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A mathematical formulation for a gravimetric approach
to the univariate standard addition method (SAM) is
presented that has general applicability for both liquids
and solids. Using gravimetry rather than volumetry re-
duces the preparation time, increases design flexibility,
and makes increased accuracy possible. SAM has most
often been used with analytes in aqueous solutions that
are aspirated into flames or plasmas and determined by
absorption, emission, or mass spectrometric techniques.
The formulation presented here shows that the method
can also be applied to complex matrixes, such as distillate
and residual fuel oils, using techniques such as X-ray
fluorescence (XRF) or combustion combined with atomic
fluorescence or absorption. These techniques, which can
be subject to matrix-induced interferences, could realize
the same benefits that have been demonstrated for dilute
aqueous solutions.

The frequently used standard addition method (SAM) was first
described for the flame photometric analysis of Sr in seawater by
Chow and Thompson1 more than 50 years ago. They stated, “The
‘internal standards’ technique was developed to eliminate the
interferences caused by the fluctuations of the physical and
chemical properties of the solution.” SAM is now a well-known
and established means of eliminating multiplicative biases in
chemical determinations. In SAM one adds varying amounts of
the analyte (x0 < x1 < x2... < xn-1 < xn) to a series of unknown
solutions of constant volume and then dilutes the solutions to the
same volume so as to yield a series of solutions with identical
matrix concentrations but with increasing concentrations of the
analyte. The additions are usually added in equally spaced
increments with x0 equal to zero, but they need not be. One then
measures the responses (R0, R1, R2,... Rn) of the solutions. From
regression of the responses versus the additions, the concentration
of the analyte in the unknown is given by the abscissa intercept.

Improvements in both inductively coupled plasma mass
spectrometry (ICPMS) and optical emission spectrometry (ICP-
OES) instrumentation and software2 now make possible relative
precisions ofe0.1%, but these techniques are still subject to matrix
interferences, and therefore SAM is frequently and increasingly
used in inorganic analysis. While many textbooks on analytical
chemistry cover SAM, most give only a rudimentary description
of the method and an incomplete uncertainty analysis. An excellent
and easily readable introduction to SAM is the often-cited paper
of Bader3 who gives the mathematical formulation for nine
different cases, the first five of which are for an instrument with
linear response. Bader’s uncertainty analysis omits covariance and
does not consider optimization of experimental design; both of
these topics and bias will be the subject of a future paper.4 A more
comprehensive and general treatment is that of Saxberg and
Kowalski.5

Previous theoretical and experimental treatments of SAM
assume the use of volumetric dilutions. With the advent of isotope
dilution analysis after World War II, dilutions on strictly a mass
basis became commonplace in the nuclear and geochemical
communities. The invention of single-pan mechanical analytical
balances in the early 1960s and the more recent digital analytical
balances have now made mass determinations (“weighings”) both
rapid and accurate. A modern five-place digital single pan balance
is about 100 times more accurate than volumetric determinations
based on tolerances from NIST (formerly known as Bureau of
Standards) specifications.6 Top-loading balances now have 1 mg
accuracy if properly shielded from vibrations and air currents.
Gravimetric dilution is now commonly used in laboratories where
analyses of the highest precision and accuracy are required.

Christopher et al.7 recently published a new variant of the SAM
procedure based on gravimetry of an internal standard rather than
volumetry alone and demonstrated its advantages in the deter-
mination of trace elements in biological samples by collision-cell
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ICPMS. They added a nonanalyte element internal standard before
chemical treatment which served as both a chemical yield and
instrumental drift monitor.

Barker et al.8 have recently demonstrated the use of these
procedures in the determination of sulfur in diesel and biodiesel
fuels by XRF and demonstrate the unique advantages of this
approach in paper II. Both of these treatments are an extension
of Bader’s case 5 (variable total volume with continuous variation
of standard) and demonstrate and suggest new and improved
applications of the technique.

