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1.0 Purpose, Policy, and Standards and 
Conventions 

1.1 Purpose 
The purpose of this document is to provide a set of standards and conventions for 
graphical user interface (GUI) development. They assume an understanding of and 
compliance with the user interface guidelines set forth by Microsoft Corporation 
(submitted as an addendum with this document). 

1.2 Policy 

1.2.1 Conformance 
All GUI software developed for IHS will conform to the GUI Standards and 
Conventions. In areas where standards are not specified, software development will 
conform to other applicable IHS programming standards and conventions and 
industry standards, unless an exemption is requested and approved by the Standards 
and Conventions (SAC) committee. 
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2.0 GUI Programming Standards and Conventions 
All GUI Indian Health Service (IHS) software will meet the following standards and 
comply with the spirit of the conventions. 

2.1 Acceptable Icons 

2.1.1 Icons–Application and Application Launch Level  
Icons for application and application launch (to include but not limited to Mac, 
personal computer [PC], iPhone, iPad, Android, or other mobile device) shall be 
graphics- or symbols-free of representing any culture, race or ethnicity. Icons must 
not contain any definitive marks or symbols or detail that may be used to potentially 
depict a specific gender, culture, nationality, tribe, or race. An example of an 
acceptable icon for an application that tracks personal health information is shown in 
Exhibit 2A. Notice it is a nondescriptive icon with no detailed facial features (i.e. 
eyes, ears, nose; Exhibit 2B). 

 
 
 
 
  

 

 Exhibit 2A 

Figure 2-1: Nondescriptive icons 

Exhibit 2B 
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3.0 GUI Programming Standards–UI Document 
Addendum 
What follows and incorporated is a rule list incorporated into this document from 
Windows User Experience Guide (the guide can be downloaded from 
http://msdn.microsoft.com/en-us/library/aa511258.aspx). 

3.1 Custom Control (Beginning on Page 29) 
• Use custom controls for unusual behaviors that aren’t supported by the common 

controls. 

• Ensure custom controls support system metrics and colors and respect all user 
changes to these settings. 

• Ensure custom controls conform to the Windows accessibility guidelines. 

• Use 3-D graphics to help users visualize, examine, and interact with three-
dimensional objects, charts, and graphics. 

• Make sure there are clear user scenarios that support the need for 3-D graphics 
features. 

3.1.1 Custom Controls: Animations 
• Use illustration animations that have a single interpretation. They have little value 

if confusing. 

• Show one thing at a time to avoid overwhelming users. 

• Play at the optimal speed—not so fast they are difficult to understand, but not so 
slow they are tedious to watch. 

• Gradually increase the speed of repeated animations. Viewers will already be 
familiar with the animation, so increasing speed slowly will feel right. 

• Use timing to emphasize importance, such as slowing down for important parts. 

• Use effect animations for objects that the user is currently interacting with. Such 
animations aren’t distracting because the user is already focused on the object. 

− Minimize use of effect animations that show status. Make sure:  
• They have real value by providing additional information users can 

actually use. Examples include transient status changes and emergencies. 

• They are subtle. 

• They are short in duration and therefore not running most of the time. 

• They can be turned off. 

http://msdn.microsoft.com/en-us/library/aa511258.aspx�


GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
4 

− Keep effect animations low-key so they don’t draw too much attention to 
themselves. Avoid movement or use small movements, but prefer fades and 
changes in overlays. 

• Must start or end with the selected object. Don’t show relationships between 
objects the user isn’t currently interacting with  

• Must complete within a half-second or less. 

3.1.2 Transition Animations 
• Use to show relationships between states. Animating state changes makes them 

easier to understand and appear smoother. 

• Make sure transitions have natural mappings. For example, an opening window 
transition should be upward and expand; a closing window transition should be 
downward and contract. 

• Must complete within a half-second or less. 

3.1.3 Feedback Animations 
• Must have clearly identifiable completion and failure states. 

• Must stop showing progress when the underlying process isn’t making progress. 

3.1.4 Progressive Disclosure 
• Make sure the progressive disclosure mechanism is visible at all times. 

• Use the appropriate glyph. Use double or single chevrons for surfaces that slide 
open to show the remaining items in hidden content. 

