Field of Bachelor's Degree in the United States: 2009

American Community Survey Reports

This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS).' It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and earnings differences across fields of degree.

The ACS provided data on field of bachelor's degree for the first time in 2009. Respondents who held a bachelor's degree or above were asked to write in the specific field(s) of any bachelor's degrees earned (Figure 1). The U.S. Census Bureau coded these responses into 188 majors. ${ }^{2}$ These 188 majors were then collapsed into two overlapping sets of fields: one broad set containing five distinct fields and one detailed set with fifteen distinct fields. The broad set of fields includes: science and engineering; science- and engineering-related; business; education; and arts, humanities, and other. The detailed set of fields retains three of the five broad sets of fields: science- and engineering-related, business, and education. The detailed set of fields also breaks down the two broad fields of science and engineering and arts, humanities, and other into smaller fields. The organization of the detailed

[^0]Figure 1.

Reproduction of the Question on Field of Degree From the 2009 American Community Survey

Question as it appears in the questionnaire.

Source: U.S. Census Bureau, 2009 American Community Survey.
fields of degree relative to the broad fields of degree can be seen in the chart titled "Organization of Field of Degree Groups." This chart also includes examples of common majors within these fields. A full list of the 188 individual majors and their grouping into fields can be found in Appendix A. ${ }^{3}$

HIGHLIGHTS OF THE REPORT

- Of the 56 million people aged 25 and over with a bachelor's degree, nearly 20 million of them held a degree in a science and engineering field.
- Men held 87 percent of the degrees in engineering fields, while women held

[^1]
By

Julie Siebens and Camille L. Ryan

Organization of Field of Degree Groups

Broad fields	Detailed fields (and examples of majors)
Science and engineering	$\begin{array}{c}\text { Computers, mathematics, and statistics (includes computer science, } \\ \text { mathematics, computer and information systems) } \\ \text { Biological, agricultural, and environmental sciences (includes biology, } \\ \text { general agriculture, animal sciences) } \\ \text { Physical and related science (includes chemistry, physics, geology } \\ \text { and earth science) }\end{array}$
Psychology (includes psychology, counseling psychology)	
Social sciences (includes sociology, economics, anthropology and	
archeology, political science and government)	
Engineering (includes mechanical engineering, electrical engineering,	
civil engineering)	
Multidisciplinary studies (includes multidisciplinary or general science,	
nutrition science, interdisciplinary social sciences)	

76 percent of the degrees in education fields.

- Sex distribution within fields varied by age. Fields with large proportions of men in the 65 years and over age group had smaller proportions of men in the 25 to 39 years age group.
- Science and engineering was the most popular field of degree for each race and Hispanic origin group. Education fields were the least common among Asian college graduates, while science- and engineering-related fields were the least common among all other race and Hispanic origin groups. ${ }^{4}$ The foreign-born population was much more likely to have a degree in

[^2]
What Is the American Community Survey?

The American Community Survey (ACS) is a nationwide survey designed to provide communities with reliable and timely demographic, social, economic, and housing data for the nation, states, congressional districts, counties, places, and other localities every year. It has an annual sample size of about 3 million addresses across the United States and Puerto Rico and includes both housing units and group quarters (e.g., nursing facilities and prisons). The ACS is conducted in every county throughout the nation, and every municipio in Puerto Rico, where it is called the Puerto Rico Community Survey. Beginning in 2006, ACS data for 2005 were released for geographic areas with populations of 65,000 and greater. For information on the ACS sample design and other topics, visit <www.census.gov/acs/www>.
a broad science and engineering field or in a science- and engineering-related field than the native-born population.

- The proportion of bachelor's degrees in a given field varied by geography. The proportion
of science and engineering degrees was highest in coastal states, while science- and engineering-related degrees had the largest proportions in the South and Midwest. The highest proportions of degrees
in business were in the South, while education degrees were the most common in the Midwest. People in the New England states had the highest proportion of degrees in the arts, humanities, and other fields.
- People with an undergraduate degree in a physical and related sciences field were the most likely to hold an advanced degree. People with an undergraduate degree in a communications field were the least likely to do so.
- Degrees in the field of science and engineering were associated with the highest median earnings; degrees in an education field were associated with the lowest median earnings.

FIELD OF DEGREE BY DEMOGRAPHIC CHARACTERISTICS

Fifty-six million people held bachelor's degrees in 2009 (Table 1). Nearly 20 million of these degrees were in the broad field of science and engineering. Most of these science and engineering degrees were in the detailed fields of social sciences (4 million); engineering (4 million); and biological, agricultural, and environmental sciences (3 million). Over 1 million people held a degree in multidisciplinary studies, making it the least common detailed field among the science and engineering fields. Over 1 in 5 college-educated adults, or 11 million people, held a bachelor's degree in business. This total is larger than the number of people with education degrees (8 million), but smaller than the number of people with a degree in the arts, humanities, and other fields (13 million).

Sex Distribution Within Field of Degree

The sex distribution varied across detailed fields of degree (Figure 2). Although 49 percent of bachelor's degree holders were male, men were a clear majority in some fields. Engineering was the most male-dominated field, with 87 percent of these graduates being men. The physical and related sciences and computers, mathematics, and statistics were the second and third most heavily male fields. Two-thirds or more of their degree holders were men.

Conversely, men were underrepresented in certain detailed fields, relative to their proportion of bachelor's degree holders. This is particularly true in education, where fewer than 1 in 4 degree holders were male. Women also held more than 60 percent of the bachelor's degrees in psychology, science- and engineering-related fields, literature

Table 1.
Detailed Field of Bachelor's Degree for First Major for the Population 25 Years and Over: 2009
(Numbers in thousands)

Field of bachelor's degree	Estimate	Margin of error ${ }^{1}$ (\pm)	Percent	Margin of error ${ }^{11}(\pm)$
Total	56,336	172	100.0	(X)
Science and engineering.	19,640	88	34.9	0.1
Computers, mathematics, and statistics	2,342	25	4.2	-
Biological, agricultural, and environmental sciences	3,446	31	6.1	-
Physical and related sciences	1,338	21	2.4	-
Psychology.	2,571	25	4.6	-
Social sciences	4,447	33	7.9	0.1
Engineering	4,452	33	7.9	0.1
Multidisciplinary studies .	1,045	16	1.9	-
Science- and engineering-related fields	4,936	34	8.8	0.1
Business	11,305	51	20.1	0.1
Education.	7,723	47	13.7	0.1
Arts, humanities, and other	12,732	54	22.6	0.1
Literature and languages .	2,569	23	4.6	-
Liberal arts and history	3,143	27	5.6	-
Visual and performing arts .	2,207	25	3.9	-
Communications	2,023	24	3.6	-
Other .	2,790	26	5.0	-

[^3]and language, and visual and performing arts.

