Techniques for Estimating the Number of Workers With Wage Credits Toward Unemployment Compensation

Charles M. Larson *

All State unemployment compensation agencies excopt those permitting employers to report on a wage and soparation basis, ${ }^{1}$ annually submit to the Bureau of Employmont Security reports indicating the numbor of workers who, during the preceding calendar ycar, earned any wages in omployment covered by that State's unomployment compensation law. The number of workors with wage credits is genorally regarded as an administrative figure, valuable when used in connection with other data for estimating the work lond in the Stato agencies.

The concept of workers with wage credits is also useful in economic analyses. For example, chart 1 shows the ratio of the number of covered workers starting a bencfit serics during 1940 to the number of covered workers carning wage credits during 1940. The rolative sizes of these groups are of interest to economists and students in the field of unemployment insurance. In making comparisons between the number of workers starting a bencfit series and the number of workers with wage credits, allowance should be made for the fact that cortain State unemployment compensation laws have more severe benefit qualifying provisions than others, so that the percentage of workers with wage credits who are cligible for bencfits varies from State to State. In addition, in using the data shown in chart 1 it should be understood that all workers who initinted a bencfit series in 1940 did not necessarily earn wage credits in 1940. The concepts of lag quarter, partial quarter, base period, benefit year, and others introduced by the provisions of the various State unemployment compensation laws make it impractical to attempt to determine a relationship between wages earned

[^0]in one period and benefits paid at a later period on the basis of those same wages. As an alternative, it is customary as in chart 1 to compare wago factors and benefit factors that have been measured during the samo time period.

Workers with wage credits may also be compared with the number of workers filing initial chams or with tho amount of wages earned in covered employment or with the number of workers

Chart 1.-Ratio of workers receiving a first benefit pay49 States:
' Data for Indlana and Wisconsln not comparablo.

Table 1.-Workers with tuge credits under State unomployment compensation systoms, and type of 1940 samplo, by State, 1939 and 1940