• Point the glyph in the right direction. Chevrons point in the direction where the 
action will occur. 

3.2 Direct Manipulation (Page 32) 
• Make direct manipulation visible by: Changing the pointer to a hand on 

mouseover. 

• Showing drag handles on object selection. 

• Showing movement when an object is dragged, then show appropriate drop 
targets. Also, clearly show when an object is successfully dropped or when the 
drop is cancelled. 

• Showing an in-place text box on double selection for renaming. 

• Showing most useful properties with tooltips. 
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• Prevent accidental manipulation by: Locking by default objects that are crucial or 
likely to be manipulated accidentally. Provide a way to unlock in the object’s 
context menu. 

• Providing an obvious way to undo accidental manipulations. 
• Make direct manipulation accessible by always providing alternatives. 

3.2.1 Hosting in Browser: 
Host your program in the browser to navigate from a Web page to your program. 

3.3 Balloons (Page 40) 
• Display the balloon as soon as the problem or special condition is detected, even 

if repeatedly, without any noticeable delay.  

• For problems involving individual characters or the maximum input size, display 
the balloon immediately on input. 

• For problems involving the input value (including requiring a non-blank value), 
display the balloon when the owner control loses input focus. Otherwise, 
displaying balloons while users are entering potentially valid input can be 
distracting and annoying. 

• Display only one balloon at a time. Displaying multiple balloons can be 
overwhelming. If a single event results in multiple problems, either present all the 
problems at once or report only the most important problem.  

• Remove a balloon when:  
− The problem is resolved or special condition is removed. 
− The user enters valid data (for input problems). 

• The balloon times out. By default balloons remove themselves after 10 seconds, 
although users can change this by modifying the SPI_MESSAGEDURATION 
system parameter. 

• Remove the timeout if users can’t continue until the problem is resolved. 
Developers: In Win32, you can set the display time with the 
TTM_SETDELAYTIME message. 

• Display balloons below their owner control. Doing so allows users to view the 
context, including the owner control and its label. Microsoft® Windows® 
automatically adjusts balloon positions so that they are completely on screen. The 
default behavior is to display a balloon above its owner control, as done with 
notifications.  

3.3.1 Passwords and PIN 
• Use a balloon to indicate that Caps Lock is on.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
6 

• Use a balloon to indicate when users attempt to exceed the maximum input 
size. Reaching the maximum input size is much less obvious in password and PIN 
text boxes than ordinary text boxes.  

• Use a balloon to indicate when users input incorrect characters. However, it is 
better not to have such restrictions because they reduce the security of the 
password or PIN. To prevent information disclosure, the balloon should mention 
only documented facts about valid passwords or PINs.  

• When users click a balloon, just dismiss the balloon without displaying any 
other UI or having any other side effect. Unlike notifications, balloons 
shouldn’t have close buttons. 

3.3.2 Balloons Accessibility 
When used properly, balloons enhance accessibility. For balloons to be accessible: 

• Only display balloons that relate to the user’s current activity. 

• Keep the balloon text concise. Doing so makes the balloon text easier to read for 
users with low vision, and minimizes the interruption when read by screen 
readers. 

• Redisplay the balloon whenever the problem or condition recurs. 

3.3.3 Title Text 
• Use title text that briefly summarizes the input problem or special condition in 

clear, plain, concise, specific language. Users should be able to understand the 
purpose of the balloon quickly and with minimal effort. 

• Use text fragments or complete sentences without ending punctuation. 

• Use sentence-style capitalization. 

• Use no more than 48 characters (in English) to accommodate localization. The 
title has a maximum length of 63 characters and must be able to expand by at least 
30% to accommodate localization. 

3.3.4 Body Text 
• Use the first sentence of the body text to state the problem or condition in a way 

that is clearly relevant to the user. Don’t repeat the information in the title. Omit 
this if there is nothing more to add. 