Differences by Sex and Age

The sex distribution within detailed field of degree also varied by age. Table 2 contains the number of degree holders and the proportion female within fields across three age groups: 25 to 39 years, 40 to 64 years, and 65 years and over. The percentage of bachelor's
degree holders that were female was larger in the younger age groups. Although women made up only 44 percent of the college educated population 65 years and over, they were approximately half of degree holders aged 40 to 64 and this proportion climbed to nearly 55 percent in the youngest age group. This reflects increased educational attainment by women in the past four decades.

Although younger women were a majority of all bachelor's degree holders, their presence was not uniform across detailed field of degree. Some of the fields that had the biggest differences in proportion female between the youngest and oldest age groups were also the fields that were heavily male among the oldest degree holders. ${ }^{5}$

[^4]Figure 2.
Sex Distribution Within Field of Bachelor's Degree: 2009

Note: Data are for the population 25 years and over with at least a bachelor's degree.
Source: U.S. Census Bureau, 2009 American Community Survey.

Table 2.
Sex by Age and Field of Bachelor's Degree for First Major for the Population 25 Years and
Over: 2009
(Numbers in thousands)

Field of bachelor's degree	Total	Margin of error ${ }^{1}(\pm)$	Percent female	Margin of error ${ }^{1}(\pm)$
25 to 39 years	19,321	96	54.7	0.3
Science and engineering.	7,173	56	45.9	0.8
Computers, mathematics, and statistics	985	15	30.6	0.6
Biological, agricultural, and environmental sciences	1,376	21	52.9	1.2
Physical and related sciences	358	11	39.6	0.7
Psychology.	1,069	16	74.9	0.7
Social sciences	1,592	22	50.7	0.5
Engineering	1,410	19	20.1	1.3
Multidisciplinary studies	382	10	60.7	0.6
Science- and engineering-related fields	1,552	19	71.6	0.4
Business	3,922	34	48.8	0.5
Education.	1,757	24	78.5	0.4
Arts, humanities, and other	4,916	36	58.5	0.8
Literature and languages.	834	14	68.5	0.9
Liberal arts and history	981	18	47.3	0.9
Visual and performing arts.	921	18	61.0	0.7
Communications	991	18	60.3	0.8
Other	1,189	19	57.3	0.1
40 to 64 years	29,018	101	50.1	0.2
Science and engineering.	9,880	51	36.0	0.7
Computers, mathematics, and statistics	1,165	20	35.7	0.5
Biological, agricultural, and environmental sciences	1,691	19	37.8	0.8
Physical and related sciences	694	13	25.3	0.6
Psychology. . .	1,258	18	63.5	0.5
Social sciences	2,293	24	43.1	0.3
Engineering	2,252	25	11.6	1.2
Multidisciplinary studies.	526	11	52.1	0.4
Science- and engineering-related fields	2,700	29	69.6	0.3
Business	6,190	41	41.6	0.3
Education.	4,056	33	75.8	0.3
Arts, humanities, and other	6,192	36	55.9	0.6
Literature and languages.	1,268	15	66.3	0.6
Liberal arts and history	1,593	18	42.1	0.8
Visual and performing arts.	1,056	17	62.8	0.9
Communications	936	14	54.8	0.8
Other	1,340	19	57.5	0.1
65 years and over	7,997	38	44.4	0.2
Science and engineering. .	2,587	19	23.0	0.3
Computers, mathematics, and statistics	191	6	29.9	1.4
Biological, agricultural, and environmental sciences	378	9	23.0	0.9
Physical and related sciences .	286	8	16.8	0.9
Psychology. . . .	243	7	52.3	1.4
Social sciences	562	10	34.8	0.9
Engineering . . .	790	12	3.2	0.3
Multidisciplinary studies.	137	5	40.9	1.8
Science- and engineering-related fields	683	12	64.5	0.9
Business .	1,193	14	21.1	0.5
Education.	1,911	19	72.6	0.4
Arts, humanities, and other.	1,623	18	53.8	0.6
Literature and languages.	467	9	65.9	0.9
Liberal arts and history	569	13	37.7	1.0
Visual and performing arts.	229	6	64.2	1.5
Communications	95	5	39.4	2.2
Other .	262	7	63.3	1.2

[^5]The four detailed fields of biological, agricultural, and environmental sciences; physical and related sciences; engineering; and business had the lowest percentages of women in the 65 years and older age group. In the 25 to 39 years age group, these same fields also had percentages female that were more than double the percentages female in the 65 years and over age group.

The engineering field had the largest relative percent change across age groups. ${ }^{6}$ In this field, the percentage female in the youngest group was about six times larger than the percentage female in the oldest group. The fields of multidisciplinary studies and communications were majority male among the 65 years and over age group (both approximately 60 percent male), but these sex distributions were reversed in the 25 to 39 years age group (both fields approximately 60 percent female). Fields that were heavily female in the 65 years and over age group were also heavily female in the younger age groups, although two of these fields (visual and performing arts and other) had a smaller percentage of women in the 25 to 39 years age group compared to the 65 years and older age group. ${ }^{7}$

The proportion female within the two broad fields of science and engineering and arts, humanities, and other varied both across age groups and across detailed fields within the broad fields. The percentage female in the broad field of science and engineering

[^6]was 23 percent in the 65 years and older age group but nearly 50 percent in the 25 to 39 years age group. Although the percentage female in the detailed field of biological, agricultural, and environmental sciences differed by 30 percent between the youngest and oldest age groups, the detailed field of computers, mathematics, and statistics changed by only 1 percent across the same age groups. ${ }^{8}$ Within the broad field of arts, humanities, and other, the proportion of women differed by only 5 percent across the youngest and oldest age groups. The biggest change was in the detailed field of biological, agricultural, and environmental sciences, where 23 percent of degree holders 65 years and over were female, but this percentage was 53 in the 25 to 39 years age group.

Race and Hispanic Origin

The distribution of broad fields of degree varied by race and Hispanic origin groups (Table 3). Science and engineering was the most common field in each group, ranging from 31 percent of bachelor's degrees among Blacks to 50 percent among Asians. Arts, humanities, and others was the second most common field among Whites and non-Hispanic Whites. Business was the second most common field for Asians and Hispanics. Among Blacks, business and arts, humanities, and other were the second and third most common fields, although the difference between these two fields was not statistically significant. Scienceand engineering-related fields were the least common among Whites and non-Hispanic Whites, Blacks, and Hispanics. Only 5 percent of Asians held a degree in education,

[^7]making it the least common field for that group.