Stato	Bizo-0f-Arm Inclusion (number of workers) I	Workers with wage crodits		Type of 1040 samplo
		1830	1040	
Total		130,086,000	131, 047,000	
Alabam	8 or mor	977,300	448, 600	End-dtglt.
Alaska.	0.	23,700	23,700	ladger card.
Arliona.........	3 or moro	109, 700	112,700	linadom wagerocord.
Arkadsas.	1 or moro.	237, 600	271,800	Do
Callforala	4 or more...-	2,080,000	2, 101, 000	End-digit.
Colorado.	8 or mors.	210,800	, 224,000	Regrassion.
Connectle	5 or more.	: 807, 100	: 785, 400	Do.
Dolaware.	1 or mora	: 114, 800	: 127, 400	Do.
Distrlct of Co- lumbila.	do	: 1285,800	- 202, 100	Do.
Floridn......----	8 or moro	412,000	808, 300	First wage. record.
Georgl	.do.	823, 800	570,800	End-ligit.
Hawal	1 or more.	1 148,800	-138,000	Regression.
Idsho	1 or more ${ }^{\text {c }}$.	: 110, 200	-121, 800	Do.
lilinols	6 or more ${ }^{\circ}$.	2, 308,000	2,470,800	End-diglt.
Indiana	8 or more.	787, 000	901, 100	Blook,
Iows.	do.	356,400	304, 800	Random wagerecord.
Kansas	...do.	238,000	254,000	Block.
Kentucky	4 or moro ${ }^{\circ}$	300,300	427, 700	End-diglt.
Loulslan	4 or mors*.	434,600	847, 200	Do,
Maino.	8 or more.	214, 200	221, 200	Actusl count.
Meryland	4 or more	833,000	570, 000	Random wagorecord.
Messachus	4 or more ${ }^{\text {to }}$.	1,410,600	1.446,000	Block.
Mlohigan	8 or more...	1, 472,000	1, 850,000	End-diglt.
Mlanesota	1 or more il..	-641,000	628, 100	Do.
Muslesipp	8 or more...-	225,700	245, 300	Do.
Missour).	.-..do..	748,000	804, 100	Block.
Mootana.	1 or more $18 .$.	115,000	131, 000	End-digit.
Nobrask	8 or moro....	172, 000	177,000	Random wage
Novads......-...	1 or more ${ }^{18}$.	40,700	48,400	End-digit.
Now Ifampshlro.	4 or more....	150,000	150,000	Actual count.
Now Jersoy.	8 or more....	1 J, 273, 000	11, 402,100	liegression.
Now Moxico.....	2 or more ${ }^{16}$..	85, 900	05, 800	Random wage-
Now York 11	4 or more....	4,460,000	4,700,000	Actual count.
North Carolino.	8 or more...-	044, 700	714, 100	End-digit.
North Dakota	-...do....	60, 800	-60,700	DO.
Ohto.	3 or morc....	1 1, 064, 100	'2,118, 100	Regrassion.
Oklahom	8 or more....	281,000	308,000	End-digit.
Orogon.	4 or moro i6.	-276, 800	313,200	Do.
Pennsylvanin.	1 or morc...	13, 033, 000	${ }^{1} 3,186,600$	Rogression,
Rhodo Island.	4 or more....	201,000	289,000	Block.
South Carollna	8 or more....	322, 000	340, 000	End-diglt,
8outh Dakota.do.	80, 000	68,300	Aotual count.
Tennessco		462.100	489, 400	End-digit.
Texas	. 10	1,000,000	1, 185, 300	Worker.
Utab.	1 or more ${ }^{17}$..	124, 800	130,300	Acturl count.
Vermont	8 or more...-	78, 100	70, 500	Do.
Vlrginla.	.-do...	840, 200	807, 000	Indger anrd.
Washington		407, 900	482, 000	Actual count.
West Virginla	-	411, 000	418, 800	
Wisconsin l4.	B or moroli.	-614, 100	- 082800	Regresslon.
W yoming.......--	1 or moro $0^{\circ} \mathrm{C}$	68,000	01,300	End-ilglt.

${ }^{1}$ Represonts mumber of workers an employor must have for a specffed perlod to be subject to Btato lsw.
' Adjusted by a reduction of o porcont in 1039 and 7 percant in 1940 to allow i State during tho samo year. Wlthout those reductions, tho totalis 32,006,200 tor 1039 and $34,381,800$ for 1010 . Basis for estimates of duplication 82006,200 . tained In tablos 1 and 2 of tho Boptember 1041 Bulletin, pp, $4-5$.
Fstimato basod on gitato's hjgh month of employmont during year.
1 Estimate roduced s percont io adjust for reporting proceduras. whioh showed number of workers employed during month instead of during lest payroll periods in month.
be Efloctlve Jan. 1 lot many food-procassing workers removed from cover. sge by revision of defliltion of agrlcultural omisloyment.
T And total wages of $\$ 78$ or more in a quarter, offoctive Jan. 1, 1030.
Covorage changed from 8 or more to 0 or more, effective Jan. 1,1040
or 9 or more workers within 20 weaks of calonders, during each of 3 quarters;
or 8 or more workers within 20 weeks of calondar year.
January-Septomber 1938,8 or moro in 20 wooks; offoctive Oct. 1, 1038,
1 or more in 20 weoks or 12 or more in 10 woeks.
${ }_{10}$ Coverage changed from 8 or more to 4 or moro, offective Jan. 1,1030
rate linits of a city, viliage, or borough of less then 10,000 ponitation are rate hinits of a efty, village, or borough of less than 10,000 poptilation are ts andilom covarago.
it And total annual wages of $\$ 500$ or moro, offectivo Jan. $1,1030$.
(See next column for rest of footnoles.)
doelared eligible for benofits, or with other similar data for a given yoar. Employment figures showing the number of workers in covered employment during one pay period in each month cannot take the place of data on workers with wage crodits for the purpose of making aggregate comparisons, since thoy are especially designed to measure accurately only the level of employment at various periods. They represent the number of workers engaged during such a short period of time that they may not be compared directly with aggregate economic data, such as wages, benefits, and manhours of omployment except when they can be validly treated as an average value for the period in which they are centered. In such a case the comparison has a slightly different meaning from a comparable one which uses workers with wage crodits. For example, the annual total of covered wages divided by the number of workers having wage credits in the same year gives the annual average covered earnings per covered worker; on the othor hand, the annual total of coverod wages divided by the average monthly employment for the same year will approximate the annual average covered wage per coverod worker that would have existed if all covered workers had worked full time throughout the yoar.