• Use the second sentence to state what the user can do to resolve the problem or 
revert the state. In accordance with the Style and Tone guidelines, there’s no need 
to use the word “please” in this statement. Put two line breaks between the first 
and second sentences.  
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• Explain how to resolve the problem or revert the state even if that explanation is 
obvious, but omit redundancy between the problem statement and its resolution. 
Exceptions: 

− Omit the resolution if it can’t be expressed concisely or without significant 
redundancy. 

− Omit the resolution if there is nothing for the user to do, such as when 
incorrect characters are ignored. 

− Use complete sentences with ending punctuation. 
− Use sentence-style capitalization. 
− Use no more than 200 characters (in English) to accommodate 

localization. The body text has a maximum length of 255 characters and must 
be able to expand by at least 30% to accommodate localization. 

3.3.5 Documentation 
When referring to balloons: 

• Use the exact title text, including its capitalization. 

• Refer to the component as a balloon, not as a notification or an alert. 
When possible, format the title text using bold text. Otherwise, put the title in 
quotation marks only if required to prevent confusion. 

3.3.5.1 Is This The Right Control? 
To decide, consider these questions: 

• Is the check box used to toggle an option on or off or to select or deselect an item? 
If not, use another control. 

• Are the selected and cleared states clear and unambiguous opposites? If not, use 
radio buttons or a drop-down list so that you can label the states independently. 

• When used in a group, does the group comprise independent choices, from which 
users may choose zero or more? If not, consider controls for dependent choices, 
such as radio buttons and check box tree views. 

• When used in a group, does the group comprise dependent choices, from which 
users must choose one or more? If so, use a group of check boxes and handle the 
error when none of the options are selected. 

• Is the number of options in a group 10 or fewer? Since the screen space used is 
proportional to the number of options, keep the number of check boxes to 10 or 
fewer. For more than 10 options, use a check box list. 

• Would a radio button be a better choice? Where check boxes are suitable only for 
turning an option on or off, radio buttons can be used for completely different 
options. If both solutions are possible:  
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− Use radio buttons if the meaning of the cleared check box isn’t completely 
obvious.  

− Use radio buttons on wizard pages to make the alternatives clear, even if a 
check box is otherwise acceptable. 

− Use radio buttons if you have enough screen space and the options are 
important enough to be a good use of that screen space. Otherwise, use a 
check box or a drop-down list.  

− Use a check box if there other check boxes on the window. 
− Does the option present a program option, rather than data? The option’s 

values shouldn’t be based on context or other data. For data, use a check box 
list or multiple-selection list. 

• Group related check boxes. Combine related options and separate unrelated 
options into groups of 10 or fewer, using multiple groups if necessary.  

• List check boxes in a logical order, such as grouping highly related options 
together or placing most common options first, or following some other natural 
progression. Alphabetical ordering isn’t recommended because it is language 
dependent, and therefore not localizable. 

• Align check boxes vertically, not horizontally. Horizontal alignment is harder to 
read.  

• Don’t use the mixed state to represent a third state. The mixed state is used to 
indicate that an option is set for some, but not all, child objects. Users shouldn’t 
be able to set a mixed state directly—rather the mixed state is a reflection of the 
child objects. The mixed state isn’t used as a third state for an individual item. To 
represent a third state, use radio buttons or a drop-down list instead.  

• Clicking a mixed state check box should cycle through all selected, all 
cleared, and the original mixed states. For forgiveness, it’s important to be able 
to restore the original mixed state because the settings might be complex or 
unknown to the user. Otherwise, the only way to restore the mixed state with 
confidence would be to cancel the task and start over. 

• Don’t use check boxes as a progress indicator. Use a progress indicator 
control instead.  

• Show disabled check boxes using the correct selection state. Even though users 
can’t change them, disabled check boxes convey information so they should be 
consistent with results.  

− Don’t use the selection of a check box to: Perform commands. 
− Display other windows, such as a dialog box to gather more input. 
− Dynamically display other controls related to the selected control (screen 

readers cannot detect such events). 
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3.3.6 Don’t Show This <item> Again 
Consider using a Don’t show this <item> again option to allow users to suppress a 
recurring dialog box only if there isn’t a better alternative. Try to determine 
beforehand if users really need the dialog; if they do, always show the dialog, and if 
they don’t, eliminate the dialog. 