Nativity

Table 4 shows the frequency and percentage of broad fields of bachelor's degree within nativity groups. Although degrees in the science and engineering field were common across all groups, the foreign born (both citizen and noncitizen) were much more likely to hold a degree in a science and engineering field or a science- and engineeringrelated field than the native-born population. The college-educated native born were about twice as likely as foreign-born, naturalized citizens and more than twice as likely as foreign-born noncitizens to have a degree in an education field. Degrees in business fields were more evenly distributed: 20 percent or more of the collegeeducated native-born and foreignborn, naturalized citizen population held such a degree, while only a smaller proportion (19 percent) of the foreign-born noncitizen did. Degrees from the arts, humanities, and others field were held by over 23 percent of the native-born population, compared to around 16 percent of both foreign-born citizens and foreign-born noncitizens.

GEOGRAPHY AND FIELD OF DEGREE

State-Level Differences in Field of Degree

Figures 3a through 3e show the distribution of the five broad fields of degree for each state and the District of Columbia. ${ }^{9}$ The values represent the proportion of the college-educated population 25 years and over with a bachelor's degree in a given field.

[^8]Table 3

Race and Hispanic Origin by Field of Bachelor's Degree for First Major for the Population 25 Years and Over: 2009

(Numbers in thousands)

Race and Hispanic origin	Estimate	Margin of error ${ }^{1}(\pm)$	Percent	Margin of error (\pm)
White Alone				
Science and engineering.	15,438	70	33.6	0.1
Science- and engineering-related fields .	3,905	29	8.5	0.1
Business	9,130	45	19.9	0.1
Education.	6,712	40	14.6	0.1
Arts, humanities, and other	10,705	48	23.3	0.1
Non-Hispanic White Alone				
Science and engineering. .	14,624	63	33.6	0.1
Science- and engineering-related fields .	3,722	27	8.5	0.1
Business	8,572	42	19.7	0.1
Education.	6,415	38	14.7	0.1
Arts, humanities, and other	10,203	47	23.4	0.1
Black Alone				
Science and engineering.	1,242	21	30.7	0.4
Science- and engineering-related fields .	381	12	9.4	0.3
Business	927	19	23.0	0.4
Education.	582	13	14.4	0.3
Arts, humanities, and other	908	17	22.5	0.4
Asian Alone				
Science and engineering.	2,334	23	50.0	0.4
Science- and engineering-related fields .	512	12	11.0	0.2
Business	894	15	19.1	0.3
Education.	236	8	5.1	0.2
Arts, humanities, and other .	692	15	14.8	0.3
Hispanic (of any race)				
Science and engineering.	1,135	21	34.5	0.5
Science- and engineering-related fields .	259	7	7.9	0.2
Business	773	16	23.5	0.4
Education.	404	12	12.3	0.3
Arts, humanities, and other	717	16	21.8	0.4

${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimate, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval.

Source: U.S. Census Bureau, 2009 American Community Survey.

Science and engineering was the most popular broad field for every state, with at least 1 in 4 college graduates holding such a degree at the bachelor's level (Figure 3a). The proportion of college graduates holding a science and engineering bachelor's degree was particularly high in many coastal states. Forty percent or more of bachelor's degree holders 25 years and over held a degree in a science and engineering field in the District of Columbia and the states of California, Washington, and Maryland. The Atlantic coastal
areas of Connecticut, Delaware, the District of Columbia, Maryland, Massachusetts, New Jersey, New York, Pennsylvania, Rhode Island, and Virginia were home to 28 percent of the nation's science and engineering degree holders. Nineteen percent of all science and engineering degree holders lived in the Pacific coast states of California, Oregon, and Washington. Science and engineering degrees were less common in some Southern and Midwestern states. Louisiana, Mississippi, Nebraska, North Dakota, and

Oklahoma each had less than 29 percent of their bachelor's degrees in science and engineering.

Many of the states with low proportions of graduates in science and engineering fields also had relatively high proportions of degrees in science- and engineering-related fields (Figure 3b). Of the five states with less than 29 percent of college graduates holding science and engineering degrees, none had less than 10 percent of its collegeeducated population holding sci-ence- and engineering-related

Table 4.
Nativity Status by Field of Bachelor's Degree for First Major for the Population 25 Years and Over: 2009
(Numbers in thousands)

Nativity status	Estimate	Margin of error $^{1}(\pm)$	Percent	Margin of error (\pm)
Native Born				
Science and engineering.	15,582	73	32.7	0.1
Science- and engineering-related fields	4,021	29	8.4	0.1
Business	9,589	47	20.1	0.1
Education.	7,096	45	14.9	0.1
Arts, humanities, and other	11,328	52	23.8	0.1
Foreign Born, Naturalized Citizen				
Science and engineering.	2,293	26	45.4	0.4
Science- and engineering-related fields	576	12	11.4	0.2
Business	1,009	16	20.0	0.3
Education.	378	10	7.5	0.2
Arts, humanities, and other .	799	16	15.8	0.3
Foreign Born, Not a U.S. Citizen				
Science and engineering. .	1,765	23	48.2	0.5
Science- and engineering-related fields	339	8	9.3	0.2
Business	707	17	19.3	0.4
Education.	250	8	6.8	0.2
Arts, humanities, and other	605	14	16.5	0.3

${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimate, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval.

Source: U.S. Census Bureau, 2009 American Community Survey.

degrees. ${ }^{10}$ Of the eight states where science- and engineering-related fields were above 10 percent, only Maine and Wisconsin had proportions of science and engineering degrees above 30 percent. ${ }^{11}$

The proportion of the collegeeducated population with degrees in a business field was highest in the southern states of Florida and Georgia (Figure 3c). ${ }^{12}$ This proportion was among the lowest in the District of Columbia (11 percent)

[^9]and Vermont (12 percent). ${ }^{13}$ Business fields made up more than 23 percent of bachelor's degrees in Florida and Georgia, making that field nearly twice as common in those states as in the District of Columbia and Vermont.

The proportion of bachelor's degrees in an education field was 20 percent or more in some Midwestern and Southern states (Figure 3d). North Dakota was among the highest percentages (23 percent), making an education degree more than three times as common among college graduates there than in the area with the smallest percentage of degrees in an education field (the District of Columbia

[^10]at 6 percent). Generally speaking, states with the lowest percentage of degrees in education fields were the same states that had the lowest percentage of degrees in scienceand engineering-related fields. Of the ten states in the lowest quintile of degrees in an education field (California, Colorado, Connecticut, District of Columbia, Maryland, Massachusetts, New York, New Jersey, Virginia, and Washington), all but Maryland and New York were also in the lowest quintile of degrees in the science- and engineering-related fields.

