
Data binding with JAXB

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips .. 2
2. Introduction to data binding... 5
3. Unmarshalling: From XML to Java objects 13
4. Marshalling: From Java objects to XML 22
5. Further exploration ... 29
6. Summary and resources .. 37

Data binding with JAXB Page 1 of 39

Section 1. Tutorial tips

Should I take this tutorial?

In this tutorial you will learn to use data binding to easily map data stored in XML
documents to Java objects and back again. You won't have to worry about parsing
XML or navigating a tree asking for child nodes and parents. You'll start with an XML
Schema and process it into Java source files. Once you have a correspondence
between the XML structure and Java classes, you can take an XML document that
conforms to the schema and automatically create Java objects that are instances of the
classes. Conversely, you can also start with the Java classes and create the XML
documents. You will start with an uncomplicated example and build on it as you explore
data binding.

I am assuming that you are comfortable programming in the Java language and can
write an XML document that conforms to an XML Schema. This tutorial will lead you
through each of these steps and you'll end up with an appreciation and an
understanding of data binding.

The JAXB tools

This tutorial uses JAXB, the Java APIs for XML Binding from Sun Microsystems. JAXB
is a specification available at the JAXB downloads page. The reference implementation
is available as part of the Java Web Services Developer Pack. Other implementations
can be made available by other vendors. In addition, JAXB is not the only technology
available for data binding. In this tutorial you will learn the fundamental ideas of data
binding by using JAXB and the reference implementation. You can easily apply these
techniques and ideas to other tools and technologies.

You will perform two basic activities when working with a data binding solution. You will
compile the schema into Java source files that contain interfaces and classes. You will
then use these generated classes along with the APIs provided as part of the
distribution for handling generated files. The schema compiler is contained in the jar
file, jaxb-xjc.jar. The remaining functionality is available in the three jar files:
jaxb-api.jar, jaxb-libs.jar, and jaxb-ri.jar.

If you explored a previous version of JAXB, you'll notice significant changes in the final
release. Most evident and welcome is the change from depending on Document Type
Definitions (DTDs) to processing W3C XML Schema. A second change is the
introduction of factory methods and interfaces in the generated code. The result of
these changes is that you need to update applications written with the first version
before they can work with the 1.0 final release of JAXB.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 39 Data binding with JAXB

http://java.sun.com/xml/downloads/jaxb.html
http://java.sun.com/xml/downloads/jaxb.html
http://java.sun.com/xml/downloads/jaxb.html

Download and installation

In this tutorial you will use the reference implementation of JAXB for the examples.
Although you only need four jar files to work with JAXB, you aren't able to only
download those files. At this time, you are required to download and install the entire
Java Web Services Developer Pack (Java WSDP) currently at version 1.1. You can
download the Java WSDP, the current Java WSDP tutorial, and sample applications
from the Sun Web Services downloads page. Sun's umbrella site for Web Services is
http://java.sun.com/webservices/.

Choose a platform for your download and installation. The UNIX distribution is suitable
for Linux, Mac OS X, Solaris, and other flavors of UNIX. The Windows version has
been tested on the Windows 2000 and Windows XP Professional Editions. The
examples in this tutorial have been tested on both distributions using Windows 2000
and Mac OS X.

Note: If you are used to pressing the "Next" button without carefully reading the
instructions during installation, you may miss one important point. If you are using JDK
1.4.x, the JAXP classes are built into the JRE. You need to override these by moving
the files unpacked by the Java WSDP installation into [your installation directory]
\jaxp-1.2.2\lib\endorsed to [JAVA_HOME]\jre\lib\endorsed. The actual location of the
target may be slightly different depending on your flavor of UNIX. Of course, on a UNIX
box the direction of the file separators is reversed.

Conventions used in this tutorial

You have now downloaded the entire Web Services Developer Pack. As mentioned
before, the only files that you will be explicitly using are the four jar files located inside
of the [your installation directory] \jaxb-1.0\lib directory. In this tutorial, that directory
is referred to as [JAXB_LIB].

UNIX users should reverse the direction of the file separators in the path description of
[JAXB_LIB] and other paths described in this tutorial. Although this tutorial was
developed on a UNIX box, the paths are given using Windows platform conventions.
UNIX users also need to change the ";" separators to ":".

You may be tempted to customize your classpath to point at this [JAXB_LIB] directory.
Although you may find it convenient to do so for the purposes of this tutorial, it is
generally not a good idea to pollute your classpath. Good reasons for not doing so are:

• You often forget that you have made additions to your classpath and so your

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 3 of 39

http://java.sun.com/webservices/download.html
http://java.sun.com/webservices/download.html
http://java.sun.com/webservices/download.html
http://java.sun.com/webservices/download.html
http://java.sun.com/webservices/download.html
http://java.sun.com/webservices/

application doesn't work when you deploy it because you have forgotten the
dependencies.

• Order matters in your classpath. By making additions there, you may break other
working applications on your machine.

• On Windows machines, the size of your classpath has an upper limit. A bug that is
hard to find the first time can occur when you add something to your classpath and
push other characters off the end.

Better solutions include customizing your project settings in your IDE, writing an ANT
build.xml file, writing a .bat file or shell script, or typing in the classpath from the
command line.

About the author

Daniel Steinberg is the co-author of Extreme Software Engineering: A Hands-on
Approach (Prentice-Hall), the Java 2 Bible Enterprise Edition and the Java 2 Bible
(HungryMinds). Daniel is a Java trainer and consultant for Dim Sum Thinking. He
spends as much time as possible with Kimmy the Wonder Wife and their two
daughters. Late at night when his family falls asleep, he sneaks back to his computer to
write books and articles about Java programming and industry news. His hobbies
include cooking with his daughters, paper engineering, and Java development for Mac
OS X. Contact Daniel at DSteinberg@core.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 39 Data binding with JAXB

mailto:DSteinberg@core.com

Section 2. Introduction to data binding

Overview

This section starts with a look at the 50,000-foot view of the idea behind data binding.
The underlying concept is surprisingly straightforward: Define a correspondence
between an XML schema and a collection of Java classes, and then use this
correspondence to map valid XML documents to and from instances of these classes.

After a quick look at two alternatives for handling XML from Java code, you'll plummet
to earth and look at a concrete-but-oversimplified example. You'll take a short XML
schema and process it, using the schema compiler, into the corresponding Java source
files. To better understand what you have to work with, you'll examine some of these
files before proceeding to Unmarshalling: From XML to Java objects on page 13 where
you'll use them.

The two activities of producing the Java files from the XML schema and using them are
separate and often performed by different developers in more complex settings. To
ensure consistency across your enterprise, a single group may be in charge of
generating the Java files using the schema compiler and distributing these files as a jar
to the teams writing the applications. The generated files are used to read, modify, and
produce XML files that can be validated against the schema. This means that changes
to the schema require that you reprocess it into the corresponding Java files and
redeploy these to your team. Avoid such changes as they break applications and
invalidate existing documents.