The treatment presented here is a general formulation based
on gravimetry that essentially covers all five cases considered by
Bader for linear intruments. In this paper, the notation and initial
formulation will follow that of Bader3 as shown in the Glossary.
The discussion of uncertainties and optimal design associated with
gravimetric SAM will be presented in a future companion paper.4

Case A, Aqueous Solutions. The treatment that follows
assumes linear response of an instrument over the domain of
interest where the instrument response is proportional to the
concentration or is proportional to the absolute amount of the
analyte, E, of interest:

ri ) k[molesEi
⁄ massi]) kCEi

ri ) kmolesEi

(1)

The gross response, ri, of an analyte from a series (i ) 0, 1, 2,
3,..., n) of binary mixtures of solutions, the unknown, Cx, of volume
MiVx and a higher concentration standard, Cs, of volume NiVs is
given by the following

ri ) k[ MiVxCx

MiVx +NiVs
+

NiVsCs

NiVx +NiVs] + kB+∑
j

kjsj (2)

The first term of eq 2 is identical to Bader’s eq 23 except in
this general treatment the volume of Cx is not held constant, hence

inclusion of the parameter Mi in both the numerator and
denominator of the first term. The value in the brackets is the
concentration of the mixtures, the second term is the response
from the blank atoms or molecules that are identical to the analyte
of interest, and the third term represents interferences, response
from species that mimic the analyte of interest either in mass or
emission or absorption of radiation.

In trace analysis the last two terms of eq 2 govern the method
detection limit and are frequently the dominant sources of
uncertainty. It is usually possible to design experimental conditions
such that the last term in eq 2 is negligible by choosing the
optimum emission line or a mass that is interference free. For an
ideal instrument, this last term would be zero for all experimental
conditions. Conversion of the volumes to masses gives the
following

ri ) k[ mxi
Cx

mxi
+msi

+
msi

Cs

mxi
+msi

] + kB+∑
j

kjsj (3)

where the mx and ms are the masses of the unknown and standard.
For instruments that require aspiration of the sample into a flame
or plasma, it is important that the physical and chemical charac-
teristics of the different samples remain essentially identical which
in turn requires mx to be much greater than ms or vice versa.
Alternately, a diluent, CD, of mass mDi may be added to each
sample. The diluent solution is typically high-purity water or dilute
acid, and it is usually assumed that the diluent does not change
the relative concentration of the analyte between spike and
unknown. If the diluent contains a significant and known concen-
tration of the analyte, then the formulation can be changed to
correct for this as is shown in the next section in eq 10. For the
present discussion it is assumed that the product, mDiCD, is
negligible. The net response, Ri, for each mixture is given by the
following

Ri ) ri - (kB+∑
j

kjsj)) k[ mxi
Cx

mxi
+msi

+mDi

+
msi

Cs

mxi
+msi

+mDi
]

(4)

where the net response values are assumed to be statistically
independent. This requires the uncertainties of the two terms in
paraentheses to be negligible compared to those for the values
of ri. It is usual for the interference term to be extremely small
by proper design. If the blank term is not small, then paired blanks
and samples must be determined to maintain independence.

Equation 4 can be rearranged into a linear form, y ) mx + b,

(mxi
+msi

+mDi

mxi
)Ri ) k(msi

mxi

Cs)+ kCx (5)

The masses are subject to the following condition if the intent
is to hold the physical and chemical characteristics of each sample
constant, which is the normal motivation for employing the
technique:

msi
+mDi

mxi

) λ (6)
(8) Barker, L. R.; Kelly, W. R.; Guthrie, W. F. Energy Fuels. In press.

Figure 1. Plot of the data in Table 1 showing two extreme designs
of standard addition experiments involving the mixing of three complex
matrix solutions: case B1, constant response, and case B2, constant
λ. The mean count rate in both cases was made to be identical. The
data for both cases transformed for gravimetric analysis are shown
in red.
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where λ is a constant. There is no restriction on the magnitude
of the masses of standard and unknown because the analyst fixes
the parameter, λ. After the initial mixes of sample and standard
are combined, then the amount of diluent to add to each sample
is computed from eq 7:

mDi
) λmxi

-msi
(7)

If a three-place balance with 1 mg accuracy or better is used,
then eq 7 will yield a very precise value for amount of diluent to
be added, but the accuracy needed for the actual addition will be
dependent on the sensitivity (k) of the system to small changes
in the matrix concentration.

If the plot of the array of points (see Figure 1, red line) given
by the values on the left-hand side (lhs) of eq 5 versus the values
of the factor in parentheses on the right-hand side (rhs) yields a
straight line, then a linear regression model gives the slope m
and intercept b which in turn are equal, on average, to the
following quantities:

m) k
b) kCx

(8)

The unknown concentration, Cx, can then be estimated by the
intercept divided by the slope:

Cx )
b
m

(9)

The masses of the standard and unknown solutions need not
be exactly equal to the calculated optimum mixtures. The use of
mass rather than volume makes experimental design easier, faster,
completely flexible, and more accurate.