The arts, humanities, and other field, which includes such majors as history, public administration, literature, and philosophy, was most common in two Northeastern states, two Pacific states, and the District of Columbia (Figure 3e). In California, the District of Columbia,

Table 5.

Detailed Field of Bachelor's Degree for the First Major and Highest Degree Attained for the Population 25 Years and Over: 2009

(Numbers in thousands)

Field of bachelor's degree	Esti- mate	Highest degree attained							
		Bachelor's degree		Master's degree		Professional degree beyond a bachelor's degree		Doctorate degree	
		Percent	Margin of error ${ }^{1}$ (\pm	Percent	Margin of error (\pm	Percent	Margin of error (\pm	Percent	Margin of error $\pm)$
Total	56,336	63.0	0.1	25.9	0.1	6.9	0.1	4.2	-
Highest Degree Attained									
Science and engineering.	19,640	55.5	0.2	27.1	0.2	10.2	0.1	7.2	0.1
Computers, mathematics, and statistics	2,342	64.7	0.5	27.6	0.5	3.1	0.2	4.6	0.2
Biological, agricultural, and environmental sciences	3,446	48.3	0.5	20.6	0.4	20.5	0.4	10.6	0.3
Physical and related science	1,338	39.6	0.6	28.0	0.6	12.6	0.4	19.8	0.5
Psychology.	2,571	51.9	0.5	32.8	0.5	7.6	0.3	7.7	0.3
Social sciences	4,447	56.4	0.4	26.2	0.3	13.0	0.3	4.4	0.2
Engineering	4,452	60.4	0.4	30.7	0.3	3.7	0.1	5.2	0.2
Multidisciplinary studies	1,045	63.6	0.7	19.9	0.6	12.0	0.5	4.5	0.3
Science- and engineering-related fields	4,936	65.7	0.3	22.7	0.3	8.1	0.2	3.4	0.1
Business	11,305	78.0	0.2	17.7	0.2	3.4	0.1	0.9	-
Education.	7,723	54.2	0.3	39.7	0.2	3.4	0.1	2.7	0.1
Arts, humanities, and other	12,732	65.5	0.2	24.2	0.1	6.7	0.1	3.6	0.1
Literature and languages	2,569	53.2	0.5	31.3	0.4	9.4	0.3	6.0	0.3
Liberal arts and history	3,143	56.9	0.4	26.3	0.4	11.0	0.3	5.9	0.2
Visual and performing arts .	2,207	73.7	0.5	21.0	0.4	3.0	0.2	2.3	0.1
Communications	2,023	78.9	0.5	16.0	0.4	3.8	0.2	1.3	0.1
Other .	2,790	70.4	0.4	23.7	0.4	4.4	0.2	1.5	0.1

[^11]New York, Oregon, and Vermont, more than 25 percent of collegeeducated adults held a degree in an arts, humanities, or other field.

Detailed fields of degree also varied across states (Appendix B). New York had the highest percentage of degrees in visual and performing arts (6 percent), although this was not significantly different from the District of Columbia. While Michigan had more than 10 percent of its bachelor's degrees in engineering, Nebraska was among the lowest at only 4 percent. The District of Columbia was distinguished by the highest presence of social science degrees, with 26 percent of all bachelor's degrees being in that field. All other areas had a percentage of degrees in social science fields that ranged from 4 percent (Mississippi and North Dakota) to 11 percent (Virginia).

Metropolitan-Level Differences in Field of Degree

Figures 4a through 4e show the percentage of bachelor's degrees in various broad fields within metropolitan statistical areas. These metropolitan-level maps can be compared to the state-level maps to illustrate the within-state variation of field of degree. For example, although 33 percent of the bachelor's degrees in the state of Illinois were in a science and engineering field, this percentage was just 19 percent in Danville, Illinois, but was 42 percent in the ChampaignUrbana metropolitan area.

The percentage of degrees in a business field ranged from just 8 percent in Fairbanks, Alaska, and Charlotte, Virginia, to 32 percent in Hinesville-Fort Stewart, Georgia. The percentage of business degrees also varied widely within states. Just 12 percent of the bachelor's degrees in Victoria, Texas, were in a business field, but that number
rose to 30 percent in nearby Laredo. Business fields made up 23 percent of bachelor's degrees in Detroit-Warren-Livonia, Michigan. In the adjacent metropolitan area of Ann Arbor, business fields made up only 12 percent of the degrees.

Eight percent of the bachelor's degrees in the state of California were in an education field, but this percentage was much higher (20 percent) in the El Centro metropolitan area. Nationally, the San Jose-Sunnyvale-Santa Clara metropolitan area had among the lowest percentage of degrees in an education field at 5 percent.

FIELD OF DEGREE AND EDUCATIONAL ATTAINMENT

Although millions of people with bachelor's degrees go on to earn higher degrees (Table 5), most do not. Sixty-three percent of the college-educated population did not hold an advanced degree. ${ }^{14}$ Over 1 in 4 of the college-educated population had a master's degree as their highest degree. Far fewer people went on to obtain a professional (7 percent) or doctoral degree (4 percent).

The probability of obtaining an advanced degree after earning a bachelor's varied by detailed field of undergraduate degree. People with undergraduate degrees in the business and communications fields were the least likely to hold an advanced degree. Of the 2 million people with a bachelor's degree in a communications field, 79 percent did not hold a higher degree. Similarly, 78 percent of those who held a bachelor's degree in a business field did not hold a higher degree. This contrasted sharply with people holding an undergraduate degree in physical and related

[^12]sciences, where 3 in 5 graduates held an advanced degree.

Physical and related sciences was also the field most likely to lead to a doctorate degree with 20 percent of its holders eventually earning that degree. A similar proportion of people with undergraduate degrees in biological, agricultural, and environmental sciences earned a professional degree. The field most likely to culminate in a master's degree was education, with nearly 40 percent of its holders doing so.

FIELD OF DEGREE AND EARNINGS

Table 6 shows the median earnings of full-time, year-round, collegeeducated workers aged 25 and over by educational attainment, sex, race, and Hispanic origin. Earnings varied by broad field of bachelor's degree and by whether or not a person also completed an advanced degree. The median earnings for workers with just a bachelor's degree in 2009 was $\$ 56,000$, while people with an advanced degree earned on average $\$ 74,000$. People with only a bachelor's degree in science and engineering tended to earn much more than people with only a bachelor's degree in education (\$63,000 compared with $\$ 42,000$). This difference in earnings was more pronounced among advanced degree holders, with the science and engineering fields being associated with median earnings about \$30,000 greater than the median earnings associated with the education fields.

