfemployment. ${ }^{18}$ Specifically, 26 percent of men and 31 percent of women who were self-employed in 1992 subsequently reported a switch to wage-and-salary work, whereas 13 percent of men and 10 percent of women who were wage-and-salary workers in 1992 subsequently reported a switch to self-employment. Switches from wage-and-salary work to self-employment were similar by full-time career status; however, switches from selfemployment to wage-and-salary work were less common among those without a full-time career job in their work history. Switches from white-collar to blue-collar positions and vice versa were not significantly different by career job status.

Most workers experienced changes in hourly wage rates when a job switch was made. The distributions were similar among men and women. About two-thirds of job switches involved a wage change of more than 10 percent, with declines (38 percent) outweighing increases (29 percent). A small percentage of job changers (13 percent) suffered wage reductions of 51 percent or more, and
another quarter had wage decreases of 11 to 50 percent. About 20 percent enjoyed wage gains in the range from 11 percent to 50 percent, with another 10 percent doing even better than that.

When wage changes are disaggregated by career job status, the two groups of women are similar. Among men, the percentages suffering wage declines were nearly identical (41 percent and 42 percent), but men with no career job history were about 10 percentage points less likely than men with a full-time career job in their work history to have a wage change of less than 10 percent and were 10 percentage points more likely to enjoy a wage increase of more than 10 percent. The difference may be because the noncareer men were starting from a lower wage base, from which a raise of 10 percent or more was easier to attain.

Multivariate analysis. Multivariate analysis is used to determine whether the existence of a full-time career job in an individual's work history affects the person's likelihood of working as he or she approaches traditional retirement ages. In general, one would expect those who never held a full-time career job to be less attached to the labor force and therefore less likely to be working at any given time. This subsection presents two multivariate models. The first model explores the timing of the retirement decision, defined here as leaving the labor force, with career status as a regressor. The model was estimated for men and women separately, with logistic regression used on the sample that includes just those with work experience since age 50 . Table 6 presents the marginal effects from the re-

[In percent]							
Work status	Total	Men			Women		
		All men	No full-time career job in work history	Full-time career job in work history	All women	No full-time career job in work history	Full-time career job in work history
Full time or part time:							
Any switch from full time to part time	36	35	41	35	36	39	36
Any switch from part time to full time ${ }^{1}$	19	22	22	6	18	18	13
Wage and salary or self-employed:							
Any switch from wage and salary to selfemployed	12	13	13	14	10	10	9
Any switch from self-employed to wage and salary	28	26	21	27	31	28	33
White collar or blue collar:							
Any switch from white collar to blue collar	12	15	11	15	8	7	8
Any switch from blue collar to white collar	11	10	7	10	12	11	12
Hourly wage rates: ${ }^{2}$							
Reduction in wage of 51 percent or more	13	16	17	16	10	12	9
Reduction in wage of 11 percent to 50 percent	25	25	25	25	25	23	25
Reduction in wage of up to 10 percent or increase in wage of up to 10 percent	34	31	22	32	36	35	36
Increase in wage of 11 percent to 50 percent	19	17	19	17	20	19	21
Increase in wage of 51 percent to 100 percent	4	4	5	4	4	4	4
Increase in wage of 101 percent or more	6	7	12	6	5	6	5
${ }^{1}$ Difference by full-time career job status at $p<.01$ among both men among men. and women. NOTE: Detailed entries may not sum to totals because of rounding. ${ }^{2}$ Difference by full-time career job status is significant at $p<.05$							

gressions, evaluated at the sample means. ${ }^{19}$
The results reveal that both men and women were more likely to be working the younger and healthier they were. At age 62, when most respondents first became eligible for Social Security retirement benefits, there was a large decrease in their likelihood of working. Respondents also were more likely to be working, all else being equal, if they were selfemployed, had a spouse who was working (suggesting joint retirement decisions), had a spouse in poor health (women only), or were employed in a white-collar occupation or a high-skill blue-collar occupation. Respondents were less likely to be working if they were in fair or poor health or if their spouse was in excellent or very good health.

Older workers responded to economic incentives as well. Men and women with no health insurance (and
therefore no benefits to lose) or with health insurance that was portable (i.e., that would not be lost if they left their job) were significantly less likely to remain working than were those with health insurance that was not portable. Men and women with defined-benefit pension plans were significantly less likely to be working than those without pensions, a finding that is consistent with the earlyretirement incentives (or, equivalently, work disincentives) typically found in such plans. Men and women with a full-time career job in their work history were significantly more likely (16 percentage points for women, 21 percentage points for men) to be working, all else being equal, compared with their counterparts without career job experience. This finding reinforces the differences by full-time career status noted earlier with respect to the percentage of

Table 6. Marginal effects from logistic regression, dependent variable = working at time t, respondents with work experience since age 50

Category	Men		Women	
	Marginal effect	p-value	Marginal effect	p-value
Full-time career status:				
No full-time career job in work history	-	-	-	-
Full-time career job in work history	0.2143	0.000	0.1626	0.000
Age:				
57 or younger	-	-	-	-
58-61	-. 1352	. 000	-. 1318	. 000
62-64	-. 3488	. 000	-. 2946	. 000
65-69	-. 4474	. 000	-. 4015	. 000
Older than 70	-. 5733	. 000	-. 5152	. 000
Self-assessed health:				
Excellent/very good	. 0624	. 000	. 0473	. 000
Good	-	-	-	-
Fair/poor	-. 2317	. 000	-. 2172	. 000
Spouse's health:				
Excellent/very good	-. 0476	. 000	-. 0387	. 001
Good	-	-	-	-
Fair/poor	. 0147	. 287	. 0398	. 003
Education:				
Less than high school	. 0127	. 401	. 0353	. 024
High school	-	-	-	-
College degree	. 0248	. 133	-. 0096	. 582
Race:				
Black	. 0108	. 552	. 0572	. 000
White	-	-	-	-
Other	. 0225	. 573	. 0669	. 099
Married	. 0425	. 077	-. 0425	. 067
Children at home	. 0283	. 034	. 0315	. 003
Spouse employed	. 1703	. 000	. 1837	. 000
Health insurance status:				
Portable	-. 4924	. 000	-. 4867	. 000
Not portable	-	-	-	-
None	-. 4968	. 000	-. 4755	. 000
Pension status:				
Defined benefit	-. 2652	. 000	-. 1101	. 000
Defined contribution	. 0064	. 646	. 0026	. 853
Defined benefit and defined contribution	. 0514	. 110	. 0416	. 213
None	-	-	-	-
Occupational status:				
White collar, high skill	. 2414	. 000	. 2570	. 000
White collar, other	. 2476	. 000	. 2884	. 000
Blue collar, high skill	. 2074	. 000	. 2281	. 000
Blue collar, other	-	-	-	-
Self-employed	. 1695	. 000	. 1623	. 000
Wage	. 0032	. 000	. 0061	. 000
Wage squared	. 0000	. 002	. 0000	. 000
Wealth	-. 0014	. 000	-. 0017	. 000
Wealth squared	. 0000	. 000	. 0000	. 000
Own home	. 0195	. 213	. 0219	. 127
See notes at end of table.				

respondents working in each wave. (See chart 1.)
The next set of findings examines the determinants of job switching among the subset of respondents who were working at the time of the first interview. Over the observation period, each respondent with a job in 1992 either remained on the 1992 job, switched to another job (e.g., a bridge job for those moving from a full-time career job), or left the labor market directly from the 1992 job. As shown in table 7 , men were more likely to remain working on the 1992 job if they were younger, were in excellent or very good health, had a college degree, or were self-employed, and were less likely to remain working on the firstwave job if they had a defined-benefit pension plan (again consistent with the early-retirement incentives typically incorporated into such plans). Men also were more likely to switch jobs before exiting the labor force if they were younger or had health insurance (portable or not), and were less likely to switch if they were blue-collar workers, were self-employed, or had a defined-benefit pension. Men who had a full-time career job in their work history were more likely (by a statistically significant 15 percentage points) to remain on the job they held in 1992 than those who never held a full-time career job, as one might expect, but were slightly less likely (3.5 percentage points) to switch jobs prior to exiting the labor force, although the latter effect was not statistically significant. The results were similar, but smaller, for women; still, women with defined-benefit pensions and women with definedcontribution pensions were more likely to remain working on the first-wave job and less likely to make at least one job switch. (See table 7.)

THIS ARTICLE HAS EXAMINED THE RETIREMENT decisions of workers who have had less attachment to the labor force than those workers who are typically studied in the retirement literature. The aim was to examine more closely the timing of retirement and the number and types of job switches that are made later in life by older workers who have not had a full-time career job in their work histories. These workers constitute 12 percent of the men and 32 percent of the women in the sample with work experience after age 50 .

In each survey year, individuals who never held a fulltime career job were less likely to be working than those who have or had held career jobs-a not unexpected finding. However, individuals without a full-time career job in their work history were found to change jobs later in life just as frequently as those with career jobs. The types of job switches were similar as well, including switches from wage-and-salary employment to self-employment and switches between white-collar and blue-collar jobs. Both groups that switched jobs later in life were more likely to experience wage reductions (of more than 10 percent) than enjoy wage increases (also of more than 10 percent).

Some notable differences by full-time career status do exist. For example, part-time employment became more pronounced over time for full-time career individuals, whereas it remained fairly constant (and high) among individuals without a full-time career job. Also, the percentage of men without a full-time career job who were working part time was near or above 60 percent in all survey years; for women, the percentage was above 70 percent. By contrast, among individuals with a full-time career job,

Table 7. Marginal effects from logistic regression, dependent variable = still on 1992 job, switched jobs, or direct exit, ${ }^{1}$ respondents working in 1992

Category	Men				Women			
	Remained on first-wave job		Experienced at least one job switch		Remained on first-wave job		Experienced at least one job switch	
	Marginal effect	p-value						
Full-time career status:								
No full-time career job in work history	-	-	-	-	-	-	-	-
Full-time career job in work history	0.1476	0.000	-0.0347	0.260	0.0420	0.012	0.0162	0.459
Age in 1992:								
51-52	. 1063	. 000	. 1127	. 000	. 1302	. 003	. 2235	. 000
53-54	. 0712	. 002	. 0897	. 003	. 0964	. 015	. 1251	. 012
55-56	. 0642	. 006	. 0576	. 062	. 1061	. 009	. 0950	. 060
57-58	. 0340	. 155	. 0020	. 949	. 0398	. 286	. 1351	. 006
59-60	. 0179	. 472	. 0119	. 707	. 0094	. 807	. 0938	. 057
61	-	-	-	-	-	-	-	-
Self-assessed health:								
Excellent/very good	. 0324	. 018	. 0270	. 139	. 0347	. 012	. 0436	. 030
Good	-	-	-	-	-	-	-	-
Fair/poor	-. 0056	. 790	-. 0572	. 037	-. 0037	. 843	-. 1050	. 000
Spouse's health:								
Excellent/very good	-. 0008	. 958	. 0375	. 056	. 0035	. 789	. 0131	. 550
Good	-	-	-	-	-	-	-	-
Fair/poor	. 0107	. 601	-. 0050	. 855	. 0140	. 414	. 0114	. 695
College degree	. 0529	. 001	-. 0178	. 421	-. 0015	. 921	. 0048	. 848
Race:								
Black	. 0422	. 021	-. 0431	. 092	. 0027	. 848	-. 0054	. 816
White	-	-	-	-	-	-	-	-
Other	. 0017	. 964	-. 0108	. 841	. 0572	. 080	. 0174	. 770
Married	. 0222	. 326	. 0496	. 108	. 0074	. 674	-. 0283	. 320
Children at home	. 0073	. 623	. 0160	. 452	. 0288	. 048	. 1041	. 000
Spouse employed	-. 0252	. 052	. 0028	. 877	-. 0112	. 403	-. 0205	. 358
Occupational status:								
Blue collar, high skill	. 0292	. 082	-. 0782	. 001	-. 0314	. 181	-. 0126	. 700
Blue collar, other	. 0366	. 081	-. 1231	. 000	. 0340	. 043	-. 0412	. 126
White collar, high skill	-	-	-	-	-	-	-	-
White collar, other	. 0182	. 323	-. 0249	. 320	. 0256	. 062	-. 0270	. 233
Health insurance status:								
Portable	-. 0055	. 693	. 0338	. 074	-. 0117	. 336	. 0154	. 450
Not portable	-. 0366	. 093	. 0941	. 001	-. 0326	. 115	. 0943	. 002
None	-	-	-	-	-	-	-	-
Self-employed	. 1333	. 000	-. 0819	. 001	. 0843	. 000	-. 0586	. 040
Pension status:								
Defined benefit	-. 0355	. 016	-. 0465	. 029	. 0296	. 051	-. 1405	. 000
Defined contribution	-. 0033	. 847	. 0269	. 279	. 0455	. 010	-. 0864	. 000
Defined benefit and defined contribution	-. 0798	. 009	. 1269	. 001	-. 0193	. 586	. 1273	. 015
None	-	-	-	-	-	-	-	-
Own home	-. 0149	. 396	-. 0322	. 171	-. 0016	. 911	-. 0412	. 069
Wage	. 0001	. 693	-. 0009	. 161	. 0003	. 676	-. 0004	. 506
Wage squared	. 0000	. 424	. 0000	. 391	. 0000	. 393	. 0000	. 385
Wealth	. 0043	. 060	-. 0026	. 517	-. 0025	. 322	-. 0009	. 822
Wealth squared	. 0000	. 331	. 0001	. 553	. 0000	. 408	. 0000	. 793

[^11]the percentage working part time increased steadily from 1992 to 2008, moving from approximately 10 percent in the first wave to around 50 percent when the respondents were 65 years or older. ${ }^{20}$

Respondents with career jobs generally rated their health status higher than those without career jobs and had jobs with more desirable characteristics, such as pension and health insurance benefits. A question remains, therefore, about the extent to which the shift to definedcontribution pension plans, such as $401(\mathrm{k}) \mathrm{s}$, will affect the retirement decisions of noncareer workers, if at all. The descriptive statistics examined in this study reveal that the large majority-two-thirds of non-full-time career male respondents and three-quarters of non-full-time career female respondents-did not have an employer-provided pension on their 1992 job. For these workers, the shift away from defined-benefit pensions will be of little consequence. Further, more than one-half of non-full-time career men and 46 percent of non-full-time career women had less than $\$ 25,000$ in savings. These two findings com-bined-the paucity of defined-benefit pensions and the low level of savings-indicate that the traditional threelegged stool of retirement income-employer pensions, savings, and Social Security-appears to have only one strong leg for most non-full-time career workers.

Notes

> ${ }^{1}$ See Joseph F. Quinn, "Retirement Patterns and Bridge Jobs in the 1990s," EbRI Issue Brief No. 206 (Washington, DC, Employee Benefit Research Institute, February 1999), http://www.ebri.org/ publications/ib/index.cfm?fa=ibDisp\&content_id=119; Joseph F. Quinn, Kevin E. Cahill, and Michael D. Giandrea, "Early Retirement: The Dawn of a New Era?" tiaA-cref Institute Policy Brief (New York, TIAA-CREF Institute, July 2011), http://www.tiaa-cref.org/ institute/research/briefs/pb_earlyretirement0711.html; Michael D. Giandrea, Kevin E. Cahill, and Joseph F. Quinn, "Bridge Jobs: A Comparison Across Cohorts," Research on Aging, September 2009, pp. 549-576; and Christopher J. Ruhm, "Bridge Jobs and Partial Retirement," Journal of Labor Economics, October 1990, pp. 482-501.
> ${ }^{2}$ See Kevin E. Cahill, Michael D. Giandrea, and Joseph F. Quinn, "Retirement Patterns from Career Employment," The Gerontologist, August 2006, pp. 514-523.
> ${ }^{3}$ See Michael D. Giandrea, Kevin E. Cahill, and Joseph F. Quinn, "Self-Employment Transitions among Older American Workers with Career Jobs," Working Paper Series wP-418 (U.S. Bureau of Labor Statistics, April 2008), http://www.bls.gov/osmr/abstract/ec/ ec080040.htm.

${ }^{4}$ See Nicole Maestas, "Back to Work: Expectations and Realizations of Work after Retirement," Journal of Human Resources, summer 2010, pp. 719-748; and Kevin E. Cahill, Michael D. Giandrea, and Joseph F. Quinn, "Reentering the Labor Force after Retirement," Monthly Labor Review, June 2011, pp. 34-42, http://www.bls.gov/ opub/mlr/2011/06/art2full.pdf.
${ }^{5}$ Cahill, Giandrea, and Quinn, "Retirement Patterns."

A theme in the recent retirement literature is the importance of a fourth leg on the traditional retirement income stool: earnings. With two of the three legs missing for most non-full-time career workers, reliance on earnings later in life is very real for these workers. By switching jobs, these workers appear flexible with respect to the kind of work they do later in life, and many of them weather the fluctuations that come with late-life job changes, including reductions in wages. Earnings from work play a key role for many non-full-time career workers who would otherwise have to rely solely on Social Security.

One well-established conclusion from the retirement literature is that retirement is not a one-time, permanent event for many career workers. In fact, the majority of older Americans retire gradually, in stages, and often reenter the labor market after a significant time away from it. The findings presented in this article show that, like the retirement decisions of full-time career workers, those of noncareer workers are diverse. This flexibility with respect to the labor force withdrawal patterns of both career and noncareer older workers may be the key to retirement income security in the years ahead, as earnings from work fill the gap where other retirement income sources fall short.

[^12] 2006, pp. 408-429.
${ }^{8}$ See, for instance, Andrew A. Samwick, "New Evidence on Pensions, Social Security, and the Timing of Retirement," Journal of Public Economics, vol. 70, no. 2, 1998, pp. 207-236; Patricia M. Anderson, Alan L. Gustman, and Thomas L. Steinmeier, "Trends in Male Labor Force Participation and Retirement: Some Evidence on the Role of Pensions and Social Security in the 1970s and 1980s," Journal of Labor Economics, October 1999, pp. 757-783; and Christopher J. Ruhm, "Secular Changes in the Work and Retirement Patterns of Older Men," The Journal of Human Resources, spring 1995, pp. 362-385.
${ }^{9}$ See Alicia H. Munnell, Kevin E. Cahill, and Natalia A. Jivan, "How Has the Shift to 401(k)s Affected the Retirement Age?" Issue Brief no. 13 (Boston, Center for Retirement Research, September 2003); Leora Friedberg and Anthony Webb, "Retirement and the Evolution of Pension Structure," Journal of Human Resources, spring 2005, pp. 281-308; and Alicia H. Munnell and Pamela Perun, "An Update
on Private Pensions," Issue Brief no. 50 (Boston, Center for Retirement Research, August 2006).
${ }^{10}$ See, for example, Jonathan Gruber and Brigitte Madrian, "Health Insurance Availability and the Retirement Decision," American Economic Review, September 1995, pp. 938-948; Alan L. Gustman and Thomas L. Steinmeier, "Employer Provided Health Insurance and Retirement Behavior," Industrial and Labor Relations Review, October 1994, pp. 124-140; Lynn A. Karoly and Jeannette Rogowski, "The Effect of Access to Post-Retirement Health Insurance on the Decision to Retire Early," Industrial and Labor Relations Review, October 1994, pp. 103-123; David M. Blau and Donna B. Gilleskie, "The Role of Retiree Health Insurance in the Employment Behavior of Older Men," International Economic Rerview, May 2008, pp. 475-514; and Eric French and John Bailey Johns, "The Effects of Health Insurance and Self-Insurance on Retirement Behavior," Working Paper 2007-170 (Ann Arbor, mi, Michigan Retirement Research Center, October 2007).
${ }^{11}$ See Julie L. Hotchkiss and M. Melinda Pitts, "Female Labour Force Intermittency and Current Earnings: Switching Regression Model with Unknown Sample Selection," Applied Economics, March 2005, pp. 545-560.
${ }^{12}$ See Jay Stewart, "Male Nonworkers: Who Are They and Who Supports Them?" Demography, August 2006, pp. 537-552.
${ }^{13}$ See Julie Whittaker, Unemployment and Older Workers, CRS Report to Congress (Congressional Research Service, August 29, 2007); and Sewin Chan and Ann Huff Stevens, "Job Loss and Employment Patterns of Older Workers," Journal of Labor Economics, April 2001, pp. 484-521.
${ }^{14}$ For a description of the HRS, see F. Thomas Juster and Richard Suzman, "An Overview of the Health and Retirement Study," Journal of Human Resources, vol. 30, special issue, 1995, pp. S7-S56; and Growing Older in America: The Health © Retirement Study (U.S. Department of Health and Human Services, 2007), http://www.nia.nih.gov/health/
publication/growing-older-america-health-and-retirement-study.
${ }^{15}$ The HRS sample includes the spouses of age-eligible respondents, a factor that explains the higher percentage of women who were less than 54 years old in 1992 (45 percent), compared with men (29 percent).
${ }^{16}$ For an analyses of the retirement patterns of couples, see Courtney C. Coile, "Retirement Incentives and Couples' Retirement Decisions," Topics in Economic Analysis and Policy, July 2004, pp. 1-28; and Kanika Kapur and Jeannette Rogowski, "The Role of Health Insurance in Joint Retirement among Married Couples," Industrial and Labor Relations Review, April 2007, pp. 397-407.
${ }^{17}$ Occupations are categorized as blue or white collar and then as highly skilled or not highly skilled. Individuals working in managerial or professional occupations are considered as being white-collar, highly skilled workers. Those working in technical, sales, and administrative support occupations are categorized as being in white-collar positions that are not highly skilled. Workers in precision production, craft, and repair occupations; construction trades; machine operator, assembler, and inspector occupations; transportation and material moving occupations; and protective service occupations are considered blue-collar, highly skilled workers. All other occupations are labeled blue collar and not highly skilled.
${ }^{18}$ For an analysis of bridge jobs among the self-employed, see Giandrea, Cahill, and Quinn, "Self-Employment Transitions."
${ }^{19}$ Estimation was performed in two additional ways: with a linear probability model and a fixed-effects linear probability model. Similar results were obtained with all three methods.
${ }^{20}$ Although the level of part-time employment was associated with the way in which respondents were stratified in the first wave (i.e., full-time career status is defined, in part, by whether the respondent was working full time during that wave), the two groups also were compared many years later, including in the last survey (2008), 16 years after the first interview.

Measuring annual change in household wealth with the Consumer Expenditure Survey

Abstract

The Consumer Expenditure Survey (CE) effectively estimates change in net wealth at the household level, compared with the Flow of Funds Accounts; bowever, results show that the CE does not accurately measure wealth changes at the aggregate national level

Jeffrey D. Lundy

Jeffrey D. Lundy is a doctoral candidate in sociology at the University of California, San Diego; Department of Sociology, 401 Social Science Building, 9500 Gilman Drive \#0533, La Jolla, CA 92093-0533. Email: jlundy@ucsd.edu

TThe Consumer Expenditure Survey (CE) tracks the value of assets and liabilities for a large rotating sample of American households. Unfortunately, researchers studying household wealth have largely neglected this resource, generally relying instead on aggregate statistics. While aggregate wealth statistics suggest individual household decisions, the CE potentially offers a more direct picture of how American households manage their finances.

To validate the survey's potential for measuring changes in household wealth, this article compares the CE with the wellestablished Flow of Funds Accounts (FFA) of the Federal Reserve Board (FRB). Results indicate that the CE effectively measures change in wealth at the household level.

Additionally, this article examines the extent of wealth gains and losses for the 2004-2009 period. The number of households with annual wealth losses during this period was considerably higher than the number of households with negative net worth. Furthermore, wealth gains varied substantially across households possessing varying types of assets. These demonstrative findings reveal the poten-
tial of the CE for examining how financial and demographic characteristics of households affect their annual change in net wealth.

The CE is known among researchers for its detailed coverage of households' expenditures. Less well known is that the survey also tracks changes in most categories of households' assets and liabilities. In fact, in terms of categorical coverage, the wealth categories that the CE tracks are similar to those in the well-regarded Survey of Consumer Finances (SCF).

Despite this broad coverage of wealth categories, researchers have only recently begun validating the CE wealth estimates against other well-established survey estimates. Most notable is the pioneering work of Johnson and $\mathrm{Li},{ }^{1}$ comparing CE liability data against the SCF. Comparing estimates between the two surveys, the authors found that "household debt balances and payments are measured reasonably well in the CE" and that "CE data may be used to examine household debt and its relation to household economic decisions." ${ }^{2}$ The work of Johnson and Li breaks new ground by confirming the capability of the CE to track liabilities at the household level.

Moving forward, it is of considerable interest to know how well the CE tracks households' overall net wealth (i.e., both assets and liabilities). To meet this goal, this article ex-
amines the potential of the CE for measuring annual changes in household net wealth, by comparing it with the FRB's FFA. The FFA are the most widely used source of aggregate data on U.S. household balance sheets. ${ }^{3}$ Findings from the research indicate that the survey effectively estimates annual changes in household wealth.

Additionally, this article presents estimates for the number of U.S. households with annual wealth gains and losses during the 2004-2009 period. These estimates show the capability of the CE to explore financial changes at the household level. Furthermore, this article lays groundwork for future research examining the connection between expenditures of households and their annual change in wealth, using the CE comprehensive expenditure data.

Measuring changes in household wealth using the CE

The CE tracks respondents' reported expenditures over five 3 -month periods. The BLS reports only the final four periods of transactions in the published data, because the first interview is dropped (the first interview is only used to contact respondents and to establish a baseline for future transactions). Respondents completing all five interviews of the survey report an entire year of their financial transactions.

Unlike many economic surveys, the CE does not track households, per se. Rather, it tracks the expenditures of consumer units (CUs). CUs are defined by

- all members of a particular household who are related by blood, marriage, adoption, or other legal arrangements;
- a person who is living alone or sharing a household with others or living as a roomer in a private home or lodging house or in permanent living quarters in a hotel or motel but is financially independent; or
- two or more persons living together who use their income to make joint expenditures. ${ }^{4}$

On the basis of these criteria, CUs align in many ways with the common conception of a household; however, a single household can include more than one CU, such as in the case of roommates sharing an apartment. Because household refers to a dwelling, the household in this case is the apartment, which comprises more than one CU. For simplicity, I will refer to CUs as "households" for the remainder of this article,
despite the limited number of cases in which this designation is technically incorrect.

In terms of categorical coverage, the survey has strikingly detailed information on expenditures. It covers everyday expenditures, such as gasoline purchases, as well as infrequent expenditures, such as clocks, decorative pillows, plastic dinnerware, fresh flowers, sewing patterns, and aircraft rental. As noted by Johnson and Li, the CE also has comprehensive coverage of liabilities, covering both the balance and change in balance for most types of debt.

Unfortunately, the CE coverage of assets is slightly less comprehensive. It only tracks the balances of certain assets such as checking and savings accounts and the value of owned securities, U.S. bonds, and money owed to the household for personal loans. The survey does not track the balance of whole life insurance policies, annuities and trusts, quasi-liquid retirement accounts (e.g., pensions, individual retirement accounts/ Keoghs), or business investments. The survey does track the current market value of real estate (e.g., primary residence, vacation properties, and investment properties); however, the current market value is self-reported, and respondents cannot be expected to consistently report the correct appraisal values of their properties. In addition, the survey does not cover the value of other nonliquid assets such as vehicles and collectibles (e.g., artwork, coins).

Despite having limited coverage of asset value, the CE has comprehensive coverage for changes in asset value over the period of a year. For instance, the survey does not record the total worth of business assets that a household owns; however, it does track annual contributions and withdrawals to business assets. Using these data, one can examine how much value a household contributes or withdraws over a year, even though one does not know the total worth of business assets at the start of the year. Thus, the CE gives researchers a broad perspective on households' annual change in asset and liability values, even when they have a more limited view of a household's total net worth.

Presently, scant literature exists concerning household-level wealth transactions, using population representative data. In the areas of economics and policy, past researchers have mainly examined aggregate national statistics when investigating Americans' saving and investing practices. ${ }^{5}$ While aggregate statistics suggest individual decisions, they overrepresent the actions of a limited number of households with large wealth ownership. Examining disaggregated transactions will more directly show how households manage their finances, across all levels of wealth ownership. Using the CE to examine annual change in wealth is a good first step toward exploring financial decisions at the individual household level. In fact, because the CE also tracks comprehensive demographic and
expenditure details, the survey can potentially illuminate how the spending and investing of a household are correlated with its annual change in net wealth.

To measure change in households' net wealth, this article assembles CE data from 2004 to 2009 . I calculate change in net wealth by aggregating the changes in a household's individual wealth components, i.e., its various assets and liabilities (see appendix A). The CE reports many changes in asset value in a household's fourth quarter of transactions, to reflect changes occurring over a full year. However, because the CE is conducted on a rotating basis, a number of households do not finish the full survey. The present sample is restricted to only those households reporting four quarters of transactions in the survey. Despite this restriction, the sample of households completing the full survey is found to have demographic characteristics congruent with the full CE sample, which is itself weighted to represent the U.S. population (see "Technical notes" section and appendix B).

Comparing estimates

How well does the CE track changes in wealth? For validating the CE estimates, the most natural point of comparison is the FRB's FFA. The FFA are a project of the FRB to track the U.S. financial flows across various economic sectors. In the United States, the FFA are the only instruments that measure annual change in personal net wealth, other than the CE. ${ }^{6}$

Like the CE, researchers collect data for the FFA on a perpetual, rotating basis (as opposed to the SCF, which is only administered every 3 years). Unlike the CE, the FFA are measured at the aggregate national level. Data are collected from a variety of sources, including banks and businesses, and change in personal wealth is estimated with data reconciled on aggregate spending and investments.

To compare personal wealth estimates between the CE and FFA, one must examine year-to-year change in aggregate national wealth for nine 6 -month periods, encompassing the period from 2004 to 2009. Using 6 -month periods ensures an adequate sample size in the CE $(2,385$ households per period, on average). The time frame for each 6-month period spans either October to March or April to September. ${ }^{7}$ Households starting the survey in 2005 are excluded, because a change in the CE sample frame makes this time unusable.

In the CE, one calculates change in wealth by summing the annual change in wealth reported by households. Thus, to calculate the aggregate change in wealth between one period and the same period 1 year later, one sums a

1-year change in wealth for all households reporting in the latter period. To find the change in wealth occurring between the period starting in October 2007 and the period starting in October 2008, one sums the annual change in wealth reported by households in the October 2008 period. For example, suppose one unique household provides data in each of the 6 months (e.g., October to March) so that the sample size is six observations. If each household reports a net increase in wealth of $\$ 5$, the total increase in net wealth over the period would be $\$ 30$ - $\$ 5$ for the October-to-October increase, $\$ 5$ for the Novem-ber-to-November increase, and so forth.

In the FFA, one calculates change in wealth by averaging aggregate personal net wealth within each of the 6-month periods. Then each period average is subtracted from its counterpart in the following year. For instance, from October 2003 to March 2004, the FFA estimate that Americans possessed an average of $\$ 45.8$ trillion. One year later, the FFA estimate that Americans possessed an average net worth of $\$ 51.4$ trillion. Thus, personal net wealth gained approximately $\$ 5.6$ trillion between the two periods.

Comparing estimates for change in aggregate net wealth (chart 1), one will find that movements in the FFA and the CE correlate at 0.94 ($p<.001$). This result suggests that movements in CE wealth estimates are strongly consistent with movements in the FFA. Note, however, that the scale of changes in the CE is not comparable with the FFA. ${ }^{8}$ This result is to be expected, given that CE population weights are not calibrated to represent the correct volume of personal net wealth at the aggregate national level.

Nonetheless, the strong correlation between the CE and FFA suggests that CE data accurately represent changes in net wealth at the individual household level. Thus, the CE can apparently be used for investigating household changes in net wealth. The CE should not be used, however, for estimating the total volume of personal net wealth at the national level.

A test case using ce wealth data: household wealth gains

This section examines descriptive findings drawn from the CE. These basic findings demonstrate the kind of questions CE wealth data can answer-starting with one of the most basic: On average, how many households gain wealth during a given year?

Analyzing annual estimates from the 2004-2009 CE data, one will find an average of 55 percent of American households to have lost or maintained their wealth dur-

Chart 1. Estimated change in aggregate net wealth between Flow of Funds Accounts and adjusted Consumer Expenditure Survey

NOTE: These data are both unadjusted and also unweighted (i.e., the BLS-supplied population weights are not applied). Weights are not used because BLS calculates them with the full sample in mind, whereas this project uses only the subsample of households reporting for five interviews.

SOURCES: Flow of Funds Accounts (2004-2009), Federal Reserve Board, and Consumer Expenditure Survey (2004-2009), U.S. Bureau of Labor Statistics.
ing a given year, while 45 percent of households gained wealth. This estimate of wealth gain may seem low when compared with previously published estimates from the SCF. For instance, the FRB estimates that in 2004, approximately 91 percent of U.S. households fell into the category of having positive net wealth (table 1). ${ }^{9}$

Although SCF and CE estimates appear quite divergent (i.e., wealth gain rates of 45 percent vs. 91 percent), one should note that the SCF and CE are measuring net wealth in two different forms. While considered the gold standard for personal wealth measurement, the SCF is limited to measuring a household's current net worth at the time of the survey interview. Unlike the estimates found in the CE, wealth estimates from the SCF give no perspective on recent wealth changes.

Clearly then, the CE and SCF diverge in their estimates of wealth gains, because they are measuring 1-year change in wealth vs. life-to-date net worth, respectively. However, this raises the question: How can 55 percent of households lose or maintain their wealth per year, while only 9 percent of households have zero to negative net worth? The difference between 1 -year wealth loss and negative net worth is explained by several factors.

One reason why annual rates of wealth loss are apparently high is the result of including zero-change households along with wealth-losing households. If households with zero annual change in wealth have gained wealth in the past or will gain surplus wealth in the future (as most households will strive to do), then they ultimately will have positive net worth across multiple years. When examining CE data, one will find that 14 percent of U.S. households reported zero change in net wealth during an average sample year. Thus, the percentage of households actually losing wealth per year is just 41 percent.

Another reason why annual rates of wealth loss are apparently high is connected to the economic life cycle of households. Specifically, a substantial portion of wealthlosing households are in the extremes of youth and older age and thus are spending against wealth they have accumulated (or plan to accumulate) during middle age.

To show this effect, table 1 displays the subsample of households whose household heads are mid-aged (i.e., 25 < age of household head < 50). Notably, in the mid-aged sample, the percentage of households with zero or negative annual change in wealth is 20 percent lower than the percentage for the population as a whole. This finding re-

Table 1. Percentage of U.S. households gaining, maintaining, or losing wealth

Wealth change status	Net worth (2004 Survey of Consumer Finances)	Annual change in wealth (2004-2009 Consumer Expenditure Survey)	
		Total	Mid-aged
	91.1	44.7	54.8
Zero or negative	8.9	55.3	45.2

SOURCES: Survey of Consumer Finances (2004) and Consumer Expenditure Survey (2004-2009), U.S. Bureau of Labor Statistics.
flects the substantial effect that older and younger generations exert on annual estimates of wealth loss. To examine this influence further, one should consider the percentage of wealth-losing households within older age brackets.

Households with heads 55 years of age and older account for 50.4 percent of wealth-losing households, and households with heads 65 years of age and older account for 31.5 percent of wealth-losing households. These statistics suggest that older individuals represent a significant portion of wealth-losing households during any given year. While some of these individuals may have persistent annual wealth losses (e.g., retirees), they will also have positive net worth, because of the wealth they have accumulated over their lifetime.

Finally, another reason for the apparently high wealth loss rate is its connection to the nature of personal finance. In particular, the present research does not smooth debt across loan payment terms; therefore, many recorded annual losses misrepresent a household's long-term finances.

For example, consider a family taking a loan to remodel its home during a survey year. Such a loan will register as a large negative change in the household's net wealth. However, for many years after the survey, this household is likely to record positive changes in wealth as the family repays its loan. Furthermore, when the family eventually sells its remodeled home, it will likely realize an increased selling price resulting from the modifications.

In many cases then, the large up-front loss from a loan misrepresents the long-term wealth accumulation of a household, because the short-term loss will be balanced by persistent gains over the long term. In addition, if the loan is for a capital improvement, an increase in asset value will likely go unrecorded during a survey year. ${ }^{10}$

Given the factors just addressed, one would expect a significant proportion of annual wealth losers to ultimately end up with positive net worth. Thus, many annual losses likely misrepresent a household's current (and future) net worth.

The extent of wealth losses

Looking at how many Americans lose wealth is instructive, but it offers no sense of the extremes to which households are gaining or losing wealth. Table 2 details the quartile values for households' annual change in net wealth among the mid-aged subsample. Only the mid-aged subsample is examined, for controlling life-cycle-related wealth changes (e.g., the effect of retirees, students).

Two primary results are evident from table 2. First, many mid-aged households have moderate annual wealth gains. In fact, among wealth-gaining households, onequarter gained less than $\$ 2,900$ per year.

Second, stark differences exist in wealth gains between households with varying levels of asset ownership. Among households lacking any significant assets, over half did not gain any wealth. On the other side of the spectrum, however, households with more than $\$ 10,000$ in securities had a median gain over 11 times larger than the population median. In the middle were households with homeownership and who possessed between $\$ 0$ and $\$ 10,000$ in securities. These households experienced moderate gains, with a median gain around twice the population median.

COMPARING THE CE and the FFA reveals that the CE does effectively estimate change in net wealth at the household level. However, results show that the CE does not accurately measure wealth changes at the aggregate national level. The latter result is to be expected, given that CE population weights are not calibrated to reflect the aggregate personal wealth of the United States.

To demonstrate the potential of the CE, this article examines the extent of household wealth gains and losses for the 2004-2009 period. The number of households with annual wealth losses was found to be considerably higher than the number of households with lifetime wealth losses. Additionally, households in various asset ownership groups were found to have wealth gains that also varied considerably.

Such descriptive results merely scratch the surface of the CE demographic and financial variables. Nonetheless, they demonstrate the survey's capability to cross-reference households' demographic characteristics with their annual change in net wealth. This capability holds great promise for examining how economic transactions of households affect their annual wealth gains and losses.

Future work using the CE may take many forms. Certainly, the survey lends itself to studying questions about households' financial management. For instance, using the CE detailed expenditure data, one can examine how

Table 2. Annual change in net wealth of various households in mid-aged subsample

Quartile points	Total sample	Within wealth Δ status		Within owner status		
		Lost or maintained	Gained	Nonowners	Homeowners	Securities owners
25	-\$2,678	-\$16,030	\$2,834	-\$500	-\$4,158	-\$5,991
50	956	-3,983	7,222	0	2,287	11,329
75	8,500	0	19,881	2,048	10,726	36,035

SOURCE: Consumer Expenditure Survey (2004-2009), U.S. Bureau of Labor Statistics.
spending on various items is correlated with gains or losses in wealth. Taking another approach, one might examine how income shocks affect annual changes in wealth or how effectively insurance protects wealth in the face of such shocks. In addition, one might examine the comparative annual returns from different types of household investments. Obviously, the CE has many potential applications for researchers interested in policy, consumption behavior, and economic theory.

Technical notes

To have a sufficient number of points for comparison, this article used information from households participating in the CE from 2004 through 2009. During this period, two events occurred that affected the CE collection: (1) the survey frame was adjusted in 2005 and (2) the sample size was reduced in 2006.

The survey frame adjustment is a routine change to the CE, which occurs every 10 years. During these adjustment years, the survey frame is reconstructed with new demographic information from the preceding decennial census. Fewer households exist during these years, because no households enter the survey in January of the redesign year and some households cease to be interviewed if their primary sampling unit was cut from the frame. As such, the CE microdata documentation recommends that users do not link household records longitudinally across 2005. Consequently, this project dropped households whose
time in the survey crossed into 2005. This action can be noted in chart 1 by the gap on the x-axis between September 2004 and October 2005.

The second notable change to the CE collection occurred after the first quarter of 2006. At that time, a sample reduction was implemented to lessen the costs of survey collection. As such, a number of households during this period were not able to complete their survey, and thus their attrition was nonvoluntary.

In this article, I noted the similarity between the fourinterview and full survey samples. Appendix B shows the differences in distribution for important demographic variables in the four-interview and full samples, using data from the second quarter of 2006 to the fourth quarter of 2009. These differences result from attrition, because households that complete four interviews have demographics that diverge from the full sample. The first quarter of 2006 is excluded from these analyses because of the sample reduction previously mentioned.

The following gives a sense of the attrition rate: an average of 79 percent of households completed four interviews during the second quarter 2006 to the fourth quarter 2009. In general, the differences between the samples appear to be reasonably small. The only difference of some note is the larger percentage of homeowners in the restricted sample. Households owning homes appear slightly more likely to complete the full survey than households who are renting. The reader should bear this in mind, because it may affect results to a limited extent.

Notes

ACKNOWLEDGMENTS: I would like to thank Maria Charles, Dan Hirschman, Pam Spanier, and Ann Decker, as well as the Horowitz Foundation for Social Policy; the Department of Sociology at the University of California, San Diego; the University of Michigan Economic Sociology Workshop; and BLS for their assistance with this article.
${ }^{1}$ Kathleen W. Johnson and Geng Li, "Household liability data in the Consumer Expenditure Survey," Monthly Labor Review, December

2009, pp. 18-27, http://www.bls.gov/opub/mlr/2009/12/home.htm.
${ }^{2}$ Ibid., p. 18.
${ }^{3}$ Rochelle L. Antoniewicz, A Comparison of the Household Sector from the Flow of Funds Accounts and the Survey of Consumer Finances (Federal Reserve Board of Governors, October 2000).

[^13]data Documentation (U.S. Bureau of Labor Statistics, 2007).
${ }^{5}$ Milt Marquis, "What's Behind the Low U.S. Personal Saving Rate?" FRBSF Economic Letter (San Francisco, CA: Federal Reserve Bank of San Francisco, 2002); Marshall B. Reinsdorf 2007, "Alternative Measures of Personal Saving," Survey of Current Business (Bureau of Economic Analysis, 2007), pp. 7-13.
${ }^{6}$ The FFA are the only public instrument measuring personal wealth changes; private sources of data may be available separately. In addition, the National Income and Product Accounts (NIPAs) measure personal household savings (i.e., gross personal income minus gross personal consumption); however, the NIPAs do not measure change in wealth due to investments, capital gains and losses, etc.
${ }^{7}$ These particular periods are chosen to correspond with the CE survey design. In the CE, respondents report transactions from the 3 months predating the time of their interview. For instance, CUs entering during the first half of 2004 (i.e., January 2004 to June 2004) are reporting expenditures from October 2003 to March 2004. CE data
are released by the calendar year in which respondents entered the survey, not according to the time frame of respondents' expenditures. Therefore, to use the latest available data, one must use time periods offset 3 months back from the usual calendar year.
${ }^{8}$ In chart 1, CE wealth changes are adjusted upward to more easily compare movements between the surveys. This adjustment is a simple linear transformation: each unadjusted CE value is multiplied by 560,000 . This adjustment may seem quite large; however, the CE estimates are unweighted, and thus to match the FFA, they need to be adjusted by a large degree.
${ }^{9}$ Edward N. Wolff, "Recent Trends in Household Wealth in the United States: Rising Debt and the Middle-Class Squeeze" (working paper, Levy Economics Institute Annandale-on-Hudson, NY, 2007).
${ }^{10}$ The increase in unrealized value will only be accounted for if the home is sold during the same year in which the capital improvement loan is taken.

Appendix A: Consumer Expenditure Survey assets and liabilities

Table A-1. Consumer Expenditure Survey coverage for change in assets and liabilities

Consumer Expenditure Survey coverage of assets	Consumer Expenditure Survey variables
Total Δ in checking, money market, and call accounts	COMPCKGX
Total Δ in certificates of deposit and savings accounts	COMPSAVX
Total Δ in directly held pooled investment funds (all types, except money market funds), directly held stocks, and directly held bonds (all types, except bond funds or savings bonds)	COMPSECX
Total Δ in U.S. savings bonds	COMPBNDX
Negative Δ in household's cash value of whole life insurance and/or annuities	SETLINSX
Positive Δ in household's cash value of whole life insurance	POLICYYB
Negative Δ in household's government retirement fund, account-type pensions on current job, and individual retirement accounts/Keoghs	FINDRETX
Positive Δ in household's government retirement fund	FGOVRETM
Positive Δ in account-type pensions on current job	FPRIPENM
Positive Δ in individual retirement accounts/Keoghs	FINDRETX
Total Δ in other miscellaneous financial assets	COMPOWDX
Positive Δ in business assets	BSINVSTX
Negative Δ in business assets	WDBSASTX
Disposed of vehicles	EXPN - OVC: DISPX
Disposed of homes	EXPN - OPD: SALEX
Acquired vehicles	EXPN - OVB: NETPURX
Acquired homes	EXPN - OPB: OWN_PURX
Consumer Expenditure Survey coverage of liabilities	Consumer Expenditure Survey variables
Primary residence mortgages	EXPN - MOR: QBLNCM1X, QBLNCM2X, QBLNCM3X
Home equity loans secured by primary residence	EXPN - HEL: QBLNCM1G, QBLNCM2G, QBLNCM3G
Lines of credit secured by primary residence	EXPN - OPH: JLCPRINX, JINTPDX
Vehicle loans	EXPN - OVB: QVPRIM1X, QVPRIM2X, QVPRIM3X
Credit (credit cards, student loans, etc.)	EXPN - FNA: CREDITR5 $=100, \ldots$

APPENDIX B: Consumer Expenditure Survey: four-interview and full survey comparison

Table B-1. A comparison of the four-interview sample to the full survey sample, second quarter 2006 to fourth quarter 2009, of the Consumer Expenditure Survey

Demographic variables	Survey sample		Difference
	Four-interview	Full	
Mean age	52.40	49.42	2.98
Mean number of autos	. 93	. 90	. 03
Mean family size	2.56	2.53	. 03
Mean income (dollars) ${ }^{1}$	67,185	63,969	3,216
Poverty rate (percent)	10.7	12.6	-1.9
Household tenure composition (percent)			
Owned with mortgage	46.9	43.2	3.7
Owned without mortgage	27.4	24.1	3.3
Rented	24.6	31.5	-6.9
Occupied without rent	1.1	1.2	-. 1
Occupied student housing	. 01	. 7	-. 7
Racial composition (percent)			
White	83.5	82.1	1.4
Black	10.8	11.7	-. 9
Asian	4.0	4.3	-. 3
Marital status (percent)			
Married	57.0	53.3	3.7
Widowed	10.6	9.4	1.2
Divorced	13.9	14.1	-. 2
Separated	2.6	2.8	-. 2
Never married	15.9	20.4	-4.5
Family type (percent)			
Husband and wife only	24.0	21.7	2.3
Husband and wife with one or more children	26.6	25.5	1.1
Other husband and wife	4.4	4.3	. 1
Single parent	5.2	5.9	-. 7
Single person	26.4	28.6	-2.2
All others	13.4	14.0	-. 6
${ }^{1}$ Unadjusted for inflation. SOURCE: Consumer Expenditure Survey (2006-2009), U.S. Bureau of Labor Statistics.			

Multiple jobholding in states in 2011

Jim Campbell

From 2010 to 2011, multiplejobholding rates ${ }^{1}$ decreased in 28 states and the District of Columbia, increased in 20 states, and were unchanged in 2 states. The annual average multiple-jobholding rate for the United States was 4.9 percent in 2011, unchanged from a year earlier.
Montana experienced the largest de-
Jim Campbell is an economist formerly in the Division of Local Area Unemployment Statistics, Office of Employment and Unemployment Statistics, Bureau of Labor Statistics. Email: lausoa@bls.gov.
crease among the states (-1.9 percentage points). Five other states had decreases of 1.0 percentage point or more: South Dakota and Wyoming (-1.3 points each), Kentucky (-1.2 points), Rhode Island (-1.1 points), and Alaska (-1.0 point). The largest over-theyear multiple-jobholding rate increase among the states was posted in Maine (+1.1 percentage points), followed by Kansas and Nevada (+0.8 point each), North Carolina (+0.6 point), and Louisiana, New Jersey, and Tennessee (+0.5 point each).
The U.S. multiple-jobholding rate has declined gradually or remained flat in each of the last 15 years, since it peaked at 6.2 percent in $1996 .{ }^{2}$

Compared with 1996, 2011 saw 47 states and the District of Columbia with lower multiple-jobholding rates. The remaining 3 states had rates that were unchanged or only marginally higher over that 15 -year span. The largest declines occurred in Montana (-3.9 percentage points), Arkansas and Missouri (-3.4 points each), and Hawaii (-3.3 points).
Multiple-jobholding rates for individual states continued to vary considerably around the U.S. average. (See table 1 and chart 1.) In 2011, 31 states had higher multiple-jobholding rates than the national average, 1 had the same, and 18 states and the District of Columbia had lower rates. As in past

Table 1. Multiple jobholders as a percentage of total employment, by state, annual averages, 2010 and 2011

U.S. Census region and division	2010	2011	U.S. Census region and division	2010	2011
United States	4.9	4.9			
Northeast region	5.0	5.0	Midwest region	6.2	6.1
New England division	6.2	5.9	East North Central division	5.5	5.5
Connecticut	6.3	5.5	Illinois	5.5	5.0
Maine	7.0	8.1	Indiana	4.7	4.9
Massachusetts	5.5	5.4	Michigan	4.7	5.0
New Hampshire	6.5	6.1	Ohio	5.7	6.0
Rhode Island	7.0	5.9	Wisconsin	6.9	6.9
Vermont	8.7	8.3			
			West North Central division	7.7	7.4
Middle Atlantic division	4.5	4.7	lowa	8.4	7.6
New Jersey	3.9	4.4	Kansas	7.0	7.8
New York	4.3	4.4	Minnesota	8.6	8.1
Pennsylvania	5.3	5.4	Missouri	5.8	5.6
			Nebraska	9.0	8.6
South region	4.1	4.1	North Dakota	8.9	9.0
			South Dakota	10.3	9.0
South Atlantic division	4.2	4.1			
Delaware	4.5	4.2	West region	5.0	4.9
District of Columbia	4.6	4.3			
Florida	3.6	3.4	Mountain division	5.4	5.2
Georgia	3.9	3.8	Arizona	4.1	3.9
Maryland	5.4	5.3	Colorado	5.7	5.8
North Carolina	4.5	5.1	Idaho	7.1	7.4
South Carolina	4.1	3.6	Montana	8.2	6.3
Virginia	4.4	4.5	Nevada	4.2	5.0
West Virginia	4.4	4.1	New Mexico	4.6	3.7
			Utah	6.5	5.8
East South Central division	4.4	4.3	Wyoming	8.8	7.5
Alabama	3.3	3.3			
Kentucky	5.5	4.3	Pacific division	4.8	4.8
Mississippi	5.1	5.3	Alaska	7.2	6.2
Tennessee	4.1	4.6	California	4.4	4.3
			Hawaii	7.0	6.1
West South Central division	3.9	4.0	Oregon	6.5	6.6
Arkansas	4.3	3.7	Washington	5.6	5.7
Louisiana	3.5	4.0			
Oklahoma	4.5	4.1			
Texas	3.8	3.9			

SOURCE: U.S. Bureau of Labor Statistics, Current Population Survey.

Chart 1. Multiple-jobholding rates, by state, annual averages, 2011

years, northern states generally had higher rates than southern states. All 7 states in the West North Central Census division continued to register mul-tiple-jobholding rates above that of the nation. All 6 states in the New England division, and all except 2 states (Arizona and New Mexico) in the Mountain division, also posted rates higher than the national average. North Dakota and South Dakota recorded the highest rates of any state, 9.0 percent, followed by Nebraska, 8.6 percent, and Vermont, 8.3 percent. Most of the states with high multiple-jobholding rates in 2011
have had consistently high rates over the timespan during which estimates have been available.
In the South region, ${ }^{3} 13$ of the 16 states, as well as the District of Columbia, had multiple-jobholding rates below the U.S. figure. Alabama recorded the lowest multiple-jobholding rate of any state in 2011,3.3 percent. Two other states in the South-Florida and South Carolinareported the next-lowest rates, 3.4 percent and 3.6 percent, respectively.

Notes

${ }^{1}$ Data for this report come from the Current

Population Survey (CPS), a survey of about 60,000 households selected to represent the U.S. population 16 years and older. The survey is conducted monthly by the Census Bureau for the Bureau of Labor Statistics. Multiple jobholders are those persons who report, in the reference week of the survey, that they are wage or salary workers who hold two or more jobs, self-employed workers who also hold a wage or salary job, or unpaid family workers who also hold a wage or salary job.
${ }^{2}$ Annual multiple-jobholding data for states became available following the redesign of the CPS in 1994.
${ }^{3}$ The South region is composed of the East South Central, South Atlantic, and West South Central divisions.

Do recessions cause early retirement?

In the wake of the December 2007June 2009 recession, a number of studies have explored the effects of the economic downturn on people's retirement decisions. Many people watched the value of their $401(\mathrm{k})$ type retirement plans plummet when the stock market crashed in 2008, and some might have deferred retirement because of those losses. In addition, tight labor market conditions might have induced some people to retire earlier than they had planned, either because they lost their jobs or they could not find work. Although the stock market had recovered to prerecession levels by 2010, the weakness in the job market persists. In "Recessions, Retirement, and Social Security" (American Economic Review: Papers and Proceedings 2011, May 2011, pp. 23-28, http://www.aeaweb. org/articles.php?doi=10.1257/ aer.101.3.23), economists Courtney C. Coile and Phillip B. Levine use data from the Annual Social and Demographic Supplement to the Current Population Survey (CPS) as well as other data to analyze the implications of the current weak labor market on retirement decisions and on the receipt of Social Security benefits.
As Coile and Levine point out, high unemployment can have a substantial impact on older workers' income-in the present and for the rest of their lives. When older workers lose their jobs, it is generally more difficult for them to find new ones than it is for younger workers. In that kind of environment, Social Security benefits may be the only source of income for many of these
workers. But if they begin drawing benefits early-at age 62, for ex-ample-their monthly benefit and, in many cases, their lifetime benefits will be reduced. Coile and Levine examine how changes in the unemployment rate affect retirement decisions, the claiming of Social Security benefits, and the subsequent total amount of Social Security benefits received by older workers. They find evidence that workers are more likely to leave the labor force, collect Social Security earlier, and receive lower lifetime Social Security benefits if a recession happens when a worker is near retirement age. People age 62 and older are more likely to withdraw from the labor force than to seek work when the unemployment rate is high, and they also are likely to start claiming Social Security benefits. These effects are most pronounced for people with less education as they tend to be more vulnerable to job loss and to rely more heavily on Social Security for their retirement income.
Coile and Levine use CPS supplemental data from the 1980 to 2009 March surveys for their analysis of the effects of weak labor market conditions on labor force status and Social Security receipt, focusing on men ages 55 to 69 for that part of their study. For their analysis of older peoples' income, they look at men ages 70 to 79 and use data from the 2000 Census and from the 2001, 2002, and 2006-2009 American Community Surveys. The authors limit their sample to men who have already left the labor force, because women in that age group are likely to receive Social Security payments based on their husbands' earnings. In addition, the authors include only people who report some income from

Social Security-more than 90 percent in this age category-because the other 10 percent are most likely ineligible to receive benefits and thus their income from that source would not be affected by labor market conditions. The resulting sample consists of nearly 600,000 men ages 70 to 79 , which they combine with state-level unemployment data from the Bureau of Labor Statistics.

When's the right time to "claim"?

Social Security benefits are universally available to Americans starting at age 62, but the monthly benefit amount depends on a number of factors, especially an individual's age when beginning to collect benefits. This is because the Social Security Administration recognizes that those who delay claiming collect for fewer years and hence are entitled to a greater monthly income. In "The Decision To Delay Social Security Benefits: Theory and Evidence" (National Bureau of Economic Research, Working Paper 17866, February 2012, http://www.nber.org/ papers/w17866), authors John B. Shoven and Sita Nataraj Slavov report on their empirical research into the advantages and disadvantages of starting to claim benefits at various ages-taking into account other de-mographics-and then suggest the optimal age to begin.
The authors focus on the financial advantage to the recipient of delaying the commencement of benefits. They note that the annual increase in benefit amount from delaying has become more generous over the years; for example, the 1924 birth cohort earns 3 percent of their base benefit per year of delay beyond full
retirement age, while the 1943 cohort (and later) can earn 8 percent of their base benefit per year of delay beyond full retirement age. The authors explain the financial advantages that occur when interest rates are low-and especially when rates are 3.5 percent or lower, as is the case today, because the delay raises the net present value of the benefit. The authors even suggest that households would be better off first spending down other assets (such as $401(\mathrm{k})$ plans) in order to delay claiming.

Shoven and Slavov point out that delaying the initial claim has advantages similar to those of purchasing a real annuity. Full-retirement (or base-year) age for most people currently able to claim Social Security benefits is 66 . Those who claim benefits at age 62 receive just 75 percent of the base-year amount, while waiting until age 70 results in a monthly benefit that is 132 percent of the age-66 amount. Demographic groups that gain the most from delaying include married couples (because of the spousal and survivor benefit) and two-earner couples (especially when the primary earner's benefit is the one that is delayed); also, single women gain more from waiting than do single men.
Life expectancy needs to be taken into account in the decision; the longer one lives, the better off one would be delaying the first claim. For men and women who were born in 1950 and reach age 62 , life expectancy is now 83.20 and 85.51 years, respectively, indicating that women are financially helped slightly more by delaying benefits because of their longer life expectancies. Age at death would be a very useful bit of information, but of course is an unknown when people are deciding at what age to start claiming benefits.
The University of Michigan Health
and Retirement Study (HRS) cited by the authors found that individuals who work longer tend to postpone claiming, perhaps because they enjoy their work and it pays well. Delaying the start of claiming benefits was also true of individuals with higher levels of education, which are associated with both longer life expectancy and greater financial literacy. Nonetheless, the HRS found that the majority of Americans start claiming Social Security benefits immediately after turning 62 even though that age isn't typically to their actuarial advantage.