3.3.7 Subordinate Controls 
• Place subordinate controls to the right of or below (indented, flush with the check 

box label) the check box and its label. End the check box label with a colon.  

− Leave dependent editable text boxes and drop-down lists enabled if they 
share the check box’s label. When users type or paste anything into the box, 
select the corresponding option automatically. Doing so simplifies the 
interaction.  

− If you nest check boxes with radio buttons or other check boxes, disable these 
subordinate controls until the high-level option is selected. Doing so 
avoids confusion about the meaning of the subordinate controls. 

− Make subordinate controls to a check box contiguous with the check box in 
the tab order.  

− If selecting an option implies selecting subordinate check boxes, explicitly 
select those check boxes to make the relationship clear.  

− Use dependent check boxes if the alternatives add unnecessary 
complexity. While check boxes should be independent options, sometimes 
alternatives such as radio buttons add unnecessary complexity.  

3.3.8 Default Values 
If a check box is for a user option, set the safest (to prevent loss of data or system 
access), most secure and private state by default. If safety and security aren’t 
factors, select the most likely or convenient value. 

3.3.9 Labels 

3.3.9.1 Check Box Labels 
• Label every check box. 

• Assign a unique access key to each label. For guidelines, see Keyboard. 

• Use sentence-style capitalization. 

• Write the label as a phrase or an imperative sentence, and use no ending 
punctuation. Exception: If a check box label also labels a subordinate control that 
follows it, end the label with a colon. 

• Write the label so that it describes the selected state of the check box. 
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− For a group of check boxes, use parallel phrasing and try to keep the length 
about the same for all labels.  

− For a group of check boxes, focus the label text on the differences among the 
options. If all the options have the same introductory text, move that text to 
the group label. 

− Use positive phrasing. Don’t phrase a label so that selecting a check box 
means not to perform an action. Exception: Don’t show this <item> again 
check boxes. 

− Describe just the option with the label. Keep labels brief so it’s easy to refer to 
them in messages and documentation. If the option requires further 
explanation, provide the explanation in a static text control using complete 
sentences and ending punctuation.  

− If an option is strongly recommended, consider adding “(recommended)” to 
the label. Be sure to add to the control label, not the supplemental notes. 

− If you must use multiline labels, align the top of the label with the check box. 
− Don’t use a subordinate control, the values it contains, or its units label to 

create a sentence or phrase. Such a design isn’t localizable because sentence 
structure varies with language.  

3.3.9.2 Check Box Group Labels 
• Use the group label to explain the purpose of the group, not how to make the 

selection. Assume that users know how to use check boxes. For example, don’t 
say “Select any of the following choices”. 

• End each label with a colon. 

• Don’t assign an access key to the label. Doing so isn’t necessary and it makes the 
other access keys harder to assign. 

• For a selection of one or more dependent choices, explain the requirement on the 
label.  

3.4 Command Buttons (Page 54) 
• Is the command button used to initiate an immediate action? If not, use another 

control. 

• Would a link be a better choice? Use a link if: The action is to navigate to another 
page, window, or Help topic. Exception:  

− Wizard navigation uses Back and Next command buttons. 
− The command is embedded in a body of text. 
− The command is secondary in nature. That is, it does not relate to the primary 

purpose of the window. In this case, either a lightweight command button or 
link would be appropriate. 
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− The command is part of a menu or group of related links. 
− The label is lengthy, consisting of five or more words, thus giving a command 

button an awkward appearance. 
• Would a combination of radio buttons and generic command buttons be a 

better choice? Often radio buttons are used in conjunction with generic command 
buttons (OK, Cancel) in place of a set of specific command buttons when any of 
the following are true:  

− There are five or more possible actions. 
− Users need to view additional information before making a decision. 
− Users need to interact with the choices (perhaps to see additional information) 

before making a decision. 
− Users view the choices as options instead of different commands.  

3.4.1 Using Ellipses 
While command buttons are used for immediate actions, more information might be 
needed to perform the action. Indicate a command that needs additional information 
(including confirmation) by adding an ellipsis at the end of the button label. 