Sex and Earnings by Field of Degree

Among all full-time, year-round workers with a bachelor's degree or higher, men with a degree in a science and engineering field earned 43 percent more $(\$ 24,000)$ than women, but in the education field

Table 6.
Median Earnings by Field of Bachelor's Degree, Sex, Race, and Hispanic Origin for FullTime, Year-Round Workers 25 Years and Over: 2009

Characteristic	Field of bachelor's degree											
	Any field		Science and engineering		Science- and engineeringrelated fields		Business		Education		Arts, humanities, and other	
	Earnings (dollars)	Margin of error ${ }^{1}$ (\pm	Earnings (dollars)	Margin of error (\pm	Earnings (dollars)	Margin of error (\pm	Earnings (dollars)	Margin of error (\pm	Earnings (dollars)	Margin of error (\pm	Earnings (dollars)	Margin of error $\pm \pm$
Highest Level of Educational Attainment: Bachelor's Degree or Higher Full-time, year-round workers .	62,066	103	72,415	218	66,489	498	64,553	308	49,152	174	52,691	296
Sex												
Male.	72,854	193	81,437	325	74,880	1,034	73,155	358	55,061	735	59,720	324
Female.	52,384	109	57,177	388	62,387	366	54,466	394	47,522	249	48,439	207
Race and Hispanic origin White alone	63,505	163	74,407	279	66,806	534	68,713	291	49,411	183	54,298	303
Non-Hispanic White alone	64,330	170	75,540	351	67,218	542	69,902	296	49,689	186	54,731	303
Black alone	51,204	350	55,371	1,260	60,146	1,230	50,411	763	48,902	598	47,059	802
Asian alone	67,667	473	77,545	700	72,407	1,098	56,587	1,365	42,350	1,832	49,340	656
Hispanic (of any race)	50,336	438	55,364	1,282	57,547	2,421	49,752	509	44,246	811	47,792	790
Highest Level of Educational Attainment: Bachelor's Degree Only Full-time, year-round workers .	56,472	181	62,807	353	61,442	384	60,437	264	42,042	209	48,726	196
Sex Male.	64,919	234	71,146	318	68,298	765	68,375	411	48,810	472	54,097	77
Female.	48,220	118	49,028	250	59,230	417	51,523	346	40,257	219	43,595	353
Race and Hispanic origin White alone	58,149	134	65,330	457	61,619	417	63,552	351	42,339	213	49,604	200
Non-Hispanic White alone	58,779	138	66,588	472	61,903	411	64,824	362	42,539	265	49,860	202
Black alone	47,155	556	48,714	631	55,956	2,104	48,135	694	41,560	778	42,177	724
Asian alone	58,210	427	64,302	943	68,787	1,054	52,111	713	36,961	1,978	44,809	1,561
Hispanic (of any race)	46,774	553	49,329	657	52,406	1,863	48,071	549	39,664	573	43,322	1,052
Highest Level of Educational Attainment: Advanced Degree Full-time, year-round workers	74,248	242	87,094	655	77,685	750	82,429	742	57,011	408	63,440	433
Sex Male	89,431	323	98,279	310	91,498	1,647	94,270	1,450	63,320	825	72,703	769
Female.	61,532	199	67,681	440	71,478	770	68,278	947	54,515	376	57,518	446
Race and Hispanic origin White alone	75,273	327	88,924	481	77,731	759	88,678	734	57,037	411	64,969	531
Non-Hispanic White alone	75,982	349	89,690	497	77,866	733	89,914	828	57,217	398	65,343	601
Black alone	61,791	730	68,871	1,010	70,864	2,309	60,465	1,974	57,537	1,319	55,712	2,091
Asian alone	82,653	917	88,952	662	85,873	3,604	72,389	2,988	58,239	3,589	58,758	1,318
Hispanic (of any race)	62,018	1,079	68,627	2,190	68,209	4,704	64,261	2,617	53,764	1,719	58,534	1,757

Note: Data are for full-time, year-round, college-educated workers.
${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimate, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval.

Source: U.S. Census Bureau, 2009 American Community Survey.
this gap fell to 16 percent $(\$ 8,000)$. Men earned more than women at both bachelor's and advanced degrees as well as within each field of degree. The sex differences in
earnings were largest in the highest paying field of science and engineering and smallest in the lowest paying field of education. Among workers with only a bachelor's
degree, men earned approximately 35 percent more than women. The gender gap in earnings ratio was greater among holders of advanced degrees, with male workers earning

Figure 5.
Median Earnings as a Percentage of Non-Hispanic White Alone Earnings: 2009

Note: Data are for the population 25 years and over with at least a bachelor's degree.
Source: U.S. Census Bureau, 2009 American Community Survey.

45 percent more than similarly educated female workers.

Race and Hispanic Origin

Of those with only a bachelor's degree, non-Hispanic White workers had the highest median earnings across all broad fields of degree except science- and engineeringrelated. ${ }^{15}$ Asian workers with science- and engineering-related degrees had the highest median earnings of $\$ 69,000$ compared with non-Hispanic White workers' median earnings of about $\$ 62,000$. However, Asian workers with only a bachelor's degree in education had the lowest median earnings of any race or Hispanic origin group

[^13]($\$ 37,000$). Among advanced degree holders, non-Hispanic White workers had the highest median earnings in business and arts, humanities, and other fields. ${ }^{16}$

Figure 5 expresses the median earnings of Black, Asian, and Hispanic workers as a percent of non-Hispanic White workers earnings. This comparison includes only full-time, year-round workers with at least a bachelor's degree. The biggest differences in median earnings relative to non-Hispanic White workers earnings were in the science and engineering and business fields. Hispanic and Black workers' median earnings were approximately 73 percent of nonHispanic White workers' earnings in the science and engineering fields.

[^14]In business fields, Black, Hispanic, and Asian workers had median earnings that were between 71 and 81 percent of non-Hispanic White workers' earnings.

SOURCE OF THE DATA

The estimates in this report are from the 2009 American Community Survey (ACS). The population represented (the population universe) in the 2009 ACS includes both the household and the group quarters populations (that is, the resident population). The group quarters population consists of the institutionalized population (such as people in correctional institutions or nursing homes) and the noninstitutionalized population (most of whom are in college dormitories).