Working while sick

Most everyone has heard of absenteeism in the workplace-being absent from work because of sickness or a health-related condition. However, not many of us have heard of presenteeism-being present at work while sick or not feeling well. The term is so new that many wellknown English dictionaries, such as Merriam-Webster, do not list it. Researchers have just become aware of the phenomenon in the past 20 years and have found that it can affect workers' productivity more than absenteeism. Workers who stay on the job while ill aren't able to complete their tasks on time, make more errors, and often miss deadlines. In addition, by continuing to stay at work, workers forgo the rest and treatment that their health condition may require.
Obviously, with employees' decreased productivity due to presenteeism, employers are incurring significant revenue losses and added costs, such as higher healthcare expenses. So what can businesses do to improve workers' physical and mental health and in turn decrease presenteeism? Many employers
have implemented workplace health promotion (WHP) programs. These programs may include but are not limited to the following: offering exercise in the workplace; increasing the number of rest periods; promoting health awareness through seminars, workshops, email, literature, etc.; and improving equipment and the environment, such as air and water quality. But just how effective are WHP programs?
Authors Carol Cancelliere, J. David Cassidy, Carlo Ammendolia, and Pierre Côté ask this same question in their article, "Are workplace health promotion programs effective at improving presenteeism in workers? A systematic review and best evidence synthesis of the literature" (BMC Health, May 2011, http:// www.biomedcentral.com/1471$2458 / 11 / 395$). In this article, Cancelliere and her colleagues present their research on WHP programs and their effects on presenteeism.
Finding studies that met their criteria was not easy. The criteria were that each study had to be original, include at least 20 participants 18 years or older, and include a WHP program that focused on health and wellness. The researchers searched several databases, such as Medline (http://www.nlm.nih.gov/bsd/ pmresources.html) and the Cochrane Library (http://www.thecochranelibrary.com/view/0/index. $\mathbf{h t m l})$. They examined several studies published worldwide from 1990 to 2010 and found only 47 out of 2,032 that met their criteria. These 47 were then measured and divided into three groups that describe the strength of the study-strong, moderate, and weak. Researchers defined each study's strength by the percentage of participants that represented the current work population, level of study control, blinding of
participants and researchers, methods used to measure findings, and follow-up of participants. Of the 47 studies, Cancelliere et al. accepted only 14 to review for this article, rating 4 strong and 10 moderate.
The researchers then reviewed each of the accepted studies on the basis of the following:

- Are they beneficial?
- If so, what makes the programs work?
- What health conditions and other factors could lead to presenteeism?
Reviewing the 14 studies, Cancelliere and her colleagues found that exercise decreases presenteeism through improved health of workers and that some WHP programs are
beneficial. However, the researchers suggest that making programs available isn't enough on its own to improve workers' health; they emphasize the need to focus on the mechanics that go into creating, designing, and following up on the program effects and then, even more importantly, adjusting programs to workers' fitness and health needs.

Race and economics

Race E Economics: How Much Can Be Blamed on Discrimination? By Walter E. Williams, Stanford, CA, Hoover Institution Press, 2011, 174 pp, \$21.33/hardback; \$8.40/ paperback.

Many people in government and academia argue that governmentimposed allocation of resources, rather than free-market resource allocation, is needed to keep minorities from being subject to discrimination by the majority and Big Business. In Race E Economics, Walter E. Williams takes a different approach. He applies economic analysis to attempt to prove that free-market resource allocation is in the best interest of minorities. Williams is the author of 10 books, including Up From the Projects: An Autobiography, in which he describes his journey as a Black man from a Philadelphia housing project to the faculty of George Mason University in Fairfax, Virginia, where he has served as the John M. Olin distinguished Professor of Economics since 1980. In the acknowledgment page of this, his most recent book, Dr. Williams confides that he spent a number of years gathering research materials and writing the book. His diligence is readily apparent.
Throughout Race \mathcal{E} Economics, Dr. Williams promotes the idea that economics and profits usually trump personal feelings and prejudices. He uses the sport of baseball as an example of this idea. There have been many, many significant events during the long and storied history of the sport, but sportswriters are almost unanimous in choosing Jackie

Robinson's breaking of the color barrier in 1947 as the most important. Robinson's appearance didn't immediately end prejudice among fans or owners. So why was it that all of the then 16 major league baseball teams integrated between 1947 and 1959? Per Williams, it came down to economics. Team owners realized that a "Whites only" policy would lead to losses to teams with more talented Black players, which would lead, in turn, to lost fans and lost revenue. Owners couldn't justify paying more to less talented White players than their abilities would dictate; in other words, the owners couldn't afford to discriminate.
Williams' position is that success among Blacks was achieved, not with the help of government policy, but in spite of it. He speaks out strongly against policy intended to help those in poverty who are members of minority groups. In doing so, he finds support from Frederick Douglass, a hero of the African-American community. Williams quotes an 1865 speech of Douglass' titled "What the Black Man Wants": "Everyone has asked the question ...'What shall we do with the Negro?' I have had but one answer from the beginning. Do nothing with us! ... And if the Negro cannot stand on his own legs, let him fall also. All I ask is, give him a chance to stand on his own legs!" Williams cites numerous examples of successful entrepreneurs among free Northern Blacks and even Southern slaves, examples that Douglass doubtless witnessed.
The current (April 2012) unemployment rate is 8.1 percent, and it would be higher if it included those who wanted full-time work but accepted part-time work and those who gave up searching for
employment. The unemployment rate among African-Americans is much higher still, currently more than 15 percent, and more than 40 percent among Black youths ages 16 to 24 years. Is the higher rate among Blacks the result of discrimination?
Williams would answer that it is not. He comes to this conclusion by comparing current unemployment rates with unemployment rates of 100 years ago, a time of much greater discrimination. In 1900, for example, the employment-topopulation ratio was 57.4 percent for non-Whites and only 45.5 percent for Whites. By 1990 these ratios had reversed, with the rate for non-Whites falling slightly, to 56.2 percent, while the ratio for Whites rose to 63.6 percent. Earlier periods displayed a similar pattern, as did the 1900-1930 period. On March 31, 1931, Congress passed the Da-vis-Bacon Act. This bill (which Williams believes was pushed by labor unions seeking higher wages and which would exclude Black workers who were willing to work for less) mandated the payment of locally prevailing wages and benefits on all federally financed or federally assisted construction projects that exceeded $\$ 5,000$ (reduced to $\$ 2,000$ in 1935). Once the bill became law, Black unemployment began rising relative to that of Whites; per Williams, this effect was further compounded by the passage of several other pieces of New Deal legislation, such as the Fair Labor Standards Act (FLSA), the Walsh-Healey Act, the National Labor Relations Act, and even the Social Security Act. The FLSA established a federal minimum-wage law that applied to employees engaged in and producing goods for interstate commerce.

Williams argues that this law helped those workers at the low end of the wage scale, but only those who could keep their job, because employers were not likely to keep an employee whose productivity was worth $\$ 6 /$ hour if the employee had to be paid $\$ 7 /$ hour. Williams concedes that some of those who advocate for a minimum-wage law do so with good intentions, believing that an increase in the number of people paid a "living wage" will reduce the poverty rate. However, it is his view that these actions have also been used with the goal of protecting the jobs of White workers. He cites union workers in apartheid South Africa, who demanded equal-pay-for-equal-work laws so that Blacks could not be hired for less and thereby usurp their jobs. What matters is the ultimate effect, says Williams, and that has been to increase the unemployment rate of the unskilled and young, many of whom are minorities.
Williams also decries occupational licensing laws. For some occupations, such as medicine and law, licensing laws are clearly needed. But there are now approximately 800 occupations that require licenses in at least one state: barbers, cosmetologists, taxi drivers, beekeepers-even fortune tellers-and more. Williams believes that these licensing laws are a means of restricting entry into an occupation, benefiting only those who are already practicing the trade. Some such laws, he maintains, are truly outrageous-for example, taxicab licensing requirements in New York City that include an entry fee of $\$ 500,000$. He believes that these
regulations result in the exclusion of less skilled, less experienced, and less wealthy persons, many of whom are Black. Williams acknowledges the union claim that licensing laws are needed to screen out unscrupulous practitioners, but he argues that in some trades (specifically, electricians, railroad workers, truckers, and plumbers) the laws have been purposely written to restrict the entry of Blacks.
Williams also has concerns about racial-profiling charges made against police officers accused of stopping Black or Hispanic drivers more often than non-Hispanic Whites. Similar accusations have been made against certain taxi drivers, alleging that they refused to provide rides to Blacks. Williams cites a 1999 story by James Owens in which (mainly black and Hispanic) cab drivers in Washington, DC, voice support for racial profiling and Commissioner Sandra Seegars (also Black) warned cabbies to stay away from low-income Black neighborhoods. Pizza companies that deliver also have been accused of racial profiling for refusing to deliver to certain neighborhoods, often crime-ridden and primarily Black ones. Since most of the delivery drivers who refused were themselves Black, Williams believes that the accusation is specious. In 1991, Jesse Jackson stated that it is criminal that banks "systematically discriminate against African-Americans and Latinos in making mortgage loans." Williams argues that discrimination was not involved; rather, the huge difference in net worth and credit scores of Blacks and Whites, even those who
have the same monthly income, was to blame. Williams contends that if banks were discriminating against Blacks by making their loan approvals more difficult, then Black default rates would be lower, and he cites a 1992 Federal Reserve study which found that Black and White default rates were roughly equivalent. He also claims that the insistence of many in Congress in recent years that homeownership be made more available in the form of subprime loans to low-income people was a primary cause of the collapse of the housing market and the ensuing recession. Had lending institutions been allowed to set their own requirements, Williams opines, many of our recent economic problems could have been avoided.
The thesis of this book is that attempts in the last 50 years to lessen the economic gap between Blacks and Whites through government interventions have been unsuccessful and may even have worsened the situation. Williams argues that freemarket resource allocation would have been a better solution for both minorities and the public in general. Race \mathcal{G} Economics is an easy read, well written and well researched: Williams provides 24 pages of footnotes to support his arguments. For those readers open to looking at the issue of race and economics from a distinctly conservative point of view, I strongly recommend this book.
—Ronald Johnson
Office of Prices and Living
Conditions
Bureau of Labor Statistics
Notes on current labor statistics 49
Comparative indicators

1. Labor market indicators 61
2. Annual and quarterly percent changes in compensation, prices, and productivity 62
3. Alternative measures of wages and compensation changes 62
Labor force data
4. Employment status of the population, seasonally adjusted 63
5. Selected employment indicators, seasonally adjusted 64
6. Selected unemployment indicators, seasonally adjusted.. 65
7. Duration of unemployment, seasonally adjusted. 65
8. Unemployed persons by reason for unemployment, seasonally adjusted 66
9. Unemployment rates by sex and age, seasonally adjusted 66
10. Unemployment rates by State, seasonally adjusted 67
11. Employment of workers by State, seasonally adjusted 67
12. Employment of workers by industry, seasonally adjusted 68
13. Average weekly hours by industry, seasonally adjusted 71
14. Average hourly earnings by industry, seasonally adjusted 72
15. Average hourly earnings by industry 73
16. Average weekly earnings by industry 74
17. Diffusion indexes of employment change, seasonally adjusted 75
18. Job openings levels and rates, by industry and regions, seasonally adjusted 76
19. Hires levels and rates by industry and region, seasonally adjusted. 76
20. Separations levels and rates by industry and region, seasonally adjusted 77
21. Quits levels and rates by industry and region, seasonally adjusted 78
22. Quarterly Census of Employment and Wages, 10 largest counties 78
23. Quarterly Census of Employment and Wages, by State 79
24. Annual data: Quarterly Census of Employment and Wages, by ownership 81
25. Annual data: Quarterly Census of Employment and Wages, establishment size and employment, by supersector...... 82
26. Annual data: Quarterly Census of Employment and Wages, by metropolitan area 83
27. Annual data: Employment status of the population. 88
28. Annual data: Employment levels by industry 88
29. Annual data: Average hours and earnings level, by industry 89

Labor compensation and collective bargaining data

30. Employment Cost Index, compensation 90
31. Employment Cost Index, wages and salaries 92
32. Employment Cost Index, benefits, private industry 94
33. Employment Cost Index, private industry workers, by bargaining status, and region 95
34. National Compensation Survey, retirement benefits, private industry 96
35. National Compensation Survey, health insurance, private industry 99
36. National Compensation Survey, selected benefits, private industry 101
37. Work stoppages involving 1,000 workers or more 101
Price data
38. Consumer Price Index: U.S. city average, by expenditure category and commodity and service groups 102
39. Consumer Price Index: U.S. city average and local data, all items 105
40. Annual data: Consumer Price Index, all items and major groups 106
41. Producer Price Indexes by stage of processing 107
42. Producer Price Indexes for the net output of major industry groups 108
43. Annual data: Producer Price Indexes by stage of processing 109
44. U.S. export price indexes by end-use category 109
45. U.S. import price indexes by end-use category 110
46. U.S. international price indexes for selected categories of services 110
Productivity data
47. Indexes of productivity, hourly compensation, and unit costs, data seasonally adjusted 111
48. Annual indexes of multifactor productivity 112
49. Annual indexes of productivity, hourly compensation, unit costs, and prices 113
50. Annual indexes of output per hour for select industries 114
International comparisons data
51. Unemployment rates in 10 countries, seasonally adjusted 117
52. Annual data: Employment status of the civilian working-age population, 10 countries 118
53. Annual indexes of manufacturing productivity and related measures, 19 economies 119
Injury and IIIness data
54. Annual data: Occupational injury and illness. 121
55. Fatal occupational injuries by event or exposure 123

This section of the Review presents the principal statistical series collected and calculated by the Bureau of Labor Statistics: series on labor force; employment; unemployment; labor compensation; consumer, producer, and international prices; productivity; international comparisons; and injury and illness statistics. In the notes that follow, the data in each group of tables are briefly described; key definitions are given; notes on the data are set forth; and sources of additional information are cited.

General notes

The following notes apply to several tables in this section:

Seasonal adjustment. Certain monthly and quarterly data are adjusted to eliminate the effect on the data of such factors as climatic conditions, industry production schedules, opening and closing of schools, holiday buying periods, and vacation practices, which might prevent short-term evaluation of the statistical series. Tables containing data that have been adjusted are identified as "seasonally adjusted." (All other data are not seasonally adjusted.) Seasonal effects are estimated on the basis of current and past experiences. When new seasonal factors are computed each year, revisions may affect seasonally adjusted data for several preceding years.

Seasonally adjusted data appear in tables $1-14,17-21,48$, and 52 . Seasonally adjusted labor force data in tables 1 and 4-9 and seasonally adjusted establishment survey data shown in tables $1,12-14$, and 17 usually are revised in the March issue of the Review. A brief explanation of the seasonal adjustment methodology appears in "Notes on the data."

Revisions in the productivity data in table 54 are usually introduced in the September issue. Seasonally adjusted indexes and percent changes from month-to-month and quarter-to-quarter are published for numerous Consumer and Producer Price Index series. However, seasonally adjusted indexes are not published for the U.S. average AllItems CPI. Only seasonally adjusted percent changes are available for this series.

Adjustments for price changes. Some data-such as the "real" earnings shown in table 14-are adjusted to eliminate the effect of changes in price. These adjustments are made by dividing current-dollar values by the Consumer Price Index or the appropriate component of the index, then multiplying by 100 . For example, given a current hourly wage rate of $\$ 3$ and a current price index number of 150 , where $1982=100$, the hourly rate expressed in 1982 dollars is $\$ 2(\$ 3 / 150$ x $100=\$ 2$). The $\$ 2$ (or any other resulting
values) are described as "real," "constant," or "1982" dollars.

Sources of information

Data that supplement the tables in this section are published by the Bureau in a variety of sources. Definitions of each series and notes on the data are contained in later sections of these Notes describing each set of data. For detailed descriptions of each data series, see BLS Handbook of Methods, Bulletin 2490. Users also may wish to consult Major Programs of the Bureau of Labor Statistics, Report 919. News releases provide the latest statistical information published by the Bureau; the major recurring releases are published according to the schedule appearing on the back cover of this issue.

More information about labor force, employment, and unemployment data and the household and establishment surveys underlying the data are available in the Bureau's monthly publication, Employment and Earnings. Historical unadjusted and seasonally adjusted data from the household survey are available on the Internet:

www.bls.gov/cps/

Historically comparable unadjusted and seasonally adjusted data from the establishment survey also are available on the Internet: www.bls.gov/ces/
Additional information on labor force data for areas below the national level are provided in the BLS annual report, Geographic Profile of Employment and Unemployment.

For a comprehensive discussion of the Employment Cost Index, see Employment Cost Indexes and Levels, 1975-95, BLS Bulletin 2466 . The most recent data from the Employee Benefits Survey appear in the following Bureau of Labor Statistics bulletins: Employee Benefits in Medium and Large Firms; Employee Benefits in Small Private Establishments; and Employee Benefits in State and Local Governments.

More detailed data on consumer and producer prices are published in the monthly periodicals, The CPI Detailed Report and Producer Price Indexes. For an overview of the 1998 revision of the CPI, see the December 1996 issue of the Monthly Labor Review. Additional data on international prices appear in monthly news releases.

Listings of industries for which productivity indexes are available may be found on the Internet:

www.bls.gov/lpc/

For additional information on international comparisons data, see International Comparisons of Unemployment, Bulletin
1979.

Detailed data on the occupational injury and illness series are published in Occupational Injuries and Illnesses in the United States, by Industry, a BLS annual bulletin.

Finally, the Monthly Labor Review carries analytical articles on annual and longer term developments in labor force, employment, and unemployment; employee compensation and collective bargaining; prices; productivity; international comparisons; and injury and illness data.

Symbols

n.e.c. $=$ not elsewhere classified. n.e.s. $=$ not elsewhere specified.
$\mathrm{p}=$ preliminary. To increase the timeliness of some series, preliminary figures are issued based on representative but incomplete returns.
$r=$ revised. Generally, this revision reflects the availability of later data, but also may reflect other adjustments.

Comparative Indicators

(Tables 1-3)
Comparative indicators tables provide an overview and comparison of major BLS statistical series. Consequently, although many of the included series are available monthly, all measures in these comparative tables are presented quarterly and annually.

Labor market indicators include employment measures from two major surveys and information on rates of change in compensation provided by the Employment Cost Index (ECI) program. The labor force participation rate, the employment-population ratio, and unemployment rates for major demographic groups based on the Current Population ("household") Survey are presented, while measures of employment and average weekly hours by major industry sector are given using nonfarm payroll data. The Employment Cost Index (compensation), by major sector and by bargaining status, is chosen from a variety of BLS compensation and wage measures because it provides a comprehensive measure of employer costs for hiring labor, not just outlays for wages, and it is not affected by employment shifts among occupations and industries.

Data on changes in compensation, prices, and productivity are presented in table 2. Measures of rates of change of compensation and wages from the Employment Cost Index
program are provided for all civilian nonfarm workers (excluding Federal and household workers) and for all private nonfarm workers. Measures of changes in consumer prices for all urban consumers; producer prices by stage of processing; overall prices by stage of processing; and overall export and import price indexes are given. Measures of productivity (output per hour of all persons) are provided for major sectors.

Alternative measures of wage and compensation rates of change, which reflect the overall trend in labor costs, are summarized in table 3. Differences in concepts and scope, related to the specific purposes of the series, contribute to the variation in changes among the individual measures.

Notes on the data

Definitions of each series and notes on the data are contained in later sections of these notes describing each set of data.

Employment and Unemployment Data

(Tables 1; 4-29)

Household survey data

Description of the series

Employment data in this section are obtained from the Current Population Survey, a program of personal interviews conducted monthly by the Bureau of the Census for the Bureau of Labor Statistics. The sample consists of about 60,000 households selected to represent the U.S. population 16 years of age and older. Households are interviewed on a rotating basis, so that three-fourths of the sample is the same for any 2 consecutive months.

Definitions

Employed persons include (1) all those who worked for pay any time during the week which includes the 12th day of the month or who worked unpaid for 15 hours or more in a family-operated enterprise and (2) those who were temporarily absent from their regular jobs because of illness, vacation, industrial dispute, or similar reasons. A person working at more than one job is counted only in the job at which he or she worked the greatest number of hours.

Unemployed persons are those who did not work during the survey week, but were available for work except for temporary illness and had looked for jobs within the preceding 4 weeks. Persons who did not look for work
because they were on layoff are also counted among the unemployed. The unemployment rate represents the number unemployed as a percent of the civilian labor force.

The civilian labor force consists of all employed or unemployed persons in the civilian noninstitutional population. Persons not in the labor force are those not classified as employed or unemployed. This group includes discouraged workers, defined as persons who want and are available for a job and who have looked for work sometime in the past 12 months (or since the end of their last job if they held one within the past 12 months), but are not currently looking, because they believe there are no jobs available or there are none for which they would qualify. The civilian noninstitutional population comprises all persons 16 years of age and older who are not inmates of penal or mental institutions, sanitariums, or homes for the aged, infirm, or needy. The civilian labor force participation rate is the proportion of the civilian noninstitutional population that is in the labor force. The employment-population ratio is employment as a percent of the civilian noninstitutional population.

Notes on the data

From time to time, and especially after a decennial census, adjustments are made in the Current Population Survey figures to correct for estimating errors during the intercensal years. These adjustments affect the comparability of historical data. A description of these adjustments and their effect on the various data series appears in the Explanatory Notes of Employment and Earnings. For a discussion of changes introduced in January 2003, see "Revisions to the Current Population Survey Effective in January 2003" in the February 2003 issue of Employment and Earnings (available on the BLS Web site at www.bls.gov/cps/rvcps03.pdf).

Effective in January 2003, BLS began using the X-12 ARIMA seasonal adjustment program to seasonally adjust national labor force data. This program replaced the $\mathrm{X}-11$ ARIMA program which had been used since January 1980. See "Revision of Seasonally Adjusted Labor Force Series in 2003," in the February 2003 issue of Employment and Earnings (available on the BLS Web site at www.bls.gov/cps/cpsrs.pdf) for a discussion of the introduction of the use of X-12 ARIMA for seasonal adjustment of the labor force data and the effects that it had on the data.

At the beginning of each calendar year, historical seasonally adjusted data usually are revised, and projected seasonal adjustment factors are calculated for use during the January-June period. The historical season-
ally adjusted data usually are revised for only the most recent 5 years. In July, new seasonal adjustment factors, which incorporate the experience through June, are produced for the July-December period, but no revisions are made in the historical data.

FOR ADDITIONAL INFORMATION on national household survey data, contact the Division of Labor Force Statistics: (202) 691-6378.

Establishment survey data

Description of the series

Employment, hours, and earnings data in this section are compiled from payroll records reported monthly on a voluntary basis to the Bureau of Labor Statistics and its cooperating State agencies by about 160,000 businesses and government agencies, which represent approximately 400,000 individual worksites and represent all industries except agriculture. The active CES sample covers approximately one-third of all nonfarm payroll workers. Industries are classified in accordance with the 2007 North American Industry Classification System. In most industries, the sampling probabilities are based on the size of the establishment; most large establishments are therefore in the sample. (An establishment is not necessarily a firm; it may be a branch plant, for example, or warehouse.) Self-employed persons and others not on a regular civilian payroll are outside the scope of the survey because they are excluded from establishment records. This largely accounts for the difference in employment figures between the household and establishment surveys.

Definitions

An establishment is an economic unit which produces goods or services (such as a factory or store) at a single location and is engaged in one type of economic activity.

Employed persons are all persons who received pay (including holiday and sick pay) for any part of the payroll period including the 12th day of the month. Persons holding more than one job (about 5 percent of all persons in the labor force) are counted in each establishment which reports them.

Production workers in the goods-producing industries cover employees, up through the level of working supervisors, who engage directly in the manufacture or construction of the establishment's product. In private service-providing industries, data are collected for nonsupervisory workers, which include most employees except those in executive, managerial, and supervisory posi-
tions. Those workers mentioned in tables 11-16 include production workers in manufacturing and natural resources and mining; construction workers in construction; and nonsupervisory workers in all private service-providing industries. Production and nonsupervisory workers account for about four-fifths of the total employment on private nonagricultural payrolls.

Earnings are the payments production or nonsupervisory workers receive during the survey period, including premium pay for overtime or late-shift work but excluding irregular bonuses and other special payments. Real earnings are earnings adjusted to reflect the effects of changes in consumer prices. The deflator for this series is derived from the Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W).

Hours represent the average weekly hours of production or nonsupervisory workers for which pay was received, and are different from standard or scheduled hours. Overtime hours represent the portion of average weekly hours which was in excess of regular hours and for which overtime premiums were paid.

The Diffusion Index represents the percent of industries in which employment was rising over the indicated period, plus one-half of the industries with unchanged employment; 50 percent indicates an equal balance between industries with increasing and decreasing employment. In line with Bureau practice, data for the $1-, 3-$, and 6 month spans are seasonally adjusted, while those for the 12 -month span are unadjusted. Table 17 provides an index on private nonfarm employment based on 278 industries, and a manufacturing index based on 84 industries. These indexes are useful for measuring the dispersion of economic gains or losses and are also economic indicators.

Notes on the data

With the release of data for January 2010, the CES program introduced its annual revision of national estimates of employment, hours, and earnings from the monthly survey of nonfarm establishments. Each year, the CES survey realigns its sample-based estimates to incorporate universe counts of employ-ment-a process known as benchmarking. Comprehensive counts of employment, or benchmarks, are derived primarily from unemployment insurance (UI) tax reports that nearly all employers are required to file with State Workforce Agencies. With the release in June 2003, CES completed the transition from its original quota sample design to a
probability-based sample design. The indus-try-coding update included reconstruction of historical estimates in order to preserve time series for data users. Normally 5 years of seasonally adjusted data are revised with each benchmark revision. However, with this release, the entire new time series history for all CES data series were re-seasonally adjusted due to the NAICS conversion, which resulted in the revision of all CES time series.

Also in June 2003, the CES program introduced concurrent seasonal adjustment for the national establishment data. Under this methodology, the first preliminary estimates for the current reference month and the revised estimates for the 2 prior months will be updated with concurrent factors with each new release of data. Concurrent seasonal adjustment incorporates all available data, including first preliminary estimates for the most current month, in the adjustment process. For additional information on all of the changes introduced in June 2003, see the June 2003 issue of Employment and Earnings and "Recent changes in the national Current Employment Statistics survey," Monthly Labor Revierw, June 2003, pp. 3-13.

Revisions in State data (table 11) occurred with the publication of January 2003 data. For information on the revisions for the State data, see the March and May 2003 issues of Employment and Earnings, and "Recent changes in the State and Metropolitan Area CES survey," Monthly Labor Review, June 2003, pp. 14-19.

Beginning in June 1996, the BLS uses the X -12-ARIMA methodology to seasonally adjust establishment survey data. This procedure, developed by the Bureau of the Census, controls for the effect of varying survey intervals (also known as the 4 - versus 5 -week effect), thereby providing improved measurement of over-the-month changes and underlying economic trends. Revisions of data, usually for the most recent 5 -year period, are made once a year coincident with the benchmark revisions.

In the establishment survey, estimates for the most recent 2 months are based on incomplete returns and are published as preliminary in the tables (12-17 in the Review). When all returns have been received, the estimates are revised and published as "final" (prior to any benchmark revisions) in the third month of their appearance. Thus, December data are published as preliminary in January and February and as final in March. For the same reasons, quarterly establishment data (table 1) are preliminary for the first 2 months of publication and final in the third month. Fourth-quarter data are pub-
lished as preliminary in January and February and as final in March.

FOR ADDITIONAL INFORMATION on establishment survey data, contact the $\mathrm{Di}-$ vision of Current Employment Statistics: (202) 691-6555.

Unemployment data by State

Description of the series

Data presented in this section are obtained from the Local Area Unemployment Statistics (LAUS) program, which is conducted in cooperation with State employment security agencies.

Monthly estimates of the labor force, employment, and unemployment for States and sub-State areas are a key indicator of local economic conditions, and form the basis for determining the eligibility of an area for benefits under Federal economic assistance programs such as the Job Training Partnership Act. Seasonally adjusted unemployment rates are presented in table 10. Insofar as possible, the concepts and definitions underlying these data are those used in the national estimates obtained from the CPS.

Notes on the data

Data refer to State of residence. Monthly data for all States and the District of Columbia are derived using standardized procedures established by BLS. Once a year, estimates are revised to new population controls, usually with publication of January estimates, and benchmarked to annual average CPS levels.

FOR ADDITIONAL INFORMATION on data in this series, call (202) 691-6392 (table 10) or (202) 691-6559 (table 11).

Quarterly Census of Employment and Wages

Description of the series

Employment, wage, and establishment data in this section are derived from the quarterly tax reports submitted to State employment security agencies by private and State and local government employers subject to State unemployment insurance (ui) laws and from Federal, agencies subject to the Unemployment Compensation for Federal Employees (ucfe) program. Each quarter, State agencies edit and process the data and send the information to the Bureau of Labor Statistics.

The Quarterly Census of Employment and Wages (QCEW) data, also referred as ES202 data, are the most complete enumeration of employment and wage information by
industry at the national, State, metropolitan area, and county levels. They have broad economic significance in evaluating labor market trends and major industry developments.

Definitions

In general, the Quarterly Census of Employment and Wages monthly employment data represent the number of covered workers who worked during, or received pay for, the pay period that included the 12 th day of the month. Covered private industry employment includes most corporate officials, executives, supervisory personnel, professionals, clerical workers, wage earners, piece workers, and part-time workers. It excludes proprietors, the unincorporated self-employed, unpaid family members, and certain farm and domestic workers. Certain types of nonprofit employers, such as religious organizations, are given a choice of coverage or exclusion in a number of States. Workers in these organizations are, therefore, reported to a limited degree.

Persons on paid sick leave, paid holiday, paid vacation, and the like, are included. Persons on the payroll of more than one firm during the period are counted by each UI-subject employer if they meet the employment definition noted earlier. The employment count excludes workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness, or unpaid vacations.

Federal employment data are based on reports of monthly employment and quarterly wages submitted each quarter to State agencies for all Federal installations with employees covered by the Unemployment Compensation for Federal Employees (UCFE) program, except for certain national security agencies, which are omitted for security reasons. Employment for all Federal agencies for any given month is based on the number of persons who worked during or received pay for the pay period that included the 12th of the month.

An establishment is an economic unit, such as a farm, mine, factory, or store, that produces goods or provides services. It is typically at a single physical location and engaged in one, or predominantly one, type of economic activity for which a single industrial classification may be applied. Occasionally, a single physical location encompasses two or more distinct and significant activities. Each activity should be reported as a separate establishment if separate records are kept and the various activities are classified under different NAICS industries.

Most employers have only one establishment; thus, the establishment is the
predominant reporting unit or statistical entity for reporting employment and wages data. Most employers, including State and local governments who operate more than one establishment in a State, file a Multiple Worksite Report each quarter, in addition to their quarterly ui report. The Multiple Worksite Report is used to collect separate employment and wage data for each of the employer's establishments, which are not detailed on the uI report. Some very small multi-establishment employers do not file a Multiple Worksite Report. When the total employment in an employer's secondary establishments (all establishments other than the largest) is 10 or fewer, the employer generally will file a consolidated report for all establishments. Also, some employers either cannot or will not report at the establishment level and thus aggregate establishments into one consolidated unit, or possibly several units, though not at the establishment level.

For the Federal Government, the reporting unit is the installation: a single location at which a department, agency, or other government body has civilian employees. Federal agencies follow slightly different criteria than do private employers when breaking down their reports by installation. They are permitted to combine as a single statewide unit: 1) all installations with 10 or fewer workers, and 2) all installations that have a combined total in the State of fewer than 50 workers. Also, when there are fewer than 25 workers in all secondary installations in a State, the secondary installations may be combined and reported with the major installation. Last, if a Federal agency has fewer than five employees in a State, the agency headquarters office (regional office, district office) serving each State may consolidate the employment and wages data for that State with the data reported to the State in which the headquarters is located. As a result of these reporting rules, the number of reporting units is always larger than the number of employers (or government agencies) but smaller than the number of actual establishments (or installations).

Data reported for the first quarter are tabulated into size categories ranging from worksites of very small size to those with 1,000 employees or more. The size category is determined by the establishment's March employment level. It is important to note that each establishment of a multi-establishment firm is tabulated separately into the appropriate size category. The total employment level of the reporting multi-establishment firm is not used in the size tabulation.

Covered employers in most States report total wages paid during the calendar quarter, regardless of when the services were performed. A few State laws, however, specify
that wages be reported for, or based on the period during which services are performed rather than the period during which compensation is paid. Under most State laws or regulations, wages include bonuses, stock options, the cash value of meals and lodging, tips and other gratuities, and, in some States, employer contributions to certain deferred compensation plans such as $401(\mathrm{k})$ plans.

Covered employer contributions for old-age, survivors, and disability insurance (OASDI), health insurance, unemployment insurance, workers' compensation, and private pension and welfare funds are not reported as wages. Employee contributions for the same purposes, however, as well as money withheld for income taxes, union dues, and so forth, are reported even though they are deducted from the worker's gross pay.

Wages of covered Federal workers represent the gross amount of all payrolls for all pay periods ending within the quarter. This includes cash allowances, the cash equivalent of any type of remuneration, severance pay, withholding taxes, and retirement deductions. Federal employee remuneration generally covers the same types of services as for workers in private industry.

Average annual wage per employee for any given industry are computed by dividing total annual wages by annual average employment. A further division by 52 yields average weekly wages per employee. Annual pay data only approximate annual earnings because an individual may not be employed by the same employer all year or may work for more than one employer at a time.

Average weekly or annual wage is affected by the ratio of full-time to part-time workers as well as the number of individuals in high-paying and low-paying occupations. When average pay levels between States and industries are compared, these factors should be taken into consideration. For example, industries characterized by high proportions of part-time workers will show average wage levels appreciably less than the weekly pay levels of regular full-time employees in these industries. The opposite effect characterizes industries with low proportions of part-time workers, or industries that typically schedule heavy weekend and overtime work. Average wage data also may be influenced by work stoppages, labor turnover rates, retroactive payments, seasonal factors, bonus payments, and so on.

Notes on the data

Beginning with the release of data for 2007, publications presenting data from the Covered Employment and Wages program have
switched to the 2007 version of the North American Industry Classification System (NAICS) as the basis for the assignment and tabulation of economic data by industry. NAICS is the product of a cooperative effort on the part of the statistical agencies of the United States, Canada, and Mexico. Due to difference in NAICS and Standard Industrial Classification (SIC) structures, industry data for 2001 is not comparable to the SIC-based data for earlier years.

Effective January 2001, the program began assigning Indian Tribal Councils and related establishments to local government ownership. This BLS action was in response to a change in Federal law dealing with the way Indian Tribes are treated under the Federal Unemployment Tax Act. This law requires federally recognized Indian Tribes to be treated similarly to State and local governments. In the past, the Covered Employment and Wage (CEW) program coded Indian Tribal Councils and related establishments in the private sector. As a result of the new law, CEW data reflects significant shifts in employment and wages between the private sector and local government from 2000 to 2001. Data also reflect industry changes. Those accounts previously assigned to civic and social organizations were assigned to tribal governments. There were no required industry changes for related establishments owned by these Tribal Councils. These tribal business establishments continued to be coded according to the economic activity of that entity.

To insure the highest possible quality of data, State employment security agencies verify with employers and update, if necessary, the industry, location, and ownership classification of all establishments on a 3-year cycle. Changes in establishment classification codes resulting from the verification process are introduced with the data reported for the first quarter of the year. Changes resulting from improved employer reporting also are introduced in the first quarter. For these reasons, some data, especially at more detailed geographic levels, may not be strictly comparable with earlier years.

County definitions are assigned according to Federal Information Processing Standards Publications as issued by the National Institute of Standards and Technology. Areas shown as counties include those designated as independent cities in some jurisdictions and, in Alaska, those areas designated by the Census Bureau where counties have not been created. County data also are presented for the New England States for comparative purposes, even though townships are the more common designation used in New England (and New Jersey).

The Office of Management and Budget (OMB) defines metropolitan areas for use in Federal statistical activities and updates these definitions as needed. Data in this table use metropolitan area criteria established by OMB in definitions issued June 30, 1999 (OMB Bulletin No. 99-04). These definitions reflect information obtained from the 1990 Decennial Census and the 1998 U.S. Census Bureau population estimate. A complete list of metropolitan area definitions is available from the National Technical Information Service (NTIS), Document Sales, 5205 Port Royal Road, Springfield, Va. 22161, telephone 1-800-553-6847.

OMB defines metropolitan areas in terms of entire counties, except in the six New England States where they are defined in terms of cities and towns. New England data in this table, however, are based on a county concept defined by OMB as New England County Metropolitan Areas (NECMA) because coun-ty-level data are the most detailed available from the Quarterly Census of Employment and Wages. The NECMA is a county-based alternative to the city- and town-based metropolitan areas in New England.The NECMA for a Metropolitan Statistical Area (MSA) include: (1) the county containing the first-named city in that MSA title (this county may include the first-named cities of other MSA, and (2) each additional county having at least half its population in the MSA in which first-named cities are in the county identified in step 1. The NECMA is officially defined areas that are meant to be used by statistical programs that cannot use the regular metropolitan area definitions in New England.

For additional information on the covered employment and wage data, contact the Division of Administrative Statistics and Labor Turnover at (202) 691-6567.

Job Openings and Labor Turnover Survey

Description of the series

Data for the Job Openings and Labor
Turnover Survey (JOLTS) are collected and compiled from a sample of 16,000 business establishments. Each month, data are collected for total employment, job openings, hires, quits, layoffs and discharges, and other separations. The Jolts program covers all private nonfarm establishments such as factories, offices, and stores, as well as Federal, State, and local government entities in the 50 States and the District of Columbia. The JOLTS sample design is a random sample drawn from a universe of more than eight mil-
lion establishments compiled as part of the operations of the Quarterly Census of Employment and Wages, or QCEW, program. This program includes all employers subject to State unemployment insurance (UI) laws and Federal agencies subject to Unemployment Compensation for Federal Employees (UCFE).

The sampling frame is stratified by ownership, region, industry sector, and size class. Large firms fall into the sample with virtual certainty. JolTS total employment estimates are controlled to the employment estimates of the Current Employment Statistics (CES) survey. A ratio of CES to JOLTS employment is used to adjust the levels for all other JolTs data elements. Rates then are computed from the adjusted levels.

The monthly JOLTS data series begin with December 2000. Not seasonally adjusted data on job openings, hires, total separations, quits, layoffs and discharges, and other separations levels and rates are available for the total nonfarm sector, 16 private industry divisions and 2 government divisions based on the North American Industry Classification System (NAICS), and four geographic regions. Seasonally adjusted data on job openings, hires, total separations, and quits levels and rates are available for the total nonfarm sector, selected industry sectors, and four geographic regions.

Definitions

Establishments submit job openings information for the last business day of the reference month. A job opening requires that (1) a specific position exists and there is work available for that position; and (2) work could start within 30 days regardless of whether a suitable candidate is found; and (3) the employer is actively recruiting from outside the establishment to fill the position. Included are full-time, part-time, permanent, short-term, and seasonal openings. Active recruiting means that the establishment is taking steps to fill a position by advertising in newspapers or on the Internet, posting help-wanted signs, accepting applications, or using other similar methods.

Jobs to be filled only by internal transfers, promotions, demotions, or recall from layoffs are excluded. Also excluded are jobs with start dates more than 30 days in the future, jobs for which employees have been hired but have not yet reported for work, and jobs to be filled by employees of temporary help agencies, employee leasing companies, outside contractors, or consultants. The job openings rate is computed by dividing the number of job openings by the sum of employment and job openings, and multiplying that quotient
by 100 .
Hires are the total number of additions to the payroll occurring at any time during the reference month, including both new and rehired employees and full-time and parttime, permanent, short-term and seasonal employees, employees recalled to the location after a layoff lasting more than 7 days, on-call or intermittent employees who returned to work after having been formally separated, and transfers from other locations. The hires count does not include transfers or promotions within the reporting site, employees returning from strike, employees of temporary help agencies or employee leasing companies, outside contractors, or consultants. The hires rate is computed by dividing the number of hires by employment, and multiplying that quotient by 100 .

Separations are the total number of terminations of employment occurring at any time during the reference month, and are reported by type of separation-quits, layoffs and discharges, and other separations. Quits are voluntary separations by employees (except for retirements, which are reported as other separations). Layoffs and discharges are involuntary separations initiated by the employer and include layoffs with no intent to rehire, formal layoffs lasting or expected to last more than 7 days, discharges resulting from mergers, downsizing, or closings, firings or other discharges for cause, terminations of permanent or short-term employees, and terminations of seasonal employees. Other separations include retirements, transfers to other locations, deaths, and separations due to disability. Separations do not include transfers within the same location or employees on strike.

The separations rate is computed by dividing the number of separations by employment, and multiplying that quotient by 100 . The quits, layoffs and discharges, and other separations rates are computed similarly, dividing the number by employment and multiplying by 100 .

Notes on the data

The JolTs data series on job openings, hires, and separations are relatively new. The full sample is divided into panels, with one panel enrolled each month. A full complement of panels for the original data series based on the 1987 Standard Industrial Classification (SIC) system was not completely enrolled in the survey until January 2002. The supplemental panels of establishments needed to create NAICS estimates were not completely enrolled until May 2003. The data collected up until those points are from less than a
full sample. Therefore, estimates from earlier months should be used with caution, as fewer sampled units were reporting data at that time.

In March 2002, BLS procedures for collecting hires and separations data were revised to address possible underreporting. As a result, JOLTS hires and separations estimates for months prior to March 2002 may not be comparable with estimates for March 2002 and later.

The Federal Government reorganization that involved transferring approximately 180,000 employees to the new Department of Homeland Security is not reflected in the JOLTS hires and separations estimates for the Federal Government. The Office of Personnel Management's record shows these transfers were completed in March 2003. The inclusion of transfers in the JOLTS definitions of hires and separations is intended to cover ongoing movements of workers between establishments. The Department of Homeland Security reorganization was a massive one-time event, and the inclusion of these intergovernmental transfers would distort the Federal Government time series.

Data users should note that seasonal adjustment of the JOLTS series is conducted with fewer data observations than is customary. The historical data, therefore, may be subject to larger than normal revisions. Because the seasonal patterns in economic data series typically emerge over time, the standard use of moving averages as seasonal filters to capture these effects requires longer series than are currently available. As a result, the stable seasonal filter option is used in the seasonal adjustment of the JOLTS data. When calculating seasonal factors, this filter takes an average for each calendar month after detrending the series. The stable seasonal filter assumes that the seasonal factors are fixed; a necessary assumption until sufficient data are available. When the stable seasonal filter is no longer needed, other program features also may be introduced, such as outlier adjustment and extended diagnostic testing. Additionally, it is expected that more series, such as layoffs and discharges and additional industries, may be seasonally adjusted when more data are available.

Jolts hires and separations estimates cannot be used to exactly explain net changes in payroll employment. Some reasons why it is problematic to compare changes in payroll employment with JOLTS hires and separations, especially on a monthly basis, are: (1) the reference period for payroll employment is the pay period including the 12th of the month, while the reference period for hires and separations is the calendar month; and (2) payroll employment can vary from month
to month simply because part-time and oncall workers may not always work during the pay period that includes the 12th of the month. Additionally, research has found that some reporters systematically underreport separations relative to hires due to a number of factors, including the nature of their payroll systems and practices. The shortfall appears to be about 2 percent or less over a 12-month period.

FOR ADDITIONAL INFORMATION on the Job Openings and Labor Turnover Survey, contact the Division of Administrative Statistics and Labor Turnover at (202) 961-5870.

Compensation and Wage Data

(Tables 1-3; 30-37)
The National Compensation Survey (NCS) produces a variety of compensation data. These include: The Employment Cost Index (ECI) and NCS benefit measures of the incidence and provisions of selected employee benefit plans. Selected samples of these measures appear in the following tables. NCS also compiles data on occupational wages and the Employer Costs for Employee Compensation (ECEC).

Employment Cost Index

Description of the series

The Employment Cost Index (ECI) is a quarterly measure of the rate of change in compensation per hour worked and includes wages, salaries, and employer costs of employee benefits. It is a Laspeyres Index that uses fixed employment weights to measure change in labor costs free from the influence of employment shifts among occupations and industries.

The ECI provides data for the civilian economy, which includes the total private nonfarm economy excluding private households, and the public sector excluding the Federal government. Data are collected each quarter for the pay period including the 12th day of March, June, September, and December.

Sample establishments are classified by industry categories based on the 2007 North American Classification System (NAICS). Within a sample establishment, specific job categories are selected and classified into about 800 occupations according to the 2000 Standard Occupational Classification (sOc) System. Individual occupations are combined to represent one of ten intermediate
aggregations, such as professional and related occupations, or one of five higher level aggregations, such as management, professional, and related occupations.

Fixed employment weights are used each quarter to calculate the most aggregate series-civilian, private, and State and local government. These fixed weights are also used to derive all of the industry and occupational series indexes. Beginning with the March 2006 estimates, 2002 fixed employment weights from the Bureau's Occupational Employment Statistics survey were introduced. From March 1995 to December 2005, 1990 employment counts were used. These fixed weights ensure that changes in these indexes reflect only changes in compensation, not employment shifts among industries or occupations with different levels of wages and compensation. For the series based on bargaining status, census region and division, and metropolitan area status, fixed employment data are not available. The employment weights are reallocated within these series each quarter based on the current ECI sample. The indexes for these series, consequently, are not strictly comparable with those for aggregate, occupational, and industry series.

Definitions

Total compensation costs include wages, salaries, and the employer's costs for employee benefits.

Wages and salaries consist of earnings before payroll deductions, including production bonuses, incentive earnings, commissions, and cost-of-living adjustments.

Benefits include the cost to employers for paid leave, supplemental pay (including nonproduction bonuses), insurance, retirement and savings plans, and legally required benefits (such as Social Security, workers' compensation, and unemployment insurance).

Excluded from wages and salaries and employee benefits are such items as payment-in-kind, free room and board, and tips.

Notes on the data

The ECI data in these tables reflect the con-version to the 2002 North American Industry Classification System (NAICS) and the 2000 Standard Occupational Classification (sOC) system. The NAICS and sOC data shown prior to 2006 are for informational purposes only. ECI series based on NAICS and SOC became the official BLS estimates starting in March 2006.

The ECI for changes in wages and salaries in the private nonfarm economy was pub-
lished beginning in 1975. Changes in total compensation cost-wages and salaries and benefits combined-were published beginning in 1980. The series of changes in wages and salaries and for total compensation in the State and local government sector and in the civilian nonfarm economy (excluding Federal employees) were published beginning in 1981. Historical indexes (December $2005=100$) are available on the Internet: www.bls.gov/ect/

ADDITIONAL InFORMATION on the Employment Cost Index is available at www. bls.gov/ncs/ect/home.htm or by telephone at (202) 691-6199.

National Compensation Survey Benefit Measures

Description of the series

NCS benefit measures of employee benefits are published in two separate reports. The annual summary provides data on the incidence of (access to and participation in) selected benefits and provisions of paid holidays and vacations, life insurance plans, and other selected benefit programs. Data on percentages of establishments offering major employee benefits, and on the employer and employee shares of contributions to medical care premiums also are presented. Selected benefit data appear in the following tables. A second publication, published later, contains more detailed information about health and retirement plans.

Definitions

Employer-provided benefits are benefits that are financed either wholly or partly by the employer. They may be sponsored by a union or other third party, as long as there is some employer financing. However, some benefits that are fully paid for by the employee also are included. For example, long-term care insurance paid entirely by the employee are included because the guarantee of insurability and availability at group premium rates are considered a benefit.

Employees are considered as having access to a benefit plan if it is available for their use. For example, if an employee is permitted to participate in a medical care plan offered by the employer, but the employee declines to do so, he or she is placed in the category with those having access to medical care.

Employees in contributory plans are considered as participating in an insurance or retirement plan if they have paid required contributions and fulfilled any applicable
service requirement. Employees in noncontributory plans are counted as participating regardless of whether they have fulfilled the service requirements.

Defined benefit pension plans use predetermined formulas to calculate a retirement benefit (if any), and obligate the employer to provide those benefits. Benefits are generally based on salary, years of service, or both.

Defined contribution plans generally specify the level of employer and employee contributions to a plan, but not the formula for determining eventual benefits. Instead, individual accounts are set up for participants, and benefits are based on amounts credited to these accounts.

Tax-deferred savings plans are a type of defined contribution plan that allow participants to contribute a portion of their salary to an employer-sponsored plan and defer income taxes until withdrawal.

Flexible benefit plans allow employees to choose among several benefits, such as life insurance, medical care, and vacation days, and among several levels of coverage within a given benefit.

Notes on the data

Additional information on the ncs benefit measures is available at www.bls. gov/ncs/ebs/home.htm or by telephone at (202) 691-6199.

Work stoppages

Description of the series

Data on work stoppages measure the number and duration of major strikes or lockouts (involving 1,000 workers or more) occurring during the month (or year), the number of workers involved, and the amount of work time lost because of stoppage. These data are presented in table 37.

Data are largely from a variety of published sources and cover only establishments directly involved in a stoppage. They do not measure the indirect or secondary effect of stoppages on other establishments whose employees are idle owing to material shortages or lack of service.

Definitions

Number of stoppages: The number of strikes and lockouts involving 1,000 workers or more and lasting a full shift or longer.

Workers involved: The number of workers directly involved in the stoppage.

Number of days idle: The aggregate number of workdays lost by workers involved
in the stoppages.
Days of idleness as a percent of estimated working time: Aggregate workdays lost as a percent of the aggregate number of standard workdays in the period multiplied by total employment in the period.

Notes on the data

This series is not comparable with the one terminated in 1981 that covered strikes involving six workers or more.

ADDITIONAL INFORMATION on work stop-pages data is available at www. bls. gov/cba/home.htm or by telephone at (202) 691-6199.

Price Data

(Tables 2; 38-46)
Price data are gathered by the Bureau of Labor Statistics from retail and primary markets in the United States. Price indexes are given in relation to a base pe-riod-December 2003 = 100 for many Producer Price Indexes (unless otherwise noted), 1982-84 = 100 for many Consumer Price Indexes (unless otherwise noted), and 1990 $=100$ for International Price Indexes.

Consumer Price Indexes

Description of the series

The Consumer Price Index (CPI) is a measure of the average change in the prices paid by urban consumers for a fixed market basket of goods and services. The CPI is calculated monthly for two population groups, one consisting only of urban households whose primary source of income is derived from the employment of wage earners and clerical workers, and the other consisting of all urban households. The wage earner index (CPI-W) is a continuation of the historic index that was introduced well over a half-century ago for use in wage negotiations. As new uses were developed for the CPI in recent years, the need for a broader and more representative index became apparent. The all-urban consumer index (CPI-U), introduced in 1978, is representative of the 1993-95 buying habits of about 87 percent of the noninstitutional population of the United States at that time, compared with 32 percent represented in the CPI-W. In addition to wage earners and clerical workers, the CPI-U covers professional, managerial, and technical workers, the self-employed, shortterm workers, the unemployed, retirees, and others not in the labor force.

The CPI is based on prices of food, clothing, shelter, fuel, drugs, transportation fares, doctors' and dentists' fees, and other goods and services that people buy for day-to-day living. The quantity and quality of these items are kept essentially unchanged between major revisions so that only price changes will be measured. All taxes directly associated with the purchase and use of items are included in the index.

Data collected from more than 23,000 retail establishments and 5,800 housing units in 87 urban areas across the country are used to develop the "U.S.city average." Separate estimates for 14 major urban centers are presented in table 39.The areas listed are as indicated in footnote 1 to the table. The area indexes measure only the average change in prices for each area since the base period, and do not indicate differences in the level of prices among cities.

Notes on the data

In January 1983, the Bureau changed the way in which homeownership costs are meaured for the CPI-U. A rental equivalence method replaced the asset-price approach to homeownership costs for that series. In January 1985, the same change was made in the CPI-W. The central purpose of the change was to separate shelter costs from the investment component of homeownership so that the index would reflect only the cost of shelter services provided by owner-occupied homes. An updated CPI-U and CPI-W were introduced with release of the January 1987 and January 1998 data.

FOR ADDITIONAL INFORMATION, contact the Division of Prices and Price Indexes: (202) 691-7000.

Producer Price Indexes

Description of the series

Producer Price Indexes (PPI) measure average changes in prices received by domestic producers of commodities in all stages of processing. The sample used for calculating these indexes currently contains about 3,200 commodities and about 80,000 quotations per month, selected to represent the movement of prices of all commodities produced in the manufacturing; agriculture, forestry, and fishing; mining; and gas and electricity and public utilities sectors. The stage-of-processing structure of PPI organizes products by class of buyer and degree of fabrication (that is, finished goods, intermediate goods, and crude materials). The traditional commodity structure of PPI organizes products by similarity of end use or material composition. The industry and product structure of PPI organizes data in accordance with the North American Indus-
try Classification System and product codes developed by the U.S. Census Bureau.

To the extent possible, prices used in calculating Producer Price Indexes apply to the first significant commercial transaction in the United States from the production or central marketing point. Price data are generally collected monthly, primarily by mail questionnaire. Most prices are obtained directly from producing companies on a voluntary and confidential basis. Prices generally are reported for the Tuesday of the week containing the 13th day of the month.

Since January 1992, price changes for the various commodities have been averaged together with implicit quantity weights representing their importance in the total net selling value of all commodities as of 1987.The detailed data are aggregated to obtain indexes for stage-of-processing groupings, commodity groupings, durability-of-product groupings, and a number of special composite groups. All Producer Price Index data are subject to revision 4 months after original publication.

FOR ADDITIONAL INFORMATION, contact the Division of Industrial Prices and Price Indexes: (202) 691-7705.

International Price Indexes

Description of the series

The International Price Program produces monthly and quarterly export and import price indexes for nonmilitary goods and services traded between the United States and the rest of the world. The export price index provides a measure of price change for all products sold by U.S. residents to foreign buyers. ("Residents" is defined as in the national income accounts; it includes corporations, businesses, and individuals, but does not require the organizations to be U.S. owned nor the individuals to have U.S. citizenship.) The import price index provides a measure of price change for goods purchased from other countries by U.S. residents.

The product universe for both the import and export indexes includes raw materials, agricultural products, semifinished manufactures, and finished manufactures, including both capital and consumer goods. Price data for these items are collected primarily by mail questionnaire. In nearly all cases, the data are collected directly from the exporter or importer, although in a few cases, prices are obtained from other sources.

To the extent possible, the data gathered refer to prices at the U.S. border for exports and at either the foreign border or the U.S. border for imports. For nearly all products, the prices refer to transactions completed during
the first week of the month. Survey respondents are asked to indicate all discounts, allowances, and rebates applicable to the reported prices, so that the price used in the calculation of the indexes is the actual price for which the product was bought or sold.

In addition to general indexes of prices for U.S. exports and imports, indexes are also published for detailed product categories of exports and imports. These categories are defined according to the five-digit level of detail for the Bureau of Economic Analysis End-use Classification, the three-digit level for the Standard International Trade Classification (SITC), and the four-digit level of detail for the Harmonized System. Aggregate import indexes by country or region of origin are also available.

BLS publishes indexes for selected categories of internationally traded services, calculated on an international basis and on a balance-of-payments basis.

Notes on the data

The export and import price indexes are weighted indexes of the Laspeyres type. The trade weights currently used to compute both indexes relate to 2000.

Because a price index depends on the same items being priced from period to period, it is necessary to recognize when a product's specifications or terms of transaction have been modified. For this reason, the Bureau's questionnaire requests detailed descriptions of the physical and functional characteristics of the products being priced, as well as information on the number of units bought or sold, discounts, credit terms, packaging, class of buyer or seller, and so forth. When there are changes in either the specifications or terms of transaction of a product, the dollar value of each change is deleted from the total price change to obtain the "pure" change. Once this value is determined, a linking procedure is employed which allows for the continued repricing of the item.

FOR ADDITIONAL INFORMATION, contact the Division of International Prices: (202) 691-7155.

Productivity Data

(Tables 2; 47-50)

Business and major sectors

Description of the series

The productivity measures relate real output to real input. As such, they encompass a family of measures which include single-factor input measures, such as output per hour,
output per unit of labor input, or output per unit of capital input, as well as measures of multifactor productivity (output per unit of combined labor and capital inputs). The Bureau indexes show the change in output relative to changes in the various inputs. The measures cover the business, nonfarm business, manufacturing, and nonfinancial corporate sectors.

Corresponding indexes of hourly compensation, unit labor costs, unit nonlabor payments, and prices are also provided.

Definitions

Output per hour of all persons (labor productivity) is the quantity of goods and services produced per hour of labor input. Output per unit of capital services (capital productivity) is the quantity of goods and services produced per unit of capital services input. Multifactor productivity is the quantity of goods and services produced per combined inputs. For private business and private nonfarm business, inputs include labor and capital units. For manufacturing, inputs include labor, capital, energy, nonenergy materials, and purchased business services.