This doesn’t mean you should use an ellipsis whenever an action displays another 
window—only when additional information is required to perform the action. 
Consequently, any command button whose implicit verb is to “show another 
window” doesn’t take an ellipsis, such as with the commands About, Advanced, Help 
(or any other command linking to a Help topic), Options, Properties, or Settings. 

3.4.2 Command Button Usage 
• Display a busy pointer if the result of clicking a command button isn’t 

instantaneous. Without feedback, users might assume that the click didn’t happen 
and click again. 

• If the same command button appears in more than one window, try to use the 
same label text and access key, and locate it in approximately the same place in 
each window when practical. 

• For command buttons with text labels, use a minimum button width and the 
standard command button height. For more information, see Recommended sizing 
and spacing. 

• For each window make the command buttons the same width. If that’s 
impractical, limit the number of different widths for command buttons with text 
labels to two. 

− When another control interoperates with a command button, such as a text box 
with a Browse button, denote the relationship by placing the command 
button in one of three places:  
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• To the right of and top-aligned with the other control. 

• Below and left-aligned with the other control. 

• Vertically centered between controls that interoperate (such as Add and 
Remove buttons between two interoperating list boxes). 

− If multiple command buttons interoperate with the same control, vertically 
stack them to the right of and top-aligned with the other control, or 
horizontally place them left-aligned under the control. 

− When command buttons are subordinate to other controls, use the above 
placement and disable the subordinate command button until the 
superior control is selected. 

− Don’t use narrow, short, or tall command buttons with text labels because 
they tend to look unprofessional. Try to work with the default widths and 
heights.  

Avoid combining text labels and graphics on command buttons. Combining text 
and graphics usually adds unnecessary visual clutter and does not improve the user’s 
comprehension. Consider combining text and graphics only when the graphic aids in 
comprehension, such as when it is a standard symbol for the command or it helps 
users visualize the results of the command. Otherwise, prefer text, but use either text 
or graphics. 

 Don’t use command buttons to set state. Use radio buttons or check boxes instead. 
Command buttons are only for initiating actions. 

3.4.3 Split Buttons 
• Make the most likely command the default behavior. If there is more than one 

likely command, choose one that doesn’t require additional information. 

• If the most likely command is the last user selection, change the button label 
to the last selection. 

• Display the default command using bold text in the menu. Doing so makes it 
easier for users to find the default command, especially when the default 
command is dynamic or the split button uses a graphic instead of a text label. 

3.4.4 Default Values 
• Include a default command button on every dialog box. Select the safest (to 

prevent loss of data or system access) and most secure command to be the 
default. If safety and security aren’t factors, select the most likely or convenient 
command. 

• Don’t make a destructive action the default command button unless there is 
an easy way to undo the command. 
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3.4.5 Recommended Sizing And Spacing 

 
Figure 3-1: Recommended size and spacing, in pixels, of buttons. 

3.4.6 Labels 
• Label every command button. 

• If the button has a graphic label only, assign its Name property to an appropriate 
text label. This enables assistive technology products such as screen readers to 
provide users with alternative information about the graphic.  

− Exceptions:  
• Don’t assign access keys to OK and Cancel buttons, because Enter is the 

access key for the default button (which is usually the OK button), and Esc 
is the access key for Cancel. Doing so makes the other access keys easier 
to assign. 

• Don’t assign access keys to short browse buttons (labeled “...”), because 
they can’t be assigned uniquely. 

− Prefer specific labels over generic ones. Ideally users shouldn’t have to read 
anything else to understand the label. Users are far more likely to read 
command button labels than static text.  
• Exception: Don’t rename the Cancel button if the meaning of cancel is 

unambiguous. Users shouldn’t have to read all the buttons to determine 
which button cancels an action. However, rename Cancel if it is unclear 
what action is being canceled, such as when there are several pending 
actions. 

• Exception: The following standard labels are acceptable without verbs: 
Advanced, Back, Details, Forward, Less, More, New, Next, No, OK, 
Options, Previous, Properties, Settings, and Yes. 