ACCURACY OF THE ESTIMATES

Statistics from sample surveys are subject to sampling error and nonsampling error. All comparisons presented in this report have taken sampling error into account and are significant at the 90 percent confidence level. This means the 90 percent confidence interval for the difference between estimates being compared does not include zero. Nonsampling error in surveys may be attributed to a variety of sources, such as how the survey was designed, how respondents interpret questions, how able and willing respondents are to provide correct answers, and how accurately answers are coded and classified. To minimize these errors, the U.S. Census Bureau employs quality control procedures in sample
selection, the wording of questions, interviewing, coding, data processing, and data analysis.

The final ACS population estimates are adjusted in the weighting procedure for coverage error by controlling specific survey estimates to independent population controls by sex, age, race, and Hispanic origin. This weighting partially corrects for bias due to over- or undercoverage, but biases may still be present, for example, when people who were missed differ from those interviewed in ways other than sex, age, race, and Hispanic origin. How this weighting procedure affects other variables in the survey is not precisely known. All of these considerations affect comparisons across different surveys or data sources. For information on sampling and estimation methods, confidentiality
protection, and sampling and nonsampling errors, please see the "2009 ACS Accuracy of the Data" document located at <www.census .gov/acs/www/Downloads/data _documentation/Accuracy/ACS _Accuracy_of_Data_2009.pdf>.

MORE INFORMATION

Detailed tabulations, related information, and historic data are available on the Internet at the Educational Attainment page on the Census Bureau's Web site at <www.census.gov/hhes/socdemo /education/index.html>. For additional questions or comments, contact Julie Siebens or Camille L. Ryan at 301-763-2464 or via e-mail at Julie.Siebens@census.gov or Camille.L.Ryan@census.gov.

APPENDIX A.

Grouping of Majors Into Broad and Detailed Fields

SCIENCE AND ENGINEERING FIELDS

Computers, Mathematics, and Statistics Fields
Computer and Information Systems-General Computer Science
Computer Systems Analysis
Information Sciences
Computer Administration Management and Security
Computer Networking and Telecommunications
Miscellaneous Computer Sciences
Mathematics
Applied Mathematics
Statistics
Decision Science
Miscellaneous Mathematics

Biological, Agricultural, and Environmental Sciences Fields

General Agriculture
Agriculture Production and Management
Agricultural Economics
Animal Sciences
Food Science
Plant Science and Agronomy
Soil Science
Miscellaneous Agriculture
Environmental Science
Forestry
Natural Resources Management
Biology
Biochemical Sciences
Botany
Molecular Biology
Ecology
Genetics
Microbiology
Pharmacology
Physiology
Zoology
Epidemiology
Miscellaneous Biology

Physical and Related Science Fields

Physical Sciences
Astronomy and Astrophysics
Atmospheric Sciences and Meteorology

Physical and Related Science Fields-Con.
Chemistry
Geology and Earth Science
Geosciences
Oceanography
Physics
Miscellaneous Physical Sciences

Psychology Fields

Psychology
Educational Psychology
Clinical Psychology
Counseling Psychology
Experimental Psychology
Industrial and Organizational Psychology
Social Psychology
Miscellaneous Psychology

Social Science Fields

Area Ethnic and Civilization Studies
General Social Sciences
Economics
Anthropology and Archeology
Criminology
Geography
International Relations
Political Science and Government
Sociology
Miscellaneous Social Sciences
History and Philosophy of Science and Technology

Engineering Fields
General Engineering
Aerospace Engineering
Biological Engineering
Architectural Engineering
Biomedical Engineering
Chemical Engineering
Civil Engineering
Computer Engineering
Electrical Engineering
Engineering Mechanics Physics and Science
Environmental Engineering
Geological and Geophysical Engineering
Industrial and Manufacturing Engineering

Engineering Fields-Con.

Materials Engineering and Materials Science
Mechanical Engineering
Metallurgical Engineering
Mining and Mineral Engineering
Naval Architecture and Marine Engineering
Nuclear Engineering
Petroleum Engineering
Operations Research
Miscellaneous Engineering

Multidisciplinary Studies Fields

Intercultural and International Studies
Nutrition Sciences
Neuroscience
Accounting and Computer Science
Mathematics and Computer Science
Cognitive Science and Biopsychology
Interdisciplinary Social Sciences
Multidisciplinary or General Science

SCIENCE- AND ENGINEERING-RELATED FIELDS

Science- and Engineering-Related Fields

Architecture
Computer Programming
Data Processing
Computer Teacher Education
Mathematics Teacher Education
Science Teacher Education
Engineering Technologies
Engineering and Industrial Management
Electrical Engineering Technology
Industrial Production Technologies
Mechanical Engineering Related Technologies
Miscellaneous Engineering Technologies
Applied Biotechnology
Nuclear and Industrial Radiology Technologies
General Medical and Health Services
Communication Disorders Sciences and Services
Health and Medical Administrative Services
Medical Assisting Services
Medical Technologies Technicians
Health and Medical Preparatory Programs
Nursing
Pharmacy Pharmaceutical Sciences and Administration
Treatment Therapy Professions
Community and Public Health
Energy and Biologically Based Therapies
Miscellaneous Health Medical Professions

BUSINESS FIELDS

Business Fields
Court Reporting
Medical Office Assistance and Administration
General Business
Accounting
Actuarial Science
Business Management and Administration
Operations Logistics and E-Commerce
Business Economics
Marketing
Finance
Marketing Research
Human Resources and Personnel Management
International Business
Hospitality Management
Management Information Systems and Statistics
Miscellaneous Business

EDUCATION FIELDS

Education Fields

General Education
Educational Administration and Supervision
School Student Counseling
Elementary Education
Physical and Health Education Teaching
Early Childhood Education
Secondary Teacher Education
Special Needs Education
Social Science or History Teacher Education
Teacher Education: Multiple Levels
Language and Drama Education
Art and Music Education
Miscellaneous Education

ARTS, HUMANITIES, AND OTHER FIELDS

Literature and Languages Fields

Linguistics and Comparative Language and Literature
French, German, Latin, and Other Common Foreign Language Studies
Other Foreign Languages
English Language and Literature
Composition and Speech

Liberal Arts and History Fields

Liberal Arts
Humanities
Philosophy and Religious Studies
Theology and Religious Vocations
History
U.S. History

Visual and Performing Arts

Fine Arts
Drama and Theater Arts
Music
Visual and Performing Arts
Commercial Art and Graphic Design
Film Video and Photographic Arts
Art History and Criticism
Studio Arts
Miscellaneous Fine Arts

Communications Fields

Communications
Journalism
Mass Media
Advertising and Public Relations
Communication Technologies