Compensation per hour is total compensation divided by hours at work. Total compensation equals the wages and salaries of employees plus employers' contributions for social insurance and private benefit plans, plus an estimate of these payments for the self-employed (except for nonfinancial corporations in which there are no self-employed).
Real compensation per hour is compensation per hour deflated by the change in the Consumer Price Index for All Urban Consumers.

Unit labor costs are the labor compensation costs expended in the production of a unit of output and are derived by dividing compensation by output. Unit nonlabor payments include profits, depreciation, interest, and indirect taxes per unit of output. They are computed by subtracting compensation of all persons from current-dollar value of output and dividing by output.

Unit nonlabor costs contain all the components of unit nonlabor payments except unit profits.

Unit profits include corporate profits with inventory valuation and capital consumption adjustments per unit of output.

Hours of all persons are the total hours at work of payroll workers, self-employed persons, and unpaid family workers.

Labor inputs are hours of all persons adjusted for the effects of changes in the education and experience of the labor force.

Capital services are the flow of services from the capital stock used in production. It
is developed from measures of the net stock of physical assets-equipment, structures, land, and inventories-weighted by rental prices for each type of asset.

Combined units of labor and capital inputs are derived by combining changes in labor and capital input with weights which represent each component's share of total cost. Combined units of labor, capital, energy, materials, and purchased business services are similarly derived by combining changes in each input with weights that represent each input's share of total costs. The indexes for each input and for combined units are based on changing weights which are averages of the shares in the current and preceding year (the Tornquist index-number formula).

Notes on the data

Business sector output is an annuallyweighted index constructed by excluding from real gross domestic product (GDP) the following outputs: general government, nonprofit institutions, paid employees of private households, and the rental value of owner-occupied dwellings. Nonfarm business also excludes farming. Private business and private nonfarm business further exclude government enterprises. The measures are supplied by the U.S. Department of Commerce's Bureau of Economic Analysis. Annual estimates of manufacturing sectoral output are produced by the Bureau of Labor Statistics. Quarterly manufacturing output indexes from the Federal Reserve Board are adjusted to these annual output measures by the BLS. Compensation data are developed from data of the Bureau of Economic Analysis and the Bureau of Labor Statistics. Hours data are developed from data of the Bureau of Labor Statistics.

The productivity and associated cost measures in tables 47-50 describe the relationship between output in real terms and the labor and capital inputs involved in its production. They show the changes from period to period in the amount of goods and services produced per unit of input.

Although these measures relate output to hours and capital services, they do not measure the contributions of labor, capital, or any other specific factor of production. Rather, they reflect the joint effect of many influences, including changes in technology; shifts in the composition of the labor force; capital investment; level of output; changes in the utilization of capacity, energy, material, and research and development; the organization of production; managerial skill; and characteristics and efforts of the work force.

FOR ADDITIONAL INFORMATION on this productivity series, contact the Division of Productivity Research: (202) 691-5606.

Industry productivity measures

Description of the series

The BLS industry productivity indexes measure the relationship between output and inputs for selected industries and industry groups, and thus reflect trends in industry efficiency over time. Industry measures include labor productivity, multifactor productivity, compensation, and unit labor costs.

The industry measures differ in methodology and data sources from the productivity measures for the major sectors because the industry measures are developed independently of the National Income and Product Accounts framework used for the major sector measures.

Definitions

Output per hour is derived by dividing an index of industry output by an index of labor input. For most industries, output indexes are derived from data on the value of industry output adjusted for price change. For the remaining industries, output indexes are derived from data on the physical quantity of production.

The labor input series is based on the hours of all workers or, in the case of some transportation industries, on the number of employees. For most industries, the series consists of the hours of all employees. For some trade and services industries, the series also includes the hours of partners, proprietors, and unpaid family workers.

Unit labor costs represent the labor compensation costs per unit of output produced, and are derived by dividing an index of labor compensation by an index of output. Labor compensation includes payroll as well as supplemental payments, including both legally required expenditures and payments for voluntary programs.

Multifactor productivity is derived by dividing an index of industry output by an index of combined inputs consumed in producing that output. Combined inputs include capital, labor, and intermediate purchases. The measure of capital input represents the flow of services from the capital stock used in production. It is developed from measures of the net stock of physical assets-equipment, structures, land, and inventories. The measure of intermediate purchases is a combination of purchased materials, services,
fuels, and electricity.

Notes on the data

The industry measures are compiled from data produced by the Bureau of Labor Statistics and the Census Bureau, with additional data supplied by other government agencies, trade associations, and other sources.

FOR ADDITIONAL INFORMATION on this series, contact the Division of Industry Productivity Studies: (202) 691-5618, or visit the Web site at: www.bls.gov/lpc/home.htm

International Comparisons

(Tables 51-53)

Labor force and unemployment

Description of the series

Tables 51 and 52 present comparative measures of the labor force, employment, and unemployment adjusted to U.S. concepts for the United States, Canada, Australia, Japan, and six European countries. The Bureau adjusts the figures for these selected countries, for all known major definitional differences, to the extent that data to prepare adjustments are available. Although precise comparability may not be achieved, these adjusted figures provide a better basis for international comparisons than the figures regularly published by each country. For further information on adjustments and comparability issues, see Constance Sorrentino, "International unemployment rates: how comparable are they?" Monthly Labor Review, June 2000, pp. 3-20, available on the Internet at www.bls.gov/opub/ $\mathbf{m l r} / 2000 / 06 /$ art1full.pdf.

Definitions

For the principal U.S. definitions of the labor force, employment, and unemployment, see the Notes section on Employment and Unemployment Data: Household survey data.

Notes on the data

Foreign-country data are adjusted as closely as possible to the U.S. definitions. Primary areas of adjustment address conceptual differences in upper age limits and definitions of employment and unemployment, provided that reliable data are available to make these adjustments. Adjustments are made where applicable to include employed and unemployed persons above upper age limits and to exclude active duty military
from employment figures, although a small number of career military may be included in some European countries. Adjustments are made to exclude unpaid family workers who worked fewer than 15 hours per week from employment figures; U.S. concepts do not include them in employment, whereas most foreign countries include all unpaid family workers regardless of the number of hours worked. Adjustments are made to include full-time students seeking work and available for work as unemployed when they are classified as not in the labor force.

Where possible, lower age limits are based on the age at which compulsory schooling ends in each country, rather than based on the U.S. standard of 16. Lower age limits have ranged between 13 and 16 over the years covered; currently, the lower age limits are either 15 or 16 in all 10 countries.

Some adjustments for comparability are not made because data are unavailable for adjustment purposes. For example, no adjustments to unemployment are usually made for deviations from U.S. concepts in the treatment of persons waiting to start a new job or passive job seekers. These conceptual differences have little impact on the measures. Furthermore, BLS studies have concluded that no adjustments should be made for persons on layoff who are counted as employed in some countries because of their strong job attachment as evidenced by, for example, payment of salary or the existence of a recall date. In the United States, persons on layoff have weaker job attachment and are classified as unemployed.

The annual labor force measures are obtained from monthly, quarterly, or continuous household surveys and may be calculated as averages of monthly or quarterly data. Quarterly and monthly unemployment rates are based on household surveys. For some countries, they are calculated by applying annual adjustment factors to current published data and, therefore, are less precise indicators of unemployment under U.S. concepts than the annual figures.

The labor force measures may have breaks in series over time due to changes in surveys, sources, or estimation methods. Breaks are noted in data tables.

For up-to-date information on adjustments and breaks in series, see the Introduction and Appendix B. Country Notes in International Comparisons of Annual Labor Force Statistics, Adjusted to U.S. Concepts, 10 Countries, 1997-2009, on the Internet at www.bls.gov/ilc/flscomparelf.htm, and the Notes for Table 1 in the monthly report International Unemployment Rates and Employment Indexes, Seasonally Adjusted, 2008-2010,
on the Internet at www.bls.gov/ilc/intl_unemployment_rates_monthly.htm.

Manufacturing productivity and labor costs

Description of the series

Table 53 presents comparative indexes of manufacturing output per hour (labor productivity), output, total hours, compensation per hour, and unit labor costs for 19 countries. These measures are trend comparisons-that is, series that measure changes over time-rather than level comparisons. BLS does not recommend using these series for level comparisons because of technical problems.

BLS constructs the comparative indexes from three basic aggregate measures-output, total labor hours, and total compensation. The hours and compensation measures refer to employees (wage and salary earners) in Belgium and Taiwan. For all other economies, the measures refer to all employed persons, including employees, self-employed persons, and unpaid family workers.
The data for recent years are based on the United Nations System of National Accounts 1993 (SNA 93). Manufacturing is generally defined according to the International Standard Industrial Classification (ISIC). However, the measures for France include parts of mining as well. For the United States and Canada, manufacturing is defined according to the North American Industry Classification System (NAICS 97).

Definitions

Output. For most economies, the output measures are real value added in manufacturing from national accounts. However, output for Japan prior to 1970 and for the Netherlands prior to 1960 are indexes of industrial production. The manufacturing value added measures for the United Kingdom are essentially identical to their indexes of industrial production.

For the United States, the output measure is a chain-weighted index of real value added produced by the Bureau of Economic Analysis. BLS uses this series here to preserve international comparability. However, for its domestic industry measures, shown in tables 47-50 in this section, BLS uses a different output measures called "sectoral output," which is gross output less intrasector transactions.

Total hours refer to hours worked in all economies. The measures are developed from
statistics of manufacturing employment and average hours. For most other economies, recent years' aggregate hours series are obtained from national statistical offices, usually from national accounts. However, for some economies and for earlier years, BLS calculates the aggregate hours series using employment figures published with the national accounts, or other comprehensive employment series, and data on average hours worked.

Hourly compensation is total compensation divided by total hours. Total compensation includes all payments in cash or in-kind made directly to employees plus employer expenditures for legally required insurance programs and contractual and private benefit plans. For Australia, Canada, France, Singapore, and Sweden, compensation is increased to account for important taxes on payroll or employment. For the Czech Republic, Finland, and the United Kingdom, compensation is reduced in certain years to account for subsidies.

Labor productivity is defined as real output per hour worked. Although the labor productivity measure presented in this release relates output to the hours worked of persons employed in manufacturing, it does not measure the specific contributions of labor as a single factor of production. Rather, it reflects the joint effects of many influences, including new technology, capital investment, capacity utilization, energy use, and managerial skills, as well as the skills and efforts of the workforce.

Unit labor costs are defined as the cost of labor input required to produce one unit of output. They are computed as compensation in nominal terms divided by real output.

Notes on the data

The measures for recent years may be based on current indicators of manufacturing output (such as industrial production indexes), employment, average hours, and hourly compensation until national accounts and other statistics used for the long-term measures become available. For more in-depth information on sources and methods, see http:// www.bls.gov/news.release/prod4.toc.htm.

FOR ADDITIONAL INFORMATION on international comparisons, contact the Division of International Labor Comparisons: (202) 691-5654 or ilchelp@bls.gov.

Occupational Injury and IIIness Data

(Tables 54-55)

Survey of Occupational Injuries and IIInesses

Description of the series

The Survey of Occupational Injuries and Illnesses collects data from employers about their workers' job-related nonfatal injuries and illnesses. The information that employers provide is based on records that they maintain under the Occupational Safety and Health Act of 1970. Self-employed individuals, farms with fewer than 11 employees, employers regulated by other Federal safety and health laws, and Federal, State, and local government agencies are excluded from the survey.

The survey is a Federal-State cooperative program with an independent sample selected for each participating State. A stratified random sample with a Neyman allocation is selected to represent all private industries in the State. The survey is stratified by Standard Industrial Classification and size of employment.

Definitions

Under the Occupational Safety and Health Act, employers maintain records of nonfatal work-related injuries and illnesses that involve one or more of the following: loss of consciousness, restriction of work or motion, transfer to another job, or medical treatment other than first aid.

Occupational injury is any injury such as a cut, fracture, sprain, or amputation that results from a work-related event or a single, instantaneous exposure in the work environment.

Occupational illness is an abnormal condition or disorder, other than one resulting from an occupational injury, caused by exposure to factors associated with employment. It includes acute and chronic illnesses or disease which may be caused by inhalation, absorption, ingestion, or direct contact.

Lost workday injuries and illnesses are cases that involve days away from work, or days of restricted work activity, or both.

Lost workdays include the number of workdays (consecutive or not) on which the employee was either away from work or at work in some restricted capacity, or both, because of an occupational injury or illness. BLS measures of the number and incidence rate of lost workdays were discontinued beginning with the 1993 survey. The number of days away from work or days of restricted work activity does not include the day of injury or onset of illness or any days on which the employee would not have worked, such as a Federal holiday, even though able to work.

Incidence rates are computed as the number of injuries and/or illnesses or lost work days per 100 full-time workers.

Notes on the data

The definitions of occupational injuries and illnesses are from Recordkeeping Guidelines for Occupational Injuries and Illnesses (U.S. Department of Labor, Bureau of Labor Statistics, September 1986).

Estimates are made for industries and employment size classes for total recordable cases, lost workday cases, days away from work cases, and nonfatal cases without lost workdays. These data also are shown separately for injuries. Illness data are available for seven categories: occupational skin diseases or disorders, dust diseases of the lungs, respiratory conditions due to toxic agents, poisoning (systemic effects of toxic agents), disorders due to physical agents (other than toxic materials), disorders associated with repeated trauma, and all other occupational illnesses.

The survey continues to measure the number of new work-related illness cases which are recognized, diagnosed, and reported during the year. Some conditions, for example, long-term latent illnesses caused by exposure to carcinogens, often are difficult to relate to the workplace and are not adequately recognized and reported. These long-term latent illnesses are believed to be understated in the survey's illness measure. In contrast, the overwhelming majority of the reported new illnesses are those which are easier to directly relate to workplace activity (for example, contact dermatitis and carpal tunnel syndrome).

Most of the estimates are in the form of incidence rates, defined as the number of injuries and illnesses per 100 equivalent fulltime workers. For this purpose, 200,000 employee hours represent 100 employee years (2,000 hours per employee). Full detail on the available measures is presented in the annual bulletin, Occupational Injuries and

Illnesses: Counts, Rates, and Characteristics.
Comparable data for more than 40 States and territories are available from the BLS Office of Safety, Health and Working Conditions. Many of these States publish data on State and local government employees in addition to private industry data.

Mining and railroad data are furnished to BlS by the Mine Safety and Health Administration and the Federal Railroad Administration. Data from these organizations are included in both the national and State data published annually.

With the 1992 survey, BLS began publishing details on serious, nonfatal incidents resulting in days away from work. Included are some major characteristics of the injured and ill workers, such as occupation, age, gender, race, and length of service, as well as the circumstances of their injuries and illnesses (nature of the disabling condition, part of body affected, event and exposure, and the source directly producing the condition). In general, these data are available nationwide for detailed industries and for individual States at more aggregated industry levels.

FOR ADDITIONALINFORMATION on occupational injuries and illnesses, contact the Office of Occupational Safety, Health and Working Conditions at (202) 691-6180, or access the Internet at: www.bls. gov/iif/.

Census of Fatal Occupational Injuries

The Census of Fatal Occupational Injuries compiles a complete roster of fatal job-related injuries, including detailed data about the fatally injured workers and the fatal events. The program collects and cross checks fatality information from multiple sources, including death certificates, State and Federal workers' compensation reports, Occupational Safety and Health Administration and Mine Safety and Health Administration records, medical examiner and autopsy reports, media ac-
counts, State motor vehicle fatality records, and follow-up questionnaires to employers.

In addition to private wage and salary workers, the self-employed, family members, and Federal, State, and local government workers are covered by the program. To be included in the fatality census, the decedent must have been employed (that is working for pay, compensation, or profit) at the time of the event, engaged in a legal work activity, or present at the site of the incident as a requirement of his or her job.

Definition

A fatal work injury is any intentional or unintentional wound or damage to the body resulting in death from acute exposure to energy, such as heat or electricity, or kinetic energy from a crash, or from the absence of such essentials as heat or oxygen caused by a specific event or incident or series of events within a single workday or shift. Fatalities that occur during a person's commute to or from work are excluded from the census, as well as work-related illnesses, which can be difficult to identify due to long latency periods.

Notes on the data

Twenty-eight data elements are collected, coded, and tabulated in the fatality program, including information about the fatally injured worker, the fatal incident, and the machinery or equipment involved. Summary worker demographic data and event characteristics are included in a national news release that is available about 8 months after the end of the reference year. The Census of Fatal Occupational Injuries was initiated in 1992 as a joint Federal-State effort. Most States issue summary information at the time of the national news release.

FOR ADDITIONAL INFORMATION on the Census of Fatal Occupational Injuries contact the BLS Office of Safety, Health, and Working Conditions at (202) 691-6175, or the Internet at: www.bls.gov/iif/

1. Labor market indicators

Selected indicators	2010	2011	2010				2011				2012
			I	II	III	IV	I	II	III	IV	
Employment data											
Employment status of the civilian noninstitutional population (household survey): ${ }^{1}$											
Labor force participation rate	64.7	64.1	64.9	64.9	64.6	64.4	64.2	64.1	64.1	64.0	63.8
Employment-population ratio...	58.5	58.4	58.5	58.6	58.5	58.3	58.4	58.3	58.3	58.5	58.5
Unemployment rate...	9.6	8.9	9.8	9.6	9.5	9.6	9.0	9.1	9.1	8.7	8.2
Men.	10.5	9.4	10.9	10.6	10.4	10.2	9.4	9.6	9.5	9.0	8.3
16 to 24 years..	20.8	18.7	21.7	21.0	20.5	20.1	18.9	18.8	19.0	18.2	17.7
25 years and older...	8.9	7.9	9.2	9.0	8.9	8.8	7.9	8.1	8.1	7.6	6.8
Women...	8.6	8.5	8.6	8.6	8.5	8.8	8.4	8.5	8.5	8.4	8.2
16 to 24 years...	15.8	15.7	15.4	16.1	15.5	16.4	16.4	15.8	15.7	15.1	14.8
25 years and older...	7.4	7.3	7.4	7.4	7.4	7.6	7.2	7.3	7.4	7.3	7.1
Employment, nonfarm (payroll data), in thousands: ${ }^{1}$											
Total nonfarm.	129,874	131,358	129,438	130,021	129,885	130,346	130,922	131,311	131,694	132,186	132,874
Total private.	107,384	109,253	106,914	107,283	107,618	108,088	108,725	109,199	109,642	110,193	110,890
Goods-producing	17,751	18,021	17,704	17,754	17,764	17,785	17,942	18,019	18,100	18,176	18,328
Manufacturing.	11,528	11,733	11,470	11,546	11,551	11,575	11,690	11,738	11,768	11,808	11,931
Service-providing.	112,123	113,337	111,729	112,267	112,121	112,561	112,980	113,292	113,594	114,010	114,546
Average hours:											
Total private.	33.4	33.6	33.3	33.4	33.5	33.5	33.6	33.7	33.6	33.7	33.8
Manufacturing.	41.1	41.4	41.0	41.0	41.3	41.3	41.5	41.4	41.3	41.6	41.7
Overtime...	3.8	4.1	3.6	3.9	3.9	4.0	4.2	4.0	4.0	4.1	4.2
Employment Cost Index ${ }^{\text {1, 2, }} 3$											
Total compensation:											
Civilian nonfarm ${ }^{4}$.	2.0	2.0	. 7	. 4	. 5	. 3	. 7	. 7	. 3	. 3	. 6
Private nonfarm.	2.1	2.2	. 8	. 5	. 4	. 3	. 7	. 9	. 3	. 3	. 6
Goods-producing ${ }^{5}$.	2.3	2.4	1.0	. 5	. 6	. 1	. 8	1.1	2	. 4	. 3
Service-providing ${ }^{5}$.	2.0	2.0	. 7	. 4	. 4	. 4	. 7	. 7	. 3	. 3	. 9
State and local government	1.8	1.3	. 3	. 2	1.0	. 3	. 3	. 1	. 8	1	. 5
Workers by bargaining status (private nonfarm):											
Union.	3.3	2.7	1.5	. 8	. 8	. 2	. 7	1.3	. 3	. 4	. 3
Nonunion.	1.8	2.1	. 7	. 5	4	. 3	. 8	. 7	4	. 3	7
${ }^{1}$ Quarterly data seasonally adjusted. 4_{5}^{4} Excludes Federal and private household workers.											
2 Annual changes are December-to-December changes. Quarterly changes are calculated using the last month of each quarter.			5 Goods-producing industries include mining, construction, and manufacturing. Serviceproviding industries include all other private sector industries.								
${ }^{3}$ The Employment Cost Index data reflect the conversion to the 2002 North											
American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and sOC became the official BLS estimates starting in March 2006.			Note: Beginning in January 2003, household survey data reflect revised population controls. Nonfarm data reflect the conversion to the 2002 version of the North American Industry Classification System (NAICS), replacing the Standard Industrial Classification (SIC) system. NAICs-based data by industry are not comparable with sIcbased data.								

2. Annual and quarterly percent changes in compensation, prices, and productivity

Selected measures	2010	2011	2010				2011				$\begin{gathered} 2012 \\ \hline 1 \end{gathered}$
			I	II	III	IV	I	II	III	IV	
Compensation data ${ }^{\text {1, 2, } 3}$	2.02.1		0.7.8	0.4.5		0.3.3	0.7	0.7	0.3	0.3	0.6
Employment Cost Index-compensation:											
Civilian nonfarm..											
Private nonfarm..							. 7	. 9	. 3	. 3	. 6
Employment Cost Index-wages and salaries: Civilian nonfarm.		2.2	. 8	. 5	$.4$. 4					
Private nonfarm..........	1.6 1.8	1.4 1.6	.4 .5	. 4	. 4	. 4	. 4	. 5	. 4	. 3	. 6
Price data ${ }^{1}$											
Consumer Price Index (All Urban Consumers): All Items....	1.5	3.0	. 8	. 2	. 2	. 3	2.0	1.0	. 5	-. 5	1.6
Producer Price Index:											
Finished goods........	3.8	4.8	1.8	-. 1	. 6	1.4	3.6	1.2	. 6	-. 8	1.7
Finished consumer goods...	5.0.4	5.7	2.4	-. 1	. 7	1.8	4.6	1.4	. 7	-1.4	2.2.6
Capital equipment........		2.3	. 0	-. 1	. 0	. 5	. 6	. 4	. 2	1.0	
Intermediate materials, supplies, and components..	6.3	6.1	2.6	1.2	. 4	2.0	5.2	2.9	. 0	-2.3	2.42.7
Crude materials....	16.1	6.4	8.8	-4.2	2.7	8.5	9.3	3.5	-2.2	-3.6	
Productivity data ${ }^{4}$											2.7
Output per hour of all persons:											
Business sector...	4.0	. 2	4.2	1.2	2.3	1.3	-1.8	-. 1	1.5	1.2	-.6-.5
Nonfarm business sector....	$\begin{aligned} & 4.0 \\ & 4.7 \end{aligned}$. 4	4.58.7	1.2-1.4	1.8	1.8	-1.01.8	-. 3	1.8.1	1.23.7	
Nonfinancial corporations ${ }^{5}$.								2.9			-

${ }^{1}$ Annual changes are December-to-December changes. Quarterly changes are calculated using the last month of each quarter. Compensation and price data are not seasonally adjusted, and the price data are not compounded.
${ }^{2}$ Excludes Federal and private household workers.
${ }^{3}$ The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes
only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.
${ }^{4}$ Annual rates of change are computed by comparing annual averages. Quarterly percent changes reflect annual rates of change in quarterly indexes. The data are seasonally adjusted
${ }^{5}$ Output per hour of all employees.
3. Alternative measures of wage and compensation changes

Components	Quarterly change					Four quarters ending-				
	2011				$\begin{gathered} 2012 \\ 1 \end{gathered}$	2011				$\begin{gathered} 2012 \\ \hline 1 \end{gathered}$
	I	II	III	IV		I	II	III	IV	
Average hourly compensation: ${ }^{1}$										
All persons, business sector...	4.9	-0.1	5.3	4.0	1.4	2.3	1.6	2.5	3.5	2.6
All persons, nonfarm business sector..	5.1	-. 5	5.7	3.9	1.5	2.3	1.6	2.6	3.5	2.6
Employment Cost Index-compensation: ${ }^{2}$										
Civilian nonfarm ${ }^{3}$..	. 7	. 7	. 3	. 3	. 6	2.0	2.2	2.0	2.0	1.9
Private nonfarm...	. 7	. 9	. 3	. 3	. 6	2.0	2.3	2.1	2.2	2.1
Union......	. 7	1.3	. 3	. 4	. 3	2.5	3.0	2.4	2.7	2.3
Nonunion..	. 8	. 7	. 4	. 3	. 7	1.9	2.2	2.1	2.1	2.0
State and local government.......................	. 3	. 1	. 8	. 1	. 5	1.8	1.7	1.5	1.3	1.5
Employment Cost Index-wages and salaries: ${ }^{2}$										
Civilian nonfarm ${ }^{3}$...	. 4	. 4	. 4	. 2	. 6	1.6	1.6	1.6	1.4	1.7
Private nonfarm..	. 4	. 5	. 4	. 3	. 6	1.6	1.7	1.7	1.6	1.9
Union............	. 6	. 4	. 5	. 3	. 6	1.9	1.7	1.7	1.8	1.8
Nonunion.....	. 4	. 5	. 4	. 3	. 5	1.6	1.7	1.7	1.7	1.8
State and local government..	. 3	. 1	. 4	. 2	. 3	1.2	1.2	1.0	1.0	1.0

1 Seasonally adjusted. "Quarterly average" is percent change from a quarter ago, at an annual rate
2 The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard

Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.
3 Excludes Federal and private household workers.
4. Employment status of the population, by sex, age, race, and Hispanic origin, monthly data seasonally adjusted
[Numbers in thousands]

Employment status	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
TOTAL Civilian noninstitutional population ${ }^{1}$	$\begin{array}{r} 237,830 \\ 153,889 \\ 64.7 \\ 139,064 \end{array}$	$\begin{aligned} & 239,618 \\ & 153,617 \end{aligned}$	239,000	239,146	239,313	239,489	239,671	$239,871$		240,269	240,441	240,584	242,269	242,435	242,604
Civilian labor force....			153,392	153,420	153,70064.2139,808	153,409	153,358	153,67464.1139,754	$\begin{array}{r} 154,004 \\ 64.1 \end{array}$	154,057	153,937	153,887	154,395	154,871	154,70763.8
Participation rate.		$\begin{array}{r} 64.1 \\ 139,869 \end{array}$	$\begin{array}{r} 64.2 \\ 139,764 \end{array}$	$\begin{array}{r} 64.2 \\ 139,628 \end{array}$		64.1139,385	$\begin{array}{r} 64.0 \\ 139,450 \end{array}$			64.1	64.0	64.0	63.7	63.9	
Employed..									140,107	140,297	140,614	140,790	141,637	142,065	142,034
Employment-population ratio ${ }^{2}$	$\begin{array}{r} 58.5 \\ 14,825 \end{array}$	58.4	58.5	58.4	58.4	58.2	58.2	58.3	58.4	58.4	58.5	58.5	58.5	58.6	58.5
Unemployed...........		13,747	13,628	13,792	13,892	14,024	13,908	13,920	13,897	13,759	13,323	13,097	12,758	12,806	12,673
Unemployment rate.	9.6	8.9	8.9	9.0	9.0	9.1	9.1	9.1	9.0	8.9	8.7	8.5	8.3	8.3	8.2
Not in the labor force....	83,941	86,001	85,608	85,726	85,613	86,080	86,313	86,198	86,067	86,213	86,503	86,697	87,874	87,564	87,897
Men, 20 years and over															
Civilian noninstitutional population ${ }^{1}$	106,596	107,736	107,381	107,469	107,566	107,668	107,773	107,884	107,994	108,104		108,290	108,087	108,188	108,289
Civilian labor force..	78,994	79,080	78,805	$\begin{array}{r} 78,895 \\ 73.4 \end{array}$	79,20473.6	79,11673.5	78,977	79,089	$\begin{array}{r} 79,241 \\ 72 \end{array}$	79,29173.3	$\begin{array}{r} 108,203 \\ 79,440 \end{array}$	79,43673.4	$\begin{array}{r} 79,234 \\ 73.3 \end{array}$	79,317	79,33773.3
Participation rate.	74.1	73.4	73.4				73.3	73.3			$\begin{array}{r} 79,440 \\ 73.4 \end{array}$			73.3	
Employed.	71,230	72,182	71,918	71,942	72,161	71,981	71,930	72,098	72,340	72,379	72,846	73,080	73,170	73,240	73,286
Employment-population ratio ${ }^{2}$.	66.8	67.0	67.0	66.9	67.1	66.9	66.7	66.8	67.0	67.0	67.3	67.5	67.7	67.7	67.7
Unemployed.	7,763	6,898	6,887	6,953	7,043	7,135	7,047	6,991	6,901	6,912	6,594	6,356	6,064	6,077	6,051
Unemployment rate.....	9.8	8.7	8.7	8.8	8.9	9.0	8.9	8.8	8.7	8.7	8.3	8.0	7.7	7.7	7.6
Not in the labor force	27,603	28,656	28,576	28,573	28,362	28,553	28,795	28,795	28,753	28,813	28,763	28,854	28,853	28,870	28,952
Women, 20 years and over															
Civilian noninstitutional population ${ }^{1}$.	114,333	115,107	114,792	114,868	114,954	115,045	115,138	115,238	115,338	115,437	115,526	115,602	117,082	117,170	117,260
Civilian labor force..	68,990	$\begin{array}{r} 68,810 \\ 59.8 \end{array}$	68,852	68,860	68,878	$68,570$	$\begin{array}{r} 68,706 \\ 59.7 \end{array}$	$\begin{array}{r} 68,784 \\ 59.7 \end{array}$	$\begin{array}{r} 68,989 \\ 59.8 \end{array}$	$\begin{array}{r} 68,981 \\ 59.8 \end{array}$	$\begin{array}{r} 68,711 \\ 59.5 \end{array}$	$68,748$	$\begin{array}{r} 69,449 \\ 59.3 \end{array}$	69,815	$\begin{array}{r} 69,589 \\ 59.3 \\ 64,413 \end{array}$
Participation rate.	60.3		60.0	59.9	59.9							59.5		$64,454$	
Employed.........	63,456	63,360	63,515	63,431	63,385	63,088	63,257	63,322	63,406	63,520	63,352	63,323	64,078		
Employment-population ratio ${ }^{2}$.	55.5	55.0	55.3	55.2	55.1	54.8	54.9	54.9	55.0	55.0	54.8	54.8	54.7	55.0	54.9
Unemployed.......	5,534	5,450	5,336	5,430	5,493	5,482	5,449	5,462	5,584	5,461	5,359	5,425	5,370	5,361	5,176
Unemployment rate.	8.0	7.9	7.8	7.9	8.0	8.0	7.9	7.9	8.1	7.9	7.8	7.9	7.7	7.7	7.4
Not in the labor force.....	45,343	46,297	45,940	46,008	46,077	46,475	46,432	46,454	46,349	46,457	46,815	46,854	47,634	47,355	47,671
Both sexes, 16 to 19 years															
Civilian noninstitutional population ${ }^{1}$.	$16,901$	16,774	16,827	16,809	16,792	16,776	16,760	16,749	16,739	16,728	16,711	16,693	17,100	17,078	17,056
Civilian labor force.............	5,906	5,727	5,735	5,665	5,618	5,724	5,675	5,801	5,774	5,785	5,786	5,704	5,713	5,739	5,781
Participation rate..	34.9	34.1	34.1	33.7	33.5	34.1	33.9	34.6	34.5	34.6	34.6	34.2	33.4	33.6	33.9
	4,378	4,327	4,332	4,255	4,262	4,316	4,262	4,333	4,362	4,398	4,416	4,387	4,389	4,371	4,335
Employment-population ratio ${ }^{2}$	25.9	25.8	25.7	25.3	25.4	25.7	25.4	25.9	26.1	26.3	26.4	26.3	25.7	25.6	25.4
Unemployed...........	1,528	1,400	1,404	1,410	1,356	1,408	1,412	1,467	1,412	1,386	1,370	1,316	1,324	1,367	1,447
Unemployment rate.	25.9	24.4	24.5	24.9	24.1	24.6	24.9	25.3	24.5	24.0	23.7	23.1	23.2	23.8	25.0
Not in the labor force....	10,995	11,048	11,092	11,145	11,174	11,052	11,085	10,949	10,965	10,943	10,925	10,989	11,387	11,339	11,274
White ${ }^{3}$															
Civilian noninstitutional population ${ }^{1}$.	192,075	193,077	192,688	192,771	192,877	192,989	193,106	193,236	193,365	193,493	193,598	193,682	192,600	192,691	192,788
Civilian labor force.....	125,084	124,579	124,489	124,642	124,812	124,526	124,557	124,604	124,701	124,804	124,652	124,543	123,579	123,848	123,713
Participation rate..	65.1	64.5	64.6	64.7	64.7	64.5	64.5	64.5	64.5	64.5	64.4	64.3	64.2	64.3	64.2
Employed..............	114,168	114,690	114,652	114,603	114,827	114,428	114,497	114,704	114,818	114,837	115,130	115,254	114,458	114,754	114,697
Employment-population ratio ${ }^{2}$	59.4	59.4	59.5	59.5	59.5	59.3	59.3	59.4	59.4	59.3	59.5	59.5	59.4	59.6	59.5
Unemployed...	10,916	9,889	9,837	10,039	9,985	10,098	10,061	9,901	9,883	9,967	9,522	9,288	9,121	9,094	9,016
Unemployment rate..	8.7	7.9	7.9	8.1	8.0	8.1	8.1	7.9	7.9	8.0	7.6	7.5	7.4	7.3	7.3
Not in the labor force.....	66,991	68,498	68,199	68,129	68,065	68,463	68,549	68,631	68,664	68,689	68,945	69,139	69,021	68,843	69,076
Black or African American ${ }^{3}$															
Civilian noninstitutional			29,005	29,035	29,063	29,093		29,158	29,193	29,228	29,259	29,286	29,727	29,760	
population ${ }^{1}$..............	28,708 17,862	29,114 17,881	29,005 17,829	29,035 17,847	29,063 17,730	29,093 17,740	29,123 17,614	29,158	29,193	18,228	29,259	29,286	29,727	29,760	29,792 18,427
Participation rate...	62.2	61.4	61.5	61.5	61.0	61.0	60.5	61.6	62.0	61.8	61.3	61.8	61.2	61.7	61.9
Employed..........	15,010	15,051	15,047	14,964	14,862	14,875	14,812	14,965	15,224	15,351	15,151	15,248	15,725	15,769	15,843
Employment-population ratio ${ }^{2}$	52.3	51.7	51.9	51.5	51.1	51.1	50.9	51.3	52.1	52.5	51.8	52.1	52.9	53.0	53.2
Unemployed................	2,852	2,831	2,782	2,883	2,868	2,865	2,803	2,992	2,872	2,716	2,783	2,862	2,482	2,593	2,584
Unemployment rate.	16.0	15.8	15.6	16.2	16.2	16.2	15.9	16.7	15.9	15.0	15.5	15.8	13.6	14.1	14.0
Not in the labor force.	10,846	11,233	11,176	11,187	11,333	11,353	11,509	11,202	11,097	11,161	11,325	11,176	11,521	11,398	11,365

[^14]4. Continued-Employment status of the population, by sex, age, race, and Hispanic origin, monthly data seasonally adjusted [Numbers in thousands]

Employment status	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Hispanic or Latino ethnicity Civilian noninstitutional															
population ${ }^{1}$.	33,713	34,438	34,155	34,233	34,311	34,391	34,470	34,555	34,640	34,724	34,808	34,885	36,301	36,384	36,463
Civilian labor force.	22,748	22,898	22,643	22,783	22,754	22,832	22,778	22,938	23,014	23,253	23,222	23,270	24,045	24,206	24,128
Participation rate.	67.5	66.5	66.3	66.6	66.3	66.4	66.1	66.4	66.4	67.0	66.7	66.7	66.2	66.5	66.2
Employed..........	19,906	20,269	20,083	20,102	20,060	20,189	20,207	20,353	20,411	20,601	20,574	20,699	21,513	21,628	21,638
Employment-population ratio ${ }^{2}$.	59.0	58.9	58.8	58.7	58.5	58.7	58.6	58.9	58.9	59.3	59.1	59.3	59.3	59.4	59.3
Unemployed...	2,843	2,629	2,560	2,680	2,695	2,643	2,570	2,585	2,603	2,652	2,648	2,571	2,532	2,579	2,491
Unemployment rate...	12.5	11.5	11.3	11.8	11.8	11.6	11.3	11.3	11.3	11.4	11.4	11.0	10.5	10.7	10.3
Not in the labor force...	10,964	11,540	11,512	11,450	11,557	11,558	11,692	11,617	11,626	11,471	11,586	11,615	12,256	12,178	12,335

${ }^{1}$ The population figures are not seasonally adjusted.
${ }^{2}$ Civilian employment as a percent of the civilian noninstitutional population.
${ }^{3}$ Beginning in 2003, persons who selected this race group only; persons who selected more than one race group are not included. Prior to 2003, persons who reported more than one race were included in the group they identified as the main race

NOTE: Estimates for the above race groups (white and black or African American) do not sum to totals because data are not presented for all races. In addition, persons whose ethnicity is identified as Hispanic or Latino may be of any race and, therefore, are classified by ethnicity as well as by race. Beginning in January 2003, data reflect revised population controls used in the household survey
5. Selected employment indicators, monthly data seasonally adjusted
[In thousands]

Selected categories	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Characteristic															
Employed, 16 years and older..	139,064	139,869	139,764	139,628	139,808	139,385	139,450	139,754	140,107	140,297	140,614	140,790	141,637	142,065	142,034
Men.	73,359	74,290	74,051	73,969	74,217	74,068	74,011	74,209	74,435	74,492	74,975	75,235	75,288	75,318	75,369
Women.	65,705	65,579	65,714	65,659	65,591	65,316	65,439	65,545	65,672	65,805	65,639	65,555	66,349	66,747	66,665
Married men, spouse present. \qquad	43,292	43,283	42,914	43,015	43,043	43,075	43,210	43,259	43,640	43,661	43,933	43,709	43,658	43,556	43,635
Married women, spouse present \qquad	34,582	34,110	34,173	34,029	33,847	33,723	33,809	33,947	34,091	34,225	34,442	34,177	34,445	34,341	34,325
Persons at work part time ${ }^{1}$															
All industries:															
Part time for economic reasons. \qquad	8,874	8,560	8,459	8,571	8,541	8,545	8,437	8,787	9,270	8,790	8,469	8,098	8,230	8,119	7,672
Slack work or business conditions. \qquad	6,174	5,711	5,634	5,714	5,836	5,807	5,695	5,815	5,900	5,839	5,578	5,305	5,372	5,446	5,081
Could only find part-time work.	2,375	2,514	2,355	2,444	2,475	2,474	2,538	2,707	2,844	2,538	2,496	2,419	2,551	2,404	2,341
Part time for noneconomic reasons. \qquad	18,251	18,334	18,425	18,326	18,481	18,461	18,280	18,276	18,329	18,401	18,363	18,372	18,636	18,827	18,523
Nonagricultural industries:															
Part time for economic reasons.	8,744	8,423	8,297	8,453	8,396	8,400	8,264	8,640	9,115	8,664	8,358	7,952	8,083	7,988	7,584
Slack work or business conditions. \qquad	6,087	5,617	5,542	5,602	5,729	5,704	5,586	5,714	5,803	5,762	5,502	5,199	5,278	5,356	5,000
Could only find part-time work.	2,358	2,494	2,326	2,448	2,452	2,308	2,510	2,702	2,869	2,566	2,518	2,423	2,563	2,365	2,295
Part time for noneconomic reasons \qquad	17,911	17,957	18,035	18,004	18,113	18,093	17,883	17,867	17,915	18,003	17,941	17,969	18,298	18,399	18,100

${ }^{1}$ Excludes persons "with a job but not at work" during the survey period for such reasons as vacation, illness, or industrial disputes.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.
6. Selected unemployment indicators, monthly data seasonally adjusted
[Unemployment rates]

Selected categories	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Characteristic															
Total, 16 years and older.	9.6	8.9	8.9	9.0	9.0	9.1	9.1	9.1	9.0	8.9	8.7	8.5	8.3	8.3	8.2
Both sexes, 16 to 19 years.	25.9	24.4	24.5	24.9	24.1	24.6	24.9	25.3	24.5	24.0	23.7	23.1	23.2	23.8	25.0
Men, 20 years and older.	9.8	8.7	8.7	8.8	8.9	9.0	8.9	8.8	8.7	8.7	8.3	8.0	7.7	7.7	7.6
Women, 20 years and older..	8.0	7.9	7.8	7.9	8.0	8.0	7.9	7.9	8.1	7.9	7.8	7.9	7.7	7.7	7.4
White, total ${ }^{1}$.	8.7	7.9	7.9	8.1	8.0	8.1	8.1	7.9	7.9	8.0	7.6	7.5	7.4	7.3	7.3
Both sexes, 16 to 19 years.	23.2	21.7	21.5	22.1	20.3	21.8	23.1	22.8	21.2	21.7	21.3	20.3	21.1	21.3	22.5
Men, 16 to 19 years...	26.3	24.5	23.4	24.9	22.5	25.0	25.3	26.8	24.9	25.5	24.6	23.2	24.5	23.8	25.5
Women, 16 to 19 years.	20.0	18.9	19.5	19.4	18.3	18.6	20.8	18.5	17.4	17.7	18.0	17.3	17.7	18.7	19.5
Men, 20 years and older..	8.9	7.7	7.8	8.0	7.9	8.0	7.9	7.7	7.7	7.8	7.3	7.1	6.9	6.8	6.8
Women, 20 years and older..	7.2	7.0	6.9	7.0	7.1	7.0	7.0	7.0	7.1	7.0	6.9	6.8	6.8	6.8	6.6
Black or African American, total ${ }^{1}$.	16.0	15.8	15.6	16.2	16.2	16.2	15.9	16.7	15.9	15.0	15.5	15.8	13.6	14.1	14.0
Both sexes, 16 to 19 years.	43.0	41.3	41.9	41.3	40.8	39.8	39.1	46.3	43.6	37.5	39.6	42.1	38.5	34.7	40.5
Men, 16 to 19 years...	45.4	43.1	40.3	45.5	44.8	41.3	37.9	44.9	43.5	38.7	42.7	48.3	35.9	43.6	40.2
Women, 16 to 19 years...	40.5	39.4	43.5	37.3	36.3	38.3	40.3	48.0	43.6	36.4	36.8	34.6	41.0	26.8	40.8
Men, 20 years and older...	17.3	16.7	16.8	17.0	17.4	16.9	17.0	18.0	16.6	16.0	16.4	15.7	12.7	14.3	13.8
Women, 20 years and older....	12.8	13.2	12.5	13.5	13.4	13.7	13.4	13.4	13.2	12.6	13.0	13.9	12.6	12.4	12.3
Hispanic or Latino ethnicity...	12.5	11.5	11.3	11.8	11.8	11.6	11.3	11.3	11.3	11.4	11.4	11.0	10.5	10.7	10.3
Married men, spouse present....	6.8	5.8	6.0	6.1	6.0	6.1	6.1	5.8	5.8	5.8	5.3	5.1	5.1	5.0	5.1
Married women, spouse present.	5.9	5.6	5.7	5.7	5.8	5.6	5.6	5.7	5.8	5.7	5.3	5.4	5.6	5.5	5.3
Full-time workers..	10.4	9.6	9.5	9.6	9.7	9.7	9.8	9.7	9.8	9.5	9.2	9.0	8.8	8.8	8.6
Part-time workers..	6.3	6.3	6.3	6.3	6.2	6.7	6.1	6.5	6.0	6.4	6.0	6.3	5.9	6.0	6.2
Educational attainment ${ }^{2}$															
Less than a high school diploma.....	14.9	14.1	13.8	14.6	14.6	14.2	14.9	14.1	13.9	13.8	13.3	13.8	13.1	12.9	12.6
High school graduates, no college ${ }^{3}$.	10.3	9.4	9.5	9.7	9.5	10.0	9.3	9.5	9.6	9.5	8.8	8.7	8.4	8.3	8.0
Some college or associate degree....	8.4	8.0	7.4	7.5	8.0	8.4	8.2	8.2	8.4	8.2	7.6	7.7	7.2	7.3	7.5
Bachelor's degree and higher ${ }^{4}$.	4.7	4.3	4.4	4.5	4.5	4.4	4.3	4.3	4.2	4.4	4.4	4.1	4.2	4.2	4.2

${ }^{1}$ Beginning in 2003, persons who selected this race group only; persons who
selected more than one race group are not included. Prior to 2003, persons who reported more than one race were included in the group they identified as the main race.
2 Data refer to persons 25 years and older.

7. Duration of unemployment, monthly data seasonally adjusted

[Numbers in thousands]

Weeks of unemployment	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Less than 5 weeks..	2,771	2,677	2,437	2,725	2,687	3,068	2,675	2,734	2,743	2,676	2,510	2,669	2,486	2,541	2,572
5 to 14 weeks...	3,267	2,993	2,927	2,931	2,912	2,976	3,063	3,019	2,902	3,285	2,896	2,858	2,884	2,807	2,754
15 weeks and over.......	8,786	8,077	8,122	7,919	8,197	8,137	8,134	8,218	8,227	7,869	7,766	7,628	7,498	7,397	7,175
15 to 26 weeks...	2,371	2,061	1,991	2,058	1,994	1,874	1,972	2,203	2,029	2,029	2,087	2,039	1,980	1,971	1,867
27 weeks and over...	6,415	6,016	6,130	5,860	6,204	6,263	6,162	6,015	6,197	5,839	5,680	5,588	5,518	5,426	5,308
Mean duration, in weeks............	33.0	39.3	38.9	38.3	39.6	39.8	40.2	40.3	40.4	39.2	40.9	40.8	40.1	40.0	39.4
Median duration, in weeks..............	21.4	21.4	21.6	20.8	21.9	22.1	21.2	21.7	21.8	20.8	21.5	21.0	21.1	20.3	19.9

[^15]8. Unemployed persons by reason for unemployment, monthly data seasonally adjusted
[Numbers in thousands]

Reason for unemployment	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Job losers ${ }^{1}$	9,250	8,106	8,244	8,181	8,250	8,233	8,146	8,120	8,028	7,924	7,599	7,602	7,321	7,209	7,020
On temporary layoff.	1,431	1,230	1,209	1,241	1,218	1,253	1,246	1,237	1,195	1,226	1,181	1,216	1,284	1,135	1,120
Not on temporary layoff.	7,819	6,876	7,035	6,941	7,031	6,980	6,900	6,883	6,833	6,699	6,418	6,386	6,037	6,075	5,900
Job leavers...	889	956	900	944	919	971	936	973	972	1,068	1,005	953	939	1,031	1,117
Reentrants.	3,466	3,401	3,278	3,387	3,436	3,431	3,424	3,519	3,484	3,387	3,355	3,399	3,325	3,361	3,269
New entrants.	1,220	1,284	1,335	1,322	1,229	1,227	1,274	1,249	1,323	1,291	1,276	1,280	1,253	1,392	1,433
Percent of unemployed															
Job losers ${ }^{1}$.	62.4	59.0	59.9	59.1	59.6	59.4	59.1	58.6	58.1	58.0	57.4	57.4	57.0	55.5	54.7
On temporary layoff.	9.6	8.9	8.8	9.0	8.8	9.0	9.0	8.9	8.7	9.0	8.9	9.2	10.0	8.7	8.7
Not on temporary layoff.	52.7	50.0	51.1	50.2	50.8	50.4	50.1	49.7	49.5	49.0	48.5	48.3	47.0	46.7	46.0
Job leavers...	6.0	7.0	6.5	6.8	6.6	7.0	6.8	7.0	7.0	7.8	7.6	7.2	7.3	7.9	8.7
Reentrants..	23.4	24.7	23.8	24.5	24.8	24.8	24.8	25.4	25.2	24.8	25.3	25.7	25.9	25.9	25.5
New entrants..............	8.2	9.3	9.7	9.6	8.9	8.9	9.2	9.0	9.6	9.4	9.6	9.7	9.8	10.7	11.2
Percent of civilian labor force															
Job losers ${ }^{1}$.	6.0	5.3	5.4	5.3	5.4	5.4	5.3	5.3	5.2	5.1	4.9	4.9	4.7	4.7	4.5
Job leavers.	. 6	6	. 6	. 6	. 6	. 6	. 6	. 6	. 6	. 7	. 7	. 6	. 6	. 7	. 7
Reentrants..	2.3	2.2	2.1	2.2	2.2	2.2	2.2	2.3	2.3	2.2	2.2	2.2	2.2	2.2	2.1
New entrants..	. 8	. 8	. 9	. 9	. 8	. 8	. 8	. 8	. 9	. 8	. 8	. 8	. 8	. 9	. 9

${ }^{1}$ Includes persons who completed temporary jobs.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.
9. Unemployment rates by sex and age, monthly data seasonally adjusted
[Civilian workers]

Sex and age	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Total, 16 years and older.	9.6	8.9	8.9	9.0	9.0	9.1	9.1	9.1	9.0	8.9	8.7	8.5	8.3	8.3	8.2
16 to 24 years..	18.4	17.3	17.5	17.6	17.2	17.3	17.4	17.6	17.3	16.7	16.8	16.7	16.0	16.5	16.4
16 to 19 years.	25.9	24.4	24.5	24.9	24.1	24.6	24.9	25.3	24.5	24.0	23.7	23.1	23.2	23.8	25.0
16 to 17 years.	29.1	27.7	28.7	30.7	28.9	27.9	28.2	28.7	26.3	25.2	23.3	27.8	28.8	29.9	28.8
18 to 19 years.	24.2	22.9	22.5	22.3	22.0	22.8	23.2	24.4	23.2	23.2	23.4	21.3	20.5	20.8	22.9
20 to 24 years....	15.5	14.6	14.9	14.9	14.6	14.5	14.6	14.7	14.6	13.9	14.2	14.4	13.3	13.8	13.2
25 years and older.	8.2	7.6	7.5	7.6	7.8	7.9	7.8	7.7	7.7	7.7	7.3	7.2	7.0	7.0	6.8
25 to 54 years..	8.6	7.9	7.8	8.0	8.1	8.2	8.0	8.1	8.1	8.0	7.6	7.6	7.4	7.3	7.1
55 years and older..	7.0	6.6	6.5	6.5	6.7	6.9	6.8	6.6	6.7	7.0	6.4	6.2	5.9	5.9	6.2
Men, 16 years and older.	10.5	9.4	9.4	9.5	9.5	9.7	9.6	9.5	9.4	9.4	8.9	8.7	8.3	8.3	8.3
16 to 24 years..	20.8	18.7	18.9	19.1	18.6	18.7	18.8	19.5	18.9	17.9	18.5	18.3	17.1	18.6	17.4
16 to 19 years.	28.8	27.2	26.4	28.1	27.0	27.4	27.2	28.1	27.8	27.3	26.6	26.6	25.3	27.0	26.7
16 to 17 years.	31.8	29.1	28.4	32.3	31.0	30.2	29.4	28.2	27.6	27.4	26.7	30.5	32.0	33.5	30.1
18 to 19 years.	27.4	26.3	25.4	26.4	25.3	25.8	25.7	28.9	27.1	27.4	26.7	25.1	22.3	23.9	25.1
20 to 24 years.	17.8	15.7	16.3	16.0	15.7	15.6	15.8	16.3	15.7	14.6	15.6	15.3	14.2	15.6	14.1
25 years and older.	8.9	7.9	7.8	8.0	8.1	8.4	8.2	8.1	8.0	8.1	7.4	7.2	6.9	6.7	6.8
25 to 54 years..	9.3	8.2	8.1	8.3	8.4	8.6	8.4	8.4	8.3	8.4	7.7	7.5	7.2	7.1	7.0
55 years and older...	7.7	7.0	6.8	6.9	7.0	7.8	7.3	6.9	6.9	7.2	6.7	6.1	5.9	5.7	6.3
Women, 16 years and older.	8.6	8.5	8.3	8.4	8.5	8.5	8.5	8.5	8.6	8.4	8.3	8.3	8.3	8.2	8.1
16 to 24 years...	15.8	15.7	16.0	15.9	15.7	15.7	15.9	15.6	15.6	15.2	15.0	15.0	14.8	14.2	15.4
16 to 19 years...	22.8	21.7	22.6	21.6	21.3	21.7	22.5	22.4	21.1	20.6	20.7	19.3	21.1	20.7	23.4
16 to 17 years.	26.5	26.3	29.0	29.4	27.0	25.8	27.0	29.2	25.1	23.2	20.0	25.0	25.8	26.1	27.6
18 t0 19 years.	20.9	19.3	19.6	18.0	18.7	19.7	20.6	19.3	19.0	18.6	20.1	17.1	18.6	17.8	20.7
20 to 24 years..	13.0	13.4	13.4	13.6	13.5	13.3	13.2	12.8	13.4	13.1	12.6	13.4	12.3	11.7	12.2
25 years and older.	7.4	7.3	7.1	7.3	7.4	7.4	7.3	7.3	7.5	7.3	7.2	7.3	7.2	7.2	6.8
25 to 54 years....	7.8	7.6	7.5	7.6	7.7	7.8	7.6	7.7	7.8	7.5	7.5	7.6	7.6	7.6	7.2
55 years and older ${ }^{1}$.	6.2	6.2	5.8	5.4	6.0	6.3	7.3	7.1	6.6	6.5	5.8	5.7	5.9	6.1	5.9

${ }^{1}$ Data are not seasonally adjusted.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.
10. Unemployment rates by State, seasonally adjusted

State	$\begin{aligned} & \text { Feb. } \\ & 2011 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 2012^{\mathrm{p}} \end{gathered}$	$\begin{gathered} \text { Feb. } \\ 2012^{p} \end{gathered}$	State	$\begin{aligned} & \text { Feb. } \\ & 2011 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 2012^{p} \end{gathered}$	$\begin{aligned} & \text { Feb. } \\ & 2012^{p} \end{aligned}$
Alabama.	9.3	7.8	7.5	Missouri.	8.9	7.5	7.4
Alaska..	7.7	7.2	7.0	Montana.	6.9	6.5	6.2
Arizona...	9.7	8.7	8.7	Nebraska..	4.5	4.1	4.1
Arkansas...	8.0	7.6	7.6	Nevada..	13.6	12.7	12.3
California.	12.0	10.9	10.9	New Hampshire..	5.5	5.1	5.2
Colorado...	8.6	7.8	7.8	New Jersey...	9.3	9.0	9.0
Connecticut.	9.2	8.0	7.8	New Mexico.	7.6	7.0	7.2
Delaware...	7.4	7.0	6.9	New York...	8.1	8.3	8.5
District of Columbia.	10.0	9.9	9.8	North Carolina.	10.4	10.2	9.9
Florida...	10.8	9.6	9.4	North Dakota..	3.5	3.2	3.1
Georgia.	9.9	9.2	9.1	Ohio..	8.9	7.7	7.6
Hawaii....	6.6	6.5	6.4	Oklahoma..	6.1	6.1	6.0
Idaho..	8.8	8.1	8.0	Oregon...	9.7	8.8	8.7
Illinois..	9.3	9.4	9.1	Pennsylvania.	8.0	7.6	7.6
Indiana...	8.9	8.7	8.4	Rhode Island..	11.3	10.9	11.0
lowa...	6.0	5.4	5.3	South Carolina..	10.5	9.3	9.1
Kansas...	6.9	6.1	6.1	South Dakota.	5.0	4.2	4.3
Kentucky...	9.8	8.8	8.7	Tennessee.	9.5	8.2	8.0
Louisiana.	7.6	6.9	7.0	Texas.	8.0	7.3	7.1
Maine.	7.9	7.0	7.1	Utah..	7.3	5.7	5.7
Maryland..	7.2	6.5	6.5	Vermont.	5.9	5.1	4.9
Massachusetts....	7.7	6.9	6.9	Virginia..	6.3	5.8	5.7
Michigan...	10.7	9.0	8.8	Washington.	9.5	8.4	8.3
Minnesota.	6.7	5.6	5.7	West Virginia.	8.1	7.4	7.2
Mississippi...	10.5	10.0	9.6	Wisconsin..	7.6	6.9	6.9
				Wyoming...	6.2	5.5	5.4

${ }^{\mathrm{p}}=$ preliminary
11. Employment of workers on nonfarm payrolls by State, seasonally adjusted