Since State figures on the number of workers with wage credits are moasured over a 1-year period they cannot, because of duplication, be totaled to give the number of workers with wage credits in the United States. The sum of the 51 State figures on workers with wage credits as shown in table 1 must be reduced by an amount estimated ${ }^{2}$ at 6 percent for 1939 and 7 percent for 1940 in order to approximate the actual number

[^1][^2]of difforent workors carning wages in covered employmont in those years.

Most States use a sampling procedure to determine the number of workers with wage credits in order to avoid tho clerical and tabulating problems involved in an actual count of millions of wage items. In 1940 the average State had $1,250,000$ separate wage items for 400,000 workers, and all but 7 of tho State agencies had wage items for at least 100,000 workers.

Under the old-age and survivors insurance program, carnings of individual workers are summarized periodically from the permanent wage records; hence the total figure for workers with wage credits during a year is known exactly oxcept for delinquent items. On the other hand, under a current bencfit program like unemployment compensation, with no need for such permanent records, similar data on workers and annual earnings under State unemployment compensation laws are not automatically available.

Sampling Techniques

The normal wage-record file.-Most of the States use approximately the same filing system for individual wage items. Except for the States mentioned above as using reports on separations, the Stato agency reccives from each reporting unit a quarterly report showing employees who earned somo wages in covered employment during the preceding quarter. A complete report shows tho workers' names, social security account numbers, and the amounts of wages carned during the quarter; some State agencies receive additional data, such as dates of hiring and separation. If State procedures permit the submission of data for several different workers on a single form, these data will be transferred to records of individual wage items for filing execpt that in some States the data are transferred to ledger eards so that all of a worker's wages are available on a single record. If a worker has been employed by more than one covered employer during the quarter, the file will contain more than ono wage item for the worker for that quarter. If the employer has failed to submit the worker's social security account number with his wage and name data, the worker's wage item will be filed in the alphabetic section of the file. If the data are complete, the wage items will be filed in order of their social security aecount numbers in the numerien section of the
filo exeept that, in some State agencies, wago items for workers with socinl security account numbers obtained outside the State are kept in the alphabotic file while in others the wage items in tho numerical file are grouped by calendar quartors. In most States, the old wage items are removed at regular intervals, so that the file always contains wage items for only 4 consecutive calendar quarters. In a fow States having 2-year baso periods, the file contains wage items for 8 consecutive calendar quarters.
End-digit sampling.-Becauso of its simplicity and because the records selected may be used in analyses of various characteristics of workers, sampling of wage items is usually based on tho end digits of workers' social security account numbers. This was the technique used by 10 State agencies in estimating the number of workers with wage credits for 1940. Social security account numbers have been allotted to workers in such a manner that for all practical purposes tho final 3 and possibly the final 4 digits are distributed at random with respect to such worker characteristics as wages, recency of entry into the labor market, or State of employment. ${ }^{\text {a }}$ In choosing an end-digit sample, a particular set of digits isselected arbitrarily, and the wage items forall workers with social security account numbers ending in those digits are included. For example, the sample may inelude the wage items for all workers with social security necount numbers ending in 01. Since 01 is one of 100 possible 2 -digit combinations in which a social security account number could end, the sample may bo considered a 1 -percent sample of tho file, and any elaractaristics of the sample may be multiplied by 100 to obtain an estimate of the characteristies of the numerical file. Since the alphabetic file gencrally contans less than 2 percent of all the wage items, even a rough estimate of its contents, when added to the estimate of the contents of the numerical file, should provide an adequato final estimato.