Other Fields

Cosmetology Services and Culinary Arts
Family and Consumer Sciences
Technology Education Industrial Arts
Pre-Law and Legal Studies
Library Science
Military Technologies
Physical Fitness, Parks, Recreation, and Leisure
Criminal Justice and Fire Protection
Public Administration
Public Policy
Human Services and Community Organization
Social Work
Construction Services
Electrical and Mechanic Repairs and Technologies
Precision Production
Transportation Sciences and Technologies

Appendix B
Percent of Bachelor's Degrees in Each Detailed Field of Degree, by State: 2009

State	Computers, mathematics, and statistics	Biological, agricultural, and environmental sciences	$\begin{array}{r} \text { Physical } \\ \text { and related } \\ \text { sciences } \\ \hline \end{array}$	Psychology	Social science	Engineering	Multidisciplinary studies	Science- and engineeringrelated fields
Alabama	4.2	6.1	2.2	3.3	4.7	8.0	1.6	10.0
Alaska	2.0	11.0	3.2	5.5	7.4	7.1	1.8	9.7
Arizona	4.0	5.2	2.3	4.1	6.6	9.7	1.8	9.1
Arkansas	3.6	7.6	1.8	3.7	4.6	4.4	2.4	10.7
California	4.8	6.5	2.7	5.0	10.0	10.1	1.7	7.7
Colorado	4.9	7.0	3.1	4.9	8.7	8.6	1.7	7.3
Connecticut	4.1	5.3	2.6	5.7	10.0	7.9	1.8	7.7
Delaware	3.6	6.0	3.0	4.5	7.4	7.9	2.8	9.0
District of Columbia	3.1	5.6	2.5	4.0	26.0	4.4	2.3	4.2
Florida .	3.4	5.0	1.9	4.4	7.1	7.9	2.0	9.5
Georgia	4.7	5.3	1.9	4.6	6.8	7.1	1.7	8.8
Hawaii.	2.9	6.9	2.7	5.2	8.5	6.5	1.6	8.7
Idaho	3.8	9.6	3.1	3.2	6.3	7.8	1.9	9.2
Illinois.	4.6	5.5	2.1	4.2	7.4	7.4	1.9	8.7
Indiana.	3.7	5.8	2.3	3.6	5.1	7.0	1.5	11.7
Iowa.	3.5	7.7	1.6	4.2	5.5	5.7	2.0	8.8
Kansas.	3.0	7.8	2.0	3.7	5.1	6.1	1.6	9.4
Kentucky	3.5	7.1	1.9	4.6	5.6	5.5	1.5	10.6
Louisiana.	2.5	6.2	2.2	3.8	4.9	5.5	2.2	11.9
Maine.	2.4	7.8	1.7	5.1	8.7	5.3	2.2	11.3
Maryland	5.7	7.1	3.2	4.8	10.7	8.1	1.9	8.1
Massachusetts.	4.2	6.2	2.9	5.5	10.5	8.7	1.9	7.7
Michigan	3.6	5.5	2.0	3.7	5.4	10.6	1.9	9.8
Minnesota	4.0	6.4	2.3	4.9	7.7	6.5	1.5	9.3
Mississippi	2.7	7.6	2.2	3.5	4.1	4.5	1.6	12.0
Missouri.	4.0	7.0	1.9	4.3	5.2	5.6	1.7	9.7
Montana.	2.7	11.1	3.2	4.1	7.0	4.8	1.8	9.1
Nebraska	3.3	8.5	1.7	4.2	4.4	3.9	1.8	10.0
Nevada	3.0	5.1	2.8	3.5	7.2	7.7	1.7	9.5
New Hampshire. .	4.6	6.5	2.4	4.5	7.6	9.3	2.0	8.4
New Jersey	5.3	5.3	2.7	4.7	8.8	8.9	1.8	7.9
New Mexico	2.8	7.0	4.0	4.7	7.4	9.3	1.8	8.6
New York	4.2	4.7	2.2	5.4	10.4	6.0	2.0	8.4
North Carolina	4.3	6.5	2.5	5.1	7.4	6.9	1.7	8.4
North Dakota	3.1	8.1	1.7	2.2	4.1	5.4	1.8	12.0
Ohio. .	3.6	5.2	2.2	4.2	6.3	7.5	1.9	10.0
Oklahoma	3.2	6.2	2.0	3.7	4.7	5.5	2.1	9.6
Oregon.	3.2	8.4	2.3	5.4	9.4	7.1	2.4	8.0
Pennsylvania	4.1	6.2	2.5	4.9	6.9	7.3	2.1	9.6
Rhode Island	4.1	5.7	2.0	5.8	8.9	7.3	1.7	8.5
South Carolina.	3.5	6.5	2.2	4.4	7.1	7.2	1.6	8.4
South Dakota.	2.0	9.9	1.5	3.8	5.6	4.2	1.7	10.8
Tennessee.	3.2	6.7	2.1	4.4	5.4	6.4	2.0	9.2
Texas.	4.3	6.2	2.4	3.6	5.8	9.4	2.2	8.2
Utah.	4.3	6.2	2.6	4.2	8.2	6.8	1.6	8.3
Vermont.	3.0	8.1	2.6	6.5	8.2	6.2	2.4	7.9
Virginia.	5.5	5.4	2.6	4.7	11.1	9.0	1.8	7.1
Washington	4.9	7.0	2.7	5.1	9.5	9.7	1.8	8.0
West Virginia	2.0	6.0	2.7	4.2	4.9	6.6	1.2	11.7
Wisconsin	3.2	7.3	1.9	4.2	6.3	6.7	1.5	11.1
Wyoming	2.2	12.2	3.9	3.6	6.5	7.1	2.0	9.4

Appendix B.
Percent of Bachelor's Degrees in Each Detailed Field of Degree, by State: 2009—Con.