The fundamental idea of data binding

One of the initial sticking points in learning object-oriented programming is the
difference between classes and objects. Now that you have been working with
object-oriented programming in Java programming for a while, you may not remember
ever being confused. At some point you understood that classes were the molds from
which these instances called objects were produced.

A similar correspondence happens on the XML side. A schema of some sort is used to
describe the allowable structure for an XML document that will be validated against it.
Many XML editors and IDEs can help you produce valid XML documents by providing
code assistance prompting you for elements and attributes that the schema defines as
allowable. You are being helped to create a document that is, in a sense, an instance
of the schema.

The big idea behind data binding is to create a correspondence between these XML

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 5 of 39

schemas and Java classes and then exploit this mapping when converting XML
documents to and from Java objects. Your goal is to process XML using Java code.
Working with Java and working with XML are fundamentally different. The data binding
provides the correspondence between the templates on either side of this divide. The
schema compiler creates Java classes and interfaces based on the structure of an
XML schema. Data binding allows you to use the data that is being stored in an XML
file without worrying about the structure of this data.

The first step is to generate source files for Java classes from one or more XML
schemas using the schema compiler that comes with JAXB. You can then use the
JAXB APIs to take the data stored in valid XML files and convert them to Java objects
that you can use without worrying about the hierarchy of the XML file. You can modify
the data or even create new objects and then persist them as XML documents. Just as
with your learning of objects and classes, you'll find that the questions you have at the
beginning will disappear in no time at all.

Alternative approaches to data binding

Consider this snippet from an XML document that represents messages on an
answering machine.

<messages>
<message>
<time> 0915 </time>
<person> mom </person>
<content> call me when you can </content>

</message>
<message>
<time> 1023 </time>
<person> boss </person>
<content>
where are the release notes

</content>
</message>

</messages

With data binding, you can handle this in a Java-centric way. You are able to see who
left this particular message with a call such as message.getPerson(). You can also
use other approaches to working with XML from Java code. Two of the most popular
approaches are the Simple API for XML Parsing (SAX) and the Document Object
Model (DOM). You have access to SAX and DOM through the Java API for XML
Parsing (JAXP) that is a part of the Java 1.4 release.

Alternative approaches to data

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 39 Data binding with JAXB

<messages>
<message>
<time>
0915
</time>
<person>
mom
</person>
<content>
call me when you can
</content>
</message>
<message>
<time>
1023
</time>
<person>
boss
</person>
<content>
where are the release
notes
</content>
</message>
</messages

binding: SAX
SAX is an event-based approach. As the parser
works its way through the XML document, you can
have it notify you of certain events. For example,
you can easily write a SAX-based application that
works its way through all of your messages and
provides you with a list of who called. In this
approach you can picture the parser processing
the document and saying, "Oh, here's another
message. There's the time. There's the person --
let's notify the application that the person's name is
Mom. There's the content. There's the end of the
message. Oh, here's another message. There's the
time. The person is 'boss' -- no need to notify
anyone ... "

If you get notified that there is a message from
Mom and wonder when she called or what she had
to say, then you have to reprocess the document.
Unless you explicitly persist data as you process it,
the information is gone. One way to handle this
with SAX is to store the information temporarily
until you decide what to do with it. For example,
you could store all of the information for a message
as it goes by and if you get a call from Mom, then
report the time and the contents as well. If not,
then free the memory and process the next
message.

SAX is a great choice when you just need to
respond to events as the file is parsed. The
memory requirements are minimal because you
are not storing the parsed document in memory. In
addition to being lightweight, SAX also tends to be
a fast solution. On the down side, you won't get the
rich type checking of a data binding solution. With
SAX you might look for the person element by
asking if (qName.equals("person")). The
compiler can't flag errors that may arise at runtime
as the name of the tag has been passed in as a
String.

Alternative approaches to data binding: DOM

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 7 of 39

DOM is a tree-based approach. The result of parsing an XML file with a DOM-based
parser is a document object that contains a structured representation of the file.
Navigating the DOM usually involves code that looks like
messageNodeList.item(i).getFirstChild().getFirstChild().getData().

Here's a DOM tree view of the document:

DOM is a great choice when you need to take advantage of the known structure of a
document. You can search through the messages and find any messages from mom.
Then you can look for the contents of the element time that is a sibling of the person
element that contains the string mom as data. Using DOM has two primary drawbacks.
The first is that it is very memory intensive -- the XML document is loaded into memory
as a tree. The second is that the code for reading from, manipulating, or writing to an
XML document using DOM is tedious and difficult to debug. It would be easier to use
code like this:

if(message.getPerson().equals("mom")) {
return "Your mom called at " + message.getTime() +

"and left the message " + message.getContents();
}

JDOM addresses some of the issues involved in using DOM. It requires less memory,
is faster than DOM, and supports a more Java-like syntax (see Resources on page 37).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 39 Data binding with JAXB

Describing the XML structure of an item in a to-do list

The running example for this tutorial is a to-do list. This list consists of items which in
turn contain elements with information about that particular item. For now, I'll begin with
a schema that defines an item as the root element. An item element contains a name
in the form of a string, a priority in the form of an integer (int), and a task included in
that item that is also represented by a string. Here is the initial version of your schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="item">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="priority" type="xs:int"/>
<xs:element name="task" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

With this uncomplicated schema, you can now begin to understand data binding. Next,
you will process this file with the schema compiler. You'll spend the remainder of this
section examining the files generated by the schema compiler. In Unmarshalling: From
XML to Java objects on page 13 , you will use these generated files to transform an XML
document that conforms to this schema to Java objects that you can easily manipulate.
In Marshalling: From Java objects to XML on page 22 , you'll go in the other direction,
producing an XML document from Java objects. Once you understand these processes
of unmarshalling and marshalling, you can move on to a more complicated schema.

Using the schema compiler

Create a directory named ex1 in a convenient location and save the schema listed in
Describing the XML structure of an item in a to-do list on page 9 as item.xsd inside of
this directory. Open a terminal window and navigate inside of the ex1 directory.