In most State agencies using an ent-digit sample, the simple expansion deseribed obove (multiplication of the number of workers with wage items in the sample by 100) was used to

[^3]determine an estimato for checking purposes only. The final estimate was made by using one of the following expansion factors:
(1) The ratio of all wages in the combined alphabetic and mumerical file to all wages in the sample; or
(2) the ratio of the number of wage itoms in the combined alphabetic and numerical file to the number of wage items in the sample. Either of these two expansion factors when multiplied by the number of workers with wage eredits in the sample gives an adequate estimate of all workers with wage credits, and automatically allows for workers with wage items in the alphabetic file.

Random wage itcm sampling technique.-In 1940, six State agencies used a sample consisting of single wage items selected at approximately equally spaced intervals throughout numerien files. Λ wage item received a woight of one if it was the only wage item for a worker in the sample; a weight of one-half if it was one of two wage items for that worker; a weight of one-third if it was one of three wage items for that worker, and so on. These weights were assigned so that the sum of the weights of all wage items in the numerical file would be equal to the number of workers with wage credits in that file, because the weights of ench worker's wage items when summed equaled one. After the sample was chosen, an equation was set up from the assumption that the sum of the weights of the wage items in the file (number of workers with wage credits) would bo in the same proportion to the total number of wage items in the file as the sum of the weights of the wage items in the sample was to the number of wage items in the sample. Since all these quantities except the number of workers with wage eredits were known, that number could be rendily derived. This restimating technique makes adequate allowance for workers in the alphabetic filc.

Block sampling.-Five State agencies used a sample consisting of a number of blocks of wage items selected at regular intervals throughout the files. The blocks were combined to form the total sample, and the fimal estimate was made by assuming that the number of workers with wage credits in the complete file bore the same relntionship to the number of wage items-or, in some States, total wages--in the file as the number of workers in the sample bore to the number of wage items-or wages-in the sample. Since all these
quantities except the number of workors with wage credits were known, that number could readily bo obtained. This cstimating technique also makes adequato allowance for workers in the alphabetic file.

A block sample does not give an estimato with as small a standard error as equal-sized samples based on end-digits or random wage items; this error also increnses with the size of the blocks. However, a samplo with blocks so small that at lenst one is taken from every tray of wage items will approximate, in estimating efficiency, an equal-sized sample of the other types. Care must be taken that the blocks contain approximately an equal number of wage items rather than the wage items for an equal number of workers, because the latter selection oversamples those sections of tho file which contain an above-avorage number of wago items per worker.
Ledger-card sampling.-Two State agencics used a ledger-card sample. In these agencies, all wage items were posted to individual ledger cards so that eneh worker had in effect a single wage record. The samples wero selected by choosing single ledger cards at equally spaced intervals throughout the files. In ono agency, the estimate was made by assuming that the percent of ledger cards with 1940 postings in the filo would equal the pereent of ledger cards with 1040 postings in the sample. This percentage as determined from the sample was multiplied by the known number of ledger cards in the file to estimate the number of workers with 1940 wage credits. In the other agency, the estimate was made by assuming that the number of postings of 1040 wage records for each worker with any 1940 postings was the same in the entire file ns in the sample. The known number of 1040 postings, was divided by the number of 1940 postings per worker who had 1940 postings (as determined from the sample) to estimate the number of workers with 1040 wago credits. The chief requirement for accurate sampling of ledger eards is that the sample eards should be seleeted at approximately equally spaced intervals throughout the files. Block sampling of ledger cards should be avoided unless there is some objective assurance that the blocks are small enough to give an efficiont sample.