Case B, Complex Nonaqueous Matrix. SAM has tradition-
ally been applied to highly dilute aqueous solution samples. The
matrix may be complex, but the addition solution and the diluent
are highly dilute acid solutions which are completely matrix free.
However, the procedure and formulation presented here is well-
suited for complex matrixes in which the addition and diluent are
not dilute aqueous solutions. For example, sulfur in diesel fuel

can be determined by XRF using this technique. Normally, in XRF
the response of the unknown is compared to the response defined
by a calibration curve. However, sulfur can be determined in diesel
fuel without resorting to a calibration curve by adding several
portions of the unknown to a CRM of a similar matrix having a
higher level of sulfur than the unknown. If necessary, some or all
of the samples can be diluted such that the gross responses of
the mixtures fall within the linear range of the response curve. If
the diluent contains a non-negligible amount of the analyte, then
eq 4 will contain an extra term in the rhs bracket and eq 5 will
equal the following:

(mxi
+msi

+mDi

mxi
)Ri ) k(msi

Cs +mDi
CD

mxi
)+ kCx (10)

The solution to eq 10 is identical in form to eq 5. In this
case, a near-zero sulfur diesel fuel, such as RM 8771 [(0.071 ±
0.014) µg/g], might be used as the diluent to bring the mixtures
into the linear range subject to the condition below:

rn > k[mxi
Cx +msi

Cs +mDi
CD

mxi
+msi

+mDi
] + kB+∑

j

kjsj (11)

where rn is below the upper limit to the linear range of the
response. However, it may be possible by careful design to
perform an accurate determination on a nonlinear portion of the
response curve as discussed below.

To illustrate this technique, two extreme cases are considered:
case B1, constant response, in which the count rates for all
solutions are identical and case B2, constant λ, in which all
solutions have identical matrix concentrations. The mass of
unknown was chosen randomly using a uniform distribution with
a range from 4 to 6 to illustrate that the volume or masses of the
unknown need not be constant. In both cases, the addition of the
known or spike sample, msi, was identical. The hypothetical data
for the two cases are listed in Table 1 and plotted in Figure 1.

Case B1, Constant Response (Ri). If it were desired to keep
a constant count rate, then one would add sufficient amount of
the diluent such that all the solutions gave the same response as

Table 1. Hypothetical Data To Illustrate the Two Extreme Cases of Standard Additions

mxi
a msi

a mDi
a additionb Cti

c λd Ri
e Xf Yf

Case B1, Constant Response, Ri
4.327 71 0 0 0 7.0000 0 7000 0 7 000
4.174 50 0.522 74 2.48960 21.086 7.0000 0.7216 7000 5.0512 12 051
5.571 70 1.39 540 6.64570 56.288 7.0000 1.4432 7000 10.1025 17 102
4.894 68 1.838 77 8.75730 74.173 7.0000 2.1648 7000 15.1537 22 154
4.400 52 2.204 17 10.4976 88.912 7.0000 2.8864 7000 20.2049 27 205
4.402 72 2.756 59 13.1285 111.20 7.0000 3.6080 7000 25.2562 32 256

Case B2, Constant λ
4.32771 0 7.807 18 0.5543 2.5421 1.804 2542 0.1281 7128.1
4.17450 0.522 74 7.008 07 21.407 4.3253 1.804 4325 5.1281 12128
5.57170 1.395 40 8.655 95 56.431 6.1085 1.804 6108 10.1281 17128
4.89468 1.838 77 6.991 23 74.047 7.8916 1.804 7892 15.1281 22128
4.40052 2.204 17 5.734 37 88.574 9.6748 1.804 9675 20.1281 27128
4.40272 2.756 59 5.185 92 110.63 11.458 1.804 11458 25.1281 32128

a mxi are the masses of the unknown that were chosen randomly. msi and mDi are the masses of known sample and the diluent, respectively
b The addition column gives the amount of analyte added from the masses, msi and mDi.