State	$\begin{aligned} & \text { Feb. } \\ & 2011 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 2012^{\text {p }} \end{gathered}$	$\begin{aligned} & \text { Feb. } \\ & 2012^{p} \end{aligned}$	State	$\begin{aligned} & \text { Feb. } \\ & 2011 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 2012^{\text {p }} \end{gathered}$	$\begin{gathered} \text { Feb. } \\ 2012^{p} \end{gathered}$
Alabama.	2,203,470	2,160,092	2,149,848	Missouri.	3,051,359	3,041,934	3,032,131
Alaska.	366,545	367,907	367,224	Montana.	502,559	506,541	506,545
Arizona.	3,058,358	3,005,922	3,005,923	Nebraska.	999,611	1,015,709	1,014,039
Arkansas..	1,369,848	1,383,037	1,385,981	Nevada.	1,387,890	1,377,473	1,370,820
California.	18,360,835	18,462,438	18,467,766	New Hampshire.	737,685	742,129	742,604
Colorado..	2,723,667	2,730,248	2,731,141	New Jersey..	4,548,430	4,572,935	4,575,888
Connecticut.	1,921,825	1,916,038	1,914,498	New Mexico..	930,450	928,517	932,004
Delaware..	438,481	440,458	439,769	New York.	9,523,223	9,513,528	9,520,717
District of Columbia.	345,980	346,567	347,810	North Carolina.	4,640,525	4,683,094	4,687,689
Florida..	9,219,382	9,298,687	9,297,244	North Dakota.	379,784	389,701	390,049
Georgia.	4,718,382	4,743,544	4,750,761	Ohio..	5,822,204	5,788,948	5,794,997
Hawaii...	660,849	660,843	659,513	Oklahoma.	1,766,586	1,785,029	1,787,505
Idaho.	768,293	775,534	777,207	Oregon.	1,993,082	1,992,848	1,992,108
Illinois.	6,552,846	6,579,964	6,589,029	Pennsylvania.	6,403,912	6,382,830	6,390,129
Indiana..	3,172,329	3,210,675	3,213,116	Rhode Island..	564,923	560,147	559,032
lowa..	1,668,071	1,666,454	1,664,019	South Carolina.	2,153,963	2,152,122	2,158,446
Kansas..	1,505,599	1,510,203	1,507,875	South Dakota.	446,114	449,371	449,317
Kentucky..	2,070,227	2,066,634	2,066,126	Tennessee..	3,130,787	3,134,679	3,123,406
Louisiana..	2,071,329	2,057,899	2,060,510	Texas..	12,410,711	12,518,550	12,517,731
Maine.	703,170	708,735	709,381	Utah.	1,347,743	1,330,781	1,334,405
Maryland..	3,070,953	3,079,072	3,083,746	Vermont.	360,196	360,580	360,658
Massachusetts..	3,464,119	3,456,267	3,458,195	Virginia..	4,283,378	4,341,962	4,343,120
Michigan..	4,675,408	4,633,005	4,646,907	Washington..	3,491,107	3,492,453	3,498,061
Minnesota.	2,974,178	2,976,126	2,974,074	West Virginia.	800,770	802,677	803,726
Mississippi..	1,337,922	1,349,014	1,343,796	Wisconsin.	3,070,780	3,054,610	3,059,442
				Wyoming.	303,584	306,677	307,245

NOTE: Some data in this table may differ from data published elsewhere because of the continual updating of the database.
${ }^{p}=$ preliminary

12. Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted

[In thousands]

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
TOTAL NONFAR	129,874	131,359	130,922	131,173	131,227	131,311	131,407	131,492	131,694	131,806	131,963	132,186	132,461	132,720	132,874
TOTAL PRIVATE.	107,384	109,254	108,725	108,989	109,097	109,199	109,374	109,426	109,642	109,781	109,959	110,193	110,470	110,724	110,890
GOODS-PRODUCING.	17,751	18,021	17,942	17,981	18,001	18,019	18,071	18,067	18,100	18,106	18,114	18,176	18,254	18,290	18,328
Natural resources and mining	705	784	756	768	777	786	795	798	804	810	814	822	830	837	837
Loggi	49.7	48.3	50.3	49.0	48.2	47.9	48.4	47.9	47.9	47.0	48.7	48.7	49.0	48.1	47.9
Mining.	654.8	735.4	705.6	718.9	728.3	738.2	746.1	749.7	756.3	762.9	764.9	773.3	781.0	788.5	788.9
Oil and gas extraction.	158.7	174.4	166.8	170.0	171.4	173.4	175.2	176.8	180.0	182.6	183.2	186.3	188.4	189.8	192.5
Mining, except oil and gas ${ }^{1}$.	204.5	217.0	212.8	215.4	217.8	218.7	218.4	219.8	219.9	220.6	219.1	220.5	220.8	221.2	220.7
Coal mining...................	80.8	86.2	84.5	85.8	87.2	87.5	86.4	87.2	87.5	87.4	86.9	86.6	86.5	86.3	85.8
Support activities for mining	291.6	344.0	326.0	333.5	339.1	346.1	352.5	353.1	356.4	359.7	362.6	366.5	371.8	377.5	375.7
Construction.	5,518	5,504	5,496	5,495	5,498	5,495	5,508	5,498	5,528	5,519	5,520	5,546	5,564	5,563	5,560
Construction of buildings.	1,229.7	1,219.0	1,218.6	1,217.3	1,211.4	1,214.4	1,215.8	1,216.7	1,228.9	1,230.4	1,226.9	1,226.7	1,231.5	1,238.2	1,227.6
Heavy and civil engineering	825.1	829.0	825.3	830.1	831.6	827.7	827.0	824.8	829.4	832.3	834.2	840.0	840.7	841.6	845.2
Speciality trade contractors..	3,463.4	3,455.4	3,452.4	3,448.0	3,455.4	3,453.2	3,464.9	3,456.2	3,469.9	3,456.4	3,458.5	3,479.6	3,491.3	3,483.1	3,487.1
Manufacturing....................	11,528	11,733	11,690	11,718	11,726	11,738	11,768	11,771	11,768	11,777	11,780	11,808	11,860	11,890	11,931
Production workers.	8,077	8,231	8,197	8,225	8,228	8,230	8,259	8,259	8,260	8,268	8,268	8,297	8,336	8,377	8,410
Durable goods..	7,064	7,274	7,226	7,245	7,264	7,281	7,303	7,300	7,304	7,317	7,331	7,361	7,401	7,428	7,456
Production workers.	4,829	4,986	4,949	4,966	4,977	4,984	5,007	5,007	5,010	5,021	5,035	5,059	5,090	5,123	5,146
Wood products..	342.1	335.2	341.9	339.6	337.3	333.3	328.8	330.8	331.4	332.0	331.4	332.0	333.3	335.2	333.3
Nonmetallic mineral products	370.9	366.6	368.5	367.0	367.8	367.4	367.1	365.5	364.4	364.1	364.2	367.0	370.3	371.7	371.1
Primary metals..	362.3	389.5	381.2	385.8	389.1	390.7	393.0	393.3	395.2	397.7	399.6	400.7	402.9	403.8	404.9
Fabricated metal products.	1,281.7	1,344.2	1,331.6	1,337.7	1,345.2	1,350.0	1,355.3	1,350.6	1,349.6	1,349.6	1,359.4	1,367.8	1,377.3	1,385.0	1,390.3
Machinery.....................	996.1	1,056.7	1,040.6	1,046.5	1,051.8	1,056.8	1,059.5	1,064.5	1,067.4	1,070.4	1,076.0	1,082.0	1,088.2	1,093.3	1,099.1
Computer and electronic products ${ }^{1}$	1,094.6	1,107.0	1,102.5	1,106.0	1,106.3	1,107.4	1,110.5	1,111.7	1,111.6	1,111.0	1,107.1	1,107.4	1,107.9	1,107.7	1,109.9
Computer and peripheral															
equipment.	157.6	159.2	157.1	157.9	157.6	159.2	159.9	160.1	160.0	160.7	161.1	162.2	162.4	162.9	163.3
Communications equipmen	117.4	115.1	116.1	117.1	116.1	115.9	115.1	114.6	114.3	113.2	113.1	112.2	111.1	110.7	110.7
Semiconductors and electronic components...	369.4	384.0	381.2	382.2	383.2	382.8	385.2	386.9	387.7	388.2	387.0	386.5	387.0	387.8	387.4
Electronic instruments....	406.4	404.2	405.0	405.0	404.3	404.4	404.7	404.1	403.8	403.6	401.1	401.4	402.0	401.2	403.1
Electrical equipment and appliances.	359.5	366.8	364.5	365.8	366.5	367.2	368.1	368.0	367.6	367.8	367.3	369.1	370.6	372.5	373.7
Transportation equipment.	1,333.1	1,381.7	1,367.6	1,371.2	1,372.6	1,377.9	1,387.2	1,384.5	1,389.3	1,400.8	1,405.1	1,414.2	1,424.0	1,430.7	1,443.7
Furniture and related products.	57.2	2.8	53.7	2.9	54.4	54.0	57.3	54.5	53.4	51.0	349.8	48.6	349.7	351.8	352.1
Miscellaneous manufacturing	566.8	573.4	573.4	572.5	573.4	576.1	576.2	576.1	574.5	572.4	571.0	572.6	577.2	576.7	577.4
Nondurable goods..	4,464	4,460	4,464	4,473	4,462	4,457	4,465	4,471	4,464	4,460	4,449	4,447	4,459	4,462	4,475
Production workers.	3,248	3,245	3,248	3,259	3,251	3,246	3,252	3,252	3,250	3,247	3,233	3,238	3,246	3,254	3,264
Food manufacturing.	1,450.6	1,456.3	1,460.8	1,467.5	1,460.7	1,455.9	1,460.7	1,456.0	1,454.7	1,456.2	1,446.0	1,442.2	1,446.6	1,449.7	1,453.6
Beverages and tobacco products.	183.4	8.2	183.7	5.4	186.9	89.1	189.7	193.2	191.5	191.2	191.7	191.9	193.8	195.2	196.3
Textile mills..	119.0	120.5	120.6	121.4	121.1	121.2	122.2	121.3	120.6	119.4	119.2	119.6	120.5	120.3	120.2
Textile product mills.	119.0	116.8	18.2	8. 3	18.0	18.3	17.6	118.0	15.4	114.8	115.2	114.3	112.8	113.8	113.7
Apparel...	156.6	151.8	152.1	152.9	152.7	151.9	149.9	150.9	151.9	152.5	151.2	150.1	150.3	150.1	150.6
Leather and allied products.	27.8	29.3	29.1	29.0	28.9	29.2	29.5	28.8	29.5	29.7	30.3	30.3	30.6	30.6	30.1
Paper and paper products.	394.7	391.3	391.0	391.3	389.5	390.9	391.0	391.8	392.0	391.4	391.4	392.2	392.6	391.4	394.4
Printing and related support activities.	487.6	9.3	75.7	4.4	71.5	69.4	68.3	471.6	465.6	463.5	460.7	59.6	60.5	458.6	456.5
Petroleum and coal products	113.9	112.2	112.3	112.1	112.3	111.8	111.7	111.0	111.8	113.3	113.5	113.9	115.2	115.3	114.7
Chemicals.	786.5	788.3	784.3	786.5	85.0	787.0	788.8	792.1	794.2	793.2	791.0	793.8	796.8	795.4	799.0
Plastics and rubber products..	624.8	635.6	636.2	634.0	635.2	632.3	635.9	636.5	637.1	634.7	638.6	639.5	639.5	641.9	645.7
SERVICE-PROVIDING...	112,123	113,338	112,980	113,192	113,226	113,292	113,336	113,425	113,594	113,700	113,849	114,010	114,207	114,430	114,546
PRIVATE SERVICEPROVIDING \qquad	89,633	91,234	90,783	91,008	91,096	91,180	91,303	91,359	91,542	91,675	91,845	92,017	92,216	92,434	92,562
Trade, transportation, and utilities.	24,636	25,019	24,896	24,982	24,993	25,027	25,052	25,060	25,075	25,102	25,154	25,181	25,239	25,246	25,230
Wholesale trade.	5,452.1	5,528.8	5,510.4	5,517.6	5,525.2	5,531.0	5,533.3	5,538.3	5,535.3	5,547.2	5,554.1	5,568.8	5,583.4	5,590.4	5,593.3
Durable goods..	2,713.5	2,752.8	2,745.0	2,747.5	2,754.0	2,757.4	2,755.9	2,758.4	2,755.6	2,761.3	2,761.9	2,770.5	2,776.7	2,778.8	2,779.2
Nondurable goods........	1,928.1	1,940.4	1,934.9	1,937.4	1,937.3	1,936.8	1,940.1	1,943.2	1,943.3	1,946.5	1,948.9	1,952.8	1,957.5	1,960.8	1,961.6
Electronic markets and agents and brokers..	810.5	835.6	830.5	832.7	833.9	836.8	837.3	836.7	836.4	839.4	843.3	845.5	849.2	850.8	852.5
Retail trade..	14,440.4	14,642.9	14,563.2	14,630.7	14,626.1	14,641.9	14,668.8	14,664.4	14,678.6	14,690.9	14,724.7	14,731.5	14,756.4	14,741.2	14,720.3
Motor vehicles and parts															
dealers ${ }^{1}$	1,629.2	1,687.9	1,674.7	1,680.5	1,684.0	1,685.3	1,692.4	1,693.8	1,696.1	1,701.4	1,705.6	1,709.3	1,713.7	1,717.7	1,719.1
Automobile dealers...	1,011.5	1,055.4	1,045.3	1,049.7	1,053.0	1,055.5	1,058.1	1,059.6	1,061.5	1,066.1	1,069.0	1,071.4	1,077.1	1,079.9	1,080.1
Furniture and home furnishings stores.	437.9	442.2	439.9	440.4	441.0	441.3	442.6	442.3	443.8	447.0	446.8	446.5	448.3	449.3	449.3
Electronics and appliance stores.	522.3	525.5	529.9	532.8	531.7	531.5	531.6	524.2	517.0	516.6	515.8	514.8	512.8	513.4	509.8

[^16]12. Continued-Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
Building material and garden supply stores. Food and beverage stores....	$1,131.8$ $2,808.2$	1,140.7	1,145.7	1,153.9	1,145.3	1,142.1	1,138.6	$1,139.3$ $2,834.3$	1,137.8	$1,137.9$ $2,841.1$	$1,142.8$ $2,839.1$	$1,141.8$ $2,848.5$	1,147.1	1,150.7	$1,156.3$ $2,861.8$
Health and personal care stores \qquad	980.5	980.5	975.3	977.6	978.1	975.7	982.7	983.4	986.0	985.8	987.0	984.2	990.5	992.5	994.6
Clothing and clothing accessories stores.	1,352.5	1,356.0	1,343.0	1,347.4	1,348.3	1,351.5	1,346.9	1,354.7	1,362.0	1,364.3	1,375.2	1,384.5	1,365.8	1,362.3	1,362.6
Sporting goods, hobby, book, and music stores.	579.1	574.3	579.7	578.6	577.5	577.1	579.7	579.4	578.6	571.6	565.1	558.2	553.2	563.2	564.7
General merchandise stores1.	2,997.7	3,080.1	3,042.7	3,071.1	3,067.3	3,075.7	3,078.4	3,078.5	3,085.1	3,091.9	3,118.3	3,116.0	3,136.1	3,094.6	3,070.5
Department stores.	1,501.6	1,546.7	1,532.3	1,542.3	1,538.7	1,541.6	1,545.6	1,544.8	1,547.7	1,550.9	1,570.1	1,567.1	1,591.8	1,558.2	1,543.9
Miscellaneous store retailers.	761.5	766.9	766.7	766.2	767.2	768.6	781.8	769.3	771.5	769.4	760.6	761.5	766.1	770.3	766.4
Nonstore retailers.......	420.6	431.7	428.9	429.1	431.9	432.6	433.5	435.2	433.8	435.3	435.1	435.7	438.4	439.2	436.5
Transportation and warehousing \qquad	4,190.7	4,292.2	4,269.5	4,279.5	4,287.0	4,298.5	4,295.0	4,301.9	4,303.7	4,306.8	4,316.7	4,321.8	4,338.9	4,353.2	4,355.0
Air transportation....	458.3	456.0	454.4	454.9	456.2	457.5	459.4	457.3	457.4	456.1	455.8	456.1	457.9	456.7	457.7
Rail transportation..	216.4	228.8	226.8	227.4	228.9	230.3	229.5	231.7	230.9	231.5	231.2	231.7	232.1	232.3	233.6
Water transportation.	62.3	62.5	62.7	62.4	62.5	61.6	61.5	61.9	62.5	63.1	63.1	63.3	65.6	67.0	67.2
Truck transportation...	1,250.4	1,298.9	1,291.1	1,295.3	1,298.7	1,302.4	1,303.8	1,302.5	1,304.4	1,307.1	1,311.1	1,318.1	1,322.7	1,334.5	1,332.0
Transit and ground passenger transportation.	429.7	436.1	433.8	438.0	436.8	439.5	437.0	439.4	437.2	435.7	431.4	433.5	437.5	435.6	430.2
Pipeline transportation............	42.3	42.9	42.8	42.8	42.9	43.1	42.9	42.6	42.9	43.0	43.2	43.4	43.5	43.8	43.8
Scenic and sightseeing transportation..............	27.3	28.6	27.8	26.6	29.3	29.6	28.5	28.6	28.5	29.6	29.7	29.6	30.4	32.0	31.4
Support activities for transportation.	542.5	563.9	559.4	562.7	561.7	563.5	563.6	564.5	566.2	569.8	574.5	574.1	578.7	577.6	582.3
Couriers and messengers	528.1	528.5	527.4	525.2	525.5	525.8	521.7	525.5	525.3	523.3	528.3	521.9	522.9	524.5	528.7
Warehousing and storage.	633.4	645.8	643.3	644.2	644.5	645.2	647.1	647.9	648.4	647.6	648.4	650.1	647.6	649.2	648.1
Utilities.	552.8	555.2	552.8	554.3	554.7	555.6	555.3	555.7	557.0	556.7	558.2	559.1	559.9	560.7	561.8
Information...	2,707	2,659	2,672	2,671	2,671	2,669	2,665	2,615	2,649	2,646	2,644	2,645	2,628	2,636	2,630
Publishing industries, except Internet.	759.0	749.0	749.6	750.3	749.1	749.2	749.4	748.7	747.6	748.6	745.8	746.1	741.6	741.0	740.8
Motion picture and sound recording industries.	370.2	361.3	362.4	358.8	361.7	359.7	360.6	361.8	356.6	356.5	359.5	363.8	352.3	365.9	360.2
Broadcasting, except Internet.	290.3	281.5	283.0	282.6	281.9	281.8	281.4	280.9	280.9	280.3	279.0	279.6	280.4	279.3	282.4
Internet publishing and broadcasting.															
Telecommunications...	902.9	865.3	882.8	882.0	878.2	876.3	868.9	818.2	858.2	853.1	850.3	846.9	847.0	841.6	837.2
ISPs, search portals, and data processing	243.0	243.0	243.1	242.9	244.2	242.5	242.9	243.0	242.2	242.4	244.1	242.5	240.6	241.4	241.8
Other information services	141.7	158.7	1.1	54.2	156.2	159.3	161.4	162.6	163.5	165.3	165.1	166.5	166.3	166.6	167.8
Financial activities	7,652	7,681	7,683	7,679	7,693	7,680	7,676	7,681	7,675	7,680	7,691	7,696	7,697	7,704	7,718
Finance and insurance.	5,718.3	5,751.8	5,756.3	5,749.2	5,758.4	5,754.6	5,749.9	5,751.9	5,746.4	5,744.1	5,750.7	5,756.8	5,757.2	5,757.9	5,766.4
Monetary authoritiescentral bank.	20.0	18.9	18.6	18.6	18.7	18.8	19.0	19.2	19.2	19.4	19.2	18.9	18.9	18.9	18.9
Credit intermediation and															
related activities ${ }^{1}$.. Depository credit	2,550.0	2,558.9	2,554.8	2,554.4	2,564.2	2,559.8	2,558.0	2,556.8	2,555.5	2,552.2	2,563.4	2,570.1	2,575.0	2,575.5	2,585.1
intermediation ${ }^{1}$	1,728.8	1,738.4	1,732.1	1,735.6	1,741.7	1,740.2	1,740.9	1,741.1	1,740.3	1,738.2	1,742.0	1,745.9	1,748.3	1,749.3	1,754.8
Commercial banking.	1,305.9	1,314.6	1,309.7	1,312.2	1,319.8	1,315.4	1,315.8	1,316.4	1,315.9	1,314.7	1,316.9	1,319.7	1,321.0	1,322.2	1,327.2
Securities, commodity contracts, investments..	800.5	807.0	806.6	807.7	806.8	810.0	810.5	811.5	809.3	807.1	805.1	803.7	801.8	801.9	800.6
Insurance carriers and related activities.	2,261.1	2,281.6	2,289.9	2,282.4	2,283.0	2,281.0	2,276.1	2,280.1	2,278.3	2,281.5	2,278.9	2,279.6	2,277.1	2,277.2	2,277.0
Funds, trusts, and other financial vehicles.	86.8	85.3	86.4	86.1	85.7	85.0	86.3	84.3	84.1	83.9	84.1	84.5	84.4	84.4	84.8
Real estate and rental and leasing \qquad	1,933.8	1,928.7	1,926.3	1,929.4	1,934.8	1,925.7	1,926.2	1,929.1	1,928.5	1,935.9	1,940.6	1,939.0	1,939.9	1,946.2	1,951.5
Real estate....	1,395.7	1,401.6	1,396.7	1,402.4	1,409.7	1,403.8	1,404.1	1,404.0	1,397.8	1,404.4	1,408.9	1,408.5	1,410.4	1,413.2	1,416.0
Rental and leasing services	513.5	503.0	505.6	503.0	501.0	497.9	498.3	501.0	506.5	507.2	507.4	506.3	505.6	509.2	511.8
Lessors of nonfinancial intangible assets.	24.6	24.1	24.0	24.0	24.1	24.0	23.8	24.1	24.2	24.3	24.3	24.2	23.9	23.8	23.7
Professional and business services \qquad	16,728	17,331	17,192	17,242	17,298	17,303	17,342	17,382	17,441	17,482	17,521	17,593	17,672	17,761	17,798
Professional and technical															
services ${ }^{1}$.	7,441.3	7,691.3	7,606.0	7,636.1	7,684.6	7,698.1	7,715.7	7,732.5	7,759.2	7,772.1	7,787.1	7,815.5	7,841.9	7,880.7	7,902.0
Legal services...	1,114.2	1,115.1	1,114.3	1,114.0	1,115.1	1,111.2	1,116.0	1,115.7	1,114.5	1,115.0	1,116.7	1,115.6	1,117.5	1,118.7	1,117.0
Accounting and bookkeeping services.	886.5	920.5	899.7	905.0	931.5	931.0	928.8	929.1	935.6	940.4	943.6	957.8	963.6	971.0	974.2
Architectural and engineering services.	1,275.4	1,293.8	1,286.7	1,290.4	1,291.6	1,292.8	1,294.3	1,298.2	1,301.4	1,299.3	1,301.9	1,303.1	1,310.0	1,315.2	1,318.8

12. Continued-Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted [In thousands]

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
Computer systems design and related services.	1,449.0	1,530.1	1,509.9	1,516.9	1,523.9	1,530.1	1,535.8	1,540.8	1,546.1	1,548.5	1,553.1	1,557.8	1,558.8	1,571.7	1,577.9
Management and technical consulting services.	999.4	1,070.2	1,048.5	1,060.2	1,066.0	1,070.2	1,076.2	1,082.0	1,085.9	1,091.6	1,092.7	1,099.6	1,107.0	1,114.9	1,120.6
Management of companies and enterprises.	1,872.3	1,914.8	1,905.8	1,906.8	1,914.9	1,914.5	1,916.3	1,917.9	1,923.9	1,926.8	1,928.3	1,932.5	1,936.1	1,936.0	1,940.3
Administrative and waste services. \qquad Administrative and support	7,414.0	7,724.4	7,680.6	7,699.2	7,698.4	7,690.7	7,709.6	7,731.2	7,758.1	7,782.9	7,806.0	7,844.9	7,893.5	7,944.4	7,955.9
services ${ }^{1}$	7,056.7	7,359.2	7,317.3	7,335.7	7,334.2	7,326.9	7,344.8	7,364.6	7,389.4	7,413.5	7,439.1	7,477.0	7,522.7	7,572.5	7,584.3
Employment services ${ }^{1}$	2,722.5	2,952.1	2,929.0	2,931.4	2,930.5	2,922.9	2,935.3	2,954.5	2,975.8	2,985.5	3,014.1	3,047.9	3,083.9	3,148.4	3,137.1
Temporary help services	2,093.6	2,316.2	2,295.5	2,294.2	2,295.9	2,288.2	2,297.1	2,317.7	2,341.4	2,357.9	2,377.6	2,396.3	2,432.7	2,482.3	2,472.9
Business support services	808.6	812.3	809.9	811.7	811.0	812.2	811.9	813.0	812.9	811.3	814.4	819.9	821.3	816.9	813.4
Services to buildings and dwellings.	1,745.0	1,777.0	1,770.1	1,776.3	1,775.8	1,772.5	1,774.9	1,777.0	1,779.2	1,787.4	1,784.1	1,780.5	1,788.5	1,783.4	1,803.5
Waste management and remediation services..	357.3	365.2	363.3	363.5	364.2	363.8	364.8	366.6	368.7	369.4	366.9	367.9	370.8	371.9	371.6
Educational and health															
services.	19,531	19,884	19,749	19,804	19,823	19,848	19,898	19,931	19,989	20,026	20,046	20,079	20,110	20,181	20,226
Educational services.	3,155.1	3,240.7	3,215.1	3,233.2	3,226.1	3,225.8	3,239.3	3,243.1	3,253.4	3,261.1	3,275.3	3,278.9	3,278.4	3,301.4	3,319.1
Health care and social assistance. \qquad	16,375.4	16,642.8	16,533.4	16,571.0	16,596.7	16,622.4	16,658.5	16,688.3	16,735.8	16,764.6	16,770.8	16,800.3	16,831.1	16,880.0	16,906.8
Ambulatory health care															
services ${ }^{1}$.	5,974.7	6,145.5	6,084.7	6,104.3	6,115.2	6,134.7	6,156.0	6,174.8	6,199.6	6,217.3	6,222.8	6,237.0	6,250.8	6,273.6	6,283.3
Offices of physici	2,312.7	2,355.4	2,333.6	2,338.7	2,342.6	2,348.4	2,356.9	2,363.6	2,374.8	2,382.1	2,386.6	2,389.9	2,392.9	2,400.7	2,405.8
Outpatient care centers.	599.9	623.7	615.9	618.3	620.9	621.2	621.3	623.7	628.4	632.1	635.8	637.9	642.4	646.2	647.7
Home health care servic	1,084.6	1,139.1	1,125.8	1,129.1	1,130.2	1,136.7	1,140.7	1,147.7	1,154.0	1,156.1	1,154.3	1,160.0	1,164.8	1,168.8	1,173.3
Hospitals.	4,678.5	4,731.0	4,706.0	4,717.6	4,721.3	4,720.4	4,731.2	4,735.6	4,752.4	4,757.6	4,765.2	4,774.3	4,787.2	4,799.9	4,808.6
Nursing and residential															
care facilities ${ }^{1}$.	3,123.7	3,169.2	3,158.8	3,163.5	3,167.1	3,174.7	3,174.8	3,177.7	3,182.3	3,183.3	3,174.2	3,174.1	3,181.2	3,183.9	3,190.8
Nursing care facilitie	1,657.1	1,668.4	1,668.6	1,668.9	1,668.9	1,674.3	1,672.3	1,670.9	1,671.4	1,671.8	1,661.0	1,661.4	1,663.9	1,660.3	1,665.0
Social assistance ${ }^{1}$.	2,598.5	2,597.2	2,583.9	2,585.6	2,593.1	2,592.6	2,596.5	2,600.2	2,601.5	2,606.4	2,608.6	2,614.9	2,611.9	2,622.6	2,624.1
Child day care services.	848.0	844.2	847.3	847.8	847.5	840.8	843.1	843.7	842.9	842.8	839.5	841.5	836.4	839.4	837.0
Leisure and hospitality.....	13,049	13,320	13,259	13,295	13,280	13,315	13,332	13,344	13,364	13,394	13,436	13,464	13,503	13,548	13,600
Arts, entertainment, and recreation.	1,913.3	1,909.5	1,916.3	1,916.1	1,899.3	1,910.9	1,916.2	1,909.6	1,908.3	1,909.9	1,910.7	1,911.0	1,925.2	1,929.2	1,942.7
Performing arts and spectator sports.	406.2	394.3	403.1	398.4	386.6	391.8	389.0	388.9	394.1	395.1	397.9	392.9	400.4	401.1	411.3
Museums, historical sites, zoos, and parks.	127.7	132.3	131.1	132.8	130.7	131.6	132.1	132.8	131.9	133.2	134.3	135.4	135.5	135.0	135.6
Amusements, gambling, and recreation. \qquad	1,379.4	1,383.0	1,382.1	1,384.9	1,382.0	1,387.5	1,395.1	1,387.9	1,382.3	1,381.6	1,378.5	1,382.7	1,389.3	1,393.1	1,395.8
Accommodations and food services.	11,135.4	11,410.3	11,342.6	11,378.9	11,380.2	11,404.1	11,415.7	11,434.1	11,455.9	11,484.4	11,525.4	11,552.5	11,578.1	11,618.8	11,657.7
Accommodations..	1,759.6	1,797.2	1,787.8	1,791.4	1,790.6	1,807.6	1,814.2	1,812.6	1,806.8	1,811.8	1,799.9	1,802.0	1,801.4	1,807.0	1,810.4
Food services and drinking places.	9,375.8	9,613.1	9,554.8	9,587.5	9,589.6	9,596.5	9,601.5	9,621.5	9,649.1	9,672.6	9,725.5	9,750.5	9,776.7	9,811.8	9,847.3
Other services....	5,331	5,342	5,332	5,335	5,338	5,338	5,338	5,346	5,349	5,345	5,353	5,359	5,367	5,358	5,360
Repair and maintenance.........	1,138.8	1,160.1	1,158.5	1,156.2	1,158.9	1,158.9	1,159.7	1,159.7	1,162.9	1,164.4	1,166.0	1,165.3	1,166.9	1,159.9	1,157.9
Personal and laundry services	1,265.3	1,284.6	1,280.6	1,281.0	1,282.8	1,285.4	1,288.2	1,290.1	1,294.1	1,289.7	1,288.6	1,292.3	1,291.4	1,291.8	1,294.1
Membership associations and organizations.	2,926.4	2,896.8	2,892.5	2,898.0	2,896.1	2,894.0	2,889.9	2,896.3	2,892.4	2,891.1	2,898.7	2,901.1	2,908.9	2,906.3	2,907.6
Government.	22,490	22,104	22,197	22,184	22,130	22,112	22,033	22,066	22,052	22,025	22,004	21,993	21,991	21,996	21,984
Federal.	2,977	2,858	2,879	2,873	2,869	2,858	2,851	2,847	2,844	2,844	2,839	2,836	2,831	2,828	2,825
Federal, except U.S. Postal Service \qquad	2,318.1	2,226.4	2,237.9	2,234.0	2,232.5	2,224.9	2,219.2	2,219.3	2,221.8	2,219.9	2,218.3	2,216.2	2,211.5	2,208.0	2,207.2
U.S. Postal Service.	658.5	630.9	640.6	639.1	636.8	633.0	631.9	627.6	621.8	623.7	620.3	619.5	619.3	620.0	618.0
State..	5,137	5,082	5,104	5,098	5,087	5,081	5,054	5,075	5,084	5,063	5,056	5,048	5,052	5,067	5,070
Education..	2,373.1	2,383.7	2,383.2	2,382.5	2,376.6	2,377.1	2,384.1	2,392.5	2,394.8	2,390.1	2,383.0	2,377.9	2,389.9	2,409.6	2,414.4
Other State government	2,764.1	2,698.0	2,720.3	2,715.9	2,710.2	2,704.2	2,670.1	2,682.6	2,689.0	2,673.3	2,673.2	2,670.3	2,662.0	2,657.3	2,655.8
Local.	14,376	14,165	14,214	14,213	14,174	14,173	14,128	14,144	14,124	14,118	14,109	14,109	14,108	14,101	14,089
Education..	8,013.4	7,892.9	7,923.0	7,930.5	7,899.2	7,903.1	7,862.5	7,880.7	7,866.7	7,866.0	7,858.1	7,859.5	7,858.4	7,854.5	7,842.6
Other local government..	6,362.9	6,272.0	6,291.4	6,282.8	6,274.3	6,270.2	6,265.9	6,263.1	6,257.0	6,252.3	6,251.2	6,249.5	6,249.8	6,246.4	6,246.4

${ }^{1}$ Includes other industries not shown separately.
NOTE: See "Notes on the data" for a description of the most recent benchmark revision.
$\mathrm{p}=$ preliminary.
13. Average weekly hours of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry, monthly data seasonally adjusted

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
TOTAL PRIVATE.	33.4	33.6	33.6	33.7	33.6	33.7	33.7	33.6	33.6	33.7	33.7	33.7	33.8	33.8	33.8
GOODS-PRODUCING.	40.4	40.9	40.7	40.8	40.9	40.8	40.9	40.8	40.8	40.9	40.9	41.1	41.2	41.3	41.2
Natural resources and mining..	44.6	46.7	45.8	46.6	46.5	47.2	46.4	46.3	46.7	47.5	47.0	47.6	47.7	47.6	47.4
Construction..	38.4	39.0	38.6	38.8	39.1	38.9	39.1	39.0	39.0	38.8	38.9	39.2	39.1	39.3	39.3
Manufacturing..	41.1	41.4	41.5	41.4	41.5	41.4	41.4	41.3	41.3	41.5	41.5	41.6	41.8	41.9	41.7
Overtime hours.	3.8	4.1	4.2	4.1	4.1	4.0	4.1	4.1	4.0	4.1	4.1	4.1	4.2	4.2	4.2
Durable goods..	41.4	41.9	41.9	41.8	41.8	41.8	41.8	41.7	41.8	41.9	41.9	42.1	42.2	42.3	42.1
Overtime hours..	3.8	4.2	4.4	4.2	4.2	4.2	4.2	4.2	4.1	4.2	4.2	4.3	4.4	4.4	4.4
Wood products..	39.1	39.7	40.0	39.9	39.5	39.3	39.2	39.3	39.7	39.5	39.8	40.4	41.3	41.1	40.9
Nonmetallic mineral products.	41.7	42.3	42.4	42.2	42.8	42.5	42.6	42.5	42.6	42.3	41.7	42.0	42.3	43.1	42.4
Primary metals.	43.7	44.6	45.0	45.0	45.2	45.1	44.8	44.5	44.1	43.9	44.0	44.2	44.2	44.1	44.0
Fabricated metal products....	41.4	42.0	41.9	42.0	42.0	42.1	42.1	41.9	41.9	42.0	42.1	42.3	42.3	42.6	42.3
Machinery...	42.1	43.1	43.1	42.9	43.3	43.3	43.1	43.2	43.0	42.9	43.0	43.1	43.0	43.1	43.1
Computer and electronic products..	40.9	40.5	40.4	40.5	40.5	40.4	40.6	40.5	40.4	40.6	40.4	40.8	41.0	41.0	40.4
Electrical equipment and appliances...	41.1	40.8	41.2	40.7	40.8	41.1	40.3	40.3	40.6	41.4	41.0	41.0	41.2	41.5	41.6
Transportation equipment..	42.9	43.2	43.6	42.9	42.8	42.8	43.1	43.0	43.2	43.3	43.5	43.7	43.8	43.9	43.7
Furniture and related products.	38.5	39.9	40.0	39.9	40.1	39.3	39.7	40.0	39.8	40.0	40.1	40.3	40.9	40.4	40.0
Miscellaneous manufacturing....	38.7	38.9	38.8	38.7	38.8	38.7	38.8	38.6	38.9	39.1	39.0	38.9	39.2	39.1	38.8
Nondurable goods..	40.8	40.8	40.7	40.9	40.9	40.7	40.9	40.6	40.7	40.9	40.8	40.9	41.1	41.1	41.0
Overtime hours.....	3.8	4.0	4.0	4.0	4.0	3.8	4.0	4.0	3.9	4.0	4.0	3.9	4.0	4.0	4.0
Food manufacturing...	40.7	40.2	39.9	40.3	40.0	40.0	40.2	40.0	40.2	40.2	40.5	40.4	40.5	40.6	40.5
Beverage and tobacco products.	37.5	39.2	39.0	38.8	39.1	39.1	39.9	38.7	39.0	39.6	39.5	39.0	39.0	38.7	38.5
Textile mills...	41.2	41.7	40.7	42.1	42.2	42.0	42.0	41.8	42.0	42.6	42.4	42.7	42.9	43.0	43.1
Textile product mills.	39.0	39.1	39.1	39.1	38.7	38.6	38.0	39.0	39.6	39.7	39.9	40.8	40.5	40.5	40.2
Apparel...	36.6	38.2	38.3	38.3	38.9	38.7	38.5	38.3	37.6	37.9	37.7	37.2	38.0	37.7	37.2
Leather and allied products.	39.1	39.8	39.0	39.0	39.5	40.3	39.9	39.3	39.2	39.7	40.0	40.2	40.1	40.0	39.9
Paper and paper products.	42.9	42.9	43.7	42.8	43.2	43.0	43.1	42.8	42.6	42.8	42.7	42.1	42.9	43.0	43.0
Printing and related support activities.	38.2	38.0	37.9	38.0	38.0	37.9	38.3	37.8	37.8	37.8	37.9	38.4	38.4	38.4	38.3
Petroleum and coal products.	43.0	43.8	42.8	43.4	44.3	43.6	44.3	43.4	42.8	43.9	44.7	46.2	47.2	47.7	47.2
Chemicals..	42.2	42.5	42.6	43.3	43.1	42.5	42.2	42.2	42.3	42.6	41.9	41.9	42.2	42.0	42.1
Plastics and rubber products.	41.9	42.0	42.0	41.9	42.1	41.9	42.0	41.9	41.7	42.3	41.8	42.0	42.0	42.2	41.9
PRIVATE SERVICEPROVIDING.	32.2	32.4	32.4	32.5	32.4	32.4	32.5	32.4	32.4	32.5	32.5	32.5	32.5	32.5	32.5
Trade, transportation, and utilities. \qquad	33.3	33.7	33.7	33.8	33.7	33.7	33.7	33.7	33.7	33.8	33.8	33.8	33.9	33.9	33.8
Wholesale trade.	37.9	38.5	38.5	38.5	38.6	38.6	38.5	38.4	38.6	38.7	38.6	38.7	38.6	38.9	38.7
Retail trade.	30.2	30.5	30.4	30.6	30.4	30.5	30.6	30.5	30.5	30.7	30.7	30.7	30.8	30.7	30.7
Transportation and warehousing.	37.1	37.8	38.2	38.0	37.9	37.9	37.8	37.8	37.7	37.8	37.8	37.7	37.7	37.8	37.7
Utilities..	42.0	42.1	42.5	42.7	42.4	42.0	41.9	41.9	42.3	41.9	41.7	40.5	40.8	40.7	40.5
Information..	36.3	36.2	36.3	36.5	36.4	36.3	36.4	36.0	36.1	36.3	36.2	36.0	36.2	36.0	36.0
Financial activities.	36.2	36.4	36.3	36.3	36.4	36.4	36.5	36.4	36.6	36.6	36.5	36.6	36.6	36.6	36.7
Professional and business services \qquad	35.1	35.2	35.1	35.3	35.2	35.3	35.2	35.1	35.2	35.3	35.2	35.2	35.3	35.3	35.2
Education and health services..	32.1	32.3	32.2	32.3	32.3	32.3	32.4	32.3	32.4	32.4	32.4	32.3	32.4	32.4	32.4
Leisure and hospitality...........	24.8	24.8	24.9	24.8	24.8	24.8	24.8	24.7	24.7	24.8	24.8	24.9	24.9	24.9	25.0
Other services...................................	30.7	30.7	30.8	30.8	30.8	30.9	30.7	30.7	30.8	30.9	30.7	30.8	30.8	30.6	30.7

1 Data relate to production workers in natural resources and mining and
manufacturing, construction workers in construction, and nonsupervisory workers in the service-providing industries.

[^17]14. Average hourly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry, monthly data seasonally adjusted

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
TOTAL PRIVATE															
Current dollars	\$19.07	\$19.47	\$19.34	\$19.39	\$19.43	\$19.45	\$19.52	\$19.50	\$19.53	\$19.57	\$19.58	\$19.59	\$19.61	\$19.65	\$19.69
Constant (1982) dollars.	8.91	8.79	8.80	8.79	8.78	8.78	8.78	8.74	8.73	8.75	8.75	8.76	8.75	8.72	8.71
GOODS-PRODUCING	20.28	20.66	20.58	20.59	20.63	20.63	20.68	20.71	20.71	20.75	20.73	20.78	20.78	20.84	20.90
Natural resources and mining..............	23.82	24.51	24.39	24.04	24.46	24.43	24.62	24.61	24.66	24.85	24.87	24.89	24.89	25.46	25.61
Construction.	23.22	23.64	23.51	23.57	23.57	23.58	23.65	23.78	23.76	23.72	23.68	23.75	23.74	23.82	23.93
Manufacturing..	18.61	18.94	18.90	18.90	18.92	18.92	18.95	18.93	18.94	19.00	18.98	19.02	19.03	19.04	19.06
Excluding overtime	17.78	18.04	17.99	18.01	18.03	18.05	18.06	18.03	18.07	18.11	18.09	18.13	18.12	18.13	18.15
Durable goods.	19.81	20.12	20.10	20.11	20.11	20.10	20.12	20.09	20.12	20.20	20.15	20.15	20.16	20.16	20.16
Nondurable goods.	16.80	17.07	17.01	17.02	17.05	17.06	17.10	17.09	17.06	17.10	17.11	17.19	17.20	17.23	17.28
PRIVATE SERVICE-PRIVATE SERVICEPROVIDING.	18.81	19.21	19.08	19.14	19.18	19.20	19.28	19.25	19.28	19.32	19.34	19.34	19.37	19.39	19.43
Trade,transportation, and															
utilities.........................	16.82	17.15	17.06	17.10	17.12	17.14	17.22	17.18	17.21	17.25	17.26	17.25	17.28	17.32	17.37
Wholesale trade.	21.54	21.97	21.86	21.93	21.98	22.00	22.14	22.02	22.02	22.07	22.00	21.97	22.06	22.01	22.11
Retail trade.	13.24	13.51	13.42	13.46	13.43	13.46	13.54	13.49	13.51	13.59	13.69	13.67	13.68	13.74	13.78
Transportation and warehousing...	19.16	19.50	19.34	19.39	19.45	19.47	19.55	19.60	19.66	19.67	19.55	19.60	19.63	19.63	19.69
Utilities.	30.04	30.82	30.68	31.12	30.84	30.87	30.94	30.96	31.20	30.96	31.15	30.99	31.01	31.01	31.09
Information.	25.87	26.61	26.50	26.72	26.61	26.42	26.55	26.58	26.71	26.83	26.76	26.80	26.74	26.71	26.80
Financial activities..	21.52	21.91	21.77	21.86	21.80	21.76	21.87	21.83	21.95	21.99	22.20	22.26	22.36	22.43	22.47
Professional and business services \qquad	22.78	23.12	23.01	23.08	23.10	23.17	23.24	23.14	23.11	23.15	23.21	23.12	23.14	23.13	23.24
Education and health services. \qquad	20.12	20.78	20.56	20.59	20.71	20.76	20.86	20.92	20.94	20.99	20.98	21.01	21.04	21.03	21.03
Leisure and hospitality.......................	11.31	11.45	11.40	11.42	11.49	11.47	11.49	11.48	11.48	11.50	11.48	11.53	11.54	11.58	11.61
Other services....................................	17.06	17.32	17.22	17.27	17.28	17.34	17.36	17.36	17.38	17.41	17.39	17.42	17.40	17.44	17.36

[^18]15. Average hourly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry

Industry	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
TOTAL PRIVATE.	\$19.07	\$19.47	\$19.35	\$19.42	\$19.46	\$19.31	\$19.41	\$19.37	\$19.53	\$19.68	\$19.59	\$19.59	\$19.79	\$19.70	\$19.68
Seasonally adjusted.		-	19.34	19.39	19.43	19.45	19.52	19.50	19.53	19.57	19.58	19.59	19.61	19.65	19.69
GOODS-PRODUCING..	20.28	20.66	20.48	20.56	20.61	20.62	20.73	20.76	20.81	20.84	20.75	20.80	20.72	20.74	20.80
Natural resources and mining.	23.82	24.51	24.68	24.09	24.30	24.15	24.56	24.41	24.56	24.71	24.85	25.03	25.01	25.76	26.05
Construction.	23.22	23.64	23.38	23.49	23.48	23.49	23.67	23.91	23.90	23.90	23.73	23.80	23.60	23.71	23.82
Manufacturing.	18.61	18.94	18.90	18.92	18.92	18.88	18.91	18.83	18.95	18.98	18.96	19.09	19.12	19.06	19.04
Durable goods.	19.81	20.12	20.12	20.14	20.10	20.03	20.04	19.97	20.13	20.18	20.14	20.26	20.25	20.20	20.14
Wood products	14.85	14.81	14.82	14.90	14.80	14.78	14.90	14.83	14.72	14.74	14.67	14.73	14.78	14.74	14.83
Nonmetallic mineral products	17.48	18.16	17.81	18.04	18.02	18.21	18.34	18.41	18.30	18.51	18.40	18.04	17.99	17.92	17.87
Primary metals.	20.13	19.96	19.99	20.14	20.01	20.09	20.16	19.79	19.68	19.66	19.58	20.07	20.48	20.26	20.10
Fabricated metal products	17.94	18.13	18.07	18.06	18.12	18.05	18.11	18.06	18.15	18.20	18.19	18.33	18.20	18.14	18.18
Machinery	18.96	19.53	19.38	19.40	19.38	19.30	19.39	19.50	19.68	19.74	19.89	19.85	19.94	19.92	19.93
Computer and electronic products	22.78	23.32	23.23	23.41	23.45	23.20	23.27	23.09	23.26	23.36	23.15	23.40	23.55	23.50	23.37
Electrical equipment and appliances	16.87	17.96	17.99	17.92	17.84	17.87	17.86	17.91	17.95	18.03	18.07	18.13	17.96	18.03	17.92
Transportation equipment	25.23	25.36	25.49	25.54	25.58	25.49	25.32	25.03	25.41	25.33	25.12	25.18	25.05	24.94	24.83
Furniture and related products	15.06	15.24	15.24	15.38	15.22	15.04	15.18	15.14	15.21	15.33	15.47	15.43	15.38	15.41	15.36
Miscellaneous manufacturing	16.56	16.83	16.93	16.93	16.73	16.66	16.74	16.77	16.69	16.75	16.74	16.92	16.96	17.07	16.99
Nondurable goods.	16.80	17.07	16.97	17.01	17.05	17.04	17.15	17.04	17.10	17.08	17.08	17.20	17.31	17.18	17.23
Food manufacturing	14.41	14.63	14.57	14.63	14.61	14.59	14.68	14.62	14.68	14.57	14.66	14.76	14.94	14.86	14.87
Beverages and tobacco products	21.78	20.02	20.58	20.35	19.95	19.68	19.81	19.75	19.74	19.85	19.82	19.50	19.48	19.18	19.34
Textile mills	13.56	13.79	14.00	13.95	13.86	13.80	13.75	13.75	13.74	13.48	13.56	13.41	13.28	13.47	13.42
Textile product mills	11.79	12.21	12.19	12.32	12.17	12.21	12.36	12.17	12.20	12.36	12.29	12.41	12.35	12.37	12.49
Apparel.	11.43	11.96	11.71	11.64	11.68	11.75	11.80	11.87	12.06	12.23	12.32	12.63	12.73	12.80	12.61
Leather and allied products	13.03	13.48	13.35	13.28	13.38	13.41	13.59	13.48	13.76	13.75	13.70	13.99	13.71	13.51	13.40
Paper and paper products	20.04	20.26	19.96	20.15	20.21	20.11	20.41	20.32	20.51	20.39	20.41	20.28	20.44	20.11	20.33
Printing and related support activities	16.91	17.28	17.24	17.21	17.22	17.21	17.22	17.33	17.35	17.28	17.35	17.35	17.19	17.04	17.29
Petroleum and coal products	31.31	31.71	31.79	31.79	31.90	31.99	31.97	31.49	31.36	31.60	31.28	31.31	31.29	31.55	31.34
Chemicals	21.07	21.46	21.34	21.25	21.47	21.60	21.80	21.46	21.50	21.49	21.33	21.72	21.74	21.55	21.54
Plastics and rubber products	15.71	15.95	15.84	15.84	15.86	15.91	15.89	15.91	16.03	16.01	15.96	16.08	16.10	15.98	16.00
PRIVATE SERVICEPROVIDING	18.81	19.21	19.12	19.18	19.22	19.02	19.12	19.07	19.25	19.43	19.34	19.33	19.60	19.48	19.44
Trade, transportation, and utilities \qquad	16.82	17.15	17.05	17.16	17.16	17.06	17.16	17.12	17.25	17.35	17.18	17.07	17.40	17.36	17.35
Wholesale trade	21.54	21.97	21.70	21.96	21.98	21.83	22.11	21.90	21.95	22.10	21.97	22.01	22.29	22.06	21.95
Retail trade	13.24	13.51	13.43	13.52	13.44	13.42	13.51	13.46	13.59	13.72	13.60	13.51	13.76	13.77	13.80
Transportation and warehousing	19.16	19.50	19.30	19.37	19.50	19.41	19.58	19.58	19.63	19.62	19.49	19.55	19.74	19.56	19.62
Utilities	30.04	30.82	30.84	31.28	30.98	30.41	30.79	30.79	31.39	31.02	31.30	30.96	30.88	30.86	31.13
Information.	25.87	26.61	26.42	26.71	26.83	26.15	26.41	26.44	26.79	27.24	26.73	26.69	26.95	26.63	26.71
Financial activities.	21.52	21.91	21.79	21.89	21.93	21.59	21.75	21.72	21.94	22.14	22.20	22.26	22.59	22.43	22.49
Professional and business services. \qquad	22.78	23.12	23.00	23.08	23.24	22.95	23.09	22.87	22.95	23.31	23.12	23.13	23.58	23.31	23.26
Education and health services. \qquad	20.12	20.78	20.55	20.60	20.67	20.69	20.93	20.89	20.96	21.00	20.98	21.03	21.08	20.98	20.98
Leisure and hospitality	11.31	11.45	11.42	11.42	11.51	11.38	11.36	11.37	11.45	11.51	11.54	11.63	11.59	11.64	11.62
Other services.............................	17.06	17.32	17.34	17.37	17.38	17.28	17.23	17.21	17.37	17.41	17.37	17.44	17.44	17.44	17.46

1 Data relate to production workers in natural resources and mining and
manufacturing, construction workers in construction, and nonsupervisory
workers in the service-providing industries.
16. Average weekly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry

17. Diffusion indexes of employment change, seasonally adjusted
[In percent]

Timespan and year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
	Private nonfarm payrolls, 278 industries											
Over 1-month span:												
2008.	52.8	48.7	50.6	40.4	40.8	33.5	32.7	33.3	29.3	33.6	24.2	22.9
2009.	20.1	18.4	15.8	17.5	28.6	23.5	31.2	33.6	35.9	28.4	39.5	37.8
2010.	44.5	47.9	56.6	60.2	55.1	53.9	54.1	53.2	51.1	59.6	57.1	60.2
2011	61.8	68.8	65.8	65.2	54.5	57.0	62.2	57.3	57.9	56.8	55.6	63.7
2012	70.3	62.2	64.7									
Over 3-month span:												
2008.	56.2	47.9	49.1	41.5	38.3	32.0	31.8	27.1	25.9	27.3	21.6	20.3
2009.	18.2	13.3	13.2	13.9	17.5	19.2	20.3	20.7	28.8	28.4	30.1	29.9
2010.	34.4	41.2	48.7	55.8	59.8	60.0	55.5	54.7	57.5	56.6	56.4	64.3
2011.	60.7	66.0	71.8	69.9	67.1	64.3	64.1	61.7	61.3	60.9	61.7	61.1
2012	66.0	73.5	72.0									
Over 6-month span:												
2008.	52.4	51.3	51.9	49.2	43.0	36.8	32.5	30.6	27.6	27.4	23.7	23.3
2009.	18.4	13.9	13.5	11.8	12.8	13.2	13.0	15.4	18.0	22.0	22.0	24.4
2010.	27.1	28.8	34.4	44.4	50.9	53.8	58.5	60.5	61.1	59.6	60.3	63.0
2011.	65.6	65.2	71.2	68.8	66.5	68.2	70.5	66.4	65.8	63.5	62.8	63.5
2012.	68.6	70.1	70.9									
Over 12-month span:												
2008.	54.7	56.0	52.8	46.4	47.6	43.6	40.4	39.5	36.1	32.7	28.6	26.7
2009.	25.0	17.5	15.2	15.0	15.4	15.8	14.5	12.8	13.9	14.5	13.9	15.6
2010.	15.8	15.6	18.6	24.1	28.2	35.0	39.5	40.0	44.7	50.2	53.2	58.5
2011	59.2	67.5	68.4	67.7	66.4	69.0	68.2	69.4	69.0	66.4	66.9	65.2
2012.	70.9	69.4	72.0									
	Manufacturing payrolls, 84 industries											
2008...	44.4	42.6	44.4	34.0	39.5	21.0	21.0	22.8	17.3	23.5	11.7	8.0
2009.	6.8	8.0	8.6	12.3	8.6	9.3	24.1	27.2	25.3	24.1	34.0	38.3
2010.	38.3	52.5	56.2	63.6	65.4	52.5	52.5	45.7	50.0	51.9	56.2	62.3
2011	70.4	67.9	66.7	66.7	54.3	57.4	63.6	50.0	53.7	49.4	48.1	64.8
2012.	77.8	63.0	69.8									
Over 3-month span:												
2008.	50.6	35.8	36.4	33.3	30.9	24.7	17.9	11.1	14.2	15.4	12.3	7.4
2009.	6.8	2.5	3.7	8.6	7.4	8.0	5.6	9.3	19.8	19.1	19.8	24.1
2010.	31.5	43.8	46.3	55.6	59.3	62.3	57.4	51.2	51.2	44.4	44.4	56.8
2011.	68.5	74.7	78.4	72.8	66.7	63.0	62.3	59.3	56.8	55.6	50.0	58.0
2012.	65.4	76.5	76.5									
Over 6-month span:												
2008.	27.8	29.0	39.5	38.3	37.7	28.4	19.8	19.8	12.3	14.2	11.1	12.3
2009.	8.0	4.9	3.7	6.2	2.5	5.6	6.2	6.2	7.4	7.4	8.6	14.2
2010.	19.1	22.8	32.1	42.6	51.2	53.7	56.8	56.8	57.4	54.3	50.0	54.3
2011.	65.4	69.8	69.1	77.2	74.1	71.6	71.0	68.5	66.7	59.3	54.9	48.8
2012.	64.2	63.0	68.5									
Over 12-month span:												
2008...	28.4	29.6	26.5	24.7	30.2	25.9	22.2	19.8	23.5	19.1	15.4	13.6
2009.	7.4	3.7	4.9	6.2	3.7	4.9	7.4	3.7	4.9	4.9	3.7	4.3
2010.	5.6	1.2	6.2	7.4	19.8	29.6	37.0	34.6	38.3	47.5	48.8	54.9
2011.	58.0	63.6	63.6	69.1	64.8	69.8	69.8	69.1	70.4	67.9	64.2	62.3
2012.	67.9	64.2	69.1									
NOTE: Figures are the percent of industries with employment increasing plus one-half of the industries with unchanged employment, where 50 percent indicates an equal balance between industries with increasing and decreasing employment.					See the "Definitions" in this section. See "Notes on the data" for a description of the most recent benchmark revision. Data for the two most recent months are preliminary.							

18. Job openings levels and rates by industry and region, seasonally adjusted

Industry and region	Levels ${ }^{1}$ (in thousands)							Percent																				
	2011				2012			2011				2012																
	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$														
Total ${ }^{2}$.	3,501	3,408	3,274	3,540	3,477	3,565	3,737	2.6	2.5	2.4	2.6	2.6	2.6	2.7														
Industry																												
Total private ${ }^{2}$..	$\begin{array}{r} 3,100 \\ 78 \end{array}$	$\begin{array}{r} 3,062 \\ 80 \end{array}$	$\begin{array}{r} 2,925 \\ 83 \end{array}$	3,188	3,119	3,163	3,361	2.7	2.7	2.6	2.8	2.7	2.8	2.9														
Construction..				78	86	73	96	1.4	1.4	1.5	1.4	1.5	1.3	1.7														
Manufacturing.	249	240	240	252	261	271	326	2.1	2.0	2.0	2.1	2.2	2.2	2.7														
Trade, transportation, and utilities...	$\begin{aligned} & 599 \\ & 692 \end{aligned}$	594	581	574	584	584	619	2.3	2.3	2.3	2.2	2.3	2.3	2.43.9														
Professional and business services...		644	561	785	695	710	729	3.8	3.6	3.1	4.3	3.8	3.8															
Education and health services...	600		616	605	630	655	668	2.9	3.0	3.0	2.9	3.0	3.1	3.9 3.2														
Leisure and hospitality..	$\begin{aligned} & 392 \\ & 400 \end{aligned}$	404	434	441	432	408402	$\begin{aligned} & 423 \\ & 376 \end{aligned}$	2.9	2.9	3.1	3.2	3.1	2.9	3.0														
Northeast...	6061,335	573	557	595	590	671	691	2.4	2.2	2.2	2.3	2.3	2.6	2.730														
South...		1,310	1,306	1,443	1,442	1,402	1,496	2.7	2.7	2.7	2.9	2.9	2.8															
Midwest..	$\begin{aligned} & 736 \\ & 824 \end{aligned}$	715811	730682	$\begin{aligned} & 763 \\ & 740 \end{aligned}$	738	791	795	2.4	2.32.7	2.42.3	2.52.5	2.4	2.6	2.62.5														
West....................................					707							2.4	2.4															

1 Detail will not necessarily add to totals because of the independent seasonal West Virginia; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, adjustment of the various series.
2 Includes natural resources and mining, information, financial activities, and other services, not shown separately

Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California,
ervices, not shown separately
Color:
Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, month; the job openings rate is the number of job openings on the last business day of the month New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, as a percent of total employment plus job openings.
Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, $\mathrm{P}=$ preliminary.
Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia,

19. Hires levels and rates by industry and region, seasonally adjusted

1 Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
${ }_{2}$ Includes natural resources and mining, information, financial activities, and other services, not shown separately.
${ }_{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.
NOTE: The hires level is the number of hires during the entire month; the hires rate is the number of hires during the entire month as a percent of total employment. $\mathrm{p}=$ preliminary.