First-wage-item sampling.-Ono State agency in 1940 used a first-wage-item sample. For each worker, the 1940 wage item filed nenrest the front
of the numorical file was designated as the worker's first wage item. The numerical filo was broken at approximately equal intervals, and the 10 wage itoms found immediately following each broak were included in the sample. A count was made of the number of first wage itoms in the samplo. The final estimate was made by assuming that the percentage of 1940 wage itoms that were first wage items would be the same in the combined alphabotic and numorical files as in the sample. This percentage as determined from the sample was multiplied by the known number of wage items in the ontire file to cstimate the number of first wage itoms included and therefore the number of workers with wago credits in the file. This technique makes adequate allowance for workers in the alphabotic file.

Worker sampling.-Although a number of State agencies used a worker sample in their 1939 estimates, only one State used it in 1940. The technique employed in 1939 was to break the numerical file at approximately equal intorvals and to
choose for the sample the wage items of the werker following the wage itoms of the worker at whose rocords the break occurred. The wage items of the worker at whose records the broak occurred were not suitable, since file bronks aro more likely to fall among a worker's wage items if he has an above-average number of such itoms. Assuming that the number of 1930 wage records per worker with some 1939 wage records was the same in the ontire filo as in the sample, the final estimato was made by dividing the known number of wage records in the entire file by the number of 1939 wage records per worker as detormined from the sample.

This estimating technique has beon proved to give an estimate averaging about 10 percent bolow tho actual number of workers with wage credits, because the number of workers whose wage items wore sampled from each tray is approximatoly proportional to the number of wage items in the tray, whereas it should be proportional to the number of workers with wage items in the tray.

Chart 2.-WRegression of workers with unge credits on uorkers employed in high month of omployment

Thus, the trays with few wage items per worker were undersampled and those with above-average wage items per worker were oversampled.
As a simplified example of this bins, considor a 2-tray file. Tray 1 ropresents 000 workers with 2,400 wage itoms; tray 2 roprosents 1,200 workers with 2,400 wage items; thus the file roprescints 1,800 workers with 4,800 wage items. $\Lambda 15$ worker ropresontative sample from tray 1 would have, on the average, 00 wage items; a 15 -worker representative samplo from tray 2 would have, on the average, 30 wage items; thus the combined werker samplo would represont, on the average, 30 workers with 90 wage itoms. Λ truly representntive sample from the filo, however, would represont, on the average, 30 workers with 80 wage items; tho combined sample would theroforo understate the aetual number of workers with wage credits by 12.5 percent.
Tho one Stato ageney which used the worker sample in 1940 files its wago items by quartors instond of years. As a result, equally filled trays of wago items contain wage items for approximatoly equal numbers of workers, and the bins is not sorious.

Actual count.-For 1040 seven Stato ngoncies found it possible to make an actual count of the number of workers with wage credits.

Regression estimates.--For the nine State agencios receiving some wage reports on a wage and soparation basis in 1940 and for one Stato agency whoso files were being reorganized so that accurate sampling was not possiblo, specinl estimates were made by the Bureat of Employment Security on the basis of the relationship between 1040 workers with wage credits and the high month of 1940 employment for each of the 41 States for which both types of data were available. It was discovered that there was a high correlation between the number of workers with wage credits in 1940 in a given State and that State's high month of employment in 1940. The number of 1040 workers with wage ereclits was plotted for ench of the 41 States against the State's high month of employment. Λ curve of regression fitted to these 41 points was found to be hyperbolic (see chart 2). Since the equation for this curve involved only two variables, one representing workers with wage credits and tho other repre-
sonting ligh month of employment, an estimate of workers with wage crodits could be roadily mado for any Stato by substituting in the hyperbolic equation the value for that State's 1940 high month of employment and solving for the remaining unknown variable.