The next step is to generate the Java class files using the schema compiler. Use the
xjc application that is part of the JAXB distribution. The schema compiler is shipped in
the executable jar file xjc.jar. You need to pass in the name of the XML schema being
processed as a command-line argument. You can also view the optional flags that you
can set by passing in the flag -help in place of the name of a schema. In this
particular example, process the file item.xsd with the following command:

java -jar [JAXB_LIB]\xjc.jar item.xsd

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 9 of 39

You can view the optional flags that you can set by passing in the flag -help in place
of the name of a schema, like this:

java -jar [JAXB_LIB]\xjc.jar -help

When you process item.xsd, you get feedback that the schema file is being parsed.
One advantage of using an XML schema instead of a DTD is that an XML schema is
itself an XML file that can be validated and checked to make sure it is well-formed.
Once this step is completed and item.xsd is successfully parsed, you get feedback
that the schema is being compiled. Finally, you see a list of the files generated by the
schema compiler. The output should look something like the following:

parsing a schema...
compiling a schema...
generated/impl/ItemImpl.java
generated/impl/ItemTypeImpl.java
generated/Item.java
generated/ItemType.java
generated/ObjectFactory.java
generated/jaxb.properties
generated/bgm.ser

The generated Item interface

You need to create objects of type Item that correspond to documents that conform to
the schema specified in item.xsd. There is surprisingly little to the Item.java file
generated by the schema compiler. Once you remove the comments, here are the
entire contents of Item.java:

package generated;

public interface Item
extends javax.xml.bind.Element, generated.ItemType{}

Four things are worth noting:

• Item is a member of the generated package. You can choose to change or extend
this name using the -p option with the schema compiler. Leaving the name as it is
helps you identify the code in your project that has been generated by a tool. In
addition, you can use the -d option to specify the target directory for the generated
files.

• Item extends the javax.xml.bind.Element interface. This interface is a marker
interface and so does not declare any method signatures.

• Item extends the generated.ItemType interface. This interface specifies the
method signatures for the getters and setters for the members that correspond to the
elements that make up the item element.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 39 Data binding with JAXB

• Item is itself an interface. JAXB uses factory methods to construct an object of type
Item. You do not need to understand the details of the class the implements the
Item interface to effectively use it.

The generated ItemType interface

The item.xsd schema could have been written slightly differently so that you could
define a complex type with a particular name, say typeName, and then reference it like
this:

<xsd:element name="item" type="typeName">
Instead, a snippet that includes the definition of item looks like this:

<xs:element name="item">
<xs:complexType>

Since you did not name the complex type, JAXB automatically names the
corresponding Java interface ItemType. The code generated for ItemType looks like
this:

package generated;

public interface ItemType {
java.lang.String getTask();
void setTask(java.lang.String value);
int getPriority();
void setPriority(int value);
java.lang.String getName();
void setName(java.lang.String value);

}

The interface ItemType is also in the generated package and contains the getters
and setters for the three components of an item.

The other generated files

Details about the remaining files are sketched here for completeness. You can still use
JAXB without understanding the other files generated by the schema compiler. You will
be creating and using objects of type Item and ItemType. As these are both
interfaces, you must have actual concrete classes that implement these interfaces. In
addition, you must have a way of specifying which concrete classes should be
instantiated when you want a class to be specified by the interface type. These tasks

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 11 of 39

are fulfilled by the remaining files generated by the schema compiler.

Find the impl subdirectory of the directory named generated. This contains the files
that implement the Item and ItemType interfaces. You will not directly interact with
these files and don't need to understand much more than their existence. The
ItemImpl class extends the ItemTypeImpl class just as the Item interface
extended the ItemImpl interface. Take a quick look at the generated code for these
implementation classes. In Unmarshalling: From XML to Java objects on page 13 , you'll
customize one of them.

You do not directly instantiate the implementation classes. You use a factory method
that instantiates an object of type Item or ItemType. You find the details of this in the
generated directory in the following snippet from the ObjectFactory class that is
also generated by the schema compiler.

package generated;

public class ObjectFactory
extends com.sun.xml.bind.DefaultJAXBContextImpl

{
private static java.util.HashMap defaultImplementations

= new java.util.HashMap();
static {

defaultImplementations.put((generated.ItemType.class),
(generated.impl.ItemTypeImpl.class));

defaultImplementations.put((generated.Item.class),
(generated.impl.ItemImpl.class));

}
//... the remainder of the class not included in this listing
}

A HashMap has been created to provide the mappings in this class. The keys are the
interfaces Item and ItemType, and the corresponding values are the implementing
classes. When a call is made to instantiate and return an object of type Item, an
instance of impl.ItemImpl is returned. The ObjectFactory itself gets called
through a similar trick. A data binding solution that implements the JAXB spec is
required to behave correctly in this respect.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 39 Data binding with JAXB

Section 3. Unmarshalling: From XML to Java objects

Overview

In Introduction to data binding on page 5 , you created the Java files that are
associated with the XML schema. In the unmarshalling process you begin with a valid
XML file and convert it to Java objects that are instances of the classes that were
created by the schema compiler. In this section, you will take a valid XML file,
unmarshal it, and then access the information contained in it. To unmarshal a
document, you need a handle to the custom unmarshaller that was created by the
schema compiler. You then pass it some source for XML and process that source. In
this example, the source is a file. You cannot rely on the validity of your XML source
files, so you will add the ability to validate them before you try to unmarshal them.

A sample XML document

Create a sample XML document that can be validated against item.xsd. Call it
item.xml and save it in the ex1 directory.

<?xml version="1.0" encoding="UTF-8"?>

<item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="item.xsd">
<name>Clean room.</name>
<priority>3</priority>
<task>Pick up clothes.</task>

</item>

Validate it if you are set up to easily do so. You will validate it using JAXB before the
end of this section.

The application shell

Start by copying the following code listing into a file named ProcessItem.java and
save it in the ex1 directory. Compile the code and run it. You can either use your
favorite IDE or just open a terminal window, navigate to the ex1 directory, and execute
javac ProcessItem.java followed by java ProcessItem. The code should
compile without any complaints and the application should run without doing anything,
and then return the command prompt. If nothing happens, that means everything is
working correctly.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 13 of 39

Where you are heading is contained in this code. The main() method creates an
instance of ProcessItem. In the constructor, you see that the code performs two
activities. The instance of Item is created in response to the method call createItem
and then the contents of Item are read during the readItem() method call.

Creating an Item object consists of four steps:

1. Create a context that is used to create objects in the greeting package.

2. Create an unmarshaller from the context that will be used to process the XML file
into the corresponding Java objects.

3. Create a file object from the XML file so that the unmarshaller can have access to
the contents of the file.

4. Create an Item object by unmarshalling the file.

At each step, you check for exceptions that can be thrown. At the end, you can
combine steps and streamline the code, but it is constructed this way so that you can
add the functionality one step at a time. The package name and XML file name are
included as private instance variables to make customization easy if you choose other
names.

public class ProcessItem {
private String packageName = "generated";
private String xmlFileName = "item.xml";

ProcessItem() {
createItem();
readItem();

}
private void createItem() {

createContext();
createUnmarshaller();
createFile();
unmarshalFile();

}
private void createContext() {}
private void createUnmarshaller() {}
private void createFile() {}
private void unmarshalFile() {}
private void readItem() {}

public static void main(String[] args) {
new ProcessItem();

}
}

The JAXBContext

You get a handle to the right tools for unmarshalling, marshalling (converting from Java

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 39 Data binding with JAXB

to XML), and validating your XML by using JAXBContext. The ObjectFactory
extends an implementation of JAXBContext. The easiest way to think about it is that
you have to start with an object of type JAXBContext for the particular schema you
want to work with in order to access any of the interesting functionality of data binding.