Industry and region	Levels ${ }^{1}$ (in thousands)							Percent						
	2011				2012			2011				2012		
	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
Total ${ }^{2}$ \qquad Industry	4,089	4,065	4,057	4,023				3.1	3.1	3.1	3.0	3.0		
	3,808324		3,750	3,695	3,729	3,823	3,853	3.5	3.4	3.4	3.4	3.4	3.5	3.5
Construction..		325227	300	303	308	317	282	5.9	5.9	5.4	5.5	5.5	5.7	
Manufacturing...	236		236770	239	217	235	225	2.0	1.9	2.0	2.0	1.8	2.0	1.9
Trade, transportation, and utilities....	811	813		773	837	780	842	3.2	3.2	3.1	3.1	3.3	3.1	4.7
Professional and business services..	857	831	807	792	745	850	833	4.9	4.8	4.6	4.5	4.2	4.8	
Education and health services.	409716	450	462	468	501	458	472	2.0	2.2	2.3	2.3	2.5	2.3	2.35.5
Leisure and hospitality..		663	715	695	700	747	745	5.4	5.0	5.3	5.2	5.2	5.5	
Government....	281	285	307	328	288	301	300	1.3	1.3	1.4	1.5	1.3	1.4	1.4
Region ${ }^{3}$														
Northeast..	6601,607	702	667	631	692	703	634	2.6	2.8	2.7	2.5	2.7	2.8	2.5
South....		1,537	1,609	1,592	1,598	1,571	1,676	3.4	3.2	3.4	3.3	3.3	3.3	3.5
Midwest.	$\begin{aligned} & 897 \\ & 925 \end{aligned}$	$\begin{aligned} & 949 \\ & 877 \end{aligned}$	$\begin{aligned} & 881 \\ & 899 \end{aligned}$	$\begin{aligned} & 905 \\ & 895 \end{aligned}$	$\begin{aligned} & 866 \\ & 862 \end{aligned}$	$\begin{aligned} & 970 \\ & 880 \end{aligned}$	$\begin{aligned} & 926 \\ & 916 \\ & \hline \end{aligned}$	3.03.2	3.23.0	2.9	3.0	2.9	3.2	3.13.1
West......................................										3.1	3.1	3.0	3.0	

1 Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
2 Includes natural resources and mining, information, financial activities, and other services, not shown separately.
${ }_{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

Note: The total separations level is the number of total separations during the entire month; the total separations rate is the number of total separations during the entire month as a percent of total employment.
$\mathrm{p}=$ preliminary

21. Quits levels and rates by industry and region, seasonally adjusted

Industry and region	Levels ${ }^{1}$ (in thousands)							Percent								
	2011				2012			2011				2012				
	$\begin{array}{r} \text { Sept. } \\ \hline 2,015 \end{array}$	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$		
Total private ${ }^{2}$....	1,902	1,869	1,860	1,867	1,876	1,947	2,020	1.7	1.7	1.7	1.7	1.7	1.8	1.8		
Construction..	80	80	91	76	70	75	81	1.4	1.5	1.7	1.4	1.3	1.3	1.5		
Manufacturing.	99	105	121	113	97	102	104	. 8	. 9	1.0	1.0	. 8	. 9	. 9		
Trade, transportation, and utilities...	456	461	413	447	449	461	469	1.8	1.8	1.6	1.8	1.8	1.8	1.9		
Professional and business services....	395	368	380	363	352	371	378	2.3	2.1	2.2	2.1	2.0	2.1	2.1		
Education and health services..	244	242	247	265	282	287	285	1.2	1.2	1.2	1.3	1.4	1.4	1.4		
Leisure and hospitality..	403	374	370	388	398	425	468	3.0	2.8	2.8	2.9	2.9	3.1	3.4		
Government.....	114	114	116	141	125	125	126	. 5	. 5	. 5	. 6	. 6	. 6	. 6		
Region ${ }^{3}$																
Northeast.	281	288	275	279	343	314	278	1.1	1.1	1.1	1.1	1.4	1.2	1.1		
South.	877	782	830	816	827	825	916	1.8	1.6	1.7	1.7	1.7	1.7	1.9		
Midwest..	425	477	443	469	412	493	489	1.4	1.6	1.5	1.6	1.4	1.6	1.6		
West...	433	436	428	445	419	440	464	1.5	1.5	1.5	1.5	1.4	1.5	1.6		

${ }^{1}$ Detail will not necessarily add to totals because of the independent seasona adjustment of the various series
2 Includes natural resources and mining, information, financial activities, and other services, not shown separately.
${ }^{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

Midwest: Illinois, Indiana, lowa, Kansas, Michigan, Minnesota, Missouri Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

NOTE: The quits level is the number of quits during the entire month; the quits rate is the number of quits during the entire month as a percent of tota employment.
$\mathrm{p}=$ preliminary
22. Quarterly Census of Employment and Wages: 10 largest counties, third quarter 2010.

County by NAICS supersector	$\begin{aligned} & \text { Establishments, } \\ & \text { third quarter } \\ & 2010 \\ & \text { (thousands) } \end{aligned}$	Employment		Average weekly wage ${ }^{1}$	
		September 2010 (thousands)	Percent change, September 2009-10 ${ }^{2}$	Third quarter 2010	Percent change, third quarter 2009-10 ${ }^{2}$
United States ${ }^{3}$	9,044.4	128,440.4	0.2	\$870	3.4
Private industry	8,746.3	107,007.4	. 4	861	4.0
Natural resources and mining	126.9	1,926.7	3.3	884	5.7
Construction	796.6	5,686.9	-4.6	946	1.3
Manufacturing	343.4	11,584.3	-. 3	1,074	6.8
Trade, transportation, and utilities	1,877.4	24,381.8	-. 2	742	4.4
Information	144.5	2,701.5	-2.3	1,416	7.4
Financial activities.	818.0	7,379.9	-1.7	1,235	4.6
Professional and business services	1,544.9	16,869.8	3.3	1,093	3.1
Education and health services	893.5	18,661.9	1.9	842	2.8
Leisure and hospitality	748.6	13,292.8	. 7	370	3.6
Other services ..	1,267.9	4,342.8	-. 1	562	3.5
Government	298.0	21,433.0	-. 8	918	1.2
Los Angeles, CA	427.0	3,844.5	-. 8	972	3.1
Private industry	421.4	3,311.1	$-.3$	948	3.6
Natural resources and mining ..	. 5	10.8	5.9	1,903	45.9
Construction ..	13.0	104.2	-9.3	1,010	-1.6
Manufacturing	13.5	374.1	-1.7	1,079	4.6
Trade, transportation, and utilities	52.2	732.2	. 1	783	2.9
Information	8.5	196.9	1.2	1,644	3.1
Financial activities	22.4	209.4	-1.1	1,456	8.4
Professional and business services	42.0	528.2	. 9	1,145	1.1
Education and health services	29.0	508.8	2.6	931	2.6
Leisure and hospitality ...	27.1	390.4	. 9	544	2.6
Other services ...	200.8	248.5	-5.9	451	7.9
Government	5.6	533.4	-4.0	1,123	1.1
Cook, IL	143.4	2,354.8	-. 4	1,008	3.2
Private industry	142.0	2,055.8	-. 1	1,000	3.5
Natural resources and mining	. 1	1.0	-8.4	1,051	7.5
Construction.	12.2	67.2	-10.0	1,228	-3.3
Manufacturing	6.7	194.3	-1.0	1,069	6.3
Trade, transportation, and utilities	27.7	428.9	. 2	784	3.2
Information	2.6	51.0	-3.5	1,439	6.4
Financial activities	15.4	187.9	-2.8	1,644	7.6
Professional and business services	30.2	407.7	2.6	1,259	1.7
Education and health services	14.9	391.0	$\left.{ }^{4}\right)$	903	$\left.{ }^{4}\right)$
Leisure and hospitality ...	12.4	230.9	. 2	463	4.5
Other services	15.4	92.5	${ }^{4}$)	761	5.3
Government	1.4	298.9	-2.5	1,067	1.5
New York, NY ...	120.9	2,273.0	1.2	1,572	4.7
Private industry ...	120.6	1,834.9	1.6	1,685	4.6
Natural resources and mining	. 0	. 1	-5.0	1,853	-9.3
Construction	2.2	30.5	-7.0	1,608	3.5
Manufacturing	2.5	26.7	-2.5	1,256	6.1
Trade, transportation, and utilities	21.1	233.4	2.2	1,130	2.4
Information	4.4	131.0	-. 8	2,042	7.8
Financial activities ..	19.0	348.8	1.3	2,903	5.5
Professional and business services	25.6	458.2	1.9	1,880	3.8
Education and health services	9.1	290.0	1.7	1,147	5.5
Leisure and hospitality ...	12.3	223.3	3.2	756	3.7
Other services	18.6	86.3	. 2	1,026	9.5
Government	. 3	438.1	-. 6	1,098	3.8
Harris, TX .	100.0	1,995.8	1.1	1,083	3.9
Private industry	99.4	1,734.1	1.0	1,095	4.6
Natural resources and mining	1.6	75.2	4.0	2,692	3.9
Construction.	6.5	133.6	-3.4	1,038	. 6
Manufacturing	4.5	169.0	. 4	1,357	6.6
Trade, transportation, and utilities	22.5	415.8	. 2	969	5.4
Information	1.3	27.9	-5.1	1,298	6.1
Financial activities	10.4	111.4	-2.8	1,283	5.5
Professional and business services	19.8	322.3	2.8	1,310	4.6
Education and health services	11.1	238.7	3.5	902	3.7
Leisure and hospitality ...	8.0	179.2	1.2	398	2.3
Other services ...	13.2	59.8	3.0	620	2.1
Government ..	. 6	261.7	$\left({ }^{4}\right)$	1,003	$\left.{ }^{4}\right)$
Maricopa, AZ	95.0	1,597.0	-. 5	859	2.4
Private industry ...	94.3	1,382.4	-. 3	851	2.9
Natural resources and mining 5	6.5	-12.0	787	9.8
Construction	8.9	80.4	-10.0	892	2.4
Manufacturing	3.2	106.6	-2.6	1,250	9.6
Trade, transportation, and utilities	22.0	328.7	-1.0	797	4.2
Information ...	1.5	26.7	1.3	1,118	2.2
Financial activities ...	11.3	131.2	-2.1	1,025	2.9
Professional and business services	22.0	259.5	. 7	896	4
Education and health services	10.4	231.5	$\left({ }^{4}\right)$	919	$\left({ }^{4}\right)$
Leisure and hospitality	6.9	165.5	. 3	409	3.0
Other services ..	6.8	45.1	-3	571	2.5
Government ..	. 7	214.6	-1.8	915	-. 7

22. Continued-Quarterly Census of Employment and Wages: 10 largest counties, third quarter 2010.

County by NAICS supersector	Establishments, third quarter 2010 (thousands)	Employment		Average weekly wage ${ }^{1}$	
		$\begin{aligned} & \text { September } \\ & 2010 \\ & \text { (thousands) } \end{aligned}$	Percent change, September 2009-10 ${ }^{2}$	Third quarter 2010	Percent change, third quarter 2009-10 ${ }^{2}$
Dallas, TX	67.8	1,415.0	0.9	\$1,032	2.0
Private industry	67.3	1,246.2	. 9	1,035	2.0
Natural resources and mining	. 6	8.4	10.9	2,861	. 1
Construction	4.0	69.2	-3.6	944	-. 4
Manufacturing	2.9	113.1	-3.8	1,174	2.2
Trade, transportation, and utilities	14.9	279.8	. 1	961	2.9
Information	1.6	45.1	-. 3	1,507	3.5
Financial activities	8.5	136.0	-. 8	1,329	2.5
Professional and business services	14.8	261.7	3.7	1,175	1.2
Education and health services	7.0	165.3	3.4	962	2.2
Leisure and hospitality	5.5	128.5	1.7	462	2.0
Other services	7.0	38.2	1.7	642	1.4
Government 5	168.9	1.0	1,005	1.5
Orange, CA	101.7	1,348.8	-. 1	975	2.8
Private industry	100.4	1,215.9	. 3	966	3.2
Natural resources and mining	. 2	3.9	-1.9	620	-2.7
Construction	6.4	67.9	-5.0	1,073	-3.1
Manufacturing	5.0	151.0	-. 4	1,244	9.0
Trade, transportation, and utilities	16.4	243.5	-. 4	905	4.3
Information	1.3	24.3	-8.2	1,463	8.0
Financial activities	9.8	104.0	. 2	1,363	5.2
Professional and business services	18.8	244.0	2.0	1,092	. 3
Education and health services	10.4	154.5	2.9	940	1.4
Leisure and hospitality	7.1	171.7	. 1	431	4.9
Other services	20.7	48.4	. 5	539	2.5
Government	1.4	132.9	-2.9	1,060	. 2
San Diego, CA	97.7	1,238.6	. 4	943	2.7
Private industry	96.3	1,021.5	. 4	917	2.8
Natural resources and mining	. 7	10.7	5.6	582	. 7
Construction	6.4	55.7	-5.5	1,045	. 6
Manufacturing	3.0	93.0	. 1	1,326	7.2
Trade, transportation, and utilities	13.7	196.4	-. 3	742	1.6
Information	1.2	25.0	-2.8	1,572	10.1
Financial activities	8.6	66.9	-1.4	1,119	4.0
Professional and business services	16.2	210.8	1.8	1,223	. 2
Education and health services	8.4	145.5	2.8	907	2.4
Leisure and hospitality	7.0	157.4	. 3	425	4.9
Other services	27.3	57.7	. 1	540	11.6
Government	1.4	217.1	. 2	1,069	$\left({ }^{4}\right)$
King, WA	83.0	1,121.8	. 1	1,234	4.7
Private industry	82.4	967.6	. 1	1,248	4.6
Natural resources and mining	. 4	2.9	-4.4	1,162	9.5
Construction	6.0	49.1	-8.8	1,134	1.1
Manufacturing	2.3	97.3	-2.4	1,455	10.4
Trade, transportation, and utilities	14.9	204.5	. 4	977	6.8
Information	1.8	79.9	1.0	3,605	6.4
Financial activities	6.6	64.6	-4.4	1,297	-1.3
Professional and business services	14.3	177.8	3.2	1,329	4.7
Education and health services	7.0	130.3	. 2	930	3.6
Leisure and hospitality	6.5	109.8	-. 1	456	. 2
Other services	22.8	51.4	8.6	572	-4.7
Government 6	154.2	. 1	1,142	$\left.{ }^{4}\right)$
Miami-Dade, FL	85.0	940.9	. 3	853	1.5
Private industry	84.7	797.9	. 7	819	1.7
Natural resources and mining	. 5	6.8	-. 2	489	. 6
Construction	5.3	31.4	-9.3	859	-. 2
Manufacturing	2.6	34.7	-4.3	805	5.6
Trade, transportation, and utilities	24.1	236.4	1.9	757	1.6
Information	1.5	17.1	-1.5	1,289	5.5
Financial activities	9.0	60.4	-1.0	1,216	5.6
Professional and business services	17.8	121.5	. 4	993	-2.8
Education and health services	9.6	149.6	1.0	862	4.5
Leisure and hospitality	6.3	104.8	3.7	497	4.6
Other services	7.7	34.8	1.5	553	2.6
Government 4	143.0	-1.8	1,047	1.1

[^19]3 Totals for the United States do not include data for Puerto Rico or the

Virgin Islands
4 Data do not meet BLS or State agency disclosure standards.
NOTE: Includes workers covered by Unemployment Insurance (UI) and Unemployment Compensation for Federal Employees (UCFE) programs. Data are preliminary.
23. Quarterly Census of Employment and Wages: by State, third quarter 2010.

State	Establishments, third quarter 2010 (thousands)	Employment		Average weekly wage ${ }^{1}$	
		$\begin{aligned} & \text { September } \\ & 2010 \\ & \text { (thousands) } \end{aligned}$	Percent change, September 2009-10	Third quarter 2010	Percent change, third quarter 2009-10
United States ${ }^{2}$..............................	9,044.4	128,440.4	0.2	\$870	3.4
Alabama	116.8	1,813.9	-. 1	774	4.0
Alaska	21.4	333.5	1.3	926	4.4
Arizona	147.2	2,342.3	-. 9	821	2.6
Arkansas	85.6	1,147.0	. 8	684	3.8
California	1,347.5	14,469.7	-. 3	982	3.3
Colorado	173.2	2,183.8	-. 2	898	2.5
Connecticut	111.4	1,611.9	. 0	1,069	4.3
Delaware	28.4	404.7	. 8	902	2.4
District of Columbia	35.0	693.8	2.0	1,471	1.2
Florida	595.2	7,045.3	. 0	780	2.8
Georgia	268.2	3,749.9	-. 1	823	2.7
Hawaii	38.9	585.6	-. 1	804	2.2
Idaho .	55.0	616.8	-1.1	667	3.1
Illinois	378.6	5,539.5	. 0	916	4.0
Indiana	157.2	2,736.7	. 8	742	3.9
Iowa	94.3	1,439.8	-. 5	719	3.6
Kansas	87.5	1,296.1	-1.0	731	3.5
Kentucky	110.1	1,728.3	. 8	729	3.3
Louisiana	131.0	1,834.8	. 0	790	3.9
Maine ...	49.2	589.4	-. 6	714	3.6
Maryland	163.8	2,469.7	. 5	966	2.7
Massachusetts	221.1	3,169.8	. 8	1,069	4.5
Michigan .	247.6	3,825.9	. 9	840	3.8
Minnesota	164.7	2,574.3	. 4	875	4.7
Mississippi	69.5	1,077.4	. 0	653	2.8
Missouri	174.5	2,596.8	-. 5	764	2.7
Montana	42.4	428.7	. 0	647	1.6
Nebraska	60.0	899.8	-. 2	708	2.8
Nevada ...	71.2	1,106.8	-1.7	815	1.2
New Hampshire	48.4	608.9	. 1	854	2.9
New Jersey	265.6	3,759.0	-. 4	1,024	2.8
New Mexico	54.8	785.9	-1.0	745	2.9
New York	591.6	8,364.2	. 5	1,057	4.3
North Carolina	251.7	3,806.2	-. 3	768	3.1
North Dakota	26.4	366.1	3.0	726	6.8
Ohio	286.4	4,942.1	. 3	791	3.4
Oklahoma	102.2	1,487.5	-. 2	726	4.0
Oregon	131.0	1,620.5	. 3	791	3.1
Pennsylvania	341.0	5,500.9	. 9	860	4.1
Rhode Island	35.2	456.0	. 8	826	4.2
South Carolina	111.4	1,763.7	. 5	714	3.9
South Dakota	30.9	393.7	. 4	660	4.3
Tennessee	139.6	2,578.3	. 8	777	4.3
Texas ..	572.4	10,204.5	1.5	876	3.7
Utah	83.7	1,160.6	. 5	740	2.2
Vermont	24.4	294.3	. 5	752	2.6
Virginia ...	232.9	3,544.1	. 4	930	3.8
Washington	237.0	2,855.7	-. 3	953	4.0
West Virginia	48.4	699.4	1.1	702	4.3
Wisconsin	157.6	2,657.7	. 5	752	3.6
Wyoming	25.2	278.9	. 0	793	4.9
Puerto Rico	49.6	910.0	-2.7	502	1.6
Virgin Islands	3.6	43.5	2.3	754	4.3

[^20]24. Annual data: Quarterly Census of Employment and Wages, by ownership

Year	Average establishments	Average annual employment	Total annual wages (in thousands)	Average annual wage per employee	Average weekly wage
	Total covered (UI and UCFE)				
2000 ..	7,879,116	129,877,063	\$4,587,708,584	\$35,323	\$679
2001.	7,984,529	129,635,800	4,695,225,123	36,219	697
2002.	8,101,872	128,233,919	4,714,374,741	36,764	707
2003	8,228,840	127,795,827	4,826,251,547	37,765	726
2004	8,364,795	129,278,176	5,087,561,796	39,354	757
2005 ..	8,571,144	131,571,623	5,351,949,496	40,677	782
2006 ..	8,784,027	133,833,834	5,692,569,465	42,535	818
2007.	8,971,897	135,366,106	6,018,089,108	44,458	855
2008.	9,082,049	134,805,659	6,142,159,200	45,563	876
2009 ...	9,003,197	128,607,842	5,859,232,422	45,559	876
	UI covered				
2000	7,828,861	127,005,574	\$4,454,966,824	\$35,077	\$675
2001.	7,933,536	126,883,182	4,560,511,280	35,943	691
2002.	8,051,117	125,475,293	4,570,787,218	36,428	701
2003.	8,177,087	125,031,551	4,676,319,378	37,401	719
2004	8,312,729	126,538,579	4,929,262,369	38,955	749
2005	8,518,249	128,837,948	5,188,301,929	40,270	774
2006	8,731,111	131,104,860	5,522,624,197	42,124	810
2007	8,908,198	132,639,806	5,841,231,314	44,038	847
2008 ..	9,017,717	132,043,604	5,959,055,276	45,129	868
2009 ...	8,937,616	125,781,130	5,667,704,722	45,060	867
	Private industry covered				
2000.	7,622,274	110,015,333	\$3,887,626,769	\$35,337	\$680
2001	7,724,965	109,304,802	3,952,152,155	36,157	695
2002	7,839,903	107,577,281	3,930,767,025	36,539	703
2003	7,963,340	107,065,553	4,015,823,311	37,508	721
2004	8,093,142	108,490,066	4,245,640,890	39,134	753
2005	8,294,662	110,611,016	4,480,311,193	40,505	779
2006	8,505,496	112,718,858	4,780,833,389	42,414	816
2007	8,681,001	114,012,221	5,057,840,759	44,362	853
2008	8,789,360	113,188,643	5,135,487,891	45,371	873
2009 ...	8,709,115	106,947,104	4,829,211,805	45,155	868
	State government covered				
2000.	65,096	4,370,160	\$158,618,365	\$36,296	\$698
2001.	64,583	4,452,237	168,358,331	37,814	727
2002 ..	64,447	4,485,071	175,866,492	39,212	754
2003.	64,467	4,481,845	179,528,728	40,057	770
2004	64,544	4,484,997	184,414,992	41,118	791
2005 ...	66,278	4,527,514	191,281,126	42,249	812
2006	66,921	4,565,908	200,329,294	43,875	844
2007.	67,381	4,611,395	211,677,002	45,903	883
2008.	67,675	4,642,650	222,754,925	47,980	923
2009 ..	67,075	4,639,715	226,148,903	48,742	937
	Local government covered				
2000 ...	141,491	12,620,081	\$408,721,690	\$32,387	\$623
2001.	143,989	13,126,143	440,000,795	33,521	645
2002.	146,767	13,412,941	464,153,701	34,605	665
2003.	149,281	13,484,153	480,967,339	35,669	686
2004 ..	155,043	13,563,517	499,206,488	36,805	708
2005 ..	157,309	13,699,418	516,709,610	37,718	725
2006 ..	158,695	13,820,093	541,461,514	39,179	753
2007.	159,816	14,016,190	571,713,553	40,790	784
2008 ...	160,683	14,212,311	600,812,461	42,274	813
2009 ...	161,427	14,194,311	612,344,014	43,140	830
	Federal government covered (UCFE)				
2000	50,256	2,871,489	\$132,741,760	\$46,228	\$889
2001 ...	50,993	2,752,619	134,713,843	48,940	941
2002 ...	50,755	2,758,627	143,587,523	52,050	1,001
2003 ...	51,753	2,764,275	149,932,170	54,239	1,043
2004 ...	52,066	2,739,596	158,299,427	57,782	1,111
2005	52,895	2,733,675	163,647,568	59,864	1,151
2006 ..	52,916	2,728,974	169,945,269	62,274	1,198
2007 ..	63,699	2,726,300	176,857,794	64,871	1,248
2008 ..	64,332	2,762,055	183,103,924	66,293	1,275
2009 ..	65,581	2,826,713	191,527,700	67,756	1,303

[^21]25. Annual data: Quarterly Census of Employment and Wages, establishment size and employment, private ownership, by supersector, first quarter 2009

Industry, establishments, and employment	Total	Size of establishments								
		Fewer than 5 workers ${ }^{1}$	5 to 9 workers	10 to 19 workers	20 to 49 workers	50 to 99 workers	100 to 249 workers	250 to 499 workers	500 to 999 workers	1,000 or more workers
Total all industries ${ }^{2}$										
Establishments, first quarter	8,673,470	5,396,379	1,372,066	917,124	619,710	208,342	116,230	28,460	10,018	5,141
Employment, March	106,811,928	7,655,167	9,090,916	12,402,665	18,661,722	14,311,905	17,267,316	9,739,523	6,812,850	10,869,864
Natural resources and mining										
Establishments, first quarter .	125,678	71,920	23,395	14,867	9,674	3,218	1,798	557	189	60
Employment, March	1,671,238	114,506	154,613	200,225	290,721	219,346	272,879	190,717	127,225	101,006
Construction										
Establishments, first quarter	841,895	593,637	117,797	69,486	42,421	12,009	5,208	1,004	254	79
Employment, March	5,927,257	750,065	771,369	934,164	1,265,441	817,103	768,721	335,349	170,276	114,769
Manufacturing										
Establishments, first quarter	353,643	145,720	59,845	52,049	48,545	22,752	16,627	5,187	1,972	946
Employment, March	12,092,961	244,232	401,010	715,491	1,510,229	1,588,920	2,528,984	1,779,448	1,333,297	1,991,350
Trade, transportation, and utilities										
Establishments, first quarter	1,894,905	1,033,036	375,292	246,643	148,518	49,772	32,487	7,193	1,500	464
Employment, March	24,586,392	1,677,443	2,499,579	3,315,288	4,451,666	3,466,697	4,754,309	2,475,362	986,198	959,850
Information										
Establishments, first quarter	146,483	86,433	20,709	15,824	13,049	5,437	3,310	1,046	458	217
Employment, March	2,855,390	116,231	137,955	215,809	401,856	374,575	498,814	363,892	311,123	435,135
Financial activities										
Establishments, first quarter	841,782	557,483	151,027	76,069	37,169	11,153	5,768	1,759	907	447
Employment, March	7,643,521	858,488	993,689	1,001,354	1,107,323	763,190	864,862	608,781	630,533	815,301
Professional and business services										
Establishments, first quarter	1,517,365	1,055,297	196,348	124,698	83,581	30,884	18,369	5,326	2,047	815
Employment, March	16,516,273	1,410,994	1,290,519	1,682,005	2,542,519	2,131,798	2,769,134	1,819,751	1,394,329	1,475,224
Education and health services										
Establishments, first quarter .	858,136	417,186	184,310	120,602	78,973	28,774	20,050	4,427	1,976	1,838
Employment, March	18,268,572	733,986	1,225,826	1,623,193	2,380,692	2,002,526	3,016,357	1,503,953	1,376,575	4,405,464
Leisure and hospitality										
Establishments, first quarter	733,354	283,960	124,005	140,576	133,542	38,935	9,942	1,532	603	259
Employment, March	12,723,443	448,520	837,732	1,973,561	4,006,199	2,578,345	1,402,865	518,812	411,444	545,965
Other services										
Establishments, first quarter	1,193,934	988,947	116,718	55,617	24,052	5,381	2,663	428	112	16
Employment, March	4,361,271	1,168,997	762,081	732,752	699,997	367,591	389,163	143,040	71,850	25,800

[^22]26. Average annual wages for 2008 and 2009 for all covered workers ${ }^{1}$ by metropolitan area

Metropolitan area²	Average annual wages ${ }^{3}$		
	2008	2009	Percent change, 2008-09
Metropolitan areas ${ }^{4}$	\$47,194	\$47,127	-0.1
Abilene, TX	32,649	32,807	0.5
Aguadilla-Isabela-San Sebastian, PR	20,714	21,887	5.7
Akron, OH	40,376	40,447	0.2
Albany, GA	34,314	35,160	2.5
Albany-Schenectady-Troy, NY	43,912	44,859	2.2
Albuquerque, NM	39,342	40,301	2.4
Alexandria, LA	34,783	35,446	1.9
Allentown-Bethlehem-Easton, PA-NJ	42,500	42,577	0.2
Altoona, PA	32,986	33,827	2.5
Amarillo, TX	38,215	37,938	-0.7
Ames, IA	38,558	39,301	1.9
Anchorage, AK	46,935	48,345	3.0
Anderson, IN	31,326	31,363	0.1
Anderson, SC	32,322	32,599	0.9
Ann Arbor, MI	48,987	48,925	-0.1
Anniston-Oxford, AL	36,227	36,773	1.5
Appleton, WI	37,522	37,219	-0.8
Asheville, NC	34,070	34,259	0.6
Athens-Clarke County, GA	35,503	35,948	1.3
Atlanta-Sandy Springs-Marietta, GA	48,064	48,156	0.2
Atlantic City, NJ	40,337	39,810	-1.3
Auburn-Opelika, AL	32,651	33,367	2.2
Augusta-Richmond County, GA-SC	38,068	38,778	1.9
Austin-Round Rock, TX	47,355	47,183	-0.4
Bakersfield, CA	39,476	40,046	1.4
Baltimore-Towson, MD	48,438	49,214	1.6
Bangor, ME	33,829	34,620	2.3
Barnstable Town, MA	38,839	38,970	0.3
Baton Rouge, LA	41,961	42,677	1.7
Battle Creek, MI	42,782	43,555	1.8
Bay City, MI	36,489	36,940	1.2
Beaumont-Port Arthur, TX	43,302	43,224	-0.2
Bellingham, WA	35,864	36,757	2.5
Bend, OR	35,044	35,336	0.8
Billings, MT	36,155	36,660	1.4
Binghamton, NY	37,731	38,200	1.2
Birmingham-Hoover, AL	43,651	43,783	0.3
Bismarck, ND	35,389	36,082	2.0
Blacksburg-Christiansburg-Radford, VA	35,272	35,344	0.2
Bloomington, IN	33,220	33,828	1.8
Bloomington-Normal, IL	43,918	44,925	2.3
Boise City-Nampa, ID	37,315	37,410	0.3
Boston-Cambridge-Quincy, MA-NH	61,128	60,549	-0.9
Boulder, CO	53,455	52,433	-1.9
Bowling Green, KY	34,861	34,824	-0.1
Bremerton-Silverdale, WA	40,421	42,128	4.2
Bridgeport-Stamford-Norwalk, CT	80,018	77,076	-3.7
Brownsville-Harlingen, TX	28,342	28,855	1.8
Brunswick, GA	34,458	34,852	1.1
Buffalo-Niagara Falls, NY	38,984	39,218	0.6
Burlington, NC	34,283	33,094	-3.5
Burlington-South Burlington, VT	43,559	44,101	1.2
Canton-Massillon, OH	34,897	34,726	-0.5
Cape Coral-Fort Myers, FL	37,866	37,641	-0.6
Carson City, NV	43,858	44,532	1.5
Casper, WY	43,851	42,385	-3.3
Cedar Rapids, IA	42,356	41,874	-1.1
Champaign-Urbana, IL	37,408	38,478	2.9
Charleston, WV	40,442	41,436	2.5
Charleston-North Charleston, SC	38,035	38,766	1.9
Charlotte-Gastonia-Concord, NC-SC	47,332	46,291	-2.2
Charlottesville, VA	41,777	42,688	2.2
Chattanooga, TN-GA	37,258	37,839	1.6
Cheyenne, WY	37,452	38,378	2.5
Chicago-Naperville-Joliet, IL-IN-WI	51,775	51,048	-1.4
Chico, CA	34,310	35,179	2.5
Cincinnati-Middletown, OH-KY-IN	43,801	44,012	0.5
Clarksville, TN-KY	32,991	33,282	0.9
Cleveland, TN	35,010	35,029	0.1
Cleveland-Elyria-Mentor, OH	43,467	43,256	-0.5
Coeur d'Alene, ID	31,353	31,513	0.5
College Station-Bryan, TX	33,967	34,332	1.1
Colorado Springs, CO	40,973	41,885	2.2
Columbia, MO ..	34,331	35,431	3.2
Columbia, SC	37,514	38,314	2.1
Columbus, GA-AL	35,067	35,614	1.6
Columbus, IN	42,610	41,540	-2.5
Columbus, OH	43,533	43,877	0.8
Corpus Christi, TX	38,771	38,090	-1.8
Corvallis, OR	42,343	42,700	0.8

See footnotes at end of table.
26. Continued - Average annual wages for 2008 and 2009 for all covered
workers ${ }^{1}$ by metropolitan area

Metropolitan area²	Average annual wages ${ }^{3}$		
	2008	2009	Percent change, 2008-09
Cumberland, MD-WV	\$32,583	\$33,409	2.5
Dallas-Fort Worth-Arlington, TX	50,331	49,965	-0.7
Dalton, GA	34,403	35,024	1.8
Danville, IL	35,602	35,552	-0.1
Danville, VA	30,580	30,778	0.6
Davenport-Moline-Rock Island, IA-IL	40,425	40,790	0.9
Dayton, OH	40,824	40,972	0.4
Decatur, AL	36,855	37,145	0.8
Decatur, IL	42,012	41,741	-0.6
Deltona-Daytona Beach-Ormond Beach, FL	32,938	33,021	0.3
Denver-Aurora, CO	51,270	51,733	0.9
Des Moines, IA ..	43,918	44,073	0.4
Detroit-Warren-Livonia, MI	50,081	48,821	-2.5
Dothan, AL	32,965	33,888	2.8
Dover, DE	36,375	37,039	1.8
Dubuque, IA	35,656	35,665	0.0
Duluth, MN-WI	36,307	36,045	-0.7
Durham, NC	53,700	54,857	2.2
Eau Claire, WI	33,549	34,186	1.9
El Centro, CA	33,239	34,220	3.0
Elizabethtown, KY	33,728	34,970	3.7
Elkhart-Goshen, IN	35,858	35,823	-0.1
Elmira, NY	36,984	36,995	0.0
El Paso, TX	31,837	32,665	2.6
Erie, PA	35,992	35,995	0.0
Eugene-Springfield, OR	35,380	35,497	0.3
Evansville, IN-KY ..	38,304	38,219	-0.2
Fairbanks, AK	44,225	45,328	2.5
Fajardo, PR	22,984	23,467	2.1
Fargo, ND-MN	36,745	37,309	1.5
Farmington, NM	41,155	40,437	-1.7
Fayetteville, NC	34,619	35,755	3.3
Fayetteville-Springdale-Rogers, AR-MO	39,025	40,265	3.2
Flagstaff, AZ	35,353	36,050	2.0
Flint, MI	39,206	38,682	-1.3
Florence, SC	34,841	35,509	1.9
Florence-Muscle Shoals, AL	32,088	32,471	1.2
Fond du Lac, WI	36,166	35,667	-1.4
Fort Collins-Loveland, CO	40,154	40,251	0.2
Fort Smith, AR-OK	32,130	32,004	-0.4
Fort Walton Beach-Crestview-Destin, FL	36,454	37,823	3.8
Fort Wayne, IN	36,806	37,038	0.6
Fresno, CA	36,038	36,427	1.1
Gadsden, AL	31,718	32,652	2.9
Gainesville, FL	37,282	38,863	4.2
Gainesville, GA	37,929	37,924	0.0
Glens Falls, NY	34,531	35,215	2.0
Goldsboro, NC	30,607	30,941	1.1
Grand Forks, ND-MN	32,207	33,455	3.9
Grand Junction, CO	39,246	38,450	-2.0
Grand Rapids-Wyoming, MI	39,868	40,341	1.2
Great Falls, MT	31,962	32,737	2.4
Greeley, CO	38,700	37,656	-2.7
Green Bay, WI	39,247	39,387	0.4
Greensboro-High Point, NC	37,919	38,020	0.3
Greenville, NC	34,672	35,542	2.5
Greenville, SC	37,592	37,921	0.9
Guayama, PR	27,189	28,415	4.5
Gulfport-Biloxi, MS	35,700	36,251	1.5
Hagerstown-Martinsburg, MD-WV	36,472	36,459	0.0
Hanford-Corcoran, CA	35,374	35,402	0.1
Harrisburg-Carlisle, PA	42,330	43,152	1.9
Harrisonburg, VA	34,197	34,814	1.8
Hartford-West Hartford-East Hartford, CT	54,446	54,534	0.2
Hattiesburg, MS	31,629	32,320	2.2
Hickory-Lenoir-Morganton, NC	32,810	32,429	-1.2
Hinesville-Fort Stewart, GA	33,854	35,032	3.5
Holland-Grand Haven, MI	37,953	37,080	-2.3
Honolulu, HI	42,090	42,814	1.7
Hot Springs, AR ...	29,042	29,414	1.3
Houma-Bayou Cane-Thibodaux, LA	44,345	44,264	-0.2
Houston-Baytown-Sugar Land, TX	55,407	54,779	-1.1
Huntington-Ashland, WV-KY-OH .	35,717	36,835	3.1
Huntsville, AL	47,427	49,240	3.8
Idaho Falls, ID	30,485	30,875	1.3
Indianapolis, IN	43,128	43,078	-0.1
Iowa City, IA	39,070	39,703	1.6
Ithaca, NY	41,689	42,779	2.6
Jackson, MI	38,672	38,635	-0.1
Jackson, MS ...	36,730	37,118	1.1

See footnotes at end of table.
26. Continued - Average annual wages for 2008 and 2009 for all covered workers ${ }^{1}$ by metropolitan area

Metropolitan area²	Average annual wages ${ }^{3}$		
	2008	2009	Percent change, 2008-09
Jackson, TN	\$35,975	\$35,959	0.0
Jacksonville, FL	41,524	41,804	0.7
Jacksonville, NC	27,893	29,006	4.0
Janesville, WI	36,906	36,652	-0.7
Jefferson City, MO	33,766	34,474	2.1
Johnson City, TN	32,759	33,949	3.6
Johnstown, PA	32,464	33,238	2.4
Jonesboro, AR	31,532	31,793	0.8
Joplin, MO	32,156	32,741	1.8
Kalamazoo-Portage, MI	40,333	40,044	-0.7
Kankakee-Bradley, IL	34,451	34,539	0.3
Kansas City, MO-KS	44,155	44,331	0.4
Kennewick-Richland-Pasco, WA	41,878	43,705	4.4
Killeen-Temple-Fort Hood, TX	34,299	35,674	4.0
Kingsport-Bristol-Bristol, TN-VA	37,260	37,234	-0.1
Kingston, NY ...	35,883	36,325	1.2
Knoxville, TN	38,912	39,353	1.1
Kokomo, IN	44,117	42,248	-4.2
La Crosse, WI-MN	34,078	34,836	2.2
Lafayette, IN	37,832	38,313	1.3
Lafayette, LA	42,748	42,050	-1.6
Lake Charles, LA	39,982	39,263	-1.8
Lakeland, FL	35,195	35,485	0.8
Lancaster, PA	38,127	38,328	0.5
Lansing-East Lansing, MI	42,339	42,764	1.0
Laredo, TX	29,572	29,952	1.3
Las Cruces, NM	32,894	34,264	4.2
Las Vegas-Paradise, NV	43,120	42,674	-1.0
Lawrence, KS	32,313	32,863	1.7
Lawton, OK	32,258	33,206	2.9
Lebanon, PA	33,900	34,416	1.5
Lewiston, ID-WA	32,783	32,850	0.2
Lewiston-Auburn, ME	34,396	34,678	0.8
Lexington-Fayette, KY	40,034	40,446	1.0
Lima, OH	35,381	36,224	2.4
Lincoln, NE	35,834	36,281	1.2
Little Rock-North Little Rock, AR	38,902	40,331	3.7
Logan, UT-ID	29,392	29,608	0.7
Longview, TX	38,902	38,215	-1.8
Longview, WA	37,806	38,300	1.3
Los Angeles-Long Beach-Santa Ana, CA	51,520	51,344	-0.3
Louisville, KY-IN	40,596	41,101	1.2
Lubbock, TX	33,867	34,318	1.3
Lynchburg, VA	35,207	35,503	0.8
Macon, GA	34,823	35,718	2.6
Madera, CA	34,405	34,726	0.9
Madison, WI	42,623	42,861	0.6
Manchester-Nashua, NH	50,629	49,899	-1.4
Mansfield, OH	33,946	33,256	-2.0
Mayaguez, PR	22,394	23,634	5.5
McAllen-Edinburg-Pharr, TX	28,498	29,197	2.5
Medford, OR	33,402	34,047	1.9
Memphis, TN-MS-AR	43,124	43,318	0.4
Merced, CA	33,903	34,284	1.1
Miami-Fort Lauderdale-Miami Beach, FL	44,199	44,514	0.7
Michigan City-La Porte, IN	33,507	33,288	-0.7
Midland, TX	50,116	47,557	-5.1
Milwaukee-Waukesha-West Allis, WI	44,462	44,446	0.0
Minneapolis-St. Paul-Bloomington, MN-WI	51,044	50,107	-1.8
Missoula, MT	33,414	33,869	1.4
Mobile, AL	38,180	39,295	2.9
Modesto, CA	37,867	38,657	2.1
Monroe, LA	32,796	33,765	3.0
Monroe, MI	41,849	41,055	-1.9
Montgomery, AL	37,552	38,441	2.4
Morgantown, WV	37,082	38,637	4.2
Morristown, TN	32,858	32,903	0.1
Mount Vernon-Anacortes, WA	36,230	37,098	2.4
Muncie, IN	32,420	32,822	1.2
Muskegon-Norton Shores, MI ..	36,033	35,654	-1.1
Myrtle Beach-Conway-North Myrtle Beach, SC	28,450	28,132	-1.1
Napa, CA ...	45,061	45,174	0.3
Naples-Marco Island, FL	40,178	39,808	-0.9
Nashville-Davidson--Murfreesboro, TN	43,964	43,811	-0.3
New Haven-Milford, CT	48,239	48,681	0.9
New Orleans-Metairie-Kenner, LA	45,108	45,121	0.0
New York-Northern New Jersey-Long Island, NY-NJ-PA	66,548	63,773	-4.2
Niles-Benton Harbor, MI	38,814	39,097	0.7
Norwich-New London, CT	46,727	47,245	1.1
Ocala, FL ...	32,579	32,724	0.4

See footnotes at end of table
26. Continued - Average annual wages for 2008 and 2009 for all covered workers ${ }^{1}$ by metropolitan area

Metropolitan area²	Average annual wages ${ }^{3}$		
	2008	2009	Percent change, 2008-09
Ocean City, NJ	\$33,529	\$33,477	-0.2
Odessa, TX	44,316	42,295	-4.6
Ogden-Clearfield, UT	34,778	35,562	2.3
Oklahoma City, OK	39,363	39,525	0.4
Olympia, WA	40,714	41,921	3.0
Omaha-Council Bluffs, NE-IA	40,097	40,555	1.1
Orlando, FL	39,322	39,225	-0.2
Oshkosh-Neenah, WI	41,781	41,300	-1.2
Owensboro, KY	34,956	35,264	0.9
Oxnard-Thousand Oaks-Ventura, CA	46,490	47,066	1.2
Palm Bay-Melbourne-Titusville, FL	42,089	43,111	2.4
Panama City-Lynn Haven, FL	34,361	34,857	1.4
Parkersburg-Marietta, WV-OH	35,102	35,650	1.6
Pascagoula, MS	42,734	43,509	1.8
Pensacola-Ferry Pass-Brent, FL	34,829	35,683	2.5
Peoria, IL	44,562	44,747	0.4
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	51,814	52,237	0.8
Phoenix-Mesa-Scottsdale, AZ	44,482	44,838	0.8
Pine Bluff, AR	34,106	34,588	1.4
Pittsburgh, PA	44,124	44,234	0.2
Pittsfield, MA	38,957	38,690	-0.7
Pocatello, ID	30,608	30,690	0.3
Ponce, PR	21,818	22,556	3.4
Portland-South Portland-Biddeford, ME	39,711	40,012	0.8
Portland-Vancouver-Beaverton, OR-WA	45,326	45,544	0.5
Port St. Lucie-Fort Pierce, FL	36,174	36,130	-0.1
Poughkeepsie-Newburgh-Middletown, NY	42,148	43,054	2.1
Prescott, AZ	33,004	32,927	-0.2
Providence-New Bedford-Fall River, RI-MA	42,141	42,428	0.7
Provo-Orem, UT	35,516	35,695	0.5
Pueblo, CO	34,055	34,889	2.4
Punta Gorda, FL	32,927	32,563	-1.1
Racine, WI	41,232	40,623	-1.5
Raleigh-Cary, NC	43,912	44,016	0.2
Rapid City, SD	32,227	32,821	1.8
Reading, PA	40,691	41,083	1.0
Redding, CA	35,655	35,912	0.7
Reno-Sparks, NV	42,167	42,232	0.2
Richmond, VA	45,244	44,960	-0.6
Riverside-San Bernardino-Ontario, CA	38,617	38,729	0.3
Roanoke, VA	36,475	37,153	1.9
Rochester, MN	46,196	46,999	1.7
Rochester, NY	41,728	41,761	0.1
Rockford, IL	39,210	38,843	-0.9
Rocky Mount, NC	33,110	33,613	1.5
Rome, GA	35,229	35,913	1.9
Sacramento--Arden-Arcade--Roseville, CA	47,924	48,204	0.6
Saginaw-Saginaw Township North, MI	37,549	38,009	1.2
St. Cloud, MN	35,069	35,883	2.3
St. George, UT	29,291	29,608	1.1
St. Joseph, MO-KS	32,651	33,555	2.8
St. Louis, MO-IL	45,419	44,080	-2.9
Salem, OR	34,891	35,691	2.3
Salinas, CA	40,235	40,258	0.1
Salisbury, MD	35,901	36,396	1.4
Salt Lake City, UT	41,628	42,613	2.4
San Angelo, TX	32,852	33,043	0.6
San Antonio, TX	38,876	39,596	1.9
San Diego-Carlsbad-San Marcos, CA Sandusky, OH	49,079	49,240	0.3
Sandusky, OH	33,760	33,117	-1.9
San Francisco-Oakland-Fremont, CA	65,100	65,367	0.4
San German-Cabo Rojo, PR	19,875	20,452	2.9
San Jose-Sunnyvale-Santa Clara, CA	80,063	79,609	-0.6
San Juan-Caguas-Guaynabo, PR	26,839	27,620	2.9
San Luis Obispo-Paso Robles, CA ...	38,134	38,913	2.0
Santa Barbara-Santa Maria-Goleta, CA	42,617	43,257	1.5
Santa Cruz-Watsonville, CA	41,471	40,880	-1.4
Santa Fe, NM	38,646	39,536	2.3
Santa Rosa-Petaluma, CA	43,757	43,274	-1.1
Sarasota-Bradenton-Venice, FL	36,781	36,856	0.2
Savannah, GA	37,846	38,343	1.3
Scranton--Wilkes-Barre, PA	34,902	35,404	1.4
Seattle-Tacoma-Bellevue, WA	53,667	54,650	1.8
Sheboygan, WI	37,834	38,114	0.7
Sherman-Denison, TX	36,081	36,151	0.2
Shreveport-Bossier City, LA	36,308	36,706	1.1
Sioux City, IA-NE-SD	34,326	34,087	-0.7
Sioux Falls, SD	36,982	37,562	1.6
South Bend-Mishawaka, IN-MI	37,654	37,811	0.4
Spartanburg, SC ..	39,313	39,104	-0.5

See footnotes at end of table
26. Continued - Average annual wages for 2008 and 2009 for all covered workers ${ }^{1}$ by metropolitan area

Metropolitan area ${ }^{2}$	Average annual wages ${ }^{3}$		
	2008	2009	Percent change, 2008-09
Spokane, WA	\$36,792	\$38,112	3.6
Springfield, IL	44,416	45,602	2.7
Springfield, MA ...	40,969	41,248	0.7
Springfield, MO ...	32,971	33,615	2.0
Springfield, OH	33,158	33,725	1.7
State College, PA	38,050	38,658	1.6
Stockton, CA	39,075	39,274	0.5
Sumter, SC	30,842	31,074	0.8
Syracuse, NY	40,554	41,141	1.4
Tallahassee, FL	37,433	38,083	1.7
Tampa-St. Petersburg-Clearwater, FL	40,521	41,480	2.4
Terre Haute, IN	33,562	33,470	-0.3
Texarkana, TX-Texarkana, AR	35,002	35,288	0.8
Toledo, OH	39,686	39,098	-1.5
Topeka, KS	36,714	37,651	2.6
Trenton-Ewing, NJ	60,135	59,313	-1.4
Tucson, AZ	39,973	40,071	0.2
Tulsa, OK	40,205	40,108	-0.2
Tuscaloosa, AL	37,949	38,309	0.9
Tyler, TX	38,817	38,845	0.1
Utica-Rome, NY	34,936	35,492	1.6
Valdosta, GA	29,288	29,661	1.3
Vallejo-Fairfield, CA	45,264	47,287	4.5
Vero Beach, FL	36,557	35,937	-1.7
Victoria, TX	39,888	38,608	-3.2
Vineland-Millville-Bridgeton, NJ	40,709	41,145	1.1
Virginia Beach-Norfolk-Newport News, VA-NC	38,696	39,614	2.4
Visalia-Porterville, CA	32,018	32,125	0.3
Waco, TX	35,698	36,731	2.9
Warner Robins, GA	40,457	41,820	3.4
Washington-Arlington-Alexandria, DC-VA-MD-WV	62,653	64,032	2.2
Waterloo-Cedar Falls, IA ..	37,363	37,919	1.5
Wausau, WI	36,477	36,344	-0.4
Weirton-Steubenville, WV-OH	35,356	34,113	-3.5
Wenatchee, WA	30,750	31,200	1.5
Wheeling, WV-OH	32,915	33,583	2.0
Wichita, KS	40,423	40,138	-0.7
Wichita Falls, TX	34,185	33,698	-1.4
Williamsport, PA	33,340	34,188	2.5
Wilmington, NC ...	35,278	36,204	2.6
Winchester, VA-WV	37,035	38,127	2.9
Winston-Salem, NC	39,770	39,874	0.3
Worcester, MA	45,955	45,743	-0.5
Yakima, WA	30,821	31,366	1.8
Yauco, PR	19,821	20,619	4.0
York-Hanover, PA	39,379	39,798	1.1
Youngstown-Warren-Boardman, OH-PA	34,403	33,704	-2.0
Yuba City, CA	36,538	37,289	2.1
Yuma, AZ ...	31,351	32,474	3.6

1 Includes workers covered by Unemployment insurance (UI) and Unemployment Compensation for Federal Employees (UCFE) programs.
${ }^{2}$ Includes data for Metropolitan Statistical Areas (MSA) as defined by OMB Bulletin No. 04-03 as of February 18, 2004.
${ }^{3}$ Each year's total is based on the MSA definition for the specific year. Annual changes include differences resulting from changes in MSA definitions.
${ }^{4}$ Totals do not include the six MSAs within Puerto Rico.