− While short labels are preferred, use enough text to explain the command 
sufficiently. Use a direct object (a noun after the verb) when the object is not 
apparent from context. Ideally users shouldn’t have to read anything else to 
understand the label.  
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− Use sentence-style capitalization. Doing so is more appropriate for 
Windows tone and the use of short phrases for command buttons. Exception: 
For legacy applications, you may use title-style capitalization if necessary to 
avoid mixing capitalization styles. 

• Don’t use later in command button labels if it implies an action that won’t 
happen. For example, don’t use Install later (in contrast to Install now) unless that 
command installs at a later time. Instead, use either Don’t install or Cancel.  

− Use an Advanced button only for options that are relevant to advanced users 
or require advanced user knowledge. 

− Don’t use an Advanced button for features that are considered technologically 
advanced. For example, a printer’s stapling feature is not an advanced option, 
but its color management system is  
• For command buttons that open other windows, choose a label that uses 

part or all of the secondary window’s title bar text.  

(Page 62) For example, a command button labeled Browse might open a 
dialog box entitled Browse for Folder. Using the same terminology 
throughout the task helps to keep users oriented. 

• When asking a question, use labels that match the question. Don’t use OK/Cancel 
to answer Yes/No questions.  

• Don’t use an ellipsis when the successful completion of the action is simply to 
display another window. The following commands never take an ellipsis: About, 
Advanced, Options, Properties, Help. 

• In case of ambiguity (for example, the command label lacks a verb), decide based 
on the most likely user action. If simply viewing the window is a common action, 
don’t use an ellipsis.  

• For browse buttons, use short browse buttons (labeled “...”) when there are more 
than two browse buttons in a window. Always use the short version when you 
want to display a browse button in a grid. 

• For directional buttons, use a single angle bracket and have it point in the 
direction where the action takes place. 

• Use command buttons for: Primary commands. 

• Displaying windows used to gather input or making choices, even if they are 
secondary commands. 

• Destructive or irreversible actions, as well as commitment within wizards and 
page flows. 

− Use links for navigation to another page, window, or Help topic; display 
definitions; and command menus. 

− Consider using links to deemphasize secondary commands. 
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− Use short command button labels, consisting of four or fewer words. Links 
can have longer labels.  

3.4.7 Command Links 
• Are the options responses to the main instruction and related to the primary 

purpose of the window or page? Must users respond to them to do something 
other than just navigating to a different page? If not, use another control such as 
command buttons or links. Command links aren’t appropriate for secondary or 
optional choices, or pure navigation.  

• Is the control used to choose one response from a set of mutually exclusive 
responses? If not, use another control. To let users choose individual commands, 
use command buttons or links. 

• For dialog boxes, does clicking the control close the window? If not, use a 
control that doesn’t require closing the window, such as radio buttons, command 
buttons, or links.  

• For wizards and page flows, does clicking advance to the next page without 
commitment? Don’t use command links to commit to a task; use commit buttons 
instead. Because command links look like links and users associate links with 
navigation within a page flow, links aren’t appropriate for Commit pages because 
users should always be able to back out.  

• For wizards and page flows, are other pages using command links? If so, and 
all other factors being equal, prefer command links for consistency across pages. 

• Is the number of responses between two and five? There should never be a 
single command link. Because command links are large controls and the screen 
space used is proportional to the number of options, keep the number of responses 
to five or fewer. For six or more options, use radio buttons, regular links, or a 
single-selection list view.  

Would a combination of radio buttons and a commit button be a better choice? Radio 
buttons are a better choice when any of the following are true: 

• There is a strong default option that you want most users to select. Users are less 
likely to change a default radio button than a default command link—especially in 
a wizard, where users are accustomed to clicking Next to accept appropriate 
defaults. On the other hand, command links are a better choice if you want to 
encourage users to make an explicit choice. 

• Users need to interact with the choices (perhaps to see additional information) 
before making a decision. For example, selecting a radio button might display a 
description about the option dynamically. In this example, selecting a radio 
button displays a description of the option. 

• There are secondary or related options on the page. Command links tend to 
dominate the page, making it easy to overlook everything else. Furthermore, once 
a command link is clicked, it’s impossible to select secondary options.  
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• There are secondary or related options on the page. Command links tend to 
dominate the page, making it easy to overlook everything else. Furthermore, once 
a command link is clicked, it’s impossible to select secondary options.  