c This is the concentration in the final solution mix. d λ is
defined by eq 6 in the text. e The response Ri is equal to kCti; k was set equal to 1000. f The X and Y values are calculated from eq 10 and are shown
along the axes in Figure 1. The ratio of b over m from the regression of X and Y determines the concentration.
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illustrated in the top half-of Table 1 (case B1). Unlike traditional
SAM where equal increments of msi are added to constant volume
of the unknown, it is the value of the abscissa that must be in
equal increments as shown in Table 1 and Figure 1. This design
might be used for a high concentration sample that is well beyond
the linear range of the detector or to minimize dead time
corrections at high count rates. The mass balance equation below
can be solved for the necessary values of mDi. One may wish the
count rate to be as low as possible which would be equal to that
of the unspiked sample:

k[mxi
Cx +msi

Cs +mDi
CD

mxi
+msi

+mDi
] ) kCx (12)

Solving eq 12 for mDi yields the following:

mDi
)

msi
(Cs -Cx)

Cx -CD
(13)

Equation 13 is a bit unwieldly because an approximate value
for Cx is required for its solution. This value is easily approximated
by comparing the response of a solution of known concentration
to the unknown solution. In the example shown in Table 1 and
Figure 1, the values for k and for kCx are 1000 and 7000,
respectively.

Case B2, Constant λ. If it were desired to keep the matrix
constant among all the mixes, then mDi can be adjusted according
to eq 6 such that all solutions have the same matrix concentration.
This is the typical standard addition procedure, and one would
use this to remove multiplicative interferences. Once the series
of mxi solutions has been prepared, then it is necessary to choose
the masses, msi and mDi, such that all final mixtures have the same
λ value. If the design chosen has equally spaced points, then it is
the Xi values that must be equally spaced (see Figure 1) and not
the values of msi. Once the values of mxi, λ, and Xi have been fixed,
then the masses of msi and mDi are found from the roots of the
following two equations:

msi
+mDi

)mxi
λ (14)

Csmsi
+CDmDi

)mxi
Xi (15)

The needed roots are conveniently calculated from the deter-
minants:

msi
)

|mxi
λ 1

mxi
Xi CD

|
| 1 1
Cs CD

|
(16)

mDi
)

| 1 mxi
λ

Cs mxi
Xi

|
| 1 1
Cs CD

|
(17)

CONCLUSIONS

A general solution to the standard additions problem based
on gravimetry is described by the formulation in eq 5 with the
restrictions of eqs 6 and 11 when applicable. This formulation can
be used for solutions that are aspirated into atomic absorption
and atomic emission instruments including the now widely used
ICP-OES and ICPMS instruments. This mathematical formulation
subsumes the first five cases in the paper of Bader3 and has wide
applicability.

SAM can be applied to X-ray fluorescence analysis for the
determination of analytes in liquids of a complex matrix. For
example, this approach can be used for fossil fuel samples subject
to the condition Cs . Cx . CD where all three samples are of the
same matrix. In this case an oil containing a higher concentration
of the analyte (Cs) would be added to the unknown sample (Cx)
of much lower concentration and diluted with CD into the linear
range of the instrument. An application to the determination of
sulfur in diesel and biodiesel fuels has been presented in paper
II.8

In addition, conversion from volume to mass makes SAM also
applicable for solid samples. For example, for the determination
of S and Hg in coal or coke samples by combustion techniques,
the total sample is consumed; therefore, powdered samples could
be mixed by mass and determined in the same way as liquid
samples.

The approach presented here and the discussion of optimal
design in the companion paper4 should result in wider use of
standard additions with increased accuracy of the results.
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GLOSSARY
B blank (atoms or molecules of analyte)
b y-intercept of straight line regression
CE concentration of an analyte, E
Cs concentration of E in the standard
Cx concentration of E in the unknown
CD concentration of E in the diluent
Ct true concentration of unknown solution
i number of particular mixture
k instrument sensitivity (response units per mole or per

unit of concentration)
kj instrument sensitivity for species sj

M units of fixed volume of unknown
m slope of straight line
ms mass of known solution
mx mass of unknown solution
mD mass of diluent
N units of fixed volume of standard
R net instrument response for analyte, E
r gross instrument response for analyte
Vx fixed unit volume of unknown
Vs fixed unit volume of known
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X value of the transformed abscissa in Table 1 and Figure
1

Y value of the transformed ordinate in Table 1 and Figure
1
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