27. Annual data: Employment status of the population

[Numbers in thousands]

Employment status	$2001{ }^{1}$	$2002{ }^{1}$	$2003{ }^{1}$	2004	2005	2006	2007	2008	2009	2010	2011
Civilian noninstitutional population..	215,092	217,570	221,168	223,357	226,082	228,815	231,867	233,788	235,801	237,830	239,618
Civilian labor force.	143,734	144,863	146,510	147,401	149,320	151,428	153,124	154,287	154,142	153,889	153,617
Labor force participation rate	66.8	66.6	66.2	66.0	66.0	66.2	66.0	66.0	65.4	64.7	64.1
Employed.	136,933	136,485	137,736	139,252	141,730	144,427	146,047	145,362	139,877	139,064	139,869
Employment-population rati	63.7	62.7	62.3	62.3	62.7	63.1	63.0	62.2	59.3	58.5	58.4
Unemployed..	6,801	8,378	8,774	8,149	7,591	7,001	7,078	8,924	14,265	14,825	13,747
Unemployment rate...	4.7	5.8	6.0	5.5	5.1	4.6	4.6	5.8	9.3	9.6	8.9
Not in the labor force.	71,359	72,707	74,658	75,956	76,762	77,387	78,743	79,501	81,659	83,941	86,001

${ }^{1}$ Not strictly comparable with prior years.
28. Annual data: Employment levels by industry [In thousands]

Industry	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total private employment..	110,708	108,828	108,416	109,814	111,899	114,113	115,380	114,281	108,252	107,384	109,253
Total nonfarm employment.	131,826	130,341	129,999	131,435	133,703	136,086	137,598	136,790	130,807	129,874	131,358
Goods-producing...	23,873	22,557	21,816	21,882	22,190	22,530	22,233	21,335	18,558	17,751	18,021
Natural resources and mining.	606	583	572	591	628	684	724	767	694	705	784
Construction.	6,826	6,716	6,735	6,976	7,336	7,691	7,630	7,162	6,016	5,518	5,504
Manufacturing..	16,441	15,259	14,509	14,315	14,227	14,155	13,879	13,406	11,847	11,528	11,733
Private service-providing..	86,834	86,271	86,600	87,932	89,709	91,582	93,147	92,946	89,695	89,633	91,232
Trade, transportation, and utilities.	25,983	25,497	25,287	25,533	25,959	26,276	26,630	26,293	24,906	24,636	25,019
Wholesale trade.	5,773	5,652	5,608	5,663	5,764	5,905	6,015	5,943	5,587	5,452	5,529
Retail trade..	15,239	15,025	14,917	15,058	15,280	15,353	15,520	15,283	14,522	14,440	14,643
Transportation and warehousing.	4,372	4,224	4,185	4,249	4,361	4,470	4,541	4,508	4,236	4,191	4,293
Utilities...	599	596	577	564	554	549	553	559	560	553	555
Information..	3,629	3,395	3,188	3,118	3,061	3,038	3,032	2,984	2,804	2,707	2,659
Financial activities...	7,808	7,847	7,977	8,031	8,153	8,328	8,301	8,145	7,769	7,652	7,681
Professional and business services.	16,476	15,976	15,987	16,394	16,954	17,566	17,942	17,735	16,579	16,728	17,330
Education and health services..	15,645	16,199	16,588	16,953	17,372	17,826	18,322	18,838	19,193	19,531	19,883
Leisure and hospitality..	12,036	11,986	12,173	12,493	12,816	13,110	13,427	13,436	13,077	13,049	13,319
Other services..	5,258	5,372	5,401	5,409	5,395	5,438	5,494	5,515	5,367	5,331	5,341
Government.....	21,118	21,513	21,583	21,621	21,804	21,974	22,218	22,509	22,555	22,490	22,105

29. Annual data: Average hours and earnings of production or nonsupervisory workers on nonfarm payrolls, by industry

Industry	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Private sector:											
Average weekly hours.	34.0	33.9	33.7	33.7	33.8	33.9	33.9	33.6	33.1	33.4	33.6
Average hourly earnings (in dollars).	14.54	14.97	15.37	15.69	16.13	16.76	17.43	18.08	18.63	19.07	19.47
Average weekly earnings (in dollars).	493.79	506.75	518.06	529.09	544.33	567.87	590.04	607.95	617.18	636.92	654.87
Goods-producing:											
Average weekly hours.	39.9	39.9	39.8	40.0	40.1	40.5	40.6	40.2	39.2	40.4	40.9
Average hourly earnings (in dollars).	15.78	16.33	16.80	17.19	17.60	18.02	18.67	19.33	19.90	20.28	20.67
Average weekly earnings (in dollars).	630.04	651.55	669.13	688.17	705.31	730.16	757.50	776.63	779.68	818.96	845.04
Natural resources and mining											
Average weekly hours..	44.6	43.2	43.6	44.5	45.6	45.6	45.9	45.1	43.2	44.6	46.7
Average hourly earnings (in dollars).	17.00	17.19	17.56	18.07	18.72	19.90	20.97	22.50	23.29	23.82	24.51
Average weekly earnings (in dollars)	757.96	741.97	765.94	804.01	853.87	907.95	962.63	1014.69	1006.67	1063.11	1145.09
Construction:											
Average weekly hours	38.7	38.4	38.4	38.3	38.6	39.0	39.0	38.5	37.6	38.4	39.0
Average hourly earnings (in dollars)	18.00	18.52	18.95	19.23	19.46	20.02	20.95	21.87	22.66	23.22	23.64
Average weekly earnings (in dollars)	695.86	711.82	727.00	735.55	750.37	781.59	816.23	842.61	851.76	891.83	921.63
Manufacturing:											
Average weekly hours	40.3	40.5	40.4	40.8	40.7	41.1	41.2	40.8	39.8	41.1	41.4
Average hourly earnings (in dollars).	14.76	15.29	15.74	16.14	16.56	16.81	17.26	17.75	18.24	18.61	18.94
Average weekly earnings (in dollars).	595.15	618.62	635.99	658.52	673.34	691.05	711.53	724.46	726.12	765.15	785.02
Private service-providing:											
Average weekly hours..	32.5	32.5	32.3	32.3	32.4	32.4	32.4	32.3	32.1	32.2	32.4
Average hourly earnings (in dollars).	14.18	14.59	14.99	15.29	15.73	16.42	17.11	17.77	18.35	18.81	19.21
Average weekly earnings (in dollars).	461.08	473.80	484.71	494.22	509.56	532.60	554.89	574.20	588.20	606.12	622.42
Trade, transportation, and utilities:											
Average weekly hours...	33.5	33.6	33.6	33.5	33.4	33.4	33.3	33.2	32.9	33.3	33.7
Average hourly earnings (in dollars).	13.70	14.02	14.34	14.58	14.92	15.39	15.78	16.16	16.48	16.82	17.15
Average weekly earnings (in dollars).	459.53	471.27	481.14	488.51	498.43	514.37	525.91	536.11	541.88	559.63	577.87
Wholesale trade:											
Average weekly hours..	38.4	38.0	37.9	37.8	37.7	38.0	38.2	38.2	37.6	37.9	38.5
Average hourly earnings (in dollars).	16.77	16.98	17.36	17.65	18.16	18.91	19.59	20.13	20.84	21.54	21.97
Average weekly earnings (in dollars)	643.45	644.38	657.29	666.79	685.00	718.50	748.94	769.62	784.49	816.50	845.36
Retail trade:											
Average weekly hour	30.7	30.9	30.9	30.7	30.6	30.5	30.2	30.0	29.9	30.2	30.5
Average hourly earnings (in dollars).	11.29	11.67	11.90	12.08	12.36	12.57	12.75	12.87	13.01	13.24	13.51
Average weekly earnings (in dollars).	643.45	644.38	657.29	666.79	685.00	718.50	748.94	769.62	784.49	816.50	845.36
Transportation and warehousing:											
Average weekly hours..	36.7	36.8	36.8	37.2	37.0	36.9	37.0	36.4	36.0	37.1	37.8
Average hourly earnings (in dollars).	15.33	15.76	16.25	16.52	16.70	17.27	17.72	18.41	18.81	19.16	19.50
Average weekly earnings (in dollars).	562.57	579.91	598.41	614.89	618.55	636.80	654.95	670.22	677.56	710.85	737.37
Utilities:											
Average weekly hours.	41.4	40.9	41.1	40.9	41.1	41.4	42.4	42.7	42.0	42.0	42.1
Average hourly earnings (in dollars)..	23.58	23.96	24.77	25.61	26.68	27.40	27.88	28.83	29.48	30.04	30.82
Average weekly earnings (in dollars).	977.25	979.26	1017.44	1048.01	1095.91	1135.57	1182.65	1230.65	1239.34	1262.89	1296.84
Information:											
Average weekly hours...	36.9	36.5	36.2	36.3	36.5	36.6	36.5	36.7	36.6	36.3	36.2
Average hourly earnings (in dollars).	19.80	20.20	21.01	21.40	22.06	23.23	23.96	24.78	25.45	25.87	26.61
Average weekly earnings (in dollars)	731.18	737.94	760.84	776.72	805.11	850.64	874.45	908.78	931.08	939.85	963.83
Financial activities:											
Average weekly hours..	35.8	35.6	35.5	35.5	35.9	35.7	35.9	35.8	36.1	36.2	36.4
Average hourly earnings (in dollars).	15.59	16.17	17.14	17.52	17.94	18.80	19.64	20.28	20.85	21.52	21.91
Average weekly earnings (in dollars)..	558.05	575.54	609.08	622.87	645.10	672.21	705.13	727.07	752.03	778.43	797.76
Professional and business services:											
Average weekly hours......	34.2	34.2	34.1	34.2	34.2	34.6	34.8	34.8	34.7	35.1	35.2
Average hourly earnings (in dollars)..	16.33	16.80	17.21	17.48	18.08	19.13	20.15	21.18	22.35	22.78	23.12
Average weekly earnings (in dollars).	557.84	574.60	587.02	597.39	618.66	662.27	700.64	737.70	775.81	798.54	813.74
Education and health services:											
Average weekly hours.............	32.3	32.4	32.3	32.4	32.6	32.5	32.6	32.5	32.2	32.1	32.3
Average hourly earnings (in dollars)..	14.64	15.21	15.64	16.15	16.71	17.38	18.11	18.87	19.49	20.12	20.78
Average weekly earnings (in dollars).	473.39	492.74	505.69	523.78	544.59	564.94	590.09	613.73	628.45	646.65	670.80
Leisure and hospitality:											
Average weekly hours..	25.8	25.8	25.6	25.7	25.7	25.7	25.5	25.2	24.8	24.8	24.8
Average hourly earnings (in dollars)..	8.57	8.81	9.00	9.15	9.38	9.75	10.41	10.84	11.12	11.31	11.45
Average weekly earnings (in dollars)...	220.73	227.31	230.49	234.86	241.36	250.34	265.54	273.39	275.95	280.87	283.74
Other services:											
Average weekly hours.............	32.3	32.1	31.4	31.0	30.9	30.9	30.9	30.8	30.5	30.7	30.7
Average hourly earnings (in dollars)...	13.27	13.72	13.84	13.98	14.34	14.77	15.42	16.09	16.59	17.06	17.32
Average weekly earnings (in dollars).....	428.64	439.87	434.41	433.04	443.40	456.50	477.06	495.57	506.26	523.70	532.48

NOTE: Data reflect the conversion to the 2002 version of the North American Industry Classification System (NaICS), replacing the Standard Industrial Classification (SIC) system. NAICs-based data by industry are not comparable with SIC-based data.
30. Employment Cost Index, compensation, ${ }^{1}$ by occupation and industry group
[December 2005 = 100]

Series	2010				2011				2012	Percent change	
	Mar.	June	Sept.	Dec.	Mar.	June	Sept.	Dec.	Mar.	3 months ended	12 months ended
										Mar. 2012	
Civilian workers ${ }^{2}$.	111.8	112.3	112.9	113.2	114.0	114.8	115.2	115.5	116.2	0.6	1.9
Workers by occupational group											
Management, professional, and related.	112.4	112.8	113.4	113.7	114.7	115.2	115.6	115.8	116.8	. 9	1.8
Management, business, and financial.	111.6	112.1	112.3	112.7	113.9	114.7	115.1	115.3	116.2	. 8	2.0
Professional and related..	112.9	113.2	114.1	114.3	115.1	115.4	115.9	116.2	117.1	. 8	1.7
Sales and office......	110.3	111.2	111.6	112.1	112.6	113.7	114.2	114.6	115.4	. 7	2.5
Sales and related..	105.9113.0	107.5113.4	107.4	108.1	107.9	109.8	110.4	110.8	111.4	. 5	3.2
Office and administrative support..			114.1	114.4	115.4	116.1	116.6	116.8	117.7	. 8	2.0
Natural resources, construction, and maintenance	112.5	112.9	113.4	113.6	114.2	115.2	115.8	116.1	116.7	. 5	2.2
Construction and extraction..	113.1	113.7	114.4	114.5	114.9	115.6	116.1	116.5	116.7	. 2	1.6
Installation, maintenance, and repair.	111.6	112.0	112.2	112.6	113.3	114.7	115.5	115.6	116.6	. 9	2.9
Production, transportation, and material moving.	110.2	110.8	111.7	111.9	112.7	113.9	114.2	114.6	114.9	. 3	2.0
Production..	109.6	110.0	110.8	110.9	111.8	113.2	113.4	113.8	113.9	. 1	1.9
Transportation and material moving.	111.1	111.9	112.9	113.3	113.8	114.7	115.1	115.6	116.2	. 5	1.4
Service occupations..	113.4	113.7	114.6	114.9	115.7	115.9	116.2	116.6	117.3	. 6	
Workers by industry											
Goods-producing...	109.8	110.3	111.0	111.1	112.1	113.2	113.5	113.9	114.1	. 2	1.8
Manufacturing.	108.4	109.1	109.9	110.0	111.4	112.7	112.8	113.1	113.4	. 3	1.8
Service-providing..	112.1	112.6	113.3	113.6	114.3	115.0	115.5	115.8	116.6	. 7	2.0
Education and health services..	113.7	113.9	114.8	115.2	115.5	115.7	116.5	116.8	117.5	. 6	1.7
Health care and social assistance.	113.7	114.1	114.6	115.0	115.5	115.9	116.4	116.8	118.0	1.0	2.2
Hospitals...	114.1	114.7	115.2	115.9	116.5	116.9	117.4	117.8	118.5	. 6	1.7
Nursing and residential care facilities	111.9	112.2	112.7	112.7	113.4	113.9	114.3	114.3	115.0	. 6	1.4
Education services..	113.7	113.8	115.1	115.3	115.5	115.5	116.6	116.7	117.1	. 3	1.4
Elementary and secondary schools.	$\begin{aligned} & 114.1 \\ & 115.1 \end{aligned}$	114.2115.4	115.5	115.5116.8	115.7	115.7	116.7	116.8	117.1119.1	. 3	1.2
Public administration ${ }^{3}$.			116.6							. 8	1.4
Private industry workers........................	111.1	111.7	112.2	112.5	113.3	114.3	114.6	115.0	115.7	. 6	2.1
Workers by occupational group Management, professional, and related	111.8										
Management, business, and financial.	111.3	111.7	112.0	112.3	113.6	114.5	114.8	115.0	116.0	. 9	2.1
Professional and related..	112.2	112.6	113.3	113.5	114.6	115.1	115.4	115.7	116.8	1.0	1.9
Sales and office.	109.8	110.8	111.1	111.6	112.1	113.3	113.8	114.2	115.0	. 7	2.6
Sales and related.	105.8	107.5	107.4	108.1	107.8	109.8	110.3	110.7	111.4	. 6	3.3
Office and administrative support.	112.6	113.1	113.7	114.0	115.1	115.8	116.2	116.5	117.5	. 9	2.1
Natural resources, construction, and maintenance.	112.2	112.7	113.1	113.3	113.8	114.9	115.5	115.8	116.3	. 4	2.2
Construction and extraction..	113.1	113.6	114.3	114.4	114.8	115.5	116.0	116.5	116.6	. 1	1.6
Installation, maintenance, and repair..	111.1	111.5	111.6	111.9	112.6	114.2	114.9	115.0	116.1	1.0	3.1
Production, transportation, and material moving	109.9	110.5	111.3	111.5	112.2	113.5	113.8	114.2	114.5	. 3	2.0
Production...	109.5	110.0	110.7	110.8	111.7	113.2	113.4	113.8	113.8	. 0	1.9
Transportation and material moving.	110.4	111.2	112.2	112.5	113.0	114.0	114.4	114.9	115.5116.0	.5.5	1.21.3
Service occupations.	112.4	112.7	113.3	113.5	114.5	114.7	115.0	115.4			
Workers by industry and occupational group											
Goods-producing industries....................	109.7	110.3	111.0	111.1	112.0	113.2	113.4	113.8	114.1	. 3	1.9
Management, professional, and related.	108.0	108.6	109.2	109.1	110.8	112.1	112.0	112.3	113.2	. 8	2.2
Sales and office.	108.2	108.8	109.7	110.2	110.4	111.4	111.8	112.5	113.5	. 9	2.8
Natural resources, construction, and maintenance.	112.6	113.0	113.6	113.7	114.2	115.2	115.6	115.9	115.8	-. 1	1.4
Production, transportation, and material moving....	109.3	109.8	110.6	110.8	111.6	113.0	113.1	113.6	113.4	-. 2	1.6
Construction...	112.1	112.3109.1	112.8109.9	112.7	112.8	113.6	113.9	114.5	114.6	. 1 1.6	
Manufacturing..				110.0	111.4	112.7	112.8	113.1	113.4	. 3	1.8
Management, professional, and related.	107.2	108.0	108.8	108.8	110.9	112.0	112.0	112.2	113.2	. 9	2.12.6
Sales and office..	108.1	109.0	110.3		112.2	113.2	113.3	113.7	115.1	1.2	
Natural resources, construction, and maintenance....	109.1	110.1	110.9	$\begin{aligned} & 110.8 \\ & 110.9 \end{aligned}$	112.0	$\begin{aligned} & 114.0 \\ & 112.8 \end{aligned}$	114.3	114.2	113.7	-. 4	2.6 1.5
Production, transportation, and material moving.......		109.6	110.3	110.5	111.4		112.9	113.4	113.1	-. 3	1.5 1.5
Service-providing industries..	$\begin{aligned} & 111.6 \\ & 112.5 \end{aligned}$	112.1	112.6	113.0	113.8	114.6	115.0	115.3	116.3	,	2.21.9
Management, professional, and related.		112.9	113.4	113.7	114.8	115.4	115.7	116.0	117.0	. 9	
Sales and office.....	110.0	111.0	111.3	111.8	112.3	113.6	114.0	114.3	115.1	. 7	2.5
Natural resources, construction, and maintenance..	111.7	112.2	112.2	112.6	113.2	114.4	115.5	115.6	117.2	1.4	3.5
Production, transportation, and material moving...	110.6	111.3	112.3	112.5	113.1	114.2	114.6	115.1	116.0	. 8	2.6
Service occupations....	112.4	112.7	113.3	113.5	114.5	114.7	114.9	115.4	116.0	. 5	1.3
Trade, transportation, and utilities..	109.9	110.9	111.1	111.4	112.0	113.2	113.8	114.1	115.2	1.0	2.9

[^23]30. Continued-Employment Cost Index, compensation, by occupation and industry group
[December 2005 = 100]

${ }^{1}$ Cost (cents per hour worked) measured in the Employment Cost Index consists of wages, salaries, and employer cost of employee benefits.
2 Consists of private industry workers (excluding farm and household workers) and State and local government (excluding Federal Government) workers.
State and local government (excluding Federal Government) workers.
${ }^{\text {Con }}$ Consists of legislative, judicial, administrative, and regulatory activities.

NOTE: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006
31. Employment Cost Index, wages and salaries, by occupation and industry group
[December $2005=100$]

| |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

31. Continued-Employment Cost Index, wages and salaries, by occupation and industry group
[December $2005=100$]

[^24]32. Employment Cost Index, benefits, by occupation and industry group
[December 2005 = 100]

Series	2010				2011				2012	Percent change	
	Mar.	June	Sept.	Dec.	Mar.	June	Sept.	Dec.	Mar.	3 months ended	12 months ended
										Mar. 2012	
Civilian workers....	$\begin{aligned} & 112.1 \\ & 110.4 \end{aligned}$	112.7	113.	113.9	115.5	116.8			118.6	0.9	2.7
Private industry workers..		111.0	111.7	111.9	113.7	115.4	115.4	115.9	116.9	. 9	2.8
Workers by occupational group Management, professional, and related.											
Sales and office.............................	110.2	111.1	111.6	111.8	113.4	115.0	115.2	115.5	116.7	1.0	2.9
Natural resources, construction, and maintenance.	111.5	112.4	113.0	113.2	114.1	115.9	116.2	116.8	117.9	. 9	3.3
Production, transportation, and material moving......	110.0	110.8	111.8	112.0	113.5	116.5	116.3	117.0	116.1	-. 8	2.3
Service occupations..	111.7	112.5	113.2	113.5	115.5	116.1	115.9	116.4	118.1	1.5	2.3
Workers by industry											
Goods-producing...	$\begin{aligned} & 108.4 \\ & 106.6 \\ & 111.3 \end{aligned}$	$\begin{aligned} & 109.0 \\ & 107.4 \end{aligned}$	110.0	110.1	111.7	114.1	113.9	114.4	114.2	-. 2	2.2
Manufacturing...			108.7	108.8	111.1	114.0	113.4	113.9	113.2	-. 6	1.9
Service-providing.		111.9118.6	112.3	112.6	114.5	115.9	116.0			1.4	3.1
State and local government workers...........................	118.1		120.7	121.1	122.0	122.1	123.7	123.6	124.8	1.0	2.3

NOTE: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and soc data shown prior

33. Employment Cost Index, private industry workers by bargaining status and region

[December $2005=100]$

1 The indexes are calculated differently from those for the occupation and industry groups. For a detailed description of the occupation and industry groups. For a detailed description of the
index calculation, see the Monthly Labor Review Technical Note, "Estimation procedures for the Employment Cost Index," May 1982.

NOTE: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and Soc became the official BLS estimates starting in March 2006
34. National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

Series	Year				
	2003	2004	2005	2006	$2007{ }^{1}$
All retirement					
Percentage of workers with access					
All workers...	57	59	60	60	61
White-collar occupations ${ }^{2}$.	67	69	70	69	-
Management, professional, and related	-			-	76
Sales and office ...					64
Blue-collar occupations ${ }^{2}$.	59	59	60	62	-
Natural resources, construction, and maintenance.....					61
Production, transportation, and material moving..		-	-	-	65
Service occupations..	28	31	32	34	36
Full-time..	67	68	69	69	70
Part-time.	24	27	27	29	31
Union..	86	84	88	84	84
Non-union..	54	56	56	57	58
Average wage less than $\$ 15$ per hour...	45	46	46	47	47
Average wage $\$ 15$ per hour or higher..	76	77	78	77	76
Goods-producing industries...	70	70	71	73	70
Service-providing industries..	53	55	56	56	58
Establishments with 1-99 workers..	42	44	44	44	45
Establishments with 100 or more workers..	75	77	78	78	78
Percentage of workers participating					
All workers....	49	50	50	51	51
White-collar occupations ${ }^{2}$.	59	61	61	60	-
Management, professional, and related ..	-				69
Sales and office				-	54
Blue-collar occupations ${ }^{2}$.	50	50	51	52	-
Natural resources, construction, and maintenance.	-	-	-		51
Production, transportation, and material moving.....				-	54
Service occupations.	21	22	22	24	25
Full-time..	58	60	60	60	60
Part-time.	18	20	19	21	23
Union..	83	81	85	80	81
Non-union..	45	47	46	47	47
Average wage less than $\$ 15$ per hour..	35	36	35	36	36
Average wage $\$ 15$ per hour or higher..	70	71	71	70	69
Goods-producing industries..	63	63	64	64	61
Service-providing industries...	45	47	47	47	48
Establishments with 1-99 workers...	35	37	37	37	37
Establishments with 100 or more workers...	65	67	67	67	66
Take-up rate (all workers) ${ }^{3}$.	-	-	85	85	84
Defined Benefit					
Percentage of workers with access					
All workers....	20	21	22	21	21
White-collar occupations ${ }^{2}$	23	24	25	23	
Management, professional, and related	-	-	-	-	29
Sales and office	-	-	-	-	19
Blue-collar occupations ${ }^{2}$.	24	26	26	25	-
Natural resources, construction, and maintenance.	-	-	-	-	26
Production, transportation, and material moving......	-	-	-	-	26
Service occupations................	8	6	7	8	8
Full-time.....	24	25	25	24	24
Part-time..	8	9	10	9	10
Union......	74	70	73	70	69
Non-union...........	15	16	16	15	15
Average wage less than $\$ 15$ per hour...	12	11	12	11	11
Average wage $\$ 15$ per hour or higher...	34	35	35	34	33
Goods-producing industries..	31	32	33	32	29
Service-providing industries....	17	18	19	18	19
Establishments with 1-99 workers...	9	9	10	9	9
Establishments with 100 or more workers..................	34	35	37	35	34

See footnotes at end of table.
34. Continued-National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

[^25]34. Continued-National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

Series	Year				
	2003	2004	2005	2006	$2007{ }^{1}$
Employee Contribution Requirement					
Employee contribution required..			61	61	65
Employee contribution not required..			31	33	35
Not determinable.			8	6	0
Percent of establishments					
Offering retirement plans...			51	48	46
Offering defined benefit plans...			11	10	10
Offering defined contribution plans			48	47	44

${ }^{1}$ The 2002 North American Industry Classification System (NAICS) replaced the 1987 Standard Industrial Classification (SIC)
System. Estimates for goods-producing and service-providing (formerly service-producing) industries are considered comparable Also introduced was the 2000 Standard Occupational Classification (SOC) to replace the 1990 Census of Population system.
Only service occupations are considered comparable.
${ }^{2}$ The white-collar and blue-collar occupation series were discontinued effective 2007.
${ }^{3}$ The take-up rate is an estimate of the percentage of workers with access to a plan who participate in the plan.
Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.
35. National Compensation Survey: Health insurance benefits in private industry by access, participation, and selected series, 2003-2007

Series	Year				
	2003	2004	2005	2006	$2007{ }^{1}$
Medical insurance Percentage of workers with access					
All workers..	60	69	70	71	71
White-collar occupations ${ }^{2}$.	65	76	77	77	-
Management, professional, and related	-	-	-	-	85
Sales and office..	-		-		71
Blue-collar occupations ${ }^{2}$.	64	76	77	77	-
Natural resources, construction, and maintenance..	-		-		76
Production, transportation, and material moving..	-		-	-	78
Service occupations.	38	42	44	45	46
Full-time..	73	84	85	85	85
Part-time.	17	20	22	22	24
Union.	67	89	92	89	88
Non-union....	59	67	68	68	69
Average wage less than $\$ 15$ per hour.	51	57	58	57	57
Average wage $\$ 15$ per hour or higher..	74	86	87	88	87
Goods-producing industries..	68	83	85	86	85
Service-providing industries...	57	65	66	66	67
Establishments with 1-99 workers..	49	58	59	59	59
Establishments with 100 or more workers...	72	82	84	84	84
Percentage of workers participating					
All workers...	45	53	53	52	52
White-collar occupations ${ }^{2}$	50	59	58	57	-
Management, professional, and related	-		-	-	67
Sales and office..	-		-	-	48
Blue-collar occupations ${ }^{2}$.	51	60	61	60	-
Natural resources, construction, and maintenance..	-	-	-	-	61
Production, transportation, and material moving.	-	-	-	-	60
Service occupations.	22	24	27	27	28
Full-time.	56	66	66	64	64
Part-time.	9	11	12	13	12
Union.	60	81	83	80	78
Non-union..	44	50	49	49	49
Average wage less than $\$ 15$ per hour.	35	40	39	38	37
Average wage $\$ 15$ per hour or higher..	61	71	72	71	70
Goods-producing industries.	57	69	70	70	68
Service-providing industries...	42	48	48	47	47
Establishments with 1-99 workers..	36	43	43	43	42
Establishments with 100 or more workers..	55	64	65	63	62
Take-up rate (all workers) ${ }^{3}$.	-	-	75	74	73
Dental					
Percentage of workers with access					
All workers....	40	46	46	46	46
White-collar occupations ${ }^{2}$.	47	53	54	53	-
Management, professional, and related	-	-	-	-	62
Sales and office.	-		-	-	47
Blue-collar occupations ${ }^{2}$.	40	47	47	46	-
Natural resources, construction, and maintenance..	-	-	-	-	43
Production, transportation, and material moving...	-	-	-	-	49
Service occupations.	22	25	25	27	28
Full-time...	49	56	56	55	56
Part-time.	9	13	14	15	16
Union..	57	73	73	69	68
Non-union..	38	43	43	43	44
Average wage less than $\$ 15$ per hour..	30	34	34	34	34
Average wage $\$ 15$ per hour or higher..	55	63	62	62	61
Goods-producing industries..	48	56	56	56	54
Service-providing industries...	37	43	43	43	44
Establishments with 1-99 workers..	27	31	31	31	30
Establishments with 100 or more workers...	55	64	65	64	64

[^26]| Series | Year | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 2003 | 2004 | 2005 | 2006 | $2007{ }^{1}$ |
| Percentage of workers participating | 3237 | 3743 | 36 | | 36 |
| All workers... | | | | | |
| White-collar occupations ${ }^{2}$. | | | 42 | 41 | - |
| Management, professional, and related . | | | - | - | 51 |
| Sales and office... | | - | - | - | 33 |
| Blue-collar occupations ${ }^{2}$. | 33 | 40 | 39 | 38 | - |
| Natural resources, construction, and maintenance.. | | | - | - | 36 |
| Production, transportation, and material moving.. | - | - | - | - | 38 |
| Service occupations.. | 15 | 16 | 17 | 18 | 20 |
| Full-time.. | 40 | 46 | 45 | 44 | 44 |
| Part-time.. | 6 | 8 | 9 | 10 | 9 |
| Union.. | 51 | 68 | 67 | 63 | 62 |
| Non-union...... | 30 | 33 | 33 | 33 | 33 |
| Average wage less than $\$ 15$ per hour.. | 22 | 26 | 24 | 23 | 23 |
| Average wage $\$ 15$ per hour or higher. | 47 | 53 | 52 | 52 | 51 |
| Goods-producing industries.. | 42 | 49 | 49 | 49 | 45 |
| Service-providing industries... | 29 | 33 | 33 | 32 | 33 |
| Establishments with 1-99 workers.. | 21 | 24 | 24 | 24 | 24 |
| Establishments with 100 or more workers.. | 44 | 52 | 51 | 50 | 49 |
| Take-up rate (all workers) ${ }^{3}$. | - | - | 78 | 78 | 77 |
| Vision care | | | | | |
| Percentage of workers with access.. | 25 | 29 | 29 | 29 | 29 |
| Percentage of workers participating... | 19 | 22 | 22 | 22 | 22 |
| Outpatient Prescription drug coverage | | | | | |
| Percentage of workers with access... | - | - | 64 | 67 | 68 |
| Percentage of workers participating.. | - | - | 48 | 49 | 49 |
| Percent of estalishments offering healthcare benefits | 58 | 61 | 63 | 62 | 60 |
| Percentage of medical premium paid by Employer and Employee | | | | | |
| Single coverage | | | | | |
| Employer share.. | 82 | 82 | 82 | 82 | 81 |
| Employee share.. | 18 | 18 | 18 | 18 | 19 |
| Family coverage | | | | | |
| Employer share... | 70 | 69 | 71 | 70 | 71 |
| Employee share.. | 30 | 31 | 29 | 30 | 29 |

${ }^{1}$ The 2002 North American Industry Classification System (NAICS) replaced the 1987 Standard Industrial Classification (SIC) System. Estimates for goods-producing and service-providing (formerly service-producing) industries are considered comparable. Also introduced was the 2000 Standard Occupational Classification (SOC) to replace the 1990 Census of Population system.
Only service occupations are considered comparable.
${ }^{2}$ The white-collar and blue-collar occupation series were discontinued effective 2007.
${ }^{3}$ The take-up rate is an estimate of the percentage of workers with access to a plan who participate in the plan.
Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.
36. National Compensation Survey: Percent of workers in private industry with access to selected benefits, 2003-2007

Benefit	Year				
	2003	2004	2005	2006	2007
Life insurance..	50	51	52	52	58
Short-term disabilty insurance..................................	39	39	40	39	39
Long-term disability insurance.................................	30	30	30	30	31
Long-term care insurance.	11	11	11	12	12
Flexible work place..	4	4	4	4	5
Section 125 cafeteria benefits					
Flexible benefits..	-	-	17	17	17
Dependent care reimbursement account....................	-	-	29	30	31
Healthcare reimbursement account...............	-	-	31	32	33
Health Savings Account.	-	-	5	6	8
Employee assistance program.................................	-	-	40	40	42
Paid leave					
Holidays...	79	77	77	76	77
Vacations...	79	77	77	77	77
Sick leave..	-	59	58	57	57
Personal leave..	-	-	36	37	38
Family leave					
Paid family leave..	-	-	7	8	8
Unpaid family leave..	-	-	81	82	83
Employer assistance for child care............................	18	14	14	15	15
Nonproduction bonuses..	49	47	47	46	47

Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.

37. Work stoppages involving 1,000 workers or more

Measure	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
Number of stoppages: Beginning in period. \qquad In effect during period. \qquad	11 11				3 4	3 4	0 3	2	4 5	0 1	1 2	1	2 4	0	1
Workers involved: Beginning in period (in thousands).... In effect during period (in thousands).	$\begin{aligned} & 44.5 \\ & 47.7 \end{aligned}$	$\begin{aligned} & 112.5 \\ & 129.8 \end{aligned}$	5.3 5.3	1.5 3.4	7.5 9.4	5.0 6.9	0.0 5.4	46.3 46.3	39.9 41.2	0.0 1.3	1.0 2.3	6.0 8.3	26.6 28.9	0.0 2.3	1.9 3.2
Days idle: Number (in thousands). \qquad Percent of estimated working time ${ }^{1}$.	$\begin{array}{r} 302.3 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 1,020.2 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 33.5 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 56.4 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 80.4 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 75.3 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 80.9 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 479.9 \\ 0.02 \\ \hline \end{array}$	$\begin{array}{r} 98.5 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 26.0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 29.0 \\ 0 \\ \hline \end{array}$	60.3 0	72.6 0	44.0 0	$\begin{array}{r}32.4 \\ 0 \\ \hline\end{array}$

[^27][^28]38. Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers:
U.S. city average, by expenditure category and commodity or service group
[1982-84 = 100, unless otherwise indicated]

Series	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
CONSUMER PRICE INDEXFOR ALL URBAN CONSUMERS															
All	56	224.939	223.467	224.906	225.964	225.722	225.922	226.545	226.889	226.421	6.230	225.672	6.665	27.663	29.392
All items (1967 = 100)	653.198	673.818	669.409	673.717	676.887	676.162	676.762	678.628	679.658	678.258	677.684	676.014	678.988	681.977	687.157
Food and beverages.	219.984	227.866	225.479	226.248	227.082	227.451	228.323	229.490	230.448	230.885	230.656	231.130	232.559	232.453	232.708
Food.	219.625	227.842	225.350	226.150	226.976	227.360	228.316	229.554	230.573	231.017	230.790	231.301	232.666	232.486	232.792
Food at	215.836	226.201	223.430	224.233	225.356	225.588	226.891	228.354	229.739	230.196	229.380	229.982	231.694	231.180	231.383
Cereals and bakery products	250.449	260.311	255.482	255.956	259.140	260.563	260.921	262.970	264.135	265.433	265.552	265.997	266.677	267.821	267.101
Meats, poultry, fish, and eggs	207.694	223.161	218.808	220.747	223.227	223.105	224.394	225.651	227.194	227.853	227.583	228.853	229.809	228.610	230.485
Dairy and related products ${ }^{1}$	45	212.745	206.161	209.707	211.327	212.286	21	216.720	219.381	219.493	218.7	218.458	220.492	219.3	219.131
Fruits and vegetables	273.458	284.662	290.279	286.501	284.174	280.721	282.018	282.579	286.865	284.269	282.605	283.550	285.437	281.072	279.057
Nonalcoholic beverages and beverage															
mater	161.602	166.790	165.038	166.086	165.862	166.197	167.802	168.268	168.213	169.137	168.606	168.520	170.454	169.758	169.513
Other foods at hom	191.124	197.358	194.747	195.239	196.161	197.270	198.152	200.054	200.347	201.315	199.924	200.566	202.756	204.001	204.574
Sugar and sweets.	201.242	207.832	205.505	203.783	205.285	207.672	207.321	209.780	213.330	213.602	210.039	210.846	213.700	213.902	215.044
Fats and oils	200.587	219.163	214.352	213.818	216.370	218.771	221.325	223.509	224.770	226.216	224.907	227.601	234.252	233.196	233.411
Other foods	204.553	209.292	206.743	207.892	208.518	209.259	210.202	212.114	211.619	212.737	211.649	211.986	213.602	215.473	216.043
Other miscellaneous foods ${ }^{1,2}$.	121.683	123.996	122.665	123.769	123.343	123.692	124.418	125.193	125.044	125.461	125.702	126.293	125.536	127.193	126.856
Food away from home ${ }^{1}$...	226.114	1	229.282	230.082	230.501	231.097	231.580	232.513	32	233.459	234.046	234.435	68	235.603	236.073
Other food awav from home ${ }^{1,2}$ Alcoholic beverages.	159.276	162.794	161.886	162.218	162.483	162.494	162.971	163.468	163.334	163.978	164.120	164.095	165.884	165.566	165.367
	223.291	226.685	225.693	226.053	226.989	227.154	226.908	227.126	227.265	227.606	227.363	227.335	229.704	230.704	230.193
Housing........................	216.256	219.102	217.707	217.901	218.484	219.553	220.230	220.506	220.540	220.138	219.969	220.193	220.805	221.117	221.487
Shelter...	248.396	251.646	250.310	250.447	250.745	251.422	252.155	252.546	252.647	253.101	253.312	253.716	254.409	254.931	255.609
Rent of primary residence.. Lodging away from home.....	249.385	253.638	252.145	252.221	252.393	252.592	253.085	254.003	254.628	255.651	256.367	257.189	257.714	258.184	258.569
Lodging away from home \qquad Owners' equivalent rent of primary residence ${ }^{3}$	656	137.401	136.486	136.597	139.094	145.608	150.095	145.100	140.259	136.551	130.687	128.131	131.601	136.832	141.314
	256.584	259.570	258.263	258.400	258.587	259.010	259.573	260.178	260.459	261.034	261.503	261.982	262.543	262.812	263.317
Tenants' and household insuranceen, ${ }^{1,2}$Fuels and utilities......................	125.682	127.379	125.863	126.574	126.780	127.155	127.278	127.581	127.922	128.416	128.777	129.480	129.929	129.158	129.978
	214.187	220.367	216.672	217.254	219.956	225.022	226.643	226.493	226.409	220.450	218.199	217.674	218.199	217.189	216.667
Fuels and utilities.	189.286	193.648	190.071	190.622	193.498	199.122	200.587	200.144	199.814	193.058	190.444	189.711	189.945	188.393	187.591
	275.132	337.123	341.884	348.657	347.002	340.775	336.894	335.995	334.735	335.148	342.823	340.512	344.644	350.482	356.637
Fuel oil and other fuels...... Gas (piped) and electricity	192.886	194.386	190.213	190.459	193.698	200.191	202.002	201.564	201.270	193.843	190.572	189.891	189.942	187.962	186.784
Household furnishings and operations.	125.490	124.943	124.735	124.893	125.141	125.048	124.959	125.138	125.013	125.223	125.073	125.170	125.629	126.180	126.107
Apparel ..	119.503	122.111	121.286	122.226	122.271	120.578	118.770	121.547	125.272	127.590	127.285	123.470	122.105	123.312	127.258
Men's and boys' apparel..	111.914	114.698	112.337	113.487	114.976	114.279	113.914	114.399	116.602	119.506	119.930	115.997	116.409	116.400	119.297
Women's and girls' apparel..	107.081	109.166	109.544	110.144	109.237	106.746	103.349	107.780	113.304	115.851	115.603	110.918	107.644	110.044	115.566
Infants' and toddlers' apparel ${ }^{1}$	114.180	113.571	111.547	112.323	111.199	110.011	111.541	114.563	116.615	118.048	118.775	118.032	118.399	118.161	119.881
Footwear.	127.988	128.482	128.518	128.581	129.618	128.054	126.092	127.500	130.921	130.886	130.293	128.208	126.915	127.668	130.077
Transportation..	193.396	212.366	211.014	216.867	220.270	216.880	216.164	216.057	215.198	212.127	211.358	208.585	210.799	214.429	220.842
Private transportation.	188.747	207.641	206.165	212.210	215.829	212.216	211.432	211.315	210.513	207.404	206.635	203.809	206.307	210.013	216.536
New and used motor vehicles ${ }^{2}$,New vehicles.....................	97.149	99.770	75	98.972	99.915	101.004	101.442	101.524	100.988	100.540	100.021	99.795	99.659	99.889	100.325
	138.005	141.883	140.860	141.462	142.494	143.054	142.763	142.327	142.334	142.535	142.736	142.953	143.438	144.326	144.350
New vehicles. \qquad Used cars and trucks ${ }^{1}$	143.128	149.011	144.072	145.968	148.361	151.776	154.184	155.823	153.586	151.494	149.230	148.140	147.143	147.011	148.677
Motor fuel..................	239.178	302.619	303.565	326.024	337.359	318.242	313.488	311.962	309.745	296.944	294.049	282.501	292.236	306.348	330.834
Gasoline (all types)	238.594	301.694	302.574	325.282	336.999	317.543	312.760	311.269	309.018	295.877	292.486	280.713	290.762	305.076	329.780
Motor vehicle parts and equipment.	136.995	143.909	140.686	141.590	143.328	144.618	144.960	145.537	145.646	145.308	146.338	147.499	148.126	148.230	148.298
Motor vehicle maintenance and repair	247.954	253.099	250.820	251.458	252.376	252.529	252.769	253.337	255.244	255.774	255.663	255.644	256.405	256.968	256.616
Public transportation.	251.351	269.403	270.366	272.187	271.417	272.297	272.868	272.949	271.199	269.158	268.478	266.958	263.96	265.830	269.566
Medical care.	388.436	400.258	397.726	398.813	399.375	399.552	400.305	400.874	401.605	403.430	404.858	405.629	408.056	410.466	411.498
Medical care commodities.	314.717	324.089	322.691	324.241	324.399	324.102	324.159	324.395	325.130	325.962	326.624	327.254	329.201	331.867	333.188
Medical care services..	411.208	423.810	420.852	421.716	422.438	422.813	423.847	424.546	425.258	427.467	429.191	430.005	432.583	434.832	435.721
Professional services.	328.186	335.666	334.671	334.978	335.132	335.494	336.150	336.378	336.461	337.257	337.347	337.907	338.714	339.136	339.389
Hospital and related services.	607.679	641.488	634.387	637.188	639.456	639.728	641.712	643.600	645.026	649.496	654.117	653.839	659.19	664.59	664.855
Recreation ${ }^{2}$.	113.313	113.357	113.261	113.368	113.659	113.654	113.492	113.592	113.440	113.270	113.232	113.499	114.183	114.333	114.675
Video and audio ${ }^{1,2}$.	99.12	98.401	98.719	98.918	98.707	98.373	98.672	98.222	98.491	98.572	98.315	98.225	98.743	99.371	99.856
Education and communication ${ }^{2}$.	129.919	131.466	130.682	130.643	130.600	130.568	130.859	132.028	132.62	132.755	132.75	132.72	133.06	133	133.235
	199.337	207.768	204.251	204.316	204.668	204.821	206.158	210.266	212.348	212.680	212.751	212.745	213.067	213.039	213.132
Education ${ }^{2}$. ${ }^{\text {Educational books and supplies }}$	505.569	529.545	522.903	522.440	523.640	524.307	525.981	530.785	538.887	540.431	541.618	540.742	547.629	548.192	550.401
Tuition, other school fees, and child care.	573.174	597.208	586.914	587.151	588.138	588.556	592.539	604.798	610.562	611.458	611.581	611.633	612.104	611.974	612.093
Communication ${ }^{1,2}$..	. 681	83.345	83.730	83.655	83.466	83.367	83.211	83.077	83.017	83.049	83.016	82.990	83.280	83.44	83.456
Information and information processina ${ }^{1,2}$	81.513	79.964	80.364	80.281	80.081	79.980	79.822	79.687	79.625	79.659	79.625	79.59	79.85	79.92	79.939
Telephone services ${ }^{1,2}$ Information and information processing	102.379	101.209	101.258	101.191	101.159	101.204	100.961	101.006	101.084	101.257	101.259	101.397	101.687	101.728	101.800
other than telephone services ${ }^{1,4}$.	9.413	9.030	9.19	9.176	9.096	9.038	9.032	8.960	8.912	8.882	8.866	8.818	8.85	8.873	8.862
Personal computers and peripheral															
equipment ${ }^{1,2}$.	76.377	68.901	72.073	72.010	70.898	69.125	68.788	66.753	65.796	65.511	65.849	64.348	64.356	64.686	64.086
Other goods and services.	381.291	387.224	385.637	386.226	385.476	386.171	386.494	387.053	388.627	389.119	390.761	391.043	391.382	391.236	392.364
Tobacco and smoking	807.330	834.769	830.693	827.287	825.690	828.860	833.067	837.427	843.141	842.785	843.604	847.063	851.016	847.880	845.760
Personal care ${ }^{1}$	206.643	208.556	207.758	208.485	208.080	208.307	208.174	208.199	208.843	209.232	210.354	210.257	210.299	210.330	211.289
Personal care products ${ }^{1}$ Personal care services ${ }^{1}$	161.062	160.529	160.981	161.418	159.478	160.163	159.763	159.017	160.162	160.705	161.585	160.825	161.256	160.616	162.620
	229.614	230.800	230.034	230.380	230.505	230.614	230.454	230.779	230.974	231.238	232.216	232.302	232.039	232.907	233.300

See footnotes at end of table.
38. Continued-Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers
U.S. city average, by expenditure category and commodity or service group
[1982-84 = 100, unless otherwise indicated]

38. Continued-Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers: U.S. city average, by expenditure category and commodity or service group
[1982-84 $=100$, unless otherwise indicated]

Series	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar
New vehic		142.866	141.899	142.475	143.476	143.995	143.687	143.276	143.290	143.539	143.778	143.994	144.431	145.475	145.511
ed cars and truc	$\begin{aligned} & 144.007 \\ & 240.094 \end{aligned}$	150.010	145.014		149.304	152.759	155.201	156.860	154.645	152.569	150.310	149.207	148.197	148.055	149.726
Motor fue		303.848	305.066	327.663	338.832	319.323	314.806	313.307	310.810	297.935	295.069	283.528	293.496	307.606	332.384
Gasoline (all types)	239.629	303.067	304.224	327.095	338.656	318.779	314.232	312.768	310.227	296.999	293.628	281.852	292.151	306.466	331.481
Motor vehicle parts and	136.998	143.796	140.693	141.505	143.257	144.458	144.840	145.390	145.652	145.326	146.151	147.223	147.804	147.905	147.990
Motor vehicle maintenance	250.543	255.760	253.391	253.990	255.042	255.133	255.509269.003	256.077269.427	258.001	258.440266.204	258.342	258.355	259.076	259.689	259.389
Public transportation	248.713	266.151	266.726	268.501	268.226	268.615			267.826		265.815	264.424	262.018	264.030	267.589
Medical care	$\begin{aligned} & 389.766 \\ & 306.257 \end{aligned}$	402.187	399.516	400.683	401.316	401.398	402.160	269.427 402.783	403.433	405.472	407.128	8407.909	410.459	413.022	414.116
Medical care comm		315.845	314.190	315.798	316.099	315.710	315.957	316.299	316.869	317.9013	318.671	319.396	321.314	323.842	325.227
Medical care service	$\begin{aligned} & 306.257 \\ & 414.273 \end{aligned}$	427.551		425.450	426.210	426.498	427.464	428.190	428.856	431.274	433.269	434.051341.593	436.798	4	440.246
Professional servic	331.456	339.328	424.516 338.225	338.558	338.828	339.198	339.756	340.053	340.195	341.110	341.148		342.491	342.887	343.092
Hospital and related servic	608.516	644.431	637.216	640.223	642.422	642.513	644.693	646.560	647.586	652.231	657.707	657.440	662.841	669.040	669.329
Recreation ${ }^{2}$	109.812	109.898	109.848	109.933	110.219	110.216	110.134	110.146	109.995	109.869	109.723	109.959	. 556	0.881	20
Video and audio ${ }^{1,}$	99.	99.08	99.398	99.523	99.331	99.005	99.	98.939	99.148	99.339	99.095	99.028	99.563	100.192	75
Education and commun	1	125.520	125.047	124.993	12	124.906	124.994	12	126	126.415	126.392	12	126.735	853	126.905
Education ${ }^{2}$	06	204.761	201.588	201.611	202.023	202.119	203.181	206.790	208.721	209.3	209.453	209.4	209.865	09.868	209.968
Educational books and sup	508.386	534.846	527.623	526.990	528.326	529.103	529.929	536.250	544.702	546.888	548.418	547.576	554.390	554.958	557
Tuition, other school fees,	552.958	575.357	566.335	566.469	567.600	567.816	570.995	581.447	586.531	588.222	588.409	588.489	589.117	589.075	589.18
Communication ${ }^{1,2}$	87.317	85.789	86.124	86.057	85.877	85.819	85.628	85.545	5.492	85.543	486	510	85.761	892	85.922
Information and information procer	85.126	83.447	83.793	83.719	83.534	83.47	83.282	83.19	83.1	83.196	83.139	83.163	83.391	83.455	3.4
Telephone services ${ }^{1,}$	102.086	100.626	100.701	100.643	100.610	100.657	100.366	100.405	100.475	100.616	100.620	100.764	101.014	101.050	101
Information and information proces															
other than telephone services ${ }^{14}$	9.960	9.571	9.72	9.71	9.623	9.575	9.573	9.514	9.46	9.440	9.408	. 371	9.40	9.423	. 42
Personal computers and peripheral equipment ${ }^{1,2}$.	73	68.439	71.404	71.220	70.071	68.426	230	66.530	65.435	65.342	613	64.421	64.382	64.729	64.198
Other goods and service	409.278	416.899	415.318	415	41	41	41	41	41	419.067	420.462	421.000	72	421.412	422.358
Tobacco and smoking	812.347	839.665	835.368	832.003	830.137	833.452	837.692	842.479	848.513	847.868	848.791	852.435	856.419	853.214	851.36
Personal care ${ }^{1}$	204.299	206.361	205.738	206.422	205.919	206.165	206.069	205.957	206.615	206.887	207.847	207.747	4	207.958	
Personal care	161.174	161.045	161.667	162.088	160.083	160.780	160.567	159.655	160.623	160.970	161.716	160.95	161.473	161.121	163.00
Personal care services ${ }^{1}$	229.824	230.958	230.252	230.597	230.709	230.814	230.579	230.907	231.139	231.409	22	23	32.093	232.964	233.362
Miscellaneous personal ser	355.502	364.346	360.881	362.774	363.466	364.113	364.597	365.826	366.656	366.867	368.036	368.816	368.843	369.051	369.972
m															
Co					191.543	189.779	189.508	190.217	190.644	189.605	073	187.472	931	190.816	194.276
Food and bevera	2	227.276	224.825	225.667	226.473	226.813	227.701	228.957	229.965	230.420	230.18	230.642	232.052	231.971	232.240
Commodities less food and beverages	155.064	166.459	165.647	169.461	171.531	168.922	168.166	168.623	168.793	167.147	166.502	164.072	165.511	168.180	172.900
Nondurables less food and beverage	198.517	220.100	219.775	226.985	230.306	223.944	221.945	222.704	223.817	220.91	220.18	215.404	218.318	223.359	232.63
Appare	118.733	121.293	120.091	121.140	121.312	119.720	117.830	120.624	124.716	126.966	126.764	123.203	121.896	123.044	126.94
Nondurab and app			286.361	297.497	302.815	293.390	291.265	290.820	290.172	284.081	283.006	277.351	282.875	290.400	18
Dura	112.513	114.313	113.063	113.678	114.560	115.461	115.866	116.037	115.332	114.872	114.31	114.098	105	470	114.76
Servic	256.628	260.925	259.108	259.419	260.062	261.122	261.77	262.34	262.636	262.42	262.53	262.9	263.6	263.90	26
Rent of shelter	233.507	236.603	235.413	235.544	235.734	236.207	236.781	237.244	237.418	237.944	238.318	238.834	9887	.820	240.373
Transporatation se	259.985	268.161	266.383	267.258	267.729	268.122	268.170	268.778	269.151	270.160	271.172	271.174	270.972	271.019	71.89
Other service	296.066	299.544	298.010	298.262	298.779	298.819	299.077	300.411	301.130	301.477	301.609	302.364	303.344	303.908	304.69
Special index															
All items less foo		220.401	219.027	220.894	222.174	221.604	221.625	222.144	222.384	221.548	221.324	220.479	221.476	222.792	225.059
All items less shel	205.943	215.223	213.549	215.853	217.445	216.673	216.683	217.387	217.817	216.732	216.274	215.189	216.427	217.801	220
All items less medical ca	206.828	214.226	212.722	214.442	215.660	215.216	215.361	215.996	216.346	215.626	215.34	214.658	215.653	216.699	218.70
Commodities less fo	157.422	168.646	167.826	171.	173.603	171.059	170.311	170.764	170.938	169.3	168	16	167.821	170.4	175.097
Nondurables less food	200.147	220.793	220.431	227.290	230.472	224.451	222.537	223.269	224.341	221.629	220.944	216.421	219.315	224.205	233.049
Nondurables less food and app	248.965	279.965	280.056	290.247	295.146	286.570	284.603	284.219	283.654	278.1	277.19	272.053	277.315	284.362	296
Nondurable	209.360	224.728	223.402	227.661	229.820	226.570	225.916	226.913	227.983	226.642	226.140	223.793	226.025	228.7	233
Services less rent of shelter ${ }^{3}$.	251.210	256.386	254.057	254.540	255.643	257.266	257.932	258.552	258.945	257.887	257.66	257.91	258.616	258.697	259.
Services less medical care servic	245.533	249.355	247.622	247.899	248.528	249.607	250.237	250.789	251.058	250.733	250.753	251.150	251.705	251.882	252.34
Energy...	211.926	246.086	244.773	256.400	263.494	256.663	255.169	254.191	252.823	242.844	240.073	233.943	238.978	245.15	256.979
All items less energy.	215.173	219.598	218.011	218.537	219.041	219.383	219.748	220.587	221.161	221.643	221.720	221.735	222.298	222.758	223.52
All items less food and energy.	214.835	218.461	217.067	217.525	217.966	218.306	218.548	219.290	219.766	220.258	220.40	220.325	220.736	221.31	222.169
Commodities less food and	145.728	148.050	146.835	147.472	148.045	148.321	148.206	149.003	149.633	149.890	149.572	148.692	148.645	149.277	150.368
Energy commodities..	242.805	306.719	308.083	330.157	340.895	321.775	317.281	315.799	313.363	300.937	298.469	287.22	297.049	310.99	335.29
Services less energy	263.713	268.270	266.766	267.077	267.410	267.791	268.303	268.988	269.337	270.000	270.500	271.036	271.762	272.318	273.00

[^29]${ }^{4}$ Indexes on a December $1988=100$ base.
NOTE: Index applied to a month as a whole, not to any specific date.
39. Consumer Price Index: U.S. city average and available local area data: all items
[1982-84 = 100, unless otherwise indicated]

${ }^{1}$ Foods, fuels, and several other items priced every month in all areas; most other goods and services priced as indicated
M-Every month
1-January, March, May, July, September, and November.
2-February, April, June, August, October, and December.
${ }^{2}$ Regions defined as the four Census regions
3 Indexes on a December 1996=100 base.
${ }_{4}$ The "North Central" region has been renamed the "Midwest" region by the Census
Bureau. It is composed of the same geographic entities.
${ }^{5}$ Indexes on a December $1986=100$ base
${ }^{6}$ In addition, the following metropolitan areas are published semiannually and appea in tables 34 and 39 of the January and July issues of the CPI Detailed

Report: Anchorage, AK; Cincinnatti, OH-KY-IN; Kansas City, MO-KS; Milwaukee-Racine WI; Minneapolis-St. Paul, MN-WI; Pittsburgh, PA; Port-land-Salem, OR-WA; St Louis, MO-IL; San Diego, CA; Tampa-St. Petersburg-Clearwater, FL.
Indexes on a November $1996=100$ base.
NOTE: Local area CPI indexes are byproducts of the national CPI program. Each loca index has a smaller sample size and is, therefore, subject to substantially more sampling and other measurement error. As a result, local area indexes show greater volatility than and other measurement error. As a result, local area indexes show greater volatility than Labor Statistics strongly urges users to consider adopting the national average CPI for use in their escalator clauses. Index applies to a month as a whole, not to any specific date. Dash indicates data not available.
40. Annual data: Consumer Price Index, U.S. city average, all items and major groups
[1982-84 = 100]

41. Producer Price Indexes, by stage of processing

[1982 = 100]

Grouping	Annual average		2011										2012		
	2010	2011	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec. ${ }^{\text {p }}$	Jan. ${ }^{\text {p }}$	Feb. ${ }^{\text {p }}$	Mar. ${ }^{\text {p }}$
Finished goods.	179.8	190.5	189.1	191.4	192.5	191.4	192.2	191.7	192.6	191.8	191.7	191.1	191.9	192.7	194.4
Finished consumer goods.	189.1	203.3	201.8	204.8	206.3	204.7	205.7	204.9	206.2	204.5	204.4	203.4	204.3	205.4	207.9
Finished consumer foods.	182.4	193.9	192.9	193.0	191.0	192.4	193.5	195.7	197.0	195.9	197.9	197.2	196.5	196.5	197.3
Finished consumer goods excluding foods. \qquad	190.4	205.5	203.7	207.8	210.5	207.8	208.8	207.0	208.3	206.3	205.5	204.4	206.0	207.4	210.5
Nondurable goods less food.	210.1	231.5	229.5	235.2	239.4	235.2	236.6	233.8	235.7	231.6	230.4	228.8	230.8	232.9	237.4
Durable goods..	144.9	147.4	146.2	146.8	146.6	146.9	147.2	147.3	147.3	149.7	149.7	149.5	150.1	150.1	150.3
Capital equipment.	157.3	159.7	158.8	159.2	159.2	159.5	159.7	159.7	159.8	161.2	161.3	161.4	162.1	162.2	162.3
Intermediate materials, supplies, and components....	183.4	199.8	197.6	201.0	203.2	203.3	204.1	202.8	203.2	200.2	199.9	198.5	198.7	200.1	203.3
Materials and components for manufacturing.	174.0	189.8	187.7	191.1	192.6	192.4	193.3	192.7	192.8	190.6	189.5	187.7	188.4	190.8	192.8
Materials for food manufacturing...	174.4	193.4	190.5	193.3	192.9	193.8	195.9	199.2	199.4	196.4	197.0	195.7	195.7	195.4	195.9
Materials for nondurable manufacturing	215.4	249.2	244.0	251.9	257.3	256.3	257.8	255.0	256.2	251.3	247.6	242.3	243.3	249.5	256.2
Materials for durable manufacturing	186.6	204.2	204.2	208.0	207.8	206.8	207.9	207.2	206.1	202.4	201.6	200.1	201.6	204.2	204.3
Components for manufacturing.	142.2	145.8	144.7	145.4	145.7	146.1	146.4	146.5	146.5	146.7	146.8	146.8	147.1	147.4	147.5
Materials and components for construction. \qquad	205.7	212.8	210.9	212.1	212.8	213.7	214.7	214.6	214.5	214.4	214.2	214.2	214.7	216.8	217.5
Processed fuels and lubricants.	185.2	215.0	212.0	218.6	224.3	224.2	225.1	219.5	221.0	212.2	213.9	211.9	210.5	209.9	219.7
Containers.	201.2	205.4	204.4	204.9	206.4	206.8	207.1	205.9	206.0	205.4	205.3	205.4	205.1	206.6	206.7
Supplies..	175.0	184.2	182.3	183.9	184.5	185.2	185.7	186.1	186.7	185.8	185.4	184.9	185.3	186.1	186.9
Crude materials for further processing	212.2	249.4	248.2	261.3	255.5	256.8	256.9	251.2	251.1	242.8	248.5	242.0	246.4	244.6	248.5
Foodstuffs and feedstuffs..	152.4	188.4	185.7	193.1	190.3	195.3	192.6	196.3	192.4	186.3	188.6	184.5	188.3	191.2	196.2
Crude nonfood material	249.3	284.0	284.4	301.7	293.6	291.3	293.9	279.7	283.4	273.8	282.2	274.0	278.6	273.1	275.7
Special groupings:															
Finished goods, excluding foods.	178.3	188.9	187.4	190.1	191.9	190.3	191.0	189.8	190.7	189.9	189.4	188.8	190.0	190.9	192.9
Finished energy goods..	166.9	193.0	191.6	200.0	206.1	199.5	200.3	195.6	197.9	191.2	189.3	186.3	188.1	190.8	197.0
Finished goods less energy.	175.5	181.4	180.1	180.5	180.0	180.6	181.4	182.1	182.5	183.5	184.0	184.0	184.5	184.7	185.0
Finished consumer goods less energy	183.9	191.7	190.2	190.5	189.9	190.6	191.7	192.7	193.4	194.1	194.8	194.7	195.2	195.4	195.9
Finished goods less food and energy.	173.6	177.8	176.4	176.9	176.9	177.2	177.9	178.1	178.3	179.8	179.9	180.1	181.0	181.3	181.5
Finished consumer goods less food and energy \qquad	185.1	190.8	189.0	189.5	189.7	189.9	191.0	191.4	191.8	193.4	193.4	193.7	194.9	195.2	195.6
Consumer nondurable goods less food and energy \qquad	220.8	230.0	227.6	228.0	228.4	228.7	230.6	231.4	232.2	232.7	232.9	233.5	235.3	236.2	236.7
Intermediate materials less foods and feeds.	184.4	200.4	198.2	201.7	204.0	204.0	204.8	203.1	203.5	200.5	200.2	198.9	199.1	200.6	203.9
Intermediate foods and feeds.	171.7	192.3	189.1	192.5	192.9	194.1	195.3	197.9	198.7	194.9	194.6	192.9	192.9	193.1	194.6
Intermediate energy goods.	187.8	219.8	216.6	223.6	229.4	229.1	230.8	224.1	226.0	217.4	219.0	216.9	215.8	215.4	225.8
Intermediate goods less energy.	180.0	192.2	190.2	192.7	193.8	194.1	194.6	194.7	194.8	193.2	192.4	191.3	191.8	193.6	194.9
Intermediate materials less foods and energy	180.8	192.0	190.2	192.5	193.8	193.9	194.4	194.2	194.1	192.8	192.0	190.9	191.5	193.5	194.7
Crude energy materials...	216.7	240.4	241.5	260.6	251.9	246.9	249.9	231.0	235.6	229.8	243.2	232.7	235.4	227.2	227.6
Crude materials less energy...	197.0	240.0	237.2	245.8	242.3	247.7	245.7	249.0	245.6	236.3	236.5	233.0	237.8	240.1	245.6
Crude nonfood materials less energy...	329.1	390.4	387.8	399.1	393.8	399.6	401.0	402.2	401.4	381.2	373.5	372.7	380.7	381.1	388.1