In the createContext() method listed below, you have to pass in the name of the
package you are creating a context for as a string. Any time you pass an argument as
a string, the compiler won't be able to help you find errors. If you misspell the name of
a method, then the compiler screams. If you mistype the name of a package passed in
as a string, the compiler is not able to catch it. You do, however, get a
JAXBException. Here is the method for creating the context.

You need to make four changes to your code:

• Add import statements for JAXBContext and JAXBException.

• Declare an instance variable jaxbContext of type JAXBContext.

• Create the body of the createContext() method and declare that it throws the
exception.

• Wrap the call to addContext() in a try block and catch the JAXBException.

Here are the parts of the code that are changed.

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;

public class ProcessItem {
private String packageName = "generated";
private String xmlFileName = "item.xml";
private JAXBContext jaxbContext;
//...
private void createItem() {
try {
createContext();
createUnmarshaller();
createFile();
unmarshalFile();

} catch (JAXBException e) {
System.out.println("There has been a problem either creating the "

+ "context for package '" + packageName +
"', creating an unmarshaller for it, or unmarshalling the '" +
xmlFileName + "' file. Formally, the problem is a " + e);

}
}
private void createContext() throws JAXBException {

jaxbContext = JAXBContext.newInstance(packageName);
}
//...

}

To compile this, you need to add [JAXB_LIB]\jaxb-api.jar to the classpath. To prepare
for future iterations, set your classpath for compiling and running the application to:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 15 of 39

[JAXB_LIB]\jaxb-api.jar;[JAXB_LIB]\jaxb-ri.jar;[JAXB_LIB]\jaxb-libs.jar;.

Make certain this first time that you compile the source files in the generated
directory as well. You can check that the exception is being thrown by misspelling the
package name "greeting", compiling, and running the application. A JAXBException
should be thrown. Change the spelling back, compile, and run the application one more
time to make sure everything is working again.

The unmarshaller

The JAXBContext you just created is now used to return an unmarshaller. An
unmarshaller is used to transform the XML file to the corresponding Java objects.
Creating an unmarshaller is done in the createUnmarshaller() method. This
method calls the createUnmarshaller() method of the jaxbContext object and
returns the unmarshaller created by that method. You will again have to account for
problems that may occur by throwing a JAXBException.

The changes to the existing code are:

• Add an import statement for Unmarshaller.

• Declare a private instance variable named unmarshaller of type Unmarshaller.

• Fill out the body of the createUnmarshaller() method and declare that it throws
a JAXBException.

The changes to the code are highlighted here:

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

public class ProcessItem {
private String packageName = "generated";
private String xmlFileName = "item.xml";
private JAXBContext jaxbContext;
private Unmarshaller unmarshaller;

//...
private void createUnmarshaller() throws JAXBException {

unmarshaller = jaxbContext.createUnmarshaller();
}

//...
}

}

The unmarshal() method in the Unmarshaller interface has many signatures. You
can unmarshal an XML document from a File, as you have done here, or from an
InputStream, URL, StringBuffer, dom.Node, or sax.SAXSource. Code

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 39 Data binding with JAXB

examples are given in the JavaDocs for the APIs that are accessible from the JAXB
distribution's docs directory.

The File

Once you have an unmarshaller, you do not need the JAXBContext for anything else
in this application. You do need a file for the unmarshaller to unmarshal, and that is
your next step. Create a new File object to represent the XML file, item.xml. Unlike
FileInputStream, the File constructor does not throw a
FileNotFoundException. You need to make sure that a File object has been
constructed and if not, throw a FileNotFoundException.

The changes to the existing code are:

• Add File and FileNotFoundException to the import list.

• Declare a private File variable named file.

• Fill out the body of the createFile() method, declare that it throws a
FileNotFoundException, and add the code to do so.

• Catch and handle the FileNotFoundException in the createItem() method.

//...
import java.io.FileNotFoundException;
import java.io.File;

public class ProcessItem {
private String packageName = "generated";
private String xmlFileName = "item.xml";
private JAXBContext jaxbContext;
private Unmarshaller unmarshaller;
private File file;

//...
private void createItem() {
try {
createContext();
createUnmarshaller();
createFile();
unmarshalFile();

} catch (JAXBException e) {
System.out.println("There has been a problem either creating the "

+ "context for package '" + packageName +
"', creating an unmarshaller for it, or unmarshalling the '" +
xmlFileName + "' file. Formally, the problem is a " + e);

} catch (FileNotFoundException e) {
System.out.println("There has been a problem locating the '" +

xmlFileName + "' file. Formally, the problem is a " + e);
}

}
//...
private void createFile() throws FileNotFoundException{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 17 of 39

file = new File(xmlFileName);
if (!file.exists()) throw new FileNotFoundException();

}
//...
}

The Item object

You now have an Unmarshaller object and a File object that represents the file to
be unmarshalled. What remains is to put them together. Here are the required
changes:

• Add Item to the import list.

• Declare a private Item variable named item.

• Fill in the body of the unmarshalFile() method and declare that the message
throws a JAXBException. The unmarshal() method of the Unmarshaller
object returns a generic Object. You have to cast it to type Item.

//...
import generated.Item;

public class ProcessItem {
//...
private File file;
private Item item;

//...
private void unmarshalFile() throws JAXBException {

item = (Item) unmarshaller.unmarshal(file);
}
private void readItem() {}

//...
}

You can now go back and reduce the code size by inlining most of these method calls.
On the other hand, the current state of the code is readable and reusable, and the time
needed to the create of a few extra instance variables will not be noticeable compared
to the time you might otherwise spend unmarshalling your document.