Business	Education	Literature and languages	Liberal arts and history	Visual and performing arts	Communications	Other	State
23.7	18.2	3.1	4.2	2.4	2.4	6.1	Alabama
13.0	16.7	5.0	5.2	3.6	2.2	6.7	Alaska
21.5	14.9	3.9	5.2	3.3	3.5	4.9	Arizona
21.3	21.1	3.2	4.8	2.2	2.9	5.7	Arkansas
18.5	7.5	5.4	6.5	5.4	3.8	4.6	California
20.2	11.0	4.8	5.0	3.9	3.8	5.2	Colorado
19.5	11.6	6.3	6.0	4.3	3.1	4.2	Connecticut
18.4	15.2	4.3	5.4	2.5	3.4	6.4	Delaware
11.1	6.0	8.8	8.8	5.5	5.0	2.9	District of Columbia
24.0	15.1	3.4	4.8	3.2	3.5	4.8	Florida
24.6	14.0	3.6	4.5	3.3	4.1	5.1	Georgia
21.3	13.1	4.9	5.5	3.7	3.5	5.0	Hawaii
17.4	18.5	2.6	3.9	3.0	3.5	6.3	Idaho
20.9	14.1	4.3	5.3	4.0	4.5	4.9	Illinois
20.4	18.3	3.6	6.0	2.8	3.2	5.1	Indiana
20.0	20.7	3.1	5.3	3.2	3.1	5.9	lowa
21.2	19.2	3.1	5.3	3.5	3.7	5.3	Kansas
18.4	18.6	4.3	5.9	2.6	3.6	6.3	Kentucky
20.5	19.0	3.0	7.0	2.7	3.0	5.6	Louisiana
14.3	16.5	6.4	6.0	4.0	3.1	5.2	Maine
17.5	10.3	5.1	5.8	3.4	3.6	4.7	Maryland
17.4	10.2	6.7	6.6	4.3	2.9	4.3	Massachusetts
21.0	16.2	3.4	4.5	3.1	3.5	5.8	Michigan
19.9	15.3	4.3	4.5	4.0	4.1	5.4	Minnesota
21.2	21.0	3.0	4.6	2.5	2.9	6.8	Mississippi
21.4	17.4	3.4	5.1	3.6	4.0	5.9	Missouri
16.3	18.9	4.2	5.4	3.7	3.0	4.8	Montana
20.9	20.1	3.2	4.1	2.5	4.4	7.0	Nebraska
22.9	13.8	4.7	4.6	3.1	4.3	6.2	Nevada
19.2	12.7	5.9	5.6	3.4	2.8	5.2	New Hampshire
21.5	11.8	4.8	5.3	3.9	3.6	3.8	New Jersey
15.2	17.0	4.5	5.2	5.5	2.7	4.5	New Mexico
18.2	11.8	6.5	6.6	6.3	3.6	4.1	New York
20.4	14.1	4.5	5.7	3.1	3.4	6.1	North Carolina
21.3	22.8	2.3	3.4	2.1	2.4	7.3	North Dakota
21.4	17.7	3.6	4.8	3.2	4.0	4.5	Ohio
21.8	21.2	2.8	5.0	2.9	3.6	5.8	Oklahoma
15.2	12.8	6.2	6.8	5.2	3.9	3.8	Oregon
18.6	16.5	4.2	5.4	3.5	3.5	4.9	Pennsylvania
16.7	13.5	6.1	5.9	5.3	3.3	5.4	Rhode Island
21.3	16.4	4.1	6.5	3.2	2.7	5.1	South Carolina
19.2	22.4	3.3	3.6	2.0	2.5	7.6	South Dakota
22.3	16.3	3.4	6.0	3.5	3.9	5.3	Tennessee
23.2	14.4	3.7	4.9	3.0	3.5	5.1	Texas
19.6	14.3	4.6	3.9	4.4	4.3	6.7	Utah
11.9	16.3	7.0	6.9	5.3	2.6	5.0	Vermont
18.9	10.8	5.5	6.8	3.1	2.9	5.1	Virginia
15.6	11.4	5.2	6.2	4.5	4.0	4.5	Washington
19.4	21.4	2.9	5.3	2.4	2.9	6.4	West Virginia
19.2	18.0	3.6	4.6	3.3	4.0	5.3	Wisconsin
13.6	21.2	2.3	5.0	2.8	2.9	5.5	Wyoming

Source: U.S. Census Bureau, 2009 American Community Survey.

[^0]: "Field of bachelor's degree" refers to the specialized area of study in which a bachelor's degree was awarded. It does not refer to the type of bachelor's degree, such as bachelor's of science or bachelor's of arts.
 ${ }^{2}$ Many respondents listed more than one major. Each of these majors was coded, but this report only uses the first listed major.

[^1]: ${ }^{3}$ This classification scheme of majors into detailed fields was intended to be similar to the classification of majors used by the National Center for Education Statistics (NCES) and the National Science Foundation (NSF). These classifications are not identical and care should be exercised when comparing data tabulations from the ACS, NCES, and NSF.

[^2]: 4 "The college-educated" and "college graduates" refer to people who have completed a bachelor's degree or higher.

[^3]: (X) Not applicable.

 - This margin of error rounds to, but is not equal to, zero.
 ${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimates, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval.

 Source: U.S. Census Bureau, 2009 American Community Survey.

[^4]: ${ }^{5}$ The field of computers, mathematics, and statistics is an exception to this pattern. There was no significant difference between the youngest and oldest age group.

[^5]: ${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimates, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval

 Source: U.S. Census Bureau, 2009 American Community Survey.

[^6]: 6 "Relative percent change" refers to the difference in percent female within fields across age groups.
 ${ }^{7}$ The percent female in the visual and performing arts field for the 40 to 64 years age group was not significantly different from the percent female in 65 years and older age group. The percent female in the other field for the 25 to 39 years age group was not significantly different from the percent female in the 40 to 64 years age group.

[^7]: ${ }^{8}$ The difference between these two age groups in the computers, mathematics, and statistics was not significant.

[^8]: 9 "State" and "metropolitan area" refer to the current residence of the respondent, not the location of the respondent's undergraduate education.

[^9]: ${ }^{10}$ These five states are Louisiana, Mississippi, Nebraska, North Dakota, and Oklahoma.
 ${ }^{11}$ These eight states are Indiana, Kentucky, Louisiana, Maine, Mississippi, North Dakota, West Virginia, and Wisconsin.
 ${ }^{12}$ The percentage of degrees in business in Georgia was not significantly different from Alabama. The percentage of degrees in business in Florida was not significantly different from Alabama and Nevada.

[^10]: ${ }^{13}$ The percentages of degrees in a business field in the District of Columbia and Vermont were not significantly different from the percentage of degrees in a business field in Alaska, and percentage of degrees in a business field in Vermont was not significantly different from Wyoming.

[^11]: - This margin of error rounds to, but is not equal to, zero.
 ${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error in relation to the size of the estimate, the less reliable the estimate. When added to and subtracted from the estimate, the margin of error forms the 90 percent confidence interval.

 Source: U.S. Census Bureau, 2009 American Community Survey.

[^12]: 14 "Advanced degree" includes master's, professional, or doctoral degrees.

[^13]: ${ }^{15}$ The median earnings of White alone and non-Hispanic White alone were not significantly different among holders of an arts, humanities, and other degree.

[^14]: ${ }^{16}$ Median earnings for non-Hispanic Whites were not statistically different from Whites in the science- and engineering-related and arts, humanities, and others fields.