For dialog boxes, would a group of commit buttons be a better choice? Command 
links work better when the options require longer, more explanatory responses and 
supplemental explanations, but a group of commit buttons is a better choice if there 
are a few simple options.  

Note: Command links require Windows Vista® or later, so they 
aren’t suitable for earlier versions of Windows. You can 
use regular links as a substitute. 

3.4.7.1 Command Link Design 
We can simplify this dialog box by applying three command link guidelines: 

• Don’t use a supplemental explanation that is a wordy restatement of the 
command link. Use a supplemental explanation only when you can’t make a 
command link self-explanatory. Providing a supplemental explanation for one 
command link doesn’t mean that you have to provide them for all commands. 

• Select the safest (to prevent loss of data or system access) and most secure 
response to be the default. If safety and security aren’t factors, select the most 
likely or convenient response. 

• Provide an explicit Cancel button. Don’t use a command link for this purpose. 

• Display a busy pointer if the result of clicking a command link isn’t 
instantaneous. Without feedback, users might assume that the click didn’t 
happen and click again. 

− Present the most commonly used command links first. The resulting order 
should roughly follow the likelihood of use, but also have a logical flow. 
Exception: Command links that result in doing everything should be placed 
first. 

− Provide an explicit Cancel button. Don’t use a command link for this 
purpose. Quite often users realize that they don’t want to perform a task. 
Using a command link to cancel would require users to read all the command 
links carefully to determine which one means cancel. Having an explicit 
Cancel button allows users to cancel a task efficiently.  

− If providing an explicit Cancel button leaves a single command link, 
provide both a command link to cancel and a Cancel button. Doing so 
makes it clear that users have a choice. Phrase this command link in terms of 
how it differs from the first response, instead of just “Cancel” or some 
variation.  

− Use Close instead of Cancel if you can’t return the environment to its 
previous state, leaving no side effect. 
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− Don’t display disabled command links. If a command link doesn’t apply to 
the current context, remove it instead. If removing all the command links that 
don’t apply leaves a single command link, either eliminate the window or 
page, or display a confirmation if explicit user consent is needed. 

• All command links need an icon. The icons help users distinguish command 
links from regular links and user interface text. 

• Use the arrow icon only for command links. Regular links shouldn’t use the 
arrow icon unless they are being used as a substitute for command links in 
Windows XP. 

• Use the security shield icon to indicate that a response requires immediate 
elevation. For additional guidelines on using the security shield icon, see the User 
Account Control. 

• Use custom icons only if they help users visually identify and differentiate the 
options. Don’t use custom icons if they aren’t immediately recognizable or 
meaningful.  

• For custom icons, use 16 × 16 or 32 × 32 pixel icons. Use the larger icons if 
there is sufficient space and they benefit visually from the larger size. If you need 
security shield overlays, use 32 × 32 or 48 × 48 pixel icons.  

• Avoid mixing custom icons with the standard arrow icon on a window or a 
page. If you use a custom icon on a surface, try to use all custom icons. However, 
prefer the standard arrow icon over meaningless custom icons. 

3.4.7.2 Default Values 
• Select the safest (to prevent loss of data or system access) and most secure 

response to be the default. If safety and security aren’t factors, select the most 
likely or convenient response. 

• When practical, make the first response the default option because users often 
expect that—unless that order isn’t logical. 

• For dialog boxes, don’t make a destructive action the default command link 
unless there is an easy way to undo the action. 

 
Figure 3-2: Pixel ranges for text in a dialog box 
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3.4.7.3 Command Link Labels 
• Choose a concise label that clearly communicates and differentiates what the 

command link does. It should be self-explanatory and correspond to the main 
instruction. Focus the labels on the differences among the responses. Users 
shouldn’t have to figure out what the command link really means or how it differs 
from other command links.  

− Focus command link labels on helping users make the right decision. 
Omit details that don’t affect the choice. The labels don’t have to be a 
complete specification of what will happen. 