Reading from the Item object

Now it's time to reap the benefits of data binding. Obtaining a context, unmarshaller,
file, and item was no more involved than parsing a document using SAX or DOM. With
JAXB, however, you can now use Java getters and setters to interact with the XML
data. In the readItem() method, you print out the contents of the subelements of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 39 Data binding with JAXB

item. The only change to your existing code is to fill out the body of the readItem()
method. Here is the entire code listing:

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
import java.io.FileNotFoundException;
import java.io.File;
import generated.Item;

public class ProcessItem {

private String packageName = "generated";
private String xmlFileName = "item.xml";
private JAXBContext jaxbContext;
private Unmarshaller unmarshaller;
private File file;
private Item item;

ProcessItem() {
createItem();
readItem();

}

private void createItem() {
try {
createContext();
createUnmarshaller();
createFile();
unmarshalFile();

} catch (JAXBException e) {
System.out.println("There has been a problem either creating the "

+ "context for package '" + packageName +
"', creating an unmarshaller for it, or unmarshalling the '" +
xmlFileName + "' file. Formally, the problem is a " + e);

} catch (FileNotFoundException e) {
System.out.println("There has been a problem locating the '" +

xmlFileName + "' file. Formally, the problem is a " + e);
}

}

private void createContext() throws JAXBException {
jaxbContext = JAXBContext.newInstance(packageName);

}

private void createUnmarshaller() throws JAXBException {
unmarshaller = jaxbContext.createUnmarshaller();

}

private void createFile() throws FileNotFoundException{
file = new File(xmlFileName);
if (!file.exists()) throw new FileNotFoundException();

}

private void unmarshalFile() throws JAXBException {
item = (Item) unmarshaller.unmarshal(file);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 19 of 39

private void readItem() {
System.out.println("The name of the item is "

+ item.getName());
System.out.println("On a scale of 1 to 10 the priority is "

+ item.getPriority());
System.out.println("The task associated with this item is "

+ item.getTask());
System.out.println(item);

}

public static void main(String[] args) {
new ProcessItem();

}
}

Compile and run the application and you should see this output:

The name of the item is Clean room.
On a scale of 1 to 10 the priority is 3.
The task associated with this item is Pick up clothes.

Modifying the ItemTypeImpl

To print out the contents of the Item object, you should be able to replace the
item.readItem() call with System.out.println(item). If you do so, you will
see something like this:

generated.impl.ItemImpl@81b3d4

You can fix this by providing a toString() method in the ItemTypeImpl class. For
example, you might use the following as your toString() method:

public String toString(){
return "Name = "+ _Name + ", Priority = "+ _Priority

+ ", and Task = "+_Task;
}

Now when you call System.out.println(item), you will get the following output:

Name = Clean room., Priority = 3, and Task = Pick up clothes.

You may also find it useful to override the equals() and hashCode() methods for
comparing Item objects.

Validating the input file

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 39 Data binding with JAXB

You can validate the XML file as you unmarshal it. In your application, add the
highlighted line to the createUnmarshaller() method:

private void createUnmarshaller() throws JAXBException {
unmarshaller = jaxbContext.createUnmarshaller();
unmarshaller.setValidating(true);

}

Recompile your code. Make item.xml invalid by adding this highlighted line:

<?xml version="1.0" encoding="UTF-8"?>
<item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="item.xsd">
<name>Clean room.</name>
<priority>3</priority>
<task>Pick up clothes.</task>
<time>3</time>
</item>

Rerun your application to see this message.

There has been a problem either creating the
context for package 'generated', creating an unmarshaller
for it, or unmarshalling the 'item.xml' file. Formally, the
problem is a javax.xml.bind.UnmarshalException:
Unexpected element {}:time
Exception in thread "main" java.lang.NullPointerException

at ProcessItem.readItem(ProcessItem.java:51)
at ProcessItem.<init>(ProcessItem.java:19)
at ProcessItem.main(ProcessItem.java:58)

Restore your XML document so that it is valid and rerun your application. When the
document is valid, everything should work as before. You may choose to turn off
validation so that you do not go through this extra step each time you process a
document.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 21 of 39

Section 4. Marshalling: From Java objects to XML

Overview

In Unmarshalling: From XML to Java objects on page 13 , you took a valid XML file and
transformed it into a Java object. In this section, you will create a Java object and
initialize its fields. You'll then marshal this object. Marshalling is the process of turning
one or more Java objects into an XML document. You will also validate the object
before converting it, and you'll format the output to be more human readable.

The application shell

Save the following code listing as MakeNewItem.java in the ex1 directory:

public class MakeNewItem {
private String packageName = "generated";
private String destinationName = "newItem.xml";

MakeNewItem() {
createNewItem();
configureItem();
persistItem();

}
private void createNewItem() {}
private void configureItem() {}
private void persistItem() {}

public static void main(String[] args) {
new MakeNewItem();

}
}

As before, set your classpath to:

[JAXB_LIB]\jaxb-api.jar;[JAXB_LIB]\jaxb-ri.jar;[JAXB_LIB]\jaxb-libs.jar;.

Compile and run your application. It should not do anything but compile quietly and
return a command prompt after running. In particular, it should compile without error
messages and should run without throwing exceptions.

Creating an item from scratch

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 39 Data binding with JAXB

Create an object of type Item. This may seem to be a puzzle: You know that you are
not supposed to access the ItemImpl class yourself, so you need to use an
ObjectFactory to create a new Item. Because the ObjectFactory was created
by the schema compiler, it has methods for creating new top-level objects.

Make the following changes to the code:

• Add import statements for ObjectFactory, Item, and JAXBException.

• Declare a private instance variable of type Item named item.

• Fill out the body of the createNewItem() method to create an ObjectFactory
and use it to create an Item. To see what you have at this point, add a call to
println(item) to see the current contents of the newly constructed Item. (This
only functions correctly if you made the changes to ItemTypeImpl described in
Unmarshalling: From XML to Java objects on page 13 .)

The changes are highlighted below:

import generated.ObjectFactory;
import generated.Item;
import javax.xml.bind.JAXBException;

public class MakeNewItem {
private String packageName = "generated";
private String destinationName = "newItem.xml";
private Item item;

MakeNewItem() {
createNewItem();
configureItem();
persistItem();

}

private void createNewItem() {
try {
ObjectFactory itemMaker = new ObjectFactory();
item = itemMaker.createItem();
System.out.println(item);

} catch (JAXBException e) {
System.out.println("There was this problem creating the item: "

+ e);
}

}
//...
}

After compiling and running the code, you'll get these results:

Name = null, Priority = 0, and Task = null

When the Item object is created, the two strings are initialized to null because they
are reference variables, and the int is initialized to 0.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 23 of 39

Validating the new Item

When you start with an XML document, you can validate it as part of the unmarshalling
process. When you create an object using an ObjectFactory, or if you want to
validate a document after unmarshalling it, you need to use a Validator. Use your
JAXBContext to return a Validator object that is configured to validate against a
particular XML schema. You know that at this point your object is not valid because the
two strings are still null.

To validate, make these changes to your code:

• Add import statements for JAXBContext, Validator, and
ValidationException.

• Declare a private JAXBContext named jaxbContext.

• Add a createContext() method that initializes jaxbContext and handles a
JAXBException.

• Insert a call to the createContext() method as your first line of the constructor.

• Create an itemIsValid() method that creates a Validator object and validates
item. It will also handle ValidationExceptions and throw a JAXBException.