Summary

Of the sampling mothods used, the social sccurity number ond-digit method meets the requiroments of more States than any othor mothod. Morcover, a sample chosen by this technique may be roadily used for estimating the distribution of annual wages per covored worker and other data available in the file. In one State agency the wage itoms are filed in social security aecount serial number order. That is, the ordor of filing is detormined primarily by the last four digits of the social security account number. This system makes it possible to solect an end-digit sample by separating out large blocks of the file. This filing procedure introducos no complications in the agency procedures and is worth considoring for its sampling advantages.

The random wage item sample has approximatoly the same efficiency as the first wage item sample but probably cannot be drawn with as little work, since it requires more than twice as many file breaks to obtain the same-sized sample.

The ledger-card and workers samples are valuablo in a limited number of States which have unusual filing situntions.

The added aecuracy from an actual count is probnbly not sufficient to justify the added labor in most States. Howover, it is practical in States having few covered workers or in States in which it can be obtained as a byproduct of other operations.

Block samples lose precision rapidly as the blocks are enlarged; hence, care must bo taken not to expand tho blocks to a point at which the sample chosen is less efficient than smaller samples of othor types.

For estimating the number of workers with wago credits, the most approprinte sample in any State is one that will provide the required accuracy with a minimum nunount of labor. In using any of the available techniques, the standard error of estimate probably should not be allowed to execed 2 percent.

[^0]: - Bureau of Employment Becurity, Reports and Analysis Division,

 In lieu of the customary quarterly individial wage reports, Connecticut, Delaware, the Dlstrlet of Columbla, Hawail, Ideho, New Jersey, Ohio, Pennsylvania, and Wisconsin permit some or all covered employers to subinit wago items for individual workers at the time such workers aro soparated from employment. Therefore, In these States, no completo record of the number of covered workers is available in the central oflice.

[^1]: ${ }^{1}$ Estinatos basod on old-age and survivers Insurance data in tables 1 and 2, Merrlam, Ido O., and Bliss, Elieabeth T., "Effects of MLgration on Unomploymont Donoft RIghts," Social Securily Bulletin, Boptombor 1041, pp. 3-11. Thoso data wbloh apply to 1038 were assumed to increaso alightly in 1939 and 1040 becauso of increased worker migration in connostion with the war effort.

[^2]: it January 1038-June 1030, for more in each of 20 different weoks; effective July 1, 1939 , 2 or more in 13 weeks of a calendar year, or wages of 460 or more in a quarter.
 undor laws of other Etates. undor laws of other Btates.
 if January 1038-Juns 1039, 4 or more; oifective July I, 1939, total wages of $\$ 140$ or moro in a quartar.
 ith or moro in a quartor. governmental service covered by Etata law, which servios is exoludad from coverago in other Btates. Btate amendment effective July 1, lo3s, made compliance optional for oartain gavernment unite, exceptiog only State departments and cifles of the frat class,
 do 1038 ; 8 or more in 1038 or 7 or mora in 1087 , or, whare employer's records do not permit accurate count of workars, tatal wages of $\$ 7,000$ or more in 1937. 1039 and thereattor: 8 or more in current year or 0 or more in praceding year or, whore omployer's reoords do not permit acourate count of workers, tota wages of \$8,000 or moro in proceding calendar year.
 is Aud total wages of $\$ 180$ or moro in a quarter, effeotive Jan. 1, 1030.

[^3]: A Bocial sceurity numbers oro currently being allotted in such n manner that the last 4 digits will be random with respect to nil worker characterlatics. It is expected that the difuslon of theso randomly distributed num. bers into the group of numbers whiels were distributed in numerfenl order to appliennts and in some enses In blocks to workers for a particular firm will soon remove any lack of randommess to the last 1 digits which was inherent in the original method of nsslgular account numbers.