$\mathrm{p}=$ preliminary
42. Producer Price Indexes for the net output of major industry groups
[December 2003 $=100$, unless otherwise indicated]

43. Annual data: Producer Price Indexes, by stage of processing $[1982=100]$

44. U.S. export price indexes by end-use category
[2000 = 100]

Category	2011										2012		
	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
ALL COMMODITIES..	132.7	133.8	134.3	134.5	134.0	134.6	135.3	132.6	132.7	132.1	132.5	133.1	134.1
Foods, feeds, and beverages.	206.9	208.2	207.4	210.6	203.2	208.9	213.8	199.0	203.1	199.0	201.6	200.5	206.0
Agricultural foods, feeds, and beverages.	212.1	213.2	211.6	214.6	205.8	212.0	217.3	201.1	205.7	201.2	203.8	202.6	208.6
Nonagricultural (fish, beverages) food products.	157.9	160.7	170.2	174.6	183.7	184.8	184.6	184.8	182.6	183.8	185.9	186.8	186.1
Industrial supplies and materials.	188.3	191.6	193.1	191.8	191.3	191.7	192.8	186.3	185.9	184.6	183.9	186.2	188.3
Agricultural industrial supplies and materials.	258.9	246.1	240.5	234.8	226.9	215.7	212.5	209.8	206.8	200.7	200.7	202.0	201.7
Fuels and lubricants.	276.4	287.0	287.6	284.0	285.9	284.1	284.6	268.9	278.1	270.6	273.7	274.0	280.9
Nonagricultural supplies and materials, excluding fuel and building materials.	173.8	176.7	178.9	178.5	177.8	179.6	181.2	175.9	173.4	173.8	172.0	175.0	176.4
Selected building materials...	116.3	116.7	116.4	116.2	115.7	115.3	115.8	116.2	116.3	115.6	115.8	117.0	117.2
Capital goods..	104.0	104.2	104.4	104.6	104.6	104.7	104.6	104.6	104.5	104.6	105.4	105.7	105.9
Electric and electrical generating equipment.	111.1	111.5	113.4	113.6	114.1	114.1	114.1	113.7	112.9	112.8	112.3	112.6	113.0
Nonelectrical machinery...	93.9	94.0	94.0	94.2	94.2	94.3	94.2	94.3	94.2	94.3	95.2	95.2	95.3
Automotive vehicles, parts, and engines.	109.7	109.9	110.2	110.3	110.8	111.1	111.4	111.9	112.0	111.9	112.1	112.3	112.5
Consumer goods, excluding automotive.	113.9	114.3	114.9	116.3	116.9	117.2	117.4	116.9	116.7	116.6	116.7	116.7	116.8
Nondurables, manufactured..	113.4	113.6	114.1	114.1	114.7	114.9	114.7	113.8	113.6	113.9	114.6	114.7	115.0
Durables, manufactured..	112.9	112.4	111.4	112.7	112.8	113.0	113.6	113.4	113.3	113.3	113.4	114.0	114.3
Agricultural commodities...	218.8	217.8	215.5	217.2	208.5	211.9	216.0	201.9	205.3	200.5	202.8	201.9	206.9
Nonagricultural commodities.........................	126.5	127.7	128.4	128.6	128.7	129.1	129.5	127.7	127.5	127.3	127.5	128.3	129.0

45. U.S. import price indexes by end-use category
$[2000=100]$

Category	2011										2012		
	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
ALL COMMODITIES.	139.3	142.9	143.1	142.2	142.4	141.9	141.7	141.2	142.2	142.2	142.2	142.2	144.3
Foods, feeds, and beverages.	174.9	179.2	177.9	174.8	175.8	174.4	174.7	173.6	173.3	172.4	176.3	171.3	174.3
Agricultural foods, feeds, and beverages.	198.9	204.1	201.8	197.0	197.7	196.1	196.5	194.8	194.9	194.0	198.8	192.1	196.2
Nonagricultural (fish, beverages) food products..	120.7	122.9	123.9	124.5	126.2	125.3	125.3	125.6	124.1	123.7	125.4	124.3	124.6
Industrial supplies and materials.	256.3	270.6	270.7	266.1	266.8	263.8	262.5	260.1	264.4	263.6	262.4	263.1	272.1
Fuels and lubricants.	343.7	369.7	367.4	359.0	359.4	351.8	348.2	346.1	357.7	356.3	355.6	355.4	371.1
Petroleum and petroleum products	380.2	410.7	407.6	397.8	399.2	390.0	386.5	385.5	398.8	397.8	397.9	398.9	418.5
Paper and paper base stocks.	116.3	118.8	119.5	119.4	120.4	118.4	117.1	117.3	116.2	114.8	112.5	112.5	114.0
Materials associated with nondurable supplies and materials. \qquad	165.8	169.4	171.3	173.0	174.5	175.0	175.9	176.4	175.8	175.1	174.7	175.8	177.9
Selected building materials..	131.5	132.0	131.3	129.3	130.5	130.8	131.2	130.3	130.2	130.7	131.3	132.0	134.4
Unfinished metals associated with durable goods...	290.2	295.4	304.5	297.0	296.4	302.9	304.9	292.1	277.3	277.8	270.8	275.6	284.1
Nonmetals associated with durable goods.	112.1	112.9	113.3	114.3	115.0	115.5	116.3	116.3	115.8	115.2	114.7	114.7	115.3
Capital goods..	92.6	92.6	92.7	92.7	92.8	92.9	92.9	92.7	92.8	93.1	93.5	93.4	93.6
Electric and electrical generating equipme	115.6	116.6	117.0	117.1	118.2	118.6	118.4	118.6	118.5	118.4	118.9	119.1	119.5
Nonelectrical machinery..	86.5	86.3	86.4	86.4	86.3	86.4	86.4	86.1	86.1	86.4	86.7	86.6	86.6
Automotive vehicles, parts, and engines..	110.4	111.8	112.8	113.3	113.0	113.2	113.2	113.2	113.3	113.0	113.3	113.4	113.7
Consumer goods, excluding automotive..	104.7	105.3	105.5	105.8	106.1	106.4	106.6	107.2	107.3	107.7	107.5	107.6	107.7
Nondurables, manufactured.	110.3	110.8	110.9	111.6	112.1	112.6	112.8	114.2	114.3	114.4	114.5	114.4	114.5
Durables, manufactured....	99.2	99.5	99.9	99.7	99.6	99.8	100.1	99.9	100.0	100.3	100.0	100.1	100.3
Nonmanufactured consumer goods...............	107.8	109.5	109.4	111.8	114.3	114.0	114.9	115.1	114.5	119.3	118.6	119.8	118.0

46. U.S. international price Indexes for selected categories of services
[2000 $=100$, unless indicated otherwise]

Category	2010				2011				2012
	Mar.	June	Sept.	Dec.	Mar.	June	Sept.	Dec.	Mar.
Import air freight..	158.3	162.5	163.2	170.1	172.8	184.3	185.5	177.1	173.4
Export air freight..	124.0	126.3	125.7	128.1	139.2	147.4	146.4	144.2	149.0
Import air passenger fares (Dec. $2006=100$).	149.8	175.3	160.9	169.9	161.2	184.0	174.6	179.5	178.7
Export air passenger fares (Dec. $2006=100$).	157.7	176.3	172.2	169.0	172.8	186.6	192.7	191.1	185.1

47. Indexes of productivity, hourly compensation, and unit costs, quarterly data seasonally adjusted [2005 = 100]

Item	2009				2010				2011				2012 I
	I	II	III	IV	I	II	III	IV	I	II	III	IV	
Business													
Output per hour of all persons.	102.9	105.0	106.8	108.1	109.3	109.6	110.2	110.5	110.1	110.0	110.4	110.7	110.6
Compensation per hour	111.7	113.6	114.3	114.6	114.9	115.6	116.1	116.1	117.5	117.5	119.0	120.2	120.6
Real compensation per hour	102.6	103.9	103.6	103.1	103.1	103.9	104.0	103.2	103.3	102.2	102.7	103.4	103.1
Unit labor costs.	108.5	108.1	107.0	105.9	105.1	105.5	105.4	105.0	106.8	106.8	107.8	108.5	109.1
Unit nonlabor payments.	108.2	108.0	109.9	112.3	114.7	115.5	116.5	118.5	117.9	119.9	120.1	119.4	119.5
Implicit price deflator.	108.4	108.1	108.1	108.4	108.9	109.4	109.7	110.4	111.2	111.9	112.7	112.8	113.2
Nonfarm business													
Output per hour of all persons.	102.8	104.9	106.5	107.9	109.1	109.5	110.0	110.5	110.2	110.1	110.6	110.9	110.8
Compensation per hour.	111.7	113.6	114.2	114.5	114.9	115.6	116.1	116.1	117.6	117.4	119.1	120.2	120.7
Real compensation per hour	102.6	103.9	103.5	103.0	103.1	103.9	103.9	103.2	103.3	102.1	102.7	103.4	103.2
Unit labor costs.	108.6	108.3	107.2	106.1	105.3	105.6	105.6	105.1	106.7	106.7	107.7	108.4	109.0
Unit nonlabor payments.	108.5	108.1	110.3	112.3	114.7	115.6	116.2	118.0	117.1	119.0	119.1	118.6	118.7
Implicit price deflator.	108.6	108.2	108.4	108.5	109.0	109.5	109.7	110.2	110.8	111.5	112.2	112.4	112.8
Nonfinancial corporations													
Output per hour of all employees.	100.7	102.3	104.2	106.6	108.9	108.5	108.3	107.3	107.8	108.6	108.6	109.6	-
Compensation per hour	111.4	113.5	114.3	114.7	114.9	115.4	116.1	115.8	117.0	117.1	118.6	119.5	-
Real compensation per hour	102.4	103.8	103.6	103.2	103.2	103.7	103.9	103.0	102.8	101.9	102.3	102.8	-
Total unit costs.	114.4	114.5	112.4	110.1	107.4	107.3	107.6	108.3	108.7	108.1	109.1	108.8	-
Unit labor costs..	110.6	111.0	109.7	107.6	105.6	106.4	107.1	107.9	108.5	107.9	109.2	109.1	-
Unit nonlabor costs.	124.3	123.7	119.6	116.6	112.0	109.9	108.6	109.1	109.3	108.8	109.0	108.1	-
Unit profits.	81.2	75.0	83.6	96.2	114.8	117.7	121.5	121.2	122.4	130.4	131.9	133.4	-
Unit nonlabor payments.	109.5	107.0	107.2	109.6	113.0	112.5	113.0	113.3	113.8	116.2	116.8	116.7	-
Implicit price deflator.	110.2	109.5	108.8	108.3	108.3	108.6	109.3	109.9	110.5	111.0	112.0	111.9	-
Manufacturing													
Output per hour of all persons..	101.6	103.4	106.5	108.4	109.7	111.9	112.3	113.4	114.2	113.7	115.2	115.4	117.1
Compensation per hour...	112.7	115.1	115.4	116.2	115.4	116.6	116.9	117.5	118.6	118.0	118.9	119.5	119.9
Real compensation per hour..	103.6	105.3	104.6	104.5	103.6	104.8	104.7	104.5	104.3	102.6	102.6	102.8	102.5
Unit labor costs...	111.0	111.3	108.3	107.2	105.2	104.2	104.1	103.6	103.8	103.8	103.2	103.5	102.4

Note: Dash indicates data not available.

Current Labor Statistics: Productivity Data

48. Annual indexes of multifactor productivity and related measures, selected years

[2005 $=100$, unless otherwise indicated]

Item	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Private business													
Productivity:													
Output per hour of all persons.	82.4	85.3	88.0	92.1	95.7	98.4	100.0	101.0	102.6	103.3	106.0	110.3	110.8
Output per unit of capital services.	104.3	102.6	98.9	97.8	98.4	99.8	100.0	100.0	99.3	95.7	90.5	93.7	94.0
Multifactor productivity.	89.7	91.2	91.9	94.1	96.7	99.0	100.0	100.5	100.8	99.6	98.8	102.2	102.5
Output.	83.6	87.4	88.3	90.0	92.9	96.7	100.0	103.1	105.2	103.8	98.9	102.8	105.0
Inputs:													
Labor input..	99.9	101.1	99.3	97.4	97.0	98.1	100.0	102.4	103.6	102.1	95.5	96.0	97.9
Capital services..	80.2	85.3	89.2	92.1	94.4	96.9	100.0	103.1	106.0	108.5	109.2	109.7	111.7
Combined units of labor and capital input.	93.3	95.9	96.0	95.6	96.1	97.7	100.0	102.6	104.4	104.3	100.1	100.6	102.5
Capital per hour of all persons..	79.0	83.2	89.0	94.2	97.3	98.6	100.0	101.0	103.2	108.0	117.1	117.8	117.8
Private nonfarm business													
Productivity:													
Output per hour of all persons..	82.7	85.6	88.3	92.4	95.8	98.4	100.0	100.9	102.6	103.3	105.8	110.2	110.9
Output per unit of capital services.	104.7	102.6	99.0	97.7	98.1	99.6	100.0	99.9	99.1	95.0	89.6	92.8	93.4
Multifactor productivity.	89.9	91.4	92.1	94.2	96.6	98.9	100.0	100.4	100.7	99.3	98.3	101.7	102.3
Output..	83.8	87.5	88.4	90.1	92.9	96.7	100.0	103.2	105.4	103.9	98.7	102.6	105.1
Inputs:													
Labor input..	99.6	100.8	99.2	97.2	96.9	98.1	100.0	102.5	103.8	102.2	95.6	96.1	98.0
Capital services.	80.0	85.3	89.3	92.3	94.7	97.1	100.0	103.3	106.4	109.3	110.1	110.6	112.6
Combined units of labor and capital input.	93.1	95.8	96.0	95.6	96.2	97.7	100.0	102.8	104.7	104.6	100.4	100.9	102.8
Capital per hour of all persons...............	79.0	83.4	89.2	94.6	97.7	98.8	100.0	101.0	103.6	108.7	118.1	118.8	118.8
Manufacturing [1996 = 100]													
Productivity:													
Output per hour of all persons...	77.0	80.4	81.9	87.9	93.3	95.5	100.0	100.9	104.9	104.5	104.5	-	-
Output per unit of capital services.	102.0	102.1	95.7	94.5	95.1	97.1	100.0	100.8	101.6	94.5	81.6	-	-
Multifactor productivity.....................................	110.5	110.0	105.9	102.3	99.8	97.9	100.0	99.2	100.6	96.3	89.3	-	-
Output..	95.9	98.9	94.2	93.9	94.9	96.5	100.0	101.6	103.8	99.2	86.8	-	-
Inputs:												-	-
Hours of all persons..	124.7	123.1	115.0	106.9	101.6	101.1	100.0	100.7	99.0	95.0	83.0	-	-
Capital services..	94.1	96.8	98.4	99.3	99.7	99.4	100.0	100.8	102.2	105.1	106.4	-	-
Energy.	117.7	128.4	140.3	108.6	97.0	90.8	100.0	92.2	100.1	104.0	92.2	-	-
Nonenergy materials..	108.7	106.7	100.0	101.0	99.3	98.5	100.0	98.2	98.3	93.4	85.9	-	-
Purchased business services..	105.2	103.8	102.0	98.7	98.1	91.8	100.0	98.4	105.6	93.0	88.1	-	-
Combined units of all factor inputs........................	110.5	110.0	105.9	102.3	99.8	97.9	100.0	99.2	100.6	96.3	89.3	-	-

NOTE: Dash indicates data not available.

49. Annual indexes of productivity, hourly compensation, unit costs, and prices, selected years

Item	1966	1976	1986	1996	2003	2004	2005	2006	2007	2008	2009	2010	2011
Business													
Output per hour of all persons.	44.9	56.6	65.7	76.3	95.7	98.4	100.0	100.9	102.4	103.2	105.7	109.9	110.1
Compensation per hour.	11.0	23.2	46.4	66.9	93.0	96.2	100.0	103.8	108.1	111.7	113.5	115.7	118.5
Real compensation per hour.	60.4	72.7	78.8	82.9	98.7	99.5	100.0	100.5	101.8	101.2	103.3	103.6	102.9
Unit labor costs.	24.5	41.1	70.5	87.8	97.2	97.8	100.0	102.8	105.5	108.2	107.4	105.2	107.6
Unit nonlabor payments.	22.0	36.8	63.1	84.7	90.3	95.4	100.0	103.0	105.6	106.3	109.6	116.3	119.5
Implicit price deflator.....	23.5	39.4	67.6	86.6	94.5	96.9	100.0	102.9	105.6	107.5	108.3	109.6	112.3
Nonfarm business													
Output per hour of all persons.	47.0	58.2	66.6	76.9	95.8	98.4	100.0	100.9	102.5	103.1	105.5	109.8	110.2
Compensation per hour.	11.2	23.5	46.8	67.4	93.1	96.2	100.0	103.8	107.9	111.6	113.5	115.7	118.6
Real compensation per hour	61.5	73.4	79.5	83.4	98.8	99.4	100.0	100.5	101.6	101.2	103.3	103.6	102.9
Unit labor costs..	23.8	40.3	70.3	87.5	97.1	97.8	100.0	102.8	105.3	108.2	107.5	105.4	107.5
Unit nonlabor payments.	21.5	35.7	62.1	83.7	90.1	94.8	100.0	103.2	105.4	105.8	109.8	116.1	118.6
Implicit price deflator..	22.9	38.5	67.1	86.0	94.4	96.6	100.0	103.0	105.4	107.3	108.4	109.6	111.9
Nonfinancial corporations													
Output per hour of all employees.	46.2	55.5	64.6	75.7	94.4	97.8	100.0	101.9	102.6	102.9	103.4	108.2	108.7
Compensation per hour.	12.6	25.6	49.8	68.9	93.9	96.5	100.0	103.3	107.3	111.2	113.5	115.6	118.1
Real compensation per hour.	69.1	80.1	84.7	85.3	99.7	99.7	100.0	100.0	101.0	100.8	103.3	103.5	102.5
Total unit costs.	25.3	44.5	76.6	89.4	98.7	97.8	100.0	101.8	105.9	109.6	112.8	107.6	108.7
Unit labor costs.	27.2	46.2	77.2	90.9	99.5	98.6	100.0	101.3	104.6	108.0	109.7	106.8	108.7
Unit nonlabor costs.	20.4	40.1	75.0	85.4	96.8	95.7	100.0	103.0	109.2	113.6	121.0	109.9	108.8
Unit profits..	38.6	42.7	53.6	92.5	66.0	88.0	100.0	111.6	100.0	91.6	84.1	118.8	129.5
Unit nonlabor payments.	26.6	41.0	67.6	87.9	86.3	93.1	100.0	105.9	106.0	106.0	108.3	113.0	115.9
Implicit price deflator.......................................	27.0	44.2	73.7	89.8	94.6	96.6	100.0	103.0	105.1	107.3	109.2	109.0	111.3
Manufacturing													
Output per hour of all persons..	-	-	-	65.9	93.3	95.4	100.0	100.9	104.8	104.3	104.9	111.8	114.6
Compensation per hour...	-	-	-	66.4	96.0	96.8	100.0	102.0	105.3	109.8	114.8	116.6	118.8
Real compensation per hour.	-	-	-	82.2	101.9	100.0	100.0	98.8	99.1	99.6	104.5	104.4	103.1
Unit labor costs..	-	-	-	100.7	102.9	101.4	100.0	101.1	100.4	105.2	109.4	104.3	103.6
Unit nonlabor payments......................................	-	-	-	88.7	84.9	91.4	100.0	104.3	110.4	118.7	110.0	-	-
Implicit price deflator......................................	-	-	-	92.0	89.8	94.1	100.0	103.5	107.7	115.0	109.9	-	-

Dash indicates data not available.
50. Annual indexes of output per hour for selected NAICS industries ${ }^{1 /}$
[2002=100]

NAICS	Industry	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Mining												
21	Mining.	98.1	97.8	94.9	100.0	102.8	94.0	85.0	77.1	71.2	69.1	78.9	-
211	Oil and gas extraction.	87.1	96.7	96.6	100.0	105.9	90.0	86.6	80.9	78.7	71.4	75.9	
2111	Oil and gas extraction.	87.1	96.7	96.6	100.0	105.9	90.0	86.6	80.9	78.7	71.4	75.9	
212	Mining, except oil and gas.	95.6	95.3	98.5	100.0	102.8	104.9	104.4	101.2	94.5	95.0	92.7	
2121	Coal mining.	99.0	103.9	102.5	100.0	101.7	101.6	96.7	89.5	90.6	85.4	80.1	
2122	Metal ore mining.	79.7	85.7	93.8	100.0	103.3	101.5	97.2	90.8	77.0	77.1	85.6	
2123	Nonmetallic mineral mining and quarrying.	98.2	92.1	96.5	100.0	104.3	109.4	115.4	117.0	104.1	105.3	98.1	
213	Support activities for mining..	98.2	99.6	104.5	100.0	122.1	141.6	103.8	86.7	117.7	143.8	134.9	
2131	Support activities for mining.	98.2	99.6	104.5	100.0	122.1	141.6	103.8	86.7	117.7	143.8	134.9	-
	Utilities												
2211	Power generation and supply.	100.6	103.9	103.4	100.0	102.1	104.4	111.1	112.1	110.1	105.7	103.1	-
2212	Natural gas distribution...	88.9	98.1	95.4	100.0	98.9	102.5	105.9	103.2	103.8	104.9	100.9	
	Manufacturing												
311	Food.	92.2	93.5	95.4	100.0	101.5	100.9	106.2	104.0	101.7	101.3	104.7	103.5
3111	Animal food.	78.2	77.0	92.0	100.0	117.7	104.6	119.5	108.2	110.3	104.9	111.4	105.3
3112	Grain and oilseed milling.	94.2	91.7	97.3	100.0	100.5	104.9	106.6	102.3	106.0	101.5	109.3	107.4
3113	Sugar and confectionery products.	99.1	102.3	100.3	100.0	99.9	106.2	118.6	111.1	100.7	92.6	94.8	102.0
3114	Fruit and vegetable preserving and specialty	86.6	88.7	95.7	100.0	97.2	99.5	103.3	98.0	105.2	103.3	97.9	93.1
3115	Dairy products.	88.4	89.6	92.2	100.0	104.0	101.8	101.8	100.7	100.4	108.1	114.7	116.0
3116	Animal slaughtering and processing.	93.8	95.7	96.0	100.0	99.9	100.4	109.7	109.4	106.6	109.0	112.0	112.0
3117	Seafood product preparation and packaging	77.4	82.7	89.8	100.0	101.8	96.5	110.5	122.0	101.5	86.7	102.3	92.8
3118	Bakeries and tortilla manufacturing.	95.9	96.6	98.4	100.0	97.9	100.1	104.3	103.8	101.4	94.2	95.7	96.0
3119	Other food products....................	99.8	100.8	94.5	100.0	104.8	106.1	102.9	102.8	94.8	95.8	100.9	99.0
312	Beverages and tobacco products	105.7	106.7	108.3	100.0	111.4	114.7	120.8	113.1	110.0	107.1	119.1	116.3
3121	Beverages.	91.3	91.1	93.1	100.0	110.8	115.4	120.9	112.6	113.3	113.2	128.1	123.5
3122	Tobacco and tobacco products	135.8	143.0	146.6	100.0	116.7	121.5	136.5	138.1	137.5	119.7	138.2	148.8
313	Textile mills.	86.5	86.3	89.4	100.0	111.1	113.0	122.9	122.2	125.8	124.9	124.5	131.9
3131	Fiber, yarn, and thread mills	78.3	75.6	82.5	100.0	112.1	116.7	108.8	105.5	113.6	114.7	105.3	104.2
3132	Fabric mills.	91.1	90.2	91.4	100.0	114.0	115.3	133.0	140.7	144.5	154.7	159.5	157.1
3133	Textile and fabric finishing mills	85.3	87.2	91.0	100.0	104.1	104.5	113.3	102.4	101.0	87.0	85.1	105.2
314	Textile product mills.	95.4	101.4	98.1	100.0	103.1	115.2	121.3	111.4	99.4	98.3	89.4	98.3
3141	Textile furnishings mills.	94.3	100.6	98.4	100.0	106.2	115.4	119.1	108.6	100.4	101.7	88.7	95.9
3149	Other textile product mills.	102.6	105.9	99.0	100.0	98.1	116.4	128.3	120.9	104.7	104.6	101.7	115.5
315	Apparel.	108.8	114.7	113.9	100.0	105.9	97.7	100.7	97.5	67.4	58.9	53.8	55.9
3151	Apparel knitting mills.	93.7	100.4	97.3	100.0	93.2	83.7	97.8	97.7	64.7	64.3	69.3	69.7
3152	Cut and sew apparel.	110.0	116.2	115.2	100.0	108.5	100.9	100.7	97.7	67.7	56.9	50.1	51.7
3159	Accessories and other apparel.	128.2	129.8	137.4	100.0	105.8	95.8	109.8	96.3	70.7	71.7	72.7	81.0
316	Leather and allied products..	128.8	133.8	138.5	100.0	104.9	128.4	129.4	133.7	125.3	130.6	122.1	132.4
3161	Leather and hide tanning and finishing	141.3	135.8	140.1	100.0	103.1	135.7	142.4	127.8	156.0	144.8	142.1	195.9
3162	Footwear.	116.7	123.8	132.9	100.0	105.9	110.0	115.9	122.4	109.2	129.5	124.2	143.5
3169	Other leather products.	136.1	142.6	140.2	100.0	109.2	163.7	160.8	182.3	163.4	160.4	140.4	125.4
321	Wood products.	90.3	90.2	91.7	100.0	101.6	102.2	107.5	110.9	111.5	109.3	105.9	115.7
3211	Sawmills and wood preservation	91.0	90.9	90.6	100.0	108.3	103.9	107.8	113.4	108.4	112.0	119.6	123.4
3212	Plywood and engineered wood products.	89.3	89.6	95.1	100.0	96.7	92.3	99.6	105.5	108.7	104.7	102.4	114.0
3219	Other wood products..............	91.5	90.4	90.9	100.0	100.7	106.5	111.5	113.2	115.8	112.1	104.0	114.6
322	Paper and paper products..	91.7	93.5	93.9	100.0	104.7	108.7	108.6	109.6	114.5	113.5	112.8	115.8
3221	Pulp, paper, and paperboard mills.	83.8	88.2	90.4	100.0	106.2	110.4	110.2	110.9	114.7	115.5	113.6	121.3
3222	Converted paper products.....	95.4	96.0	95.4	100.0	104.5	108.5	108.8	110.0	116.1	114.1	113.9	114.8
323	Printing and related support activities.	92.3	94.8	94.9	100.0	100.3	103.7	109.1	111.7	117.0	118.5	112.9	117.7
3231	Printing and related support activities	92.3	94.8	94.9	100.0	100.3	103.7	109.1	111.7	117.0	118.5	112.9	117.7
324	Petroleum and coal products.	91.0	96.8	94.9	100.0	102.0	105.9	106.2	104.3	106.4	103.2	107.0	112.5
3241	Petroleum and coal products.	91.0	96.8	94.9	100.0	102.0	105.9	106.2	104.3	106.4	103.2	107.0	112.5
325	Chemicals...............	90.5	92.9	91.9	100.0	101.3	105.3	109.4	109.1	116.0	108.0	101.3	107.4
3251	Basic chemicals.	93.1	94.6	87.6	100.0	108.5	121.8	129.6	134.1	155.1	131.6	114.2	136.3
3252	Resin, rubber, and artificial fibers.	89.2	89.0	86.3	100.0	97.7	97.3	103.4	105.5	108.0	98.8	93.4	110.8
3253	Agricultural chemicals.	87.9	92.8	89.9	100.0	110.4	121.0	139.2	134.7	138.2	132.7	145.9	150.8
3254	Pharmaceuticals and medicines..	98.3	98.3	101.8	100.0	103.0	103.6	107.0	107.5	103.8	101.9	97.0	89.0
3255	Paints, coatings, and adhesives.	91.5	90.5	97.3	100.0	106.1	109.7	111.2	106.7	106.2	101.0	93.9	102.8
3256	Soap, cleaning compounds, and toiletries..	75.0	82.3	84.6	100.0	92.8	102.6	110.2	111.5	134.9	127.6	123.9	123.7
3259	Other chemical products and preparations.	90.2	98.1	90.9	100.0	98.6	96.2	96.0	91.5	103.5	104.4	98.0	110.7
326	Plastics and rubber products..	89.2	91.2	92.8	100.0	103.9	105.8	108.8	108.7	107.1	101.7	101.6	107.2
3261	Plastics products..	88.6	90.7	92.4	100.0	103.9	105.8	108.5	106.8	104.5	99.6	98.9	103.8
3262	Rubber products.	93.2	95.0	95.5	100.0	104.1	106.2	110.0	114.9	117.0	109.6	112.0	120.9
327	Nonmetallic mineral products..	100.1	98.6	95.6	100.0	107.1	105.3	111.6	110.7	112.7	107.4	99.4	105.7
3271	Clay products and refractories...	105.9	108.5	99.1	100.0	109.5	116.0	122.0	122.2	122.4	117.0	100.7	106.3

50. Continued - Annual indexes of output per hour for selected NAICS industries ${ }^{1 /}$
[2002=100]

NAICS	Industry	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
3272	Glass and glass products.	98.7	100.2	94.1	100.0	106.7	105.7	111.8	119.2	119.3	115.3	118.8	127.3
3273	Cement and concrete products.	103.2	99.3	95.5	100.0	106.3	101.0	104.6	101.6	106.6	98.5	88.2	91.7
3274	Lime and gypsum products.	105.8	99.8	103.1	100.0	109.3	107.2	121.9	119.3	112.4	111.3	101.3	111.0
3279	Other nonmetallic mineral products.	92.0	90.3	95.2	100.0	105.7	106.8	118.5	112.8	111.0	112.7	104.4	118.7
331	Primary metals.	89.2	88.0	87.6	100.0	101.5	113.3	114.2	112.5	115.9	121.5	106.4	123.0
3311	Iron and steel mills and ferroalloy production	84.0	84.6	83.6	100.0	106.1	136.5	134.1	138.0	139.4	151.6	118.7	142.7
3312	Steel products from purchased steel.	96.8	99.1	101.3	100.0	91.2	81.5	76.1	68.0	71.8	67.5	55.7	72.0
3313	Alumina and aluminum production..	83.1	77.5	77.2	100.0	101.8	110.4	125.2	123.1	124.2	121.7	119.8	128.8
3314	Other nonferrous metal production.	101.7	96.2	93.4	100.0	108.7	109.4	105.7	94.8	117.5	123.0	104.9	114.5
3315	Foundries......................	89.0	88.7	91.2	100.0	100.4	106.8	111.4	114.1	111.5	103.7	105.8	119.7
332	Fabricated metal products	93.1	94.7	94.6	100.0	102.7	101.4	104.3	106.2	108.6	110.5	101.3	106.5
3321	Forging and stamping.	89.4	97.8	97.3	100.0	106.6	112.3	116.2	118.1	125.6	126.1	117.1	127.7
3322	Cutlery and handtools.	95.3	93.4	97.3	100.0	99.2	90.9	95.4	97.2	105.6	101.9	107.7	124.3
3323	Architectural and structural metals	96.6	95.6	95.5	100.0	103.4	98.7	103.5	106.5	107.7	106.3	96.7	98.9
3324	Boilers, tanks, and shipping containers.	97.4	95.2	95.0	100.0	103.7	96.0	99.3	101.0	106.2	104.2	97.7	105.7
3325	Hardware	91.2	99.4	98.4	100.0	105.7	104.4	106.7	107.1	92.8	96.8	86.0	94.4
3326	Spring and wire products	88.7	89.7	89.0	100.0	106.0	104.4	111.0	110.7	108.8	115.2	110.7	119.7
3327	Machine shops and threaded products	91.2	94.9	95.3	100.0	100.4	101.6	100.9	102.0	105.0	108.6	95.2	102.4
3328	Coating, engraving, and heat treating met	86.7	89.4	92.5	100.0	100.2	105.9	117.6	115.2	117.0	118.6	110.5	119.1
3329	Other fabricated metal products.	93.4	93.8	90.8	100.0	104.5	104.8	106.5	111.1	114.2	121.5	111.4	112.6
333	Machinery.	89.6	95.7	93.5	100.0	107.7	108.5	114.7	117.7	119.6	117.4	111.3	121.6
3331	Agriculture, construction, and mining machinery	90.2	96.3	94.1	100.0	112.3	119.5	123.9	124.2	126.0	126.7	116.9	130.0
3332	Industrial machinery.	89.6	109.9	89.6	100.0	98.9	107.3	105.3	116.3	115.2	102.4	93.1	112.2
3333	Commercial and service industry machinery	112.5	102.9	97.1	100.0	107.5	109.6	118.4	127.4	116.0	121.4	118.6	123.8
3334	HVAC and commercial refrigeration equipment	92.7	90.8	93.3	100.0	109.6	112.0	116.1	113.1	110.3	109.5	112.1	118.4
3335	Metalworking machinery.	89.3	96.2	94.2	100.0	103.9	102.9	110.9	111.8	117.9	117.6	107.6	116.8
3336	Turbine and power transmission equipment	84.7	87.9	97.5	100.0	110.4	96.9	101.2	96.9	95.1	92.2	80.7	89.9
3339	Other general purpose machinery.	89.7	96.1	93.5	100.0	108.2	107.6	117.7	122.2	127.9	123.6	118.8	126.4
334	Computer and electronic products.	79.5	96.3	96.6	100.0	114.1	127.2	134.1	145.0	156.9	161.9	154.7	172.5
3341	Computer and peripheral equipment.	65.3	78.2	84.6	100.0	121.7	134.2	173.5	233.4	288.1	369.0	353.5	289.0
3342	Communications equipment.	105.9	128.4	120.1	100.0	113.4	122.0	118.5	146.3	145.1	117.2	96.6	105.1
3343	Audio and video equipment.	80.4	84.9	86.7	100.0	112.6	155.8	149.2	147.1	111.9	93.1	62.2	66.6
3344	Semiconductors and electronic compone	66.0	87.6	87.7	100.0	121.7	133.8	141.1	138.1	161.9	171.2	161.2	214.1
3345	Electronic instruments.	90.4	98.4	100.3	100.0	105.8	121.9	124.4	129.2	135.5	135.6	134.8	147.5
3346	Magnetic media manufacturing and reproduction...	98.0	93.9	89.0	100.0	114.5	128.9	129.8	125.0	133.1	185.8	181.7	201.1
335	Electrical equipment and appliances	93.9	98.2	98.0	100.0	103.6	109.4	114.6	115.0	117.7	113.4	107.3	113.3
3351	Electric lighting equipment.	91.3	90.2	94.3	100.0	98.4	107.9	112.5	121.5	121.5	125.3	121.1	123.1
3352	Household appliances.	79.0	89.3	94.9	100.0	111.6	121.2	124.6	129.7	124.5	118.5	118.9	118.8
3353	Electrical equipment.	96.5	97.2	98.5	100.0	102.1	110.6	118.1	119.7	125.5	118.7	110.9	106.6
3359	Other electrical equipment and components.	100.6	104.7	99.0	100.0	102.0	101.8	106.4	101.5	107.0	103.7	95.8	112.9
336	Transportation equipment	92.7	85.6	89.1	100.0	108.9	107.8	113.3	114.9	126.1	120.2	114.7	132.8
3361	Motor vehicles.	97.4	87.1	87.3	100.0	112.0	113.2	118.5	130.6	134.7	120.7	115.3	145.3
3362	Motor vehicle bodies and trailers	98.6	93.7	84.2	100.0	103.8	104.8	107.8	103.4	111.8	103.9	97.1	102.5
3363	Motor vehicle parts..	84.6	85.9	87.9	100.0	104.7	105.5	109.9	108.4	114.7	109.2	110.4	129.3
3364	Aerospace products and p	101.6	86.9	97.4	100.0	99.3	93.9	102.8	97.1	115.0	110.2	106.5	114.5
3365	Railroad rolling stock.	79.7	81.1	86.3	100.0	94.1	87.2	88.4	95.2	94.0	109.8	111.8	124.1
3366	Ship and boat building..	86.3	94.4	93.3	100.0	103.7	106.9	102.3	97.8	103.4	115.7	123.4	128.2
3369	Other transportation equipment.	73.4	83.3	83.4	100.0	110.0	110.4	112.8	122.9	195.0	217.1	183.7	188.4
337	Furniture and related products..	91.0	91.3	92.0	100.0	102.0	103.2	107.4	108.7	107.8	111.8	100.1	106.9
3371	Household and institutional furniture.	93.3	92.7	94.7	100.0	101.1	100.8	105.9	109.7	107.5	112.1	99.0	109.4
3372	Office furniture and fixtures..	85.1	86.9	84.7	100.0	106.2	110.3	112.2	106.7	106.0	107.6	93.5	94.3
3379	Other furniture related products.	92.2	90.2	94.8	100.0	99.4	109.4	115.5	120.5	120.3	122.6	119.4	122.9
339	Miscellaneous manufacturing.	87.4	92.6	94.0	100.0	106.8	106.3	114.7	118.3	117.8	119.7	120.6	130.6
3391	Medical equipment and supplies..	87.2	90.3	93.8	100.0	107.5	108.4	116.0	117.7	119.2	122.0	122.9	130.9
3399	Other miscellaneous manufacturing	89.1	96.0	94.7	100.0	105.8	104.6	113.0	117.8	114.5	114.4	112.6	124.7
	Wholesale trade												
42	Wholesale trade.	90.0	94.4	95.4	100.0	105.5	112.9	115.0	117.8	118.1	115.5	112.7	122.8
423	Durable goods..	84.5	88.8	91.8	100.0	106.4	118.7	124.6	129.3	128.7	126.5	116.4	133.3
4231	Motor vehicles and parts..	90.3	87.5	90.0	100.0	106.7	114.8	120.7	132.5	131.8	114.8	97.7	118.9
4232	Furniture and furnishings..	88.3	97.0	95.5	100.0	109.6	117.5	117.1	121.1	115.6	97.9	96.5	106.2
4233	Lumber and construction supplies.	88.2	86.9	94.1	100.0	109.5	116.8	119.9	118.2	117.0	117.4	110.7	123.0
4234	Commercial equipment..............	59.1	67.1	81.4	100.0	113.9	134.9	154.5	168.0	181.9	199.7	205.1	236.7
4235	Metals and minerals.	97.4	97.3	97.7	100.0	101.7	111.2	108.3	104.4	97.9	89.9	78.8	85.3
4236	Electric goods..	79.9	95.7	92.5	100.0	104.7	123.3	129.2	138.0	136.5	144.5	145.4	175.1
4237	Hardware and plumbing..	101.8	101.1	98.0	100.0	105.4	112.7	115.0	120.7	120.8	114.0	102.6	114.4
4238	Machinery and supplies...	102.5	105.2	102.6	100.0	103.4	112.7	120.8	123.5	118.1	121.9	102.4	113.8

50. Continued - Annual indexes of output per hour for selected NAICS industries ${ }^{1 /}$
[2002=100]

NAICS	Industry	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
4239	Miscellaneous durable goods	90.6	91.9	93.1	100.0	97.8	112.1	111.4	102.9	98.8	96.7	87.7	87.7
424	Nondurable goods.	95.2	99.4	99.3	100.0	106.8	112.3	115.3	115.1	115.9	113.3	116.6	120.8
4241	Paper and paper products.	85.9	86.5	89.7	100.0	102.3	111.4	118.0	113.2	119.8	103.5	102.4	99.7
4242	Druggists' goods..	103.7	95.7	94.6	100.0	121.0	137.5	156.3	164.7	165.7	170.8	185.2	188.6
4243	Apparel and piece goods.	85.7	88.7	93.9	100.0	105.0	111.7	122.9	125.1	127.1	125.8	122.7	123.9
4244	Grocery and related products.	102.5	103.9	103.4	100.0	107.8	108.7	109.6	111.4	115.1	110.5	113.6	123.0
4245	Farm product raw materials.	102.8	106.7	104.3	100.0	98.7	108.5	107.4	110.4	110.8	113.8	120.2	131.6
4246	Chemicals.	99.4	95.5	94.1	100.0	106.2	107.7	103.1	100.4	103.8	105.4	93.5	106.4
4247	Petroleum.	68.0	92.0	92.0	100.0	102.1	113.9	110.2	105.6	99.5	96.0	100.1	99.3
4248	Alcoholic beverages.	98.9	101.5	99.6	100.0	102.0	98.5	100.2	103.3	105.0	99.0	100.3	93.4
4249	Miscellaneous nondurable goods	100.9	108.7	105.5	100.0	101.9	110.6	112.6	108.7	101.7	98.9	104.4	106.8
425	Electronic markets and agents and brokers.	104.0	110.5	101.9	100.0	97.5	90.4	78.8	85.4	87.1	83.5	82.7	90.3
4251	Electronic markets and agents and brokers.	104.0	110.5	101.9	100.0	97.5	90.4	78.8	85.4	87.1	83.5	82.7	90.3
	Retail trade												
44-45	Retail trade.	89.7	92.5	95.6	100.0	104.9	110.0	112.6	116.7	119.9	117.2	118.0	122.6
441	Motor vehicle and parts dealer	96.0	95.3	96.7	100.0	103.8	106.6	106.1	108.1	109.5	99.4	95.8	100.0
4411	Automobile dealers.	99.3	97.0	98.5	100.0	102.2	107.1	106.2	108.2	110.6	100.7	99.6	106.2
4412	Other motor vehicle dealers	85.9	86.2	93.2	100.0	99.6	105.9	98.8	103.9	103.4	97.7	90.8	97.3
4413	Auto parts, accessories, and tire stores	99.9	100.7	94.1	100.0	106.8	102.0	106.2	105.4	103.1	98.6	95.0	92.0
442	Furniture and home furnishings	85.7	89.7	94.7	100.0	103.5	112.1	113.9	117.4	123.5	123.8	129.0	135.7
4421	Furniture stores.	85.9	89.5	95.6	100.0	102.4	110.1	111.5	117.0	119.7	117.0	119.8	124.5
4422	Home furnishings stores.	85.4	89.7	93.5	100.0	105.0	114.6	116.6	118.3	127.8	131.8	140.1	149.7
443	Electronics and appliance stores	64.5	74.4	84.2	100.0	125.5	142.6	158.4	177.0	200.3	232.5	258.6	273.5
4431	Electronics and appliance s	64.5	74.4	84.2	100.0	125.5	142.6	158.4	177.0	200.3	232.5	258.6	273.5
444	Building material and garden supply store	94.2	93.7	96.7	100.0	105.0	110.8	110.0	111.0	112.0	111.5	106.6	117.9
4441	Building material and supplies dealers.	95.0	94.9	96.2	100.0	105.1	110.2	110.5	111.4	110.8	108.5	103.3	113.6
4442	Lawn and garden equipment and supplies stores..	89.2	87.2	100.1	100.0	104.8	115.0	105.8	107.2	121.2	136.4	132.7	153.9
445	Food and beverage stores	97.3	96.5	99.1	100.0	101.9	106.9	111.1	113.3	115.6	112.3	113.8	115.6
4451	Grocery stores..	97.8	96.5	98.6	100.0	101.5	106.2	110.1	111.2	112.8	109.7	110.7	112.1
4452	Specialty food stores.	91.6	93.6	102.8	100.0	105.0	111.1	113.2	123.0	129.8	125.4	131.9	131.2
4453	Beer, wine, and liquor stores	90.0	96.0	97.2	100.0	106.2	115.9	126.5	131.0	139.4	130.1	131.8	147.2
446	Health and personal care stores	87.1	91.3	94.6	100.0	105.5	109.6	109.1	112.5	112.3	112.6	115.7	117.1
4461	Health and personal care stor	87.1	91.3	94.6	100.0	105.5	109.6	109.1	112.5	112.3	112.6	115.7	117.1
447	Gasoline stations.	88.5	86.1	90.2	100.0	96.4	98.4	99.7	99.2	102.6	102.0	105.4	107.0
4471	Gasoline stations	88.5	86.1	90.2	100.0	96.4	98.4	99.7	99.2	102.6	102.0	105.4	107.0
448	Clothing and clothing accessories	86.9	94.1	96.3	100.0	106.0	106.3	112.3	122.6	132.2	137.3	134.2	140.7
4481	Clothing stores.	84.0	91.9	95.8	100.0	104.5	104.0	112.1	122.9	134.1	144.2	143.8	148.4
4482	Shoe stores.	83.8	87.9	89.0	100.0	105.7	99.5	105.3	116.0	114.4	113.9	104.6	110.6
4483	Jewelry, luggage, and leather goods sto	103.2	110.0	104.4	100.0	112.3	122.3	118.0	125.7	137.1	125.5	116.6	129.8
451	Sporting goods, hobby, book, and music stores	89.4	94.9	99.6	100.0	103.0	118.0	127.4	131.6	128.1	129.0	137.6	150.4
4511	Sporting goods and musical instrument stores.	88.0	95.2	98.9	100.0	103.5	121.2	131.3	140.1	136.5	136.9	146.9	159.5
4512	Book, periodical, and music stores..	92.6	94.5	101.2	100.0	101.9	111.1	119.0	113.6	109.4	111.2	116.4	130.0
452	General merchandise stores.	87.8	93.2	96.7	100.0	106.2	109.5	113.3	116.8	117.7	116.0	118.6	119.0
4521	Department stores.	102.0	104.0	101.6	100.0	104.3	107.7	109.3	111.4	104.7	101.4	100.4	97.6
4529	Other general merchandise sto	73.2	82.4	92.2	100.0	106.3	107.8	112.0	115.0	121.7	119.0	122.7	125.0
453	Miscellaneous store retailers.	93.4	95.8	94.6	100.0	105.3	108.7	114.6	125.8	129.6	126.7	120.5	128.8
4531	Florists.	102.2	101.3	90.3	100.0	96.2	91.7	110.6	125.4	113.1	121.5	129.0	152.1
4532	Office supplies, stationery and gift stores	84.2	89.9	93.5	100.0	108.7	121.9	128.5	143.4	151.8	150.8	156.7	162.9
4533	Used merchandise stores.	79.8	82.0	85.8	100.0	103.9	104.5	105.9	111.6	122.9	132.6	119.7	139.5
4539	Other miscellaneous store retailers	109.2	110.6	102.7	100.0	104.9	101.2	104.1	114.9	117.6	106.2	94.9	100.0
454	Nonstore retailers.	70.8	83.6	89.9	100.0	108.8	121.4	126.1	148.8	163.0	166.7	175.1	189.7
4541	Electronic shopping and mail-order houses	67.0	75.3	84.4	100.0	117.2	134.1	145.3	175.9	196.4	187.3	195.6	216.9
4542	Vending machine operators..	115.6	121.7	104.9	100.0	112.0	121.1	114.9	124.3	117.0	126.1	111.5	124.4
4543	Direct selling establishments	77.2	90.7	94.7	100.0	93.4	94.7	87.5	93.4	96.6	101.0	105.7	101.5
481	Transportation and warehousing Air transportation.	94.3	96.0	91.0	100.0	110.2	124.2	133.6	140.5	142.2	140.6	140.7	
482111	Line-haul railroads.	78.4	85.0	90.6	100.0	105.0	107.2	103.3	109.3	103.3	107.9	103.7	
484	Truck transportation.	97.9	99.2	99.1	100.0	102.6	101.4	103.0	104.3	105.1	103.6	99.0	
4841	General freight trucking..	92.6	95.7	97.3	100.0	103.2	101.8	103.6	104.5	104.9	104.3	99.0	
48411	General freight trucking, local..	91.4	96.2	99.4	100.0	105.6	100.3	103.1	109.5	105.8	102.9	98.3	
48412	General freight trucking, long-distance...	92.7	95.3	96.4	100.0	102.8	102.0	103.6	102.8	104.3	103.8	98.4	
48421	Used household and office goods moving.	117.8	116.2	102.9	100.0	105.0	107.3	106.6	106.7	110.2	116.7	116.4	
491	U.S. Postal service.	96.6	99.1	99.8	100.0	101.3	103.4	104.5	104.5	105.3	103.8	105.2	
4911	U.S. Postal service.	96.6	99.1	99.8	100.0	101.3	103.4	104.5	104.5	105.3	103.8	105.2	
492	Couriers and messengers..	85.4	90.0	92.6	100.0	104.7	101.3	94.7	99.4	96.5	100.8	95.8	
493	Warehousing and storage.	88.2	89.5	94.4	100.0	103.9	103.8	99.3	96.9	95.5	94.8	96.1	
4931	Warehousing and storage...	88.2	89.5	94.4	100.0	103.9	103.8	99.3	96.9	95.5	94.8	96.1	

50. Continued - Annual indexes of output per hour for selected NAICS industries ${ }^{1 /}$

NAICS	Industry	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
49311	General warehousing and storage.	83.0	85.1	92.8	100.0	105.3	102.8	102.4	102.8	101.4	100.7	102.9	
49312	Refrigerated warehousing and storage.	119.3	110.1	98.2	100.0	108.5	119.5	102.7	95.8	103.3	105.7	96.9	-
	Information												
511	Publishing industries, except internet.	99.2	99.9	99.5	100.0	108.0	110.0	110.9	116.1	119.7	121.1	122.7	-
5111	Newspaper, book, and directory publishers	99.5	102.9	101.1	100.0	105.0	99.6	97.3	100.8	102.0	99.5	97.9	
5112	Software publishers..	105.8	97.7	96.2	100.0	113.1	131.5	136.7	139.0	141.7	146.6	145.4	
51213	Motion picture and video exhibition.	102.0	106.7	101.8	100.0	100.8	104.0	111.0	118.6	124.8	120.1	128.0	
515	Broadcasting, except internet..	98.9	99.6	95.5	100.0	102.9	107.1	113.1	120.6	130.5	133.4	135.7	-
5151	Radio and television broadcasting.	97.3	96.9	94.2	100.0	99.5	101.7	104.1	111.8	114.8	114.2	114.1	
5152	Cable and other subscription programming	107.2	108.8	98.7	100.0	109.6	118.4	129.3	135.9	158.3	169.0	173.5	
5171	Wired telecommunications carriers.	93.3	94.9	92.0	100.0	106.5	112.0	115.9	119.8	121.5	123.8	125.9	
5172	Wireless telecommunications carriers	66.6	70.1	88.0	100.0	111.6	134.8	176.0	189.2	200.2	237.6	295.4	-
52211	Finance and insurance Commercial banking	90.6	94.3	95.5	100.0	103.3	106.3	109.2	111.6	114.2	112.7	115.3	-
	Real estate and rental and leasing												
532111 53212	Passenger car rental................................ Truck, trailer, and RV rental and leasing.......	97.9 106.1	98.0 106.8	97.0 99.6	100.0 100.0	106.5 97.8	104.6	98.0 114.1	100.4	118.0 120.0	123.7	118.6 99.5	-
53223	Video tape and disc rental..	99.3	103.5	102.3	100.0	112.9	115.6	104.7	124.0	152.1	136.8	148.2	
541213	Professional and technical services Tax preparation services.	95.0	90.6	84.8	100.0	94.8	82.8	82.8	79.2	87.3	83.0	81.2	
54131	Architectural services.	99.3	100.0	103.2	100.0	103.4	107.9	107.9	105.8	109.6	113.3	111.9	
54133	Engineering services.	97.5	101.5	99.6	100.0	102.7	112.5	119.7	121.1	118.3	123.4	116.7	
54181	Advertising agencies.	86.6	95.1	94.5	100.0	106.4	116.2	114.5	115.2	118.7	124.6	126.9	
541921	Photography studios, portrait.	112.5	111.7	104.8	100.0	104.8	92.3	91.1	95.4	100.6	102.5	96.6	-
561311	Administrative and waste services Employment placement agencies.	79.8	76.9	85.2	100.0	107.9	120.7	126.8	146.4	176.5	203.2	203.9	
56151	Travel agencies.	90.5	93.6	90.3	100.0	125.5	151.0	173.8	186.2	217.8	220.0	226.2	
56172	Janitorial services.	93.4	95.7	96.7	100.0	110.7	106.6	108.4	102.5	109.0	111.2	107.2	-
6215	Health care and social assistance Medical and diagnostic laboratories.	90.6	95.9	98.3	100.0	103.1	103.9	102.4	104.6	102.4	111.5	114.5	
621511	Medical laboratories.	98.6	103.5	103.7	100.0	104.5	106.2	102.3	103.6	105.8	115.8	121.7	-
621512	Diagnostic imaging centers	79.4	85.7	90.8	100.0	99.8	97.5	99.4	102.9	92.4	100.4	99.7	-
	Arts, entertainment, and recreation												
71311	Amusement and theme parks.	98.8	99.5	87.4	100.0	108.4	99.1	109.6	99.7	107.2	107.9	99.4	
71395	Bowling centers..	92.8	96.9	97.9	100.0	104.4	108.0	104.3	98.4	116.1	117.7	114.3	-
72	Accommodation and food services Accommodation and food services.	96.8	100.1	99.1	100.0	102.5	105.1	105.6	106.9	106.9	105.9	105.3	
721	Accommodation.	94.1	98.5	96.4	100.0	103.4	111.3	109.4	109.3	109.6	109.0	107.2	
7211	Traveler accommodation.	94.0	99.2	96.6	100.0	103.3	111.5	110.0	109.5	109.7	109.0	106.9	-
722	Food services and drinking places.	96.7	99.1	99.4	100.0	102.2	103.2	104.4	106.0	105.9	104.8	105.1	107.1
7221	Full-service restaurants.	96.5	98.7	99.2	100.0	100.5	101.6	102.7	103.7	102.8	100.5	100.8	103.6
7222	Limited-service eating places.	97.8	99.4	99.8	100.0	102.6	104.0	104.6	106.3	106.5	106.8	108.2	111.1
7223	Special food services.	91.7	100.2	100.4	100.0	104.5	107.0	109.3	110.9	113.7	113.0	106.4	101.1
7224	Drinking places, alcoholic beverages...	96.0	97.8	94.8	100.0	113.8	106.1	112.1	122.0	122.4	117.9	122.4	121.1
	Other services												
8111	Automotive repair and maintenance.	102.3	105.5	105.0	100.0	99.7	106.5	105.7	104.5	102.5	101.3	96.6	
81142	Reupholstery and furniture repair.	102.9	103.4	102.9	100.0	93.7	94.6	94.6	91.8	94.8	90.2	87.8	
81211	Hair, nail, and skin care services..	98.4	98.0	103.8	100.0	108.0	112.3	116.1	115.4	119.5	122.4	115.1	
81221	Funeral homes and funeral services.	109.2	100.3	97.1	100.0	100.4	96.6	96.0	100.7	100.6	95.0	96.5	
8123	Drycleaning and laundry services..	93.4	95.7	98.6	100.0	92.6	99.1	109.0	108.3	103.8	104.1	114.6	
81231	Coin-operated laundries and drycleaners.	79.7	88.0	95.5	100.0	82.5	94.5	115.2	99.2	91.1	85.9	92.5	
81232	Drycleaning and laundry services.	93.6	96.7	97.8	100.0	89.8	95.4	103.9	103.1	101.5	102.1	113.9	
81233	Linen and uniform supply..	101.6	98.8	101.1	100.0	98.9	104.2	111.5	115.6	108.7	109.7	119.0	-
81292	Photofinishing.	75.9	73.4	80.8	100.0	98.3	97.9	105.3	102.4	101.0	105.3	131.4	-

NOTE: Dash indicates data are not available.
1/ Data for most industries are available beginning in 1987 and may be accessed on the BLS website at http://www.bls.gov/lpc/iprprodydata.htm.
51. Unemployment rates adjusted to U.S. concepts, 10 countries, seasonally adjusted

Country	2009	2010	2009				2010					
			1	II	III	IV	1	II	III	IV		
United States..	9.3	9.6	8.2	9.3	9.7	10.0	9.7	9.6	9.6	9.6		
Canada...	7.3	7.1	6.9	7.5	7.6	7.5	7.4	7.2	7.0	6.7		
Australia..	5.6	5.2	5.3	5.7	5.8	5.6	5.3	5.2	5.2	5.2		
Japan..	4.8	4.8	4.2	4.8	5.1	5.0	4.7	4.8	4.7	4.7		
France...	9.2	9.4	8.7	9.3	9.3	9.6	9.6	9.4	9.4	9.3		
Germany...	7.8	7.2	7.5	7.9	7.9	7.8	7.5	7.3	7.1	7.0		
Italy........	7.9	8.6	7.5	7.7	8.1	8.4	8.5	8.6	8.5	8.7		
Netherlands...	3.7	4.5	3.2	3.6	3.9	4.3	4.5	4.5	4.5	4.4		
Sweden...............	8.2	8.3	7.4	8.3	8.5	8.6	8.6	8.5	8.1	7.8		
United Kingdom......	7.7	7.9	7.1	7.8	7.9	7.8	8.0	7.8	7.8	7.9		
Dash indicates data are not available. Quarterly figures for Germany are calculated by applying an annual adjustment factor to current published data and therefore should be viewed as a less precise indicator of unemployment under U.S. concepts than the annual figures. For further qualifications and historical annual data, see the BLS report International Comparisons of Annual Labor Force Statistics, Adjusted to U.S. Concepts, 10 Countries (on the Internet at http://www.bls.gov/ilc/flscomparelf.htm). For monthly unemployment rates, as well as the quarterly and annual rates published in this table, see the BLS report International Unemployment Rates and Employment Indexes, Seasonally Adjusted (on the Internet http://www.bls.gov/ilc/intl_unemployment_rates_monthly.htm). Unemployment rates may differ between the two reports mentioned, because the former is updated annually, whereas the latter is updated monthly and reflects the most recent revisions in source data.												