• Add a call to the itemIsValid() method to createNewItem() and the code to
display the results.

import generated.ObjectFactory;
import generated.Item;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Validator;
import javax.xml.bind.ValidationException;

public class MakeNewItem {
private String packageName = "generated";
private String destinationName = "newItem.xml";
private JAXBContext jaxbContext;
private Item item;

MakeNewItem() {
createContext();
createNewItem();
configureItem();
persistItem();

}
private void createNewItem() {
try {
ObjectFactory itemMaker = new ObjectFactory();
item = itemMaker.createItem();
System.out.println(item);
System.out.println("It is "+ itemIsValid() +

" that the new Item object is valid");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 39 Data binding with JAXB

} catch (JAXBException e) {
System.out.println("There was this problem creating the item: " + e);

}
}
private void createContext() {

try {
jaxbContext = JAXBContext.newInstance(packageName);

} catch (JAXBException e) {
System.out.println("There was this problem creating a context "+e);

}
}
private boolean itemIsValid() throws JAXBException {

try {
Validator validator = jaxbContext.createValidator();
return validator.validate(item);
} catch (ValidationException e){
System.out.println("There was a problem validating the item.");
return false;

}
}

//...
}

Here is the result of compiling and running the above code:

Name = null, Priority = 0, and Task = null
DefaultValidationEventHandler: [ERROR]: a required object is missing.
DefaultValidationEventHandler: [ERROR]: a required object is missing.
There was a problem validating the item.
It is false that the Item object is valid.

Eliminate the println() statement that appears in bold in the
createNewMenuItem() method in the code listing on this page.

Configuring the Item

You created an Item object that is empty and hence not valid. Next, configure it by
adding values for each of the elements. This is where the value of data binding is
evident. You use standard Java setters for setting the values of the elements. If you are
working with an IDE, code assist will help you locate the available methods. As
highlighted below, these are your only changes to the code.

//...

public class MakeNewItem {
//...
private void configureItem() {
item.setName("Pick up kids.");
item.setPriority(10);
item.setTask("Get kids from school at 1525.");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 25 of 39

System.out.println(item);
}

//...
}

Compile and run the code and you'll get this:

Name = null, Priority = 0, and Task = null
Name = Pick up kids., Priority = 10, and Task = Get kids from school at 1525.

At this point, you could validate the Item object; you will handle this in the next step
before you save the state of the Java objects to a valid XML file.

Marshalling your data

To save your data to a file named newItem.xml, check that your Item object is valid. If
it is, then create a Marshaller and use it to marshal your object to the XML file. By
this point, you can handle several steps at once. The entire code listing is presented
below with the following changes highlighted:

• Add import statements for Marshaller, FileOutputStream, and
FileNotFoundException.

• Create a utility method getFileStream() that returns a FileInputStream with
newItem.xml as its target.

• Create a utility method marshallItem() that creates a marshaller from
jaxbContext, formats the code nicely by setting the property
JAXB_FORMATTED_OUTPUT, and forwards to the marshal() method in the
marshaller.

• Fill in the body of the persistItem() method to marshal the data if item is valid,
and handle a JAXBException if anything goes wrong.

import generated.ObjectFactory;
import generated.Item;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Validator;
import javax.xml.bind.ValidationException;
import javax.xml.bind.Marshaller;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

public class MakeNewItem {
private String packageName = "generated";
private String destinationName = "newItem.xml";
private JAXBContext jaxbContext;
private Item item;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 39 Data binding with JAXB

MakeNewItem() {
createContext();
createNewItem();
configureItem();
persistItem();

}

private void createNewItem() {
try {
ObjectFactory itemMaker = new ObjectFactory();
item = itemMaker.createItem();
System.out.println(item);

} catch (JAXBException e) {
System.out.println("There was this problem creating the item: " + e);

}
}
private void createContext() {
try {
jaxbContext = JAXBContext.newInstance(packageName);

} catch (JAXBException e) {
System.out.println("There was this problem creating a context "+e);

}
}
private boolean itemIsValid() throws JAXBException {
try {
Validator validator = jaxbContext.createValidator();
return validator.validate(item);
} catch (ValidationException e){
System.out.println("There was a problem validating the item.");
return false;

}
}
private void configureItem() {
item.setName("Pick up kids.");
item.setPriority(10);
item.setTask("Get kids from school at 1525.");
System.out.println(item);

}
private void persistItem() {
try {
if (itemIsValid()) marshallItem();

} catch (JAXBException e) {
System.out.println("There was this problem persisting the item: "

+ e);
}

}
private void marshallItem() throws JAXBException {
Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

new Boolean(true));
marshaller.marshal(item, getFileStream());

}
private FileOutputStream getFileStream() {

try {
return new FileOutputStream(destinationName);

} catch (FileNotFoundException e) {
System.out.println("The problem creating a destination file was "

+ e);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 27 of 39

return null;
}

}
public static void main(String[] args) {
new MakeNewItem();

}
}

The generated XML file

This example illustrates the basic steps for creating and persisting an object using data
binding. The objects were created using an ObjectFactory and persisted using the
steps in the persistItem() method. These processes are like two slices of bread in
a sandwich and don't change very much. The filling is where data binding really shines.
It is easy to deal with XML data using the Java accessors. What you do in the middle
can be as complex as your needs -- but you no longer need to struggle to navigate the
tree or to figure out where you are in an XML document. Accessing and changing the
value of the elements remains straightforward.

Compile and run your application and the file newItem.xml is created in the same
directory as item.xml. Open newItem.xml and you should see something like this:

<xml version="1.0" encoding="UTF-8" standalone="yes"?>
<item>
<name>Pick up kids.</name>
<priority>10</priority>
<task>Get kids from school at 1525.</task>
</item>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 39 Data binding with JAXB

Section 5. Further exploration

Overview

So far, you have unmarshalled an XML file and accessed the data, and you have
created Java objects and marshalled them into an XML file. Often you will be interested
in combining these processes into one application: You might want to read data that is
stored in an XML file or delivered to you from another source, use it somehow and
possibly change it, and then save it back to disk or serve it up to another client
application. In this section, you'll modify the schema to be slightly more complex and
examine the changes to the Java objects generated by the schema compiler. Then
you'll build a utility class designed to help you marshal, unmarshal, and validate, as
well as create new objects of the type specified by the XML schema. Finally, you'll
create a simple client application to use this utility class. The code is presented in this
way to allow you to easily customize it for your own use.

A more complex Schema

Extend your earlier XML schema as follows:

• The root element is now a todolist, which contains zero or more item elements
that are described by the complex type entry.

• Each element of type entry consists of a string representing the name of the
element, an integer between 1 and 10 describing the priority as is specified in
the rank type, and one or more task elements that are of type subentry. An entry
also has an attribute that represents totalItemTime that has a default value of
zero.

• Each element of type subentry consists of a string description and an integer
timeEstimate.

Here is the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="todolist">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="item"
type="entry"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 29 of 39

<xs:complexType name="entry">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="priority" type="rank"/>
<xs:element minOccurs="1" maxOccurs="unbounded" name="task"
type="subentry"/>

</xs:sequence>
<xs:attribute default="0" name="totalItemTime" type="xs:int"/>

</xs:complexType>

<xs:complexType name="subentry">
<xs:sequence>
<xs:element name="description" type="xs:string"/>
<xs:element default="0" name="timeEstimate" type="xs:int"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="rank">
<xs:restriction base="xs:int">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="10"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Save this file as todolist.xsd in a directory named ex2. Process this file with the
schema compiler as before and save the generated files in ex2 as well. Finally, compile
the generated files so that you can use them in your sample application.

A valid XML file

In this section, you'll start with a valid XML file and modify it in some way. As an
example, you can use the following file. Save it as todolist.xml in the ex2 directory.

<?xml version="1.0" encoding="UTF-8"?>
<todolist xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="todolist.xsd">
<item>
<name>Clean room.</name>
<priority>4</priority>
<task>
<description>Pick up clothes.</description>
<timeEstimate>10</timeEstimate>

</task>
<task>
<description>Straighten magazines</description>
<timeEstimate>20</timeEstimate>

</task>
</item>
<item>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 39 Data binding with JAXB

<name>Get kids.</name>
<priority>10</priority>
<task>
<description>Pick up kids at school at 1525.</description>
<timeEstimate>30</timeEstimate>

</task>
</item>

</todolist>

The generated files: Todolist and TodolistType

As before, the schema compiler generates interfaces, implementation files, a property
file, and the ObjectFactory. In this schema, the complex types have been named in
two cases. The item element is of type entry and the task element is of type
subentry. The result is methods named getItem() and getTask() that return lists
populated by elements of Java object type Entry and Subentry. At the top level, the
part of the schema shown below maps to two interfaces: Todolist and
TodolistType.

<xs:element name="todolist">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="item"
type="entry"/>

</xs:sequence>
</xs:complexType>

</xs:element>

The Todolist interface is just a wrapper that also extends the Element marker
interface. Once you strip away the comments, you are left with this:

package generated;

public interface Todolist
extends javax.xml.bind.Element, generated.TodolistType {}

The TodolistType interface contains a list of the objects that correspond to item
elements of type entry. The only method declared in this interface is getItem() and
it returns a List.

package generated;

public interface TodolistType {
java.util.List getItem();

}

The generated files: Entry and SubEntry

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 31 of 39

You access the items on the to-do list using the getItem() method in
TodolistType or create a new one using the ObjectFactory. Programmatically,
your access to the contents of each item is specified in the Entry interface. You can
get and set both the priority and name elements, as well as the total item time
attribute. Because an item can contain one or more tasks, you get a List of objects of
type Subentry by calling the getTask() method:

package generated;

public interface Entry {

java.util.List getTask();
int getTotalItemTime();
void setTotalItemTime(int value);
int getPriority();
void setPriority(int value);
java.lang.String getName();
void setName(java.lang.String value);

}

The Java object representing tasks is Subentry. It includes the getters and setters for
the description and time estimate of tasks.

package generated;

public interface Subentry {

java.lang.String getDescription();
void setDescription(java.lang.String value);
int getTimeEstimate();
void setTimeEstimate(int value);

}

The utility class

Now you can put together what you learned in the first two applications. Create a utility
class that can unmarshal your todolist.xml file and later marshal any changes you
make back to that file. Save this file as TodolistUtil.java in the ex2 directory.

import generated.ObjectFactory;
import generated.Todolist;
import generated.Entry;
import generated.Subentry;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.Marshaller;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 39 Data binding with JAXB

public class TodolistUtil {
private JAXBContext jaxbContext;
private ObjectFactory objectFactory;
private Todolist todolist;
private static String packageName = "generated";
private String xmlFileName = "todolist.xml";

TodolistUtil() {
createContextAndObjectFactory();
createTodolist();

}

private void createContextAndObjectFactory() {
try {
jaxbContext = JAXBContext.newInstance(packageName);
objectFactory = new ObjectFactory();

} catch (JAXBException e) {
System.out.println("There was this problem creating a context " + e);

}
}

private void createTodolist() {
try {
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
unmarshaller.setValidating(true);
todolist = (Todolist) unmarshaller.unmarshal(new File(xmlFileName));

} catch (JAXBException e) {
System.out.println("There is this problem with unmarshalling: " + e);

}
}

private void persistTodolist() {
try {
if (jaxbContext.createValidator().validate(todolist)) {
Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

new Boolean(true));
marshaller.marshal(todolist, new FileOutputStream(xmlFileName));

}
} catch (JAXBException e) {
System.out.println("There was this problem persisting the item: "

+ e);
} catch (FileNotFoundException e) {
System.out.println("There was this problem creating a destination file "

+ e);
}

}
}

Adding services to the utility file

Note that so far all of the methods and variables on TodolistUtil are private. It
does not expose any functionality, yet it is not much of a utility: It does not have a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 33 of 39

main() method, so it has to be called by another object. You can add the ability to
create an item, to create a task, and to save a newly created item by adding the
following three highlighted methods:

//...
public class TodolistUtil {
//...
public Entry makeNewItem(String name, int priority) {

Entry newItem = null;
try {
newItem = objectFactory.createEntry();

newItem.setName(name);
newItem.setPriority(priority);

} catch (JAXBException e) {
System.out.println("There was this problem creating a new item: "

+ e);
}
return newItem;

}
public Subentry makeNewTask(String description, int time) {

Subentry newTask = null;
try {
newTask = objectFactory.createSubentry();
newTask.setDescription(description);
newTask.setTimeEstimate(time);

} catch (JAXBException e) {
System.out.println("There was this problem creating a new task: "

+ e);
}
return newTask;

}
public void addItem(Entry item) {

todolist.getItem().add(item);
persistTodolist();

}
}

In your sample application, you are only creating one instance of the utility class. If you
want to ensure this behavior, you should create a private static instance of
TodolistUtil and serve it up using the Singleton pattern.

A client application

Once again, you are positioned to enjoy the benefits of data binding. All of the
JAXB-specific code has been wrapped in the TodolistUtil that only exposes three
methods: makeNewItem(), makeNewTask(), and addItem(). Here is an example
application that creates a new item, creates tasks that it adds to the new item, and then
adds the item to the to-do list and saves it back to the XML file. This is fairly typical of
how you will use JAXB: You have some data persisted in an XML file; you want to use
or modify that data but you do not want to think about how the file is structured. This

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 39 Data binding with JAXB

allows you to think in terms of your model.