52. Annual data: employment status of the working-age population, adjusted to U.S. concepts, 10 countries

[Numbers in thousands]											
Employment status and country	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Civilian labor force											
United States..	142,583	143,734	144,863	146,510	147,401	149,320	151,428	153,124	154,287	154,142	153,889
Canada..	15,632	15,886	16,356	16,722	16,925	17,056	17,266	17,626	17,936	18,058	18,263
Australia.	9,590	9,746	9,901	10,085	10,213	10,529	10,773	11,060	11,356	11,602	11,868
Japan.	66,710	66,480	65,866	65,495	65,366	65,386	65,556	65,909	65,660	65,362	65,100
France.	26,193	26,339	26,658	26,692	26,872	27,061	27,260	27,466	27,683	27,972	28,067
Germany..	39,302	39,459	39,413	39,276	39,711	40,696	41,206	41,364	41,481	41,507	41,189
Italy.	23,361	23,524	23,728	24,020	24,084	24,179	24,395	24,459	24,836	24,705	24,741
Netherlands.	8,008	8,155	8,288	8,330	8,379	8,400	8,462	8,595	8,679	8,716	8,654
Sweden.	4,490	4,530	4,545	4,565	4,579	4,693	4,746	4,822	4,875	4,888	4,942
United Kingdom.	28,962	29,092	29,343	29,565	29,802	30,137	30,599	30,780	31,126	31,274	31,421
Participation rate ${ }^{1}$											
United States..	67.1	66.8	66.6	66.2	66.0	66.0	66.2	66.0	66.0	65.4	64.7
Canada.	66.0	66.1	67.1	67.7	67.6	67.3	67.2	67.5	67.7	67.2	67.0
Australia.	64.4	64.4	64.3	64.6	64.6	65.4	65.8	66.2	66.7	66.7	66.5
Japan.	61.7	61.2	60.4	59.9	59.6	59.5	59.6	59.8	59.5	59.3	59.0
France.	56.8	56.6	56.8	56.4	56.3	56.2	56.2	56.3	56.4	56.6	56.5
Germany.	56.7	56.7	56.4	56.0	56.4	57.5	58.1	58.3	58.4	58.5	58.1
Italy..	48.1	48.3	48.5	49.1	49.1	48.7	48.9	48.6	49.0	48.4	48.2
Netherlands.	63.0	63.7	64.3	64.3	64.4	64.2	64.5	65.2	65.4	65.2	64.3
Sweden.	63.7	63.7	63.9	63.9	63.6	64.8	64.9	65.3	65.3	64.8	64.7
United Kingdom.	62.8	62.7	62.9	62.9	63.0	63.1	63.5	63.3	63.5	63.3	63.1
Employed											
United States..	136,891	136,933	136,485	137,736	139,252	141,730	144,427	146,047	145,362	139,877	139,064
Canada..	14,677	14,860	15,210	15,576	15,835	16,032	16,317	16,704	16,985	16,732	16,969
Australia.	8,989	9,088	9,271	9,485	9,662	9,998	10,257	10,576	10,873	10,953	11,247
Japan.	63,790	63,460	62,650	62,510	62,640	62,910	63,210	63,509	63,250	62,242	62,000
France.	23,928	24,264	24,521	24,397	24,464	24,632	24,828	25,246	25,614	25,395	25,423
Germany.	36,236	36,350	36,018	35,615	35,604	36,123	36,949	37,763	38,345	38,279	38,209
Italy.	20,973	21,359	21,666	21,972	22,124	22,290	22,721	22,953	23,144	22,760	22,621
Netherlands.	7,762	7,950	8,035	7,989	7,960	7,959	8,096	8,290	8,412	8,389	8,264
Sweden.	4,230	4,303	4,311	4,301	4,279	4,334	4,416	4,530	4,581	4,486	4,534
United Kingdom.	27,375	27,604	27,815	28,077	28,380	28,674	28,929	29,129	29,346	28,880	28,944
Employment-population ratio ${ }^{2}$											
United States.	64.4	63.7	62.7	62.3	62.3	62.7	63.1	63.0	62.2	59.3	58.5
Canada.	62.0	61.8	62.4	63.1	63.3	63.3	63.5	64.0	64.1	62.2	62.3
Australia.	60.3	60.0	60.2	60.8	61.1	62.1	62.7	63.3	63.9	62.9	63.0
Japan.	59.0	58.4	57.5	57.1	57.1	57.3	57.5	57.6	57.4	56.4	56.2
France.	51.9	52.2	52.3	51.6	51.3	51.2	51.2	51.7	52.1	51.4	51.2
Germany.	52.2	52.2	51.5	50.8	50.6	51.1	52.1	53.2	54.0	54.0	53.9
Italy...	43.2	43.8	44.3	44.9	45.1	44.9	45.5	45.6	45.6	44.6	44.1
Netherlands.	61.1	62.1	62.3	61.6	61.1	60.9	61.7	62.8	63.4	62.8	61.4
Sweden.	60.1	60.5	60.6	60.2	59.5	59.9	60.4	61.3	61.4	59.5	59.3
United Kingdom..	59.4	59.5	59.6	59.8	59.9	60.0	60.0	59.9	59.9	58.5	58.2
Unemployed											
United States..	5,692	6,801	8,378	8,774	8,149	7,591	7,001	7,078	8,924	14,265	14,825
Canada.	955	1,026	1,146	1,146	1,091	1,024	949	922	951	1,326	1,294
Australia.	602	658	630	599	551	531	516	484	483	649	621
Japan.	2,920	3,020	3,216	2,985	2,726	2,476	2,346	2,400	2,410	3,120	3,100
France.	2,265	2,075	2,137	2,295	2,408	2,429	2,432	2,220	2,069	2,577	2,644
Germany.	3,065	3,110	3,396	3,661	4,107	4,573	4,257	3,601	3,136	3,228	2,980
Italy...	2,388	2,164	2,062	2,048	1,960	1,889	1,673	1,506	1,692	1,945	2,119
Netherlands..	246	206	254	341	419	441	366	306	267	327	390
Sweden.	260	227	234	264	300	360	330	292	294	401	409
United Kingdom.	1,587	1,489	1,528	1,488	1,423	1,463	1,670	1,652	1,780	2,395	2,477
Unemployment rate ${ }^{3}$											
United States..	4.0	4.7	5.8	6.0	5.5	5.1	4.6	4.6	5.8	9.3	9.6
Canada..	6.1	6.5	7.0	6.9	6.4	6.0	5.5	5.2	5.3	7.3	7.1
Australia.	6.3	6.8	6.4	5.9	5.4	5.0	4.8	4.4	4.2	5.6	5.2
Japan...	4.4	4.5	4.9	4.6	4.2	3.8	3.6	3.6	3.7	4.8	4.8
France.	8.6	7.9	8.0	8.6	9.0	9.0	8.9	8.1	7.5	9.2	9.4
Germany.	7.8	7.9	8.6	9.3	10.3	11.2	10.3	8.7	7.6	7.8	7.2
Italy...	10.2	9.2	8.7	8.5	8.1	7.8	6.9	6.2	6.8	7.9	8.6
Netherlands.	3.1	2.5	3.1	4.1	5.0	5.3	4.3	3.6	3.1	3.7	4.5
Sweden.	5.8	5.0	5.1	5.8	6.6	7.7	7.0	6.1	6.0	8.2	8.3
United Kingdom.......	5.5	5.1	5.2	5.0	4.8	4.9	5.5	5.4	5.7	7.7	7.9

${ }^{1}$ Labor force as a percent of the working-age population.	Comparisons of Annual Labor Force Statistics, Adjusted to U.S. Concepts, 10 Countries (on
${ }^{2}$ Employment as a percent of the working-age population.	the Internet at http://www.bls.gov/ilc/flscomparelf.htm). Unemployment rates may differ
${ }^{3}$ Unemployment as a percent of the labor force.	from those in the BLS report International Unemployment Rates and Employment Indexes,
NOTE: There are breaks in series for the United States (2003, 2004), Australia (2001), Germany (2005), the Netherlands (2003), and Sweden (2005). For further qualifications and historical annual data, see the BLS report International	http://www.bls.gov/ilc/intl_unemployment_rates_monthly.htm), because the former is updated annually, whereas the latter is updated monthly and reflects the most recent revisions in source data.

53. Annual indexes of manufacturing productivity and related measures, 19 countries

Measure and country	1980	1990	1995	1997	1998	1999	2000	2001	2003	2004	2005	2006	2007	2008	2009	2010
Output per hour																
United States.	41.7	58.1	68.5	73.8	77.7	82.4	88.8	90.7	108.2	117.5	122.8	127.2	133.6	132.5	139.1	147.1
Australia.	63.3	77.8	84.9	88.0	92.5	95.8	93.5	98.4	104.9	104.3	105.5	108.1	110.0	106.7	111.4	113.2
Belgium.	50.5	74.8	87.1	93.9	95.1	94.4	98.2	97.5	101.5	105.1	106.7	107.3	111.3	111.5	113.6	117.3
Canada.	55.2	70.7	83.4	87.2	91.3	95.1	100.7	98.3	100.3	101.4	104.8	106.3	107.3	104.5	105.4	110.0
Czech Republic			70.3	77.3	73.1	83.9	92.0	92.7	101.9	114.4	125.0	140.4	151.7	161.4	156.0	176.1
Denmark.	66.1	79.3	90.8	94.8	94.3	95.8	99.2	99.4	104.2	110.2	113.7	119.5	122.1	125.2	123.4	135.2
Finland.	28.9	48.0	65.8	71.1	75.3	80.8	90.4	93.9	106.3	113.4	118.8	132.7	145.3	140.6	120.9	140.8
France.	46.4	64.8	77.7	81.9	86.0	89.6	95.0	96.2	103.4	107.3	112.1	116.4	119.4	115.4	113.1	122.1
Germany.	54.5	69.8	80.6	87.7	88.1	90.2	96.5	99.0	103.6	107.5	112.1	121.5	124.8	119.1	108.2	115.6
Italy.	56.8	78.1	94.2	96.5	95.2	95.9	100.9	101.2	97.9	99.3	100.8	102.6	103.1	99.9	93.8	100.4
Japan..	47.9	70.9	83.4	90.3	91.2	93.5	98.5	96.5	106.8	114.3	121.7	122.9	127.6	131.3	119.5	136.2
Korea, Rep. of.		33.4	52.1	65.6	73.6	82.7	90.8	90.1	106.8	117.1	130.7	145.7	156.2	157.3	159.1	172.9
Netherlands.	49.7	69.4	82.0	84.3	86.4	89.9	96.8	97.2	102.4	109.4	114.6	119.1	125.3	122.7	117.0	127.6
Norway..	70.1	87.8	88.1	91.0	88.7	91.7	94.6	97.2	108.7	115.1	119.1	116.7	116.1	117.2	118.1	123.7
Singapore.	33.1	50.7	72.8	77.8	80.9	92.4	101.2	90.7	103.6	113.8	116.3	120.1	116.2	105.3	105.0	139.4
Spain.	57.9	80.0	93.3	93.1	94.7	96.4	97.4	99.6	102.5	104.4	106.4	108.5	110.9	109.3	108.4	113.5
Sweden.	40.1	49.4	64.9	73.6	78.4	85.4	91.6	89.4	108.2	120.2	128.0	138.8	142.6	134.3	124.4	141.1
Taiwan.	28.6	52.5	65.4	73.1	76.1	80.7	85.6	89.9	107.2	112.6	121.7	132.1	143.2	145.5	152.4	175.5
United Kingdom.	45.6	70.3	81.2	82.0	83.0	87.4	93.3	96.9	104.5	111.2	116.3	120.6	124.7	125.2	120.6	125.6
Output																
United States.	49.8	67.6	79.4	86.9	91.2	96.1	102.3	97.6	102.9	111.2	114.8	119.9	123.8	117.8	107.6	113.8
Australia.	70.8	81.8	86.5	90.1	92.2	93.5	94.9	96.9	102.6	102.6	101.9	102.7	105.7	104.6	102.2	106.6
Belgium.	67.2	86.8	89.5	94.1	95.7	96.0	100.5	100.8	98.8	102.4	102.4	102.6	105.8	104.8	96.1	99.8
Canada.	55.2	68.7	76.5	82.8	86.9	94.1	103.4	99.1	99.2	101.1	102.6	101.3	99.0	93.0	82.5	87.1
Czech Republic.			73.4	84.1	78.5	87.0	95.4	94.9	99.0	112.1	125.5	143.8	157.0	169.4	149.3	165.4
Denmark.	77.3	85.5	94.7	97.7	98.5	99.4	102.9	103.0	97.2	98.8	99.3	103.8	107.1	111.0	97.6	99.9
Finland..	39.8	53.8	60.3	68.1	74.7	80.9	92.2	96.3	102.8	107.7	112.3	126.9	140.5	135.6	101.9	114.9
France.	75.3	82.8	86.6	89.7	93.7	96.8	100.1	100.5	101.0	102.8	105.1	106.3	108.8	104.2	95.7	99.1
Germany.	81.3	94.5	90.1	92.0	93.1	94.0	100.4	102.1	100.7	104.3	106.5	114.1	118.4	113.6	93.1	103.6
Italy..	71.1	88.2	95.7	96.6	97.5	97.3	101.4	101.1	97.3	98.0	97.8	101.1	103.2	98.4	82.6	86.4
Japan..	61.9	98.9	101.7	108.2	102.5	102.1	107.4	101.6	105.3	111.4	117.2	121.3	126.1	125.5	100.8	117.6
Korea, Rep. of.	12.7	40.0	59.2	67.1	62.2	76.5	89.8	92.0	105.4	115.9	123.1	133.0	142.5	146.6	144.3	165.7
Netherlands.	59.3	76.9	85.1	87.7	90.3	93.3	100.0	100.0	99.1	102.9	105.1	108.7	115.1	113.4	103.6	111.2
Norway..	95.1	91.4	94.6	102.7	101.9	101.8	101.3	100.5	103.3	109.2	114.1	117.5	121.3	124.5	117.3	119.6
Singapore.	26.0	51.2	75.4	80.8	80.2	90.6	104.4	92.2	102.9	117.2	128.3	143.6	152.2	145.8	139.7	181.2
Spain.	58.8	73.7	76.0	82.9	87.9	92.9	97.0	100.1	101.2	101.9	103.1	105.0	105.8	103.0	88.9	89.7
Sweden.	45.5	54.5	65.8	73.6	80.2	87.5	95.1	93.3	105.0	115.0	120.7	129.0	133.5	126.5	103.7	119.9
Taiwan.	29.4	59.3	72.7	80.9	82.8	88.9	96.1	89.5	110.1	121.5	131.0	142.9	156.9	158.5	151.5	192.0
United Kingdom.	78.5	94.8	97.1	99.6	100.3	101.3	103.6	102.2	99.7	101.9	101.8	103.3	103.8	100.8	90.1	93.3
Total hours																
United States.	119.4	116.5	115.9	117.7	117.4	116.6	115.1	107.6	95.1	94.6	93.5	94.2	92.6	88.9	77.4	77.4
Australia.	111.8	105.2	101.9	102.4	99.7	97.6	101.5	98.5	97.8	98.4	96.6	95.0	96.1	98.1	91.7	94.1
Belgium.	133.1	116.0	102.8	100.3	100.6	101.7	102.4	103.4	97.3	97.4	95.9	95.6	95.1	94.0	84.6	85.1
Canada.	100.0	97.2	91.8	94.9	95.2	98.9	102.7	100.8	99.0	99.8	97.9	95.2	92.3	89.0	78.2	79.2
Czech Republic.			104.4	108.8	107.4	103.6	103.6	102.3	97.2	98.0	100.4	102.4	103.5	104.9	95.7	93.9
Denmark.	117.0	107.8	104.3	103.1	104.5	103.7	103.7	103.7	93.4	89.6	87.3	86.9	87.7	88.7	79.0	73.9
Finland.	137.6	112.1	91.7	95.8	99.3	100.1	102.1	102.6	96.8	95.0	94.5	95.6	96.7	96.4	84.3	81.6
France	162.4	127.8	111.3	109.5	109.1	107.9	105.4	104.4	97.6	95.8	93.7	91.3	91.1	90.3	84.6	81.2
Germany..	149.3	135.4	111.7	104.9	105.8	104.2	104.0	103.1	97.3	97.1	95.0	93.9	94.9	95.4	86.1	89.6
Italy..	125.2	113.0	101.6	100.1	102.5	101.5	100.5	99.9	99.4	98.7	97.0	98.5	100.1	98.4	88.1	86.0
Japan..	129.3	139.6	122.0	119.9	112.5	109.1	109.0	105.3	98.6	97.5	96.3	98.6	98.9	95.6	84.3	86.3
Korea, Rep. of.		119.8	113.6	102.2	84.5	92.4	98.8	102.1	98.7	99.0	94.2	91.3	91.2	93.2	90.7	95.8
Netherlands.	119.2	110.9	103.8	103.9	104.5	103.9	103.3	102.9	96.8	94.0	91.7	91.3	91.9	92.4	88.6	87.2
Norway..	135.6	104.1	107.3	112.8	115.0	111.0	107.1	103.4	95.1	94.9	95.8	100.7	104.5	106.3	99.3	96.7
Singapore.	78.6	101.1	103.6	103.9	99.1	98.0	103.1	101.7	99.3	103.0	110.4	119.6	131.0	138.4	133.1	130.0
Spain..	101.6	92.1	81.4	89.0	92.8	96.4	99.7	100.5	98.8	97.6	96.8	96.8	95.4	94.2	82.0	79.0
Sweden..	113.3	110.2	101.3	100.1	102.3	102.5	103.8	104.4	97.0	95.7	94.3	93.0	93.6	94.2	83.4	85.0
Taiwan..	102.9	113.0	111.1	110.6	108.8	110.1	112.4	99.6	102.7	107.9	107.7	108.1	109.6	108.9	99.4	109.4
United Kingdom...	172.1	135.0	119.6	121.4	120.9	115.9	111.1	105.5	95.4	91.6	87.5	85.7	83.3	80.5	74.7	74.3

See notes at end of table.
53. Continued- Annual indexes of manufacturing productivity and related measures, 19 countries
[2002 = 100]

Measure and country	1980	1990	1995	1997	1998	1999	2000	2001	2003	2004	2005	2006	2007	2008	2009	2010
Unit labor costs (national currency basis)																
United States.	91.6	107.0	107.1	103.6	104.5	102.8	102.8	104.5	99.8	92.6	91.6	90.2	88.7	93.3	92.8	89.2
Australia.		82.1	91.6	94.3	94.8	95.4	96.8	97.6	101.0	105.5	111.0	115.8	119.0	123.9	126.7	123.7
Belgium.	80.8	93.6	97.0	95.1	95.3	97.3	95.1	99.0	100.3	98.0	98.1	100.7	100.8	103.9	108.3	104.8
Canada.	65.8	96.6	97.9	97.3	97.8	95.8	93.5	98.4	103.7	106.5	107.7	110.3	113.0	117.6	114.8	109.9
Czech Republic.			73.8	86.7	100.4	92.2	89.2	98.7	106.1	100.1	94.5	88.7	87.9	86.7	88.5	81.8
Denmark.	49.4	86.4	87.3	90.0	92.9	93.7	92.3	96.5	102.5	100.6	103.0	101.8	105.1	104.7	109.2	102.5
Finland.	75.2	126.4	118.0	114.8	112.9	109.0	101.6	104.6	96.8	94.3	93.9	87.0	81.8	86.9	103.5	92.0
France.	60.7	99.1	102.2	102.2	98.2	97.4	96.7	98.0	99.1	98.7	97.8	97.8	97.3	103.4	108.6	102.7
Germany	65.7	85.5	100.8	98.9	99.9	99.7	98.1	98.6	98.7	95.7	92.9	89.2	87.7	94.4	109.2	100.4
Italy..	34.5	78.6	87.7	94.4	94.0	95.6	93.2	96.1	106.0	108.1	110.0	110.3	112.9	121.2	133.7	127.6
Japan.	105.4	109.2	110.8	106.8	108.3	105.4	99.5	102.9	91.6	86.4	81.8	80.1	76.0	74.9	83.2	72.1
Korea, Rep. of.	40.4	72.4	109.2	110.7	107.8	96.2	93.8	98.8	98.8	102.7	106.9	105.2	104.6	104.8	109.1	108.3
Netherlands.	86.0	91.0	93.9	95.3	96.8	96.3	93.8	97.5	101.5	99.1	95.9	95.0	92.9	98.1	106.4	98.2
Norway...	35.3	66.6	78.5	82.7	89.9	91.8	94.1	97.0	95.8	93.4	94.5	102.4	107.7	112.8	118.0	117.2
Singapore.	78.5	107.5	113.5	117.8	115.8	96.0	92.3	106.0	97.1	88.9	86.4	82.7	85.3	95.3	95.1	77.7
Spain.	35.7	73.7	93.6	98.4	97.4	95.6	96.0	97.6	102.5	104.1	107.0	110.0	114.1	122.0	125.5	119.7
Sweden.	67.2	123.3	110.6	110.9	108.1	102.2	99.0	106.1	96.5	89.2	86.6	82.2	85.0	92.6	104.0	89.5
Taiwan.	69.3	108.5	123.1	121.0	120.0	115.5	110.9	112.4	96.2	94.5	92.6	90.4	84.3	85.0	78.7	70.2
United Kingdom.	52.6	84.3	88.2	90.7	96.5	97.5	96.7	97.6	100.7	99.1	100.3	102.2	102.4	104.2	112.0	110.9
Unit labor costs (U.S. dollar basis)																
United States..	91.6	107.0	107.1	103.6	104.5	102.8	102.8	104.5	99.8	92.6	91.6	90.2	88.7	93.3	92.8	89.2
Australia.		118.0	124.8	129.0	109.7	113.2	103.6	92.8	121.2	142.9	155.7	160.5	183.6	194.6	184.7	209.3
Belgium.	118.0	119.5	140.5	113.3	112.0	109.6	92.9	93.7	120.1	128.9	129.2	133.8	146.2	161.8	159.6	147.0
Canada.	88.4	130.1	112.1	110.4	103.5	101.3	98.8	99.8	116.3	128.5	139.6	152.7	165.3	173.2	158.0	167.6
Czech Republic.			91.0	89.5	101.8	87.3	75.6	85.0	123.1	127.6	129.2	128.5	140.2	166.4	152.0	140.1
Denmark.	69.1	110.1	123.0	107.4	109.3	105.8	89.9	91.4	122.9	132.5	135.5	135.1	152.3	162.3	160.8	143.6
Finland.	126.8	207.9	170.0	139.1	132.9	122.8	99.3	99.1	115.9	124.0	123.7	115.6	118.6	135.3	152.6	129.0
France.	99.7	126.2	142.2	121.5	115.5	109.7	94.5	92.8	118.7	129.8	128.8	130.0	141.2	161.1	160.1	144.1
Germany	74.7	109.4	145.6	117.9	117.4	112.4	95.8	93.3	118.2	125.9	122.3	118.6	127.2	147.0	161.0	140.8
Italy.	82.6	134.3	110.2	113.5	110.8	107.7	91.1	91.0	127.0	142.2	144.8	146.5	163.7	188.8	197.1	179.0
Japan.	58.2	94.3	147.7	110.4	103.6	116.1	115.6	106.0	98.9	100.1	93.0	86.3	80.8	90.7	111.2	102.9
Korea, Rep. of.	83.1	127.3	176.7	146.1	96.2	101.1	103.7	95.7	103.6	112.1	130.6	137.8	140.8	119.2	107.0	117.1
Netherlands.	100.8	116.5	136.4	113.7	113.8	108.5	91.6	92.3	121.6	130.3	126.3	126.2	134.7	152.8	156.8	137.8
Norway..	57.0	85.0	98.9	93.2	95.0	93.9	85.2	86.1	108.0	110.6	117.2	127.6	146.9	159.7	149.8	154.7
Singapore.	65.7	106.2	143.4	142.0	124.0	101.4	95.8	105.9	99.7	94.2	93.0	93.3	101.5	120.6	117.1	102.1
Spain.	87.6	127.3	132.2	118.1	114.8	107.7	93.8	92.4	122.7	136.9	140.9	146.2	165.5	190.1	185.0	168.0
Sweden.	154.3	202.4	150.7	141.0	132.2	120.1	105.0	99.8	116.1	118.1	112.7	108.4	122.4	136.8	132.2	120.8
Taiwan..	66.4	139.3	160.4	145.2	123.5	123.4	122.6	114.7	96.5	97.8	99.5	96.1	88.6	93.2	82.3	77.0
United Kingdom.	81.4	100.1	92.7	98.9	106.5	104.9	97.5	93.5	109.5	120.8	121.6	125.4	136.5	128.6	116.7	114.1
Hourly compensation (national currency basis)																
United States..	38.2	62.1	73.4	76.5	81.2	84.8	91.3	94.8	108.0	108.9	112.5	114.8	118.5	123.6	129.1	131.2
Australia.		63.9	77.8	83.0	87.7	91.4	90.5	96.0	106.0	110.1	117.1	125.2	130.9	132.2	141.1	140.0
Belgium.	40.8	70.1	84.5	89.3	90.6	91.8	93.5	96.5	101.9	103.0	104.8	108.0	112.2	115.8	123.0	123.0
Canada.	36.3	68.3	81.6	84.9	89.3	91.2	94.2	96.7	104.0	108.0	112.8	117.2	121.2	122.9	121.0	120.9
Czech Republic.			51.9	67.1	73.4	77.4	82.0	91.6	108.1	114.6	118.1	124.5	133.3	139.9	138.1	144.0
Denmark.	32.6	68.5	79.3	85.3	87.6	89.8	91.6	95.9	106.8	110.9	117.2	121.6	128.3	131.2	134.9	138.6
Finland.	21.8	60.6	77.6	81.6	85.0	88.1	91.9	98.2	102.9	106.9	111.6	115.5	118.8	122.2	125.2	129.5
France.	28.2	64.1	79.4	83.7	84.4	87.3	91.9	94.3	102.5	105.9	109.7	113.9	116.2	119.3	122.9	125.4
Germany...	35.8	59.7	81.2	86.7	88.0	90.0	94.7	97.6	102.2	102.8	104.1	108.4	109.4	112.4	118.1	116.0
Italy...	19.6	61.3	82.5	91.1	89.4	91.7	94.1	97.2	103.8	107.4	110.8	113.2	116.4	121.1	125.4	128.1
Japan..	50.4	77.4	92.4	96.4	98.8	98.6	98.0	99.3	97.8	98.8	99.6	98.5	97.0	98.4	99.5	98.2
Korea, Rep. of.		24.1	56.9	72.7	79.3	79.6	85.2	89.1	105.5	120.3	139.8	153.2	163.4	164.8	173.6	187.2
Netherlands.	42.8	63.1	77.0	80.3	83.7	86.6	90.7	94.7	103.9	108.4	109.9	113.1	116.4	120.4	124.4	125.3
Norway..	24.7	58.5	69.2	75.3	79.7	84.2	89.0	94.4	104.1	107.5	112.6	119.5	125.0	132.1	139.4	144.9
Singapore.	26.0	54.5	82.6	91.7	93.7	88.8	93.4	96.2	100.6	101.2	100.5	99.4	99.2	100.3	99.9	108.3
Spain..	20.7	59.0	87.4	91.6	92.3	92.1	93.5	97.2	105.0	108.7	113.9	119.4	126.6	133.4	136.1	136.0
Sweden.	27.0	61.0	71.8	81.6	84.7	87.4	90.7	94.9	104.4	107.2	110.8	114.1	121.2	124.4	129.4	126.3
Taiwan..	19.8	57.0	80.5	88.5	91.4	93.3	94.9	101.0	103.1	106.4	112.7	119.5	120.7	123.7	119.9	123.3
United Kingdom...	24.0	59.3	71.6	74.4	80.1	85.2	90.2	94.6	105.2	110.1	116.7	123.2	127.7	130.4	135.0	139.3

54. Occupational injury and illness rates by industry, ${ }^{1}$ United States

Industry and type of case ${ }^{2}$	Incidence rates per 100 full-time workers ${ }^{3}$												
	$1989{ }^{\text { }}$	1990	1991	1992	$1993{ }^{4}$	$1994{ }^{4}$	$1995{ }^{4}$	$1996{ }^{4}$	$1997{ }^{4}$	$1998{ }^{4}$	$1999{ }^{4}$	$2000{ }^{4}$	$2001{ }^{4}$
PRIVATE SECTOR ${ }^{5}$													
Total cases .	$\begin{aligned} & 8.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 3.9 \end{aligned}$	8.53.8	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 3.3 \end{aligned}$	6.7	6.3	6.1	5.72.8
Lost workday cases...										3.1	3.0	3.0	
Lost workdays.........	78.7	84.0	86.5	93.8	-	-	-	-	-	-	-	-	-
Agriculture, forestry, and fishing ${ }^{5}$													
Total cases ..	10.9	11.6	10.8	11.6	11.2	10.0	9.7	8.7	8.4	7.9	7.3	7.1	$\begin{array}{r}7.3 \\ 3.6 \\ \hline\end{array}$
Lost workday cases...	5.7	112.2	5.4	5.4	-	4.7	-	3.9	4.1	3.9	3.4	3.6	
Lost workdays...........	100.9		108.3	126.9				-	-	-	-	-	
Mining													-
Total cases ..	$\begin{aligned} & 8.5 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 3.2 \end{aligned}$	5.9	$\begin{aligned} & 4.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.4 \end{aligned}$
Lost workday cases....													
Lost workdays.......	137.2	119.5	129.6	204.7	-	-	-	-	-	-		-	-
Construction													
Total cases .	$\begin{array}{r} 14.3 \\ 6.8 \\ 143.3 \end{array}$	$\begin{array}{r} 14.2 \\ 6.7 \end{array}$	$\begin{array}{r} 13.0 \\ 6.1 \\ 148.1 \end{array}$	$\begin{array}{r} 13.1 \\ 5.8 \\ 161.9 \end{array}$	$\begin{array}{r} 12.2 \\ 5.5 \end{array}$	$\begin{array}{r} 11.8 \\ 5.5 \end{array}$	10.6	9.9	9.5	8.8	8.6	8.3	7.9
Lost workday cases....							4.9	4.5	4.4	4.0	4.2	4.1	4.0
Lost workdays...		147.9			-	-	-	-	-	-	-	-	-
General building contractors:													
Total cases	$\begin{array}{r} 13.9 \\ 6.5 \\ 137.3 \end{array}$	$\begin{array}{r} 13.4 \\ 6.4 \end{array}$	$\begin{array}{r} 12.0 \\ 5.5 \end{array}$	$\begin{array}{r} 12.2 \\ 5.4 \end{array}$	$\begin{array}{r} 11.5 \\ 5.1 \end{array}$	$\begin{array}{r} 10.9 \\ 5.1 \end{array}$	$\begin{aligned} & 9.8 \\ & 4.4 \end{aligned}$	9.0	$\begin{aligned} & 8.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.9 \end{aligned}$	8.03.7	$\begin{aligned} & 7.8 \\ & 3.9 \end{aligned}$	$\begin{array}{r}6.9 \\ 3.5 \\ \hline\end{array}$
Lost workday cases...								4.0					
Lost workdays...		137.6	132.0	142.7	-	-	-	-	-	-	-	-	
Heavy construction, except building:													
Total cases	$\begin{array}{r} 13.8 \\ 6.5 \\ 147.1 \end{array}$	$\begin{array}{r} 13.8 \\ 6.3 \end{array}$	12.8	12.15.4	11.15.1	10.2	9.94.8	9.04.3	8.74.3	8.2	7.8	7.6	7.84.0
Lost workday cases..			6.0			5.0-				4.1	3.8	3.7	
Lost workdays..		144.6	160.1	165.8	-		-	-	-	-	-	-	-
Special trades contractors:													
Total cases	$\begin{array}{r} 14.6 \\ 6.9 \\ 144.9 \end{array}$	$\begin{array}{r} 14.7 \\ 6.9 \end{array}$	$\begin{array}{r} 13.5 \\ 6.3 \end{array}$	13.86.1	12.85.8	12.5	11.1	10.4	10.0	9.1	8.9	8.6	8.24.1
Lost workday cases...						5.8	5.0	4.8	4.7	4.1	4.4	4.3	
Lost workdays.....		153.1	151.3	168.3	-	-	-	-	-	-	-	-	
Manufacturing													
Total cases	$\begin{array}{r} 13.1 \\ 5.8 \\ 113.0 \end{array}$	$\begin{array}{r} 13.2 \\ 5.8 \\ 120.7 \end{array}$	$\begin{array}{r} 12.7 \\ 5.6 \\ 121.5 \end{array}$	$\begin{array}{r} 12.5 \\ 5.4 \\ 124.6 \end{array}$	12.15.3	12.2	11.6	10.6	10.3		9.2	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{array}{r}8.1 \\ 4.1 \\ \hline\end{array}$
Lost workday cases..						5.5	5.3	4.9	4.8	4.7	4.6		
Lost workdays..					-	-	-	-	-	-	-	-	
Durable goods:													
Total cases ...	$\begin{array}{r} 14.1 \\ 6.0 \\ 116.5 \end{array}$	14.2	13.6	13.4	13.1	13.5	12.8	11.6	11.3	10.7	10.1	-	8.8
Lost workday cases...		6.0	5.7	5.5	5.4	5.7	5.6	5.1	5.1	5.0	4.8	-	4.3
Lost workdays...		123.3	122.9	126.7	-	-	-	-	-	-	-	-	-
Lumber and wood products:													
Total cases	18.4	18.1	16.8	16.3	15.9	15.7	14.9	14.2	13.5	13.2	13.0	12.1	10.6
Lost workday cases..	9.4	8.8	8.3	7.6	7.6	7.7	7.0	6.8	6.5	6.8	6.7	6.1	5.5
Lost workdays..	177.5	172.5	172.0	165.8	-	-	-	-	-	-	-	-	-
Furniture and fixtures:													
Total cases	16.1	16.9	15.9	14.8	14.6	15.0	13.9	12.2	12.0	11.4	11.5	11.2	11.0
Lost workday cases...	7.2	7.8	7.2	6.6	6.5	7.0	6.4	5.4	5.8	5.7	5.9	5.9	5.7
Lost workdays......	-	-	-	128.4	-	-	-	-	-	-	-	-	-
Stone, clay, and glass products:													
Total cases	15.5	15.4	14.8	13.6	13.8	13.2	12.3	12.4	11.8	11.8	10.7	10.4	10.1
Lost workday cases...	7.4	7.3	6.8	6.1	6.3	6.5	5.7	6.0	5.7	6.0	5.4	5.5	5.1
Lost workdays.....	149.8	160.5	156.0	152.2	-	-	-	-	-	-	-	-	-
Primary metal industries:													
Total cases	18.7	19.0	17.7	17.5	17.0	16.8	16.5	15.0	15.0	14.0	12.9	12.6	10.7
Lost workday cases...	8.1	8.1	7.4	7.1	7.3	7.2	7.2	6.8	7.2	7.0	6.3	6.3	5.3
Lost workdays...	168.3	180.2	169.1	175.5	-	-	-	-	-	-	-	-	11.1
Fabricated metal products:													
Total cases	18.5	18.7	17.4	16.8	16.2	16.4	15.8	14.4	14.2	13.9	12.6	11.9	11.1
Lost workday cases.....	7.9	7.9	7.1	6.6	6.7	6.7	6.9	6.2	6.4	6.5	6.0	5.5	5.3
Lost workdays.....................	147.6	155.7	146.6	144.0	-	-	-	-	-	-	-	-	-
Industrial machinery and equipment:													
Total cases ...	12.1	12.0	11.2	11.1	11.1	11.6	11.2	9.9	10.0	9.5	8.5	8.2	11.0
Lost workday cases.....	4.8	4.7	4.4	4.2	4.2	4.4	4.4	4.0	4.1	4.0	3.7	3.6	6.0
Lost workdays........................	86.8	88.9	86.6	87.7	-	-	-	-	-	-	-	-	-
Electronic and other electrical equipment:													
Total cases	9.1	9.1	8.6	8.4	8.3	8.3	7.6	6.8	6.6	5.9	5.7	5.7	5.0
Lost workday cases......	3.9	3.8	3.7	3.6	3.5	3.6	3.3	3.1	3.1	2.8	2.8	2.9	2.5
Lost workdays.....................	77.5	79.4	83.0	81.2	-	-	-	-	-	-	-	-	-
Transportation equipment:													
Total cases	17.7	17.8	18.3	18.7	18.5	19.6	18.6	16.3	15.4	14.6	13.7	13.7	12.6
Lost workday cases....	6.8	6.9	7.0	7.1	7.1	7.8	7.9	7.0	6.6	6.6	6.4	6.3	6.0
Lost workdays......................	138.6	153.7	166.1	186.6	-	-	-	-	-	-	-	-	-
Instruments and related products: Total cases	5.6	5.9	6.0	5.9	5.6	5.9	5.3	5.1	4.8	4.0	4.0	4.5	4.0
Lost workday cases.............	2.5	2.7	2.7	2.7	2.5	2.7	2.4	2.3	2.3	1.9	1.8	2.2	2.0
Lost workdays...................	55.4	57.8	64.4	65.3	-	-	-	-	-	-	-	-	-
Miscellaneous manufacturing industries:													
Total cases	11.1	11.3	11.3	10.7	10.0	9.9	9.1	9.5	8.9	8.1	8.4	7.2	6.4
Lost workday cases...........................	5.1	5.1	5.1	5.0	4.6	4.5	4.3	4.4	4.2	3.9	4.0	3.6	3.2
Lost workdays...	97.6	113.1	104.0	108.2	-	-	-	-	-	-	-	-	-

See footnotes at end of table.
54. Continued-Occupational injury and illness rates by industry, United States

Industry and type of case ${ }^{2}$	Incidence rates per 100 workers ${ }^{3}$												
	$1989{ }^{1}$	1990	1991	1992	$1993{ }^{4}$	$1994{ }^{4}$	$1995{ }^{4}$	$1996{ }^{4}$	$1997{ }^{4}$	$1998{ }^{4}$	$1999{ }^{4}$	$2000{ }^{4}$	$2001{ }^{4}$
Nondurable goods:													
Total cases .	11.6	11.7	11.5	11.3	10.7	10.5	9.9	9.2	8.8	8.2	7.8	7.8	6.8
Lost workday cases..	5.5	5.6	5.5	5.3	5.0	5.1	4.9	4.6	4.4	4.3	4.2	4.2	3.8
Lost workdays.........	107.8	116.9	119.7	121.8	-	-	-	-	-	-	-	-	-
Food and kindred products:													
Total cases	18.5	20.0	19.5	18.8	17.6	17.1	16.3	15.0	14.5	13.6	12.7	12.4	10.9
Lost workday cases.	9.3	9.9	9.9	9.5	8.9	9.2	8.7	8.0	8.0	7.5	7.3	7.3	6.3
Lost workdays.........	174.7	202.6	207.2	211.9	-	-	-	-	-	-	-	-	-
Tobacco products:													
Total cases	8.7	7.7	6.4	6.0	5.8	5.3	5.6	6.7	5.9	6.4	5.5	6.2	6.7
Lost workday cases..	3.4	3.2	2.8	2.4	2.3	2.4	2.6	2.8	2.7	3.4	2.2	3.1	4.2
Lost workdays.........	64.2	62.3	52.0	42.9	-	-	-	-	-	-	-	-	-
Textile mill products:													
	10.3	. 6	10.1	9.9	4.1	8.7	8.2	7.8	6.7	7.4	6.4	6.0	5.2
Lost workday cases..	4.2	4.0	4.4	4.2	4.1	4.0	4.1	3.6	3.1	3.4	3.2	3.2	2.7
Lost workdays...	81.4	85.1	88.3	87.1	-	-	-	-	-	-	-	-	-
Apparel and other textile products:													
Total cases	8.6	8.8	9.2	9.5	9.0	8.9	8.2	7.4	7.0	6.2	5.8	6.1	5.0
Lost workday cases..	3.8	3.9	4.2	4.0	3.8	3.9	3.6	3.3	3.1	2.6	2.8	3.0	2.4
Lost workdays....	80.5	92.1	99.9	104.6	-	-	-	-	-	-	-	-	-
Paper and allied products:													
Total cases ..	12.7	12.1	11.2	11.0	9.9	9.6	8.5	7.9	7.3	7.1	7.0	6.5	6.0
Lost workday cases..	5.8	5.5	5.0	5.0	4.6	4.5	4.2	3.8	3.7	3.7	3.7	3.4	3.2
Lost workdays...	132.9	124.8	122.7	125.9	-	-	-	-	-	-	-	-	-
Printing and publishing:													
Total cases	6.9	6.9	6.7	7.3	6.9	6.7	6.4	6.0	5.7	5.4	5.0	5.1	4.6
Lost workday cases..	3.3	3.3	3.2	3.2	3.1	3.0	3.0	2.8	2.7	2.8	2.6	2.6	2.4
Lost workdays....	63.8	69.8	74.5	74.8	-	-	-	-	-	-	-	-	-
Chemicals and allied products:													
Total cases	7.0	6.5	6.4	6.0	5.9	5.7	5.5	4.8	4.8	4.2	4.4	4.2	4.0
Lost workday cases...	3.2	3.1	3.1	2.8	2.7	2.8	2.7	2.4	2.3	2.1	2.3	2.2	2.1
Lost workdays...	63.4	61.6	62.4	64.2	-	-	-	-	-	-	-	-	-
Petroleum and coal products:													
Total cases	6.6	6.6	6.2	5.9	5.2	4.7	4.8	4.6	4.3	3.9	4.1	3.7	2.9
Lost workday cases...	3.3	3.1	2.9	2.8	2.5	2.3	2.4	2.5	2.2	1.8	1.8	1.9	1.4
Lost workdays....	68.1	77.3	68.2	71.2	-	-	-	-	-	-	-	-	-
Rubber and miscellaneous plastics products:													
Lost workday cases..	8.0	7.8	7.2	6.8	6.5	6.7	6.5	6.3	5.8	5.8	5.5	5.8	4.8
Lost workdays...	147.2	151.3	150.9	153.3	-	-	-	-	-	-	-	-	-
Leather and leather products:													
Total cases	13.6	12.1	12.5	12.1	12.1	12.0	11.4	10.7	10.6	9.8	10.3	9.0	8.7
Lost workday cases..	6.5	5.9	5.9	5.4	5.5	5.3	4.8	4.5	4.3	4.5	5.0	4.3	4.4
Lost workdays..	130.4	152.3	140.8	128.5	-	-	-	-	-	-	-	-	-
Transportation and public utilities													
Total cases	9.2	9.6	9.3	9.1	9.5	9.3	9.1	8.7	8.2	7.3	7.3	6.9	6.9
Lost workday cases...	5.3	5.5	5.4	5.1	5.4	5.5	5.2	5.1	4.8	4.3	4.4	4.3	4.3
Lost workdays...................................	121.5	134.1	140.0	144.0	-	-	-	-	-	-	-	-	-
Wholesale and retail trade													
Total cases	8.0	7.9	7.6	8.4	8.1	7.9	7.5	6.8	6.7	6.5	6.1	5.9	6.6
Lost workday cases..	3.6	3.5	3.4	3.5	3.4	3.4	3.2	2.9	3.0	2.8	2.7	2.7	2.5
Lost workdays..	63.5	65.6	72.0	80.1	-	-	-	-	-	-	-	-	-
Wholesale trade:													
Total cases	7.7	7.4	7.2	7.6	7.8	7.7	7.5	6.6	6.5	6.5	6.3	5.8	5.3
Lost workday cases.	4.0	3.7	3.7	3.6	3.7	3.8	3.6	3.4	3.2	3.3	3.3	3.1	2.8
Lost workdays.....	71.9	71.5	79.2	82.4	-	-	-	-	-	-	-	-	-
Retail trade:													
Total cases .	8.1	8.1	7.7	8.7	8.2	7.9	7.5	6.9	6.8	6.5	6.1	5.9	5.7
Lost workday cases...	3.4	3.4	3.3	3.4	3.3	3.3	3.0	2.8	2.9	2.7	2.5	2.5	2.4
Lost workdays..	60.0	63.2	69.1	79.2	-	-	-	-	-	-	-	-	-
Total cases ...	2.0	2.4	2.4	2.9	2.9	2.7	2.6	2.4	2.2	. 7	1.8	1.9	1.8
Lost workday cases...	. 9	1.1	1.1	1.2	1.2	1.1	1.0	. 9	. 9	. 5	. 8	. 8	. 7
Lost workdays..	17.6	27.3	24.1	32.9	-	-	-	-	-	-	-	-	-
Services													
Total cases	5.5	6.0	6.2	7.1	6.7	6.5	6.4	6.0	5.6	5.2	4.9	4.9	4.6
Lost workday cases...	2.7	2.8	2.8	3.0	2.8	2.8	2.8	2.6	2.5	2.4	2.2	2.2	2.2
Lost workdays............................	51.2	56.4	60.0	68.6	-	-	-	-	-	-	-	-	-

${ }^{1}$ Data for 1989 and subsequent years are based on the Standard Industrial Classification Manual, 1987 Edition. For this reason, they are not strictly comparable with data for the years 1985-88, which were based on the Standard Industrial Classification Manual, 1972 Edition, 1977 Supplement.
${ }^{2}$ Beginning with the 1992 survey, the annual survey measures only nonfatal injuries and illnesses, while past surveys covered both fatal and nonfatal incidents. To better address fatalities, a basic element of workplace safety, BLS implemented the Census of Fatal Occupational Injuries.
${ }^{3}$ The incidence rates represent the number of injuries and illnesses or lost workdays per 100 full-time workers and were calculated as (N/EH) $\times 200,000$, where
$\mathrm{N}=$ number of injuries and illnesses or lost workdays;
$\mathrm{EH}=$ total hours worked by all employees during the calendar year; and
$200,000=$ base for 100 full-time equivalent workers (working 40 hours per week, 50 weeks per year).
${ }^{4}$ Beginning with the 1993 survey, lost workday estimates will not be generated. As of 1992, BLS began generating percent distributions and the median number of days away from work by industry and for groups of workers sustaining similar work disabilities.
${ }^{5}$ Excludes farms with fewer than 11 employees since 1976.
NOTE: Dash indicates data not available.
55. Fatal occupational injuries by event or exposure, 1996-2005

Event or exposure ${ }^{1}$	$\begin{gathered} \text { 1996-2000 } \\ \text { (average) } \end{gathered}$	$\begin{aligned} & \text { 2001-2005 } \\ & \text { (average) }^{2} \end{aligned}$	20053	
			Number	Percent
All events	6,094	5,704	5,734	100
Transportation incidents	2,608	2,451	2,493	43
Highway	1,408	1,394	1,437	25
Collision between vehicles, mobile equipment	685	686	718	13
Moving in same direction	117	151	175	3
Moving in opposite directions, oncoming	247	254	265	5
Moving in intersection	151	137	134	2
Vehicle struck stationary object or equipment on side of road	264	310	345	6
Noncollision	372	335	318	6
Jack-knifed or overturned--no collision	298	274	273	5
Nonhighway (farm, industrial premises)	378	335	340	6
Noncollision accident	321	277	281	5
Overturned	212	175	182	3
Worker struck by vehicle, mobile equipment	376	369	391	7
Worker struck by vehicle, mobile equipment in roadway	129	136	140	2
Worker struck by vehicle, mobile equipment in parking lot or non-road area \qquad	171	166	176	3
Water vehicle ..	105	82	88	2
Aircraft	263	206	149	3
Assaults and violent acts	1,015	850	792	14
Homicides	766	602	567	10
Shooting	617	465	441	8
Suicide, self-inflicted injury	216	207	180	3
Contact with objects and equipment	1,005	952	1,005	18
Struck by object	567	560	607	11
Struck by falling object	364	345	385	7
Struck by rolling, sliding objects on floor or ground level \qquad	77	89	94	2
Caught in or compressed by equipment or objects	293	256	278	5
Caught in running equipment or machinery	157	128	121	2
Caught in or crushed in collapsing materials	128	118	109	2
Falls	714	763	770	13
Fall to lower level	636	669	664	12
Fall from ladder	106	125	129	2
Fall from roof	153	154	160	3
Fall to lower level, n.e.c.	117	123	117	2
Exposure to harmful substances or environments	535	498	501	9
Contact with electric current	290	265	251	4
Contact with overhead power lines	132	118	112	2
Exposure to caustic, noxious, or allergenic substances	112	114	136	2
Oxygen deficiency ...	92	74	59	1
Fires and explosions ..	196	174	159	3
Fires--unintended or uncontrolled	103	95	93	2
Explosion ...	92	78	65	1

[^30]
[^0]: SOURCES: Current Population Survey Annual Social and Economic Supplement.

[^1]: ${ }^{1}$ Represents a binary variable set to 1 for those identifying themselves as retired in a CPS question about why they did not work in the previous year.
 ${ }^{2}$ The proportion of men ages 55-61 with less education who were not in the labor force continued increasing after 1990.
 NOTES: This table uses the averages and proportions reported in table A-4 and estimated marginal effects which are available upon request from

[^2]: ${ }^{1}$ Diane J. Macunovich, "The Fortunes of One's Birth: Relative Cohort Size and the Youth Labor Market in the U.S.," Journal of Population Economics, June 1999, pp. 215-272 and Birth Quake: The Baby Boom and Its Aftershocks (Chicago: University of Chicago Press, 2002).
 ${ }^{2}$ Joseph F. Quinn, Retirement Trends and Patterns in the 1990s: The End of an Era? Boston College Working Papers In Economics, no. 385, 1997; New Paths to Retirement, no. 406, 1998; and Has the Early Retirement Trend Reversed? no. 424, 1999.
 ${ }^{3}$ Gary Englehart and Anil Kumar, "The Repeal of the Retirement Earnings Test and the Labor Supply of Older Men," Journal of Pension Economics and Finance, October 2009, pp. 429-450.
 ${ }^{4}$ David A. Wise, "Social Security Provisions and the Labor Force Participation of Older Workers," Population and Development Review, supplement to vol. 30, 2004, pp. 176-205.

[^3]: ${ }^{5}$ Alan Krueger and Jörn-Steffen Pischke, "The Effect of Social Security on Labor Supply: A Cohort Analysis of the Notch Generation," Journal of Labor Economics, University of Chicago Press, October 1992, pp. 412-437.
 ${ }^{6}$ PatriciaM.Anderson, Alan L.Gustman, and Thomas L.Steinmeier, "Trends in Male Labor Force Participation and Retirement: Some Evidence on the Role of Pensions and Social Security in the 1970s and 1980s," Journal of Labor Economics, University of Chicago Press, October 1999, pp. 757-783.
 ${ }^{7}$ Leora Friedberg and Anthony Webb, "Retirement and the Evolution of the Pension Structure," The Journal of Human Resources, Spring 2005, pp. 281-308.
 ${ }^{8}$ Courtney C. Coile and Phillip P. Levine, "Bulls, Bears and Retirement Behavior," Industrial and Labor Relations Review, Cornell University, April 2006, pp. 408-429.

[^4]: ${ }^{1}$ Includes those with 0 hours. Hours were imputed for years before 1976 using the algorithm from Finis Welch, "Effects of Cohort Size on Earnings: The Baby Boom Babies' Financial Bust," Journal of Political Economy, October 1979.
 ${ }^{2}$ As self-reported: reason given for not working.
 ${ }^{3}$ Number of men ages 25-34 working part time and/or part year divided
 by number of men in the labor force ages 55-69.
 ${ }^{4}$ Total family earnings minus own earnings.
 ${ }^{5}$ Interest, dividends, and rent. Data not available in first two periods.
 SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

[^5]: ${ }^{1}$ Includes those with 0 hours. Hours were imputed for years before 1976 using the algorithm from Finis Welch, "Effects of Cohort Size on Earnings: The Baby Boom Babies' Financial Bust," Journal of Political Economy, October 1979.
 ${ }^{2}$ As self-reported: reason given for not working.
 ${ }^{3}$ Number of men ages 25-34 working part time and/or part year divided by
 number of men in the labor force ages 55-69.
 ${ }^{4}$ Total family earnings minus own earnings
 ${ }^{5}$ Interest, dividends, and rent. Data not available in first two periods.
 SOURCES: Current Population Survey Annual Social and Economic Supplement and author's calculations.

[^6]: NOTE: Full-time career job status could not be determined for 1 man and 28 women, all of whom were deleted from the sample.

 SOURCE: Authors' calculations based on Health and Retirement Study.

[^7]: ${ }^{1}$ Difference by full-time career job status is significant at $p<.01$ among both men and women.
 ${ }^{2}$ Difference by full-time career job status is significant at $p<.05$ among women.
 ${ }^{3}$ Difference by full-time career job status is significant at $p<.01$

[^8]: NOTE: Detailed entries may not sum to totals because of rounding. Sample size n for spouse's health status is 4,602 for men and 3,814 for women.

 SOURCE: Authors' calculations based on Health and Retirement Study.

[^9]: ${ }^{1}$ Percentages based on respondents who were working in first wave; difference by full-time career job status is significant at $p<.01$ among both men and women.
 ${ }^{2}$ Percentages based on respondents who were working in first wave; difference by full-time career job status is significant at $p<.05$ among both men and women.

[^10]: SOURCE: Authors' calculations based on Health and Retirement Study.

[^11]: Direct exit from the 1992 job is the reference category with which
 NOTE: Dash indicates reference, or base, category.
 the other two alternatives are compared.
 SOURCE: Authors' calculations based on Health and Retirement Study.

[^12]: ${ }^{6}$ See The 2011 Annual Report of the Board of Trustees of the Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds (Washington, DC, U.S. Government Printing Office, 2011), p. 53; Alicia H. Munnell, "Working Longer: A Potential Win-Win Proposition," in Teresa Ghilarducci and John Turner, eds., Work Options for Older Americans (Notre Dame, In, University of Notre Dame Press, 2007), pp. 11-43; and Nicole Maestas and Julia Zissimopoulos, "How Longer Work Lives Ease the Crunch of Population Aging," Journal of Economic Perspectives, winter 2010, pp. 139-160.
 ${ }^{7}$ See Courtney C. Coile and Phillip B. Levine, "Bulls, Bears, and Retirement Behavior," Industrial and Labor Relations Revierw, April

[^13]: ${ }^{4} 2005$ Consumer Expenditure Interview Survey Public Use Micro-

[^14]: See footnotes at end of table.

[^15]: NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.

[^16]: See notes at end of table

[^17]: NOTE: See "Notes on the data" for a description of the most recent benchmark revision. $p=$ preliminary.

[^18]: 1 Data relate to production workers in natural resources and mining and manufacturing, construction workers in construction, and nonsupervisory workers in the service-providing industries.

[^19]: 1 Average weekly wages were calculated using unrounded data.
 2 Percent changes were computed from quarterly employment and pay data adjusted for noneconomic county reclassifications. See Notes on Current Labor Statistics.

[^20]: 1 Average weekly wages were calculated using unrounded data.
 2 Totals for the United States do not include data for Puerto Rico or the Virgin Islands.

[^21]: NOTE: Data are final. Detail may not add to total due to rounding

[^22]: 2 Includes data for unclassified establishments, not shown separately.

[^23]: See footnotes at end of table.

[^24]: ${ }^{1}$ Consists of private industry workers (excluding farm and household workers) and State and local government (excluding Federal Government) workers.
 ${ }^{2}$ Consists of legislative, judicial, administrative, and regulatory activities.
 NOTE: The Employment Cost Index data reflect the conversion to the 2002 North
 American Classification System (NAICS) and the 2000 Standard Occupationa Classification (SOC) system. The NAICS and soc data shown prior to 2006 are for informational purposes only. Series based on NAICS and sOc became the official BLS estimates starting in March 2006

[^25]: See footnotes at end of table.

[^26]: See footnotes at end of table

[^27]: 1 Agricultural and government employees are included in the total employed and total working time; private household, forestry, and fishery employees are excluded. An explanation of the measurement of idleness as a percentage of the total time

[^28]: worked is found in "Total economy measures of strike idleness," Monthly Labor Review, October 1968, pp. 54-56.

 NOTE: $p=$ preliminary.

[^29]: 1 Not seasonally adjusted
 ${ }^{2}$ Indexes on a December $1997=100$ base .
 ${ }^{3}$ Indexes on a December $1982=100$ base .

[^30]: 1 Based on the 1992 BLS Occupational Injury and IIlness Classification Manual.
 2 Excludes fatalities from the Sept. 11, 2001, terrorist attacks.
 3 The BLS news release of August 10, 2006, reported a total of 5,702 fatal work injuries for calendar year 2005. Since then, an additional 32 job-related fatalities were identified, bringing the total job-related fatality count for 2005 to 5,734 .
 NOTE: Totals for all years are revised and final. Totals for major categories may include subcategories not shown separately. Dashes indicate no data reported or data that do not meet publication criteria. N.e.c. means "not elsewhere classified."

 SOURCE: U.S. Department of Labor, Bureau of Labor Statistics, in cooperation with State, New York City, District of Columbia, and Federal agencies, Census of Fatal Occupational Injuries.