In this code, arguments are passed in on the command line. In a real application, they
would more likely be entered through a GUI or from another file. For this application to
work, at least two pairs of arguments need to be passed in. The first pair represents the
name and priority of the item. Any subsequent pair represents the description and time
required for a task belonging to that item. All command-line arguments are read as
strings, so the integers need to be converted using the static call
Integer.parseInt(args[i]):

import generated.Entry;
import generated.Subentry;

public class AddNewItem {

AddNewItem(String[] args) {
TodolistUtil util = new TodolistUtil();
if (args.length > 3) {
Entry newItem = util.makeNewItem(args[0],

Integer.parseInt(args[1]));
for (int j = 2; j < args.length; j = j + 2) {
Subentry newTask = util.makeNewTask(args[j],

Integer.parseInt(args[j + 1]));
newItem.getTask().add(newTask);

}
util.addItem(newItem);

}
}

public static void main(String[] args) {
new AddNewItem(args);

}
}

Perhaps the most striking feature of this code is that JAXB APIs are not used. You can
easily create your own client code that manipulates the XML in different ways. Maybe
you can figure out how much time is required to perform all of the tasks on your to-do
list. Perhaps you want to sort the list in priority order. Now that you have abstracted the
binding layer, creating these solutions is easy.

Running the application

Compile and run the application. You need to pass in the command-line arguments
either in your IDE or from the command line. From inside of the ex2 directory, you can
run your application like this (you should enter the following all on one line):

java -classpath [JAXB_LIB]\jaxb-api.jar;[JAXB_LIB]\jaxb-libs.jar;
[JAXB_LIB]\jaxb-ri.jar;. AddNewItem
"Get food." 4 "Pick up milk." 10 "Pick up cookies" 15

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 35 of 39

After the application runs, the file todolist.xml has been changed to this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<todolist>
<item>
<name>Clean room.</name>
<priority>4</priority>
<task>
<description>Pick up clothes.</description>
<timeEstimate>10</timeEstimate>
</task>
<task>
<description>Straighten magazines</description>
<timeEstimate>20</timeEstimate>
</task>
</item>
<item>
<name>Get kids.</name>
<priority>10</priority>
<task>
<description>Pick up kids at school at 1525.</description>
<timeEstimate>30</timeEstimate>
</task>
</item>
<item>
<name>Get food.</name>
<priority>4</priority>
<task>
<description>Pick up milk.</description>
<timeEstimate>10</timeEstimate>
</task>
<task>
<description>Pick up cookies</description>
<timeEstimate>15</timeEstimate>
</task>
</item>
</todolist>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 39 Data binding with JAXB

Section 6. Summary and resources

Summary

In this tutorial you have learned the basic steps and fundamental ideas of data binding.
You have seen how to:

• Create and modify an XML schema to specify the Java classes that will be created.

• Use the schema compiler to produce the Java source files from the XML schema.

• Unmarshal an XML document to the corresponding Java objects.

• Create Java objects and instantiate the variables corresponding to attributes and
elements.

• Validate an XML document during unmarshalling, or validate the tree of Java objects
at any time.

• Marshal a collection of Java objects to save the data to the corresponding XML
document.

• Build a utility class to separate the data binding activities from the business logic.

Resources

• Find news on JAXB as well as the latest downloads, more sample code,
documentation, and white papers at http://java.sun.com/xml/jaxb/.

• The JAXB distribution is part of the Java Web Services distribution. Find the latest
release of the Java Web Services Developer Pack at
http://java.sun.com/webservices/.

• Check out more great XML tutorials on the developerWorks XML zone's education
page.

• Learn more about JAXP (Java APIs for XML Processing), an API that supports
processing of XML documents using DOM, SAX, and XSLT
(http://java.sun.com/xml/jaxp/).

• The W3C is the best place to learn about DOM (Document Object Model) API
(http://www.w3.org/DOM/).

• Get the latest on JDOM, a Java-based solution for accessing, manipulating, and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 37 of 39

http://java.sun.com/xml/jaxb/
http://java.sun.com/webservices/
http://www-106.ibm.com/developerworks/views/xml/tutorials.jsp
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.jdom.org

outputting XML data from Java code (http://www.jdom.org).

• Look into XOM (XML object model), an open source, tree-based API for processing
XML with Java technology that strives for correctness and simplicity
(http://www.cafeconleche.org/XOM/).

• Download the Xerces2 Java Parser at the Apache XML Project site
(http://xml.apache.org/xerces2-j/index.html).

• IBM WebSphere Studio Application Developer provides support for data binding.
You can find more information on the WebSphere Studio Application Developer
information page (http://www-3.ibm.com/software/awdtools/studioappdev/about/).

• You will find useful links to more tools at the IBM Java tools page
(http://www-106.ibm.com/developerworks/views/java/tools.jsp).

• Find more information on the technologies covered in this article at the
developerWorks XML (http://www-106.ibm.com/developerworks/xml/) and Java
technology (http://www-106.ibm.com/developerworks/java/) zones.

Feedback

Please send us your feedback on this tutorial. We look forward to hearing from you!
Additionally, you are welcome to contact the author, Daniel Steinberg, directly at
dsteinberg@core.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 39 Data binding with JAXB

http://www.cafeconleche.org/XOM/
http://www.cafeconleche.org/XOM/
http://www.cafeconleche.org/XOM/
http://www.cafeconleche.org/XOM/
http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xerces2-j/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/awdtools/studioappdev/about/&origin=x
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/xml/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Data binding with JAXB Page 39 of 39

	Table of Contents
	Tutorial tips
	Should I take this tutorial?
	The JAXB tools
	Download and installation
	Conventions used in this tutorial
	About the author

	Introduction to data binding
	Overview
	The fundamental idea of data binding
	Alternative approaches to data binding
	Alternative approaches to data binding: SAX
	Alternative approaches to data binding: DOM
	Describing the XML structure of an item in a to-do list
	Using the schema compiler
	The generated Item interface
	The generated ItemType interface
	The other generated files

	Unmarshalling: From XML to Java objects
	Overview
	A sample XML document
	The application shell
	The JAXBContext
	The unmarshaller
	The File
	The Item object
	Reading from the Item object
	Modifying the ItemTypeImpl
	Validating the input file

	Marshalling: From Java objects to XML
	Overview
	The application shell
	Creating an item from scratch
	Validating the new Item
	Configuring the Item
	Marshalling your data
	The generated XML file

	Further exploration
	Overview
	A more complex Schema
	A valid XML file
	The generated files: Todolist and TodolistType
	The generated files: Entry and SubEntry
	The utility class
	Adding services to the utility file
	A client application
	Running the application

	Summary and resources
	Summary
	Resources
	Feedback