− Start command links with a verb. Don’t use click, however, because the 
label should communicate what the command link does, not how it works. 
Exception: If all the command links begin with the same verb or phrase, 
eliminate the redundant verb or phrase. 
• In general, use positive phrasing (providing a choice to do something). 

Negative phrasing (providing a choice not to do something) is acceptable 
if it makes the labels easier to understand. 

• Use parallel phrasing and single line labels. Long labels discourage 
reading and shouldn’t be necessary. Also, moderately sized labels are 
easier to refer to in documentation. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation unless the label is a question. 

• Assign a unique access key. For guidelines, see Keyboard. 

• Don’t use ellipses. Ellipses mean that more information might be needed 
to perform the action. Properly used command links don’t need ellipses 
because they have an immediate effect. 

• If a response is strongly recommended, add “(recommended)” to the 
label. Be sure to add to the label, not the supplemental explanation. 

• If a response is intended only for advanced users, consider adding 
“(advanced)” to the label. Be sure to add to the label, not the 
supplemental explanation. 

3.4.7.4 Supplemental Explanations 
• If a command link requires further explanation, provide a supplemental 

explanation. Supplemental explanations describe why users might want to choose 
a response or what happens if a response is chosen.  

− Don’t use a supplemental explanation that is wordy restatement of the 
command link. Use a supplemental explanation only when you can’t make a 
command link self-explanatory. Providing a supplemental explanation for one 
command link doesn’t mean that you have to provide them for all. 
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− Focus supplemental explanations on helping users make the right 
decision. Omit details that don’t affect the choice. The supplemental 
explanations don’t have to be a complete specification of what will happen. 

− Use parallel phrasing and at most three lines of text. Long supplemental 
explanations discourage reading and shouldn’t be necessary.  

− Use complete sentences and ending punctuation. 

3.4.7.5 Command Link Group Labels 
Don’t use group labels. Main instructions act as the group label for command links. 

3.4.8 Dropdown List and Combo Boxes 
• Is the control used to choose one option from a list of mutually exclusive values? 

If not, use another control. To choose multiple options, use a standard multiple-
selection list, check box list, list builder, or add/remove list instead. 

• Are the options commands? If so, use a menu button or split button instead. Use 
drop-down lists and combo boxes for objects (nouns) or attributes (adjectives), 
but not commands (verbs). 

• Does the list present data, rather than program options? Either way, a drop-down 
list or combo box is a suitable choice. By contrast, radio buttons are suitable only 
for a small number of program options. 

3.4.8.1 Drop-Down Lists 
• Is there a default option that is recommended for most users in most 

situations? Is seeing the selected option far more important than seeing the 
alternatives? Consider using a drop-down list if you don’t want to encourage users 
to make changes by hiding the alternatives. If not, consider radio buttons, a 
single-selection list, or an editable list box, which give more emphasis to the 
alternative choices. 

−  Do you want to draw attention to the option? If so, consider radio buttons, 
a single-selection list, or an editable list box, which tend to draw more 
attention by taking more screen space. Because drop-down lists are compact, 
they are good choices for options that you want to underemphasize. 

− Is screen space at a premium? If so, use a drop-down list because the screen 
space used is fixed and independent of the number of choices. 

− Are there other drop-down lists on the window? If so, consider using a 
drop-down list for consistency. 

3.4.8.2 Editable Drop-Down Lists 
In addition to the principles just provided for drop-down lists, the following also 
apply: 
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• Are the possible choices constrained? If so, use a normal drop-down list instead. 
Combo boxes are for unconstrained input, in which users may need to enter a 
value not currently in the list. Because the input is unconstrained, if users enter 
text that isn’t valid you must handle the error with an error message. 

• Can you enumerate the most likely choices in advance? If not, use a text box 
instead. 

• Is the drop-down list being used to list previous user input? Unless users need 
to review the complete list of previous input, use a text box with the auto-
complete option instead.  

• Will users need assistance in selecting valid values? If so, use a text box with a 
Browse button instead.  

• Is it important to encourage users to review the alternative choices or invite change? 
If so, consider using an editable list box instead. With an editable drop-down list, users 
aren’t going to be aware of the alternatives until the list is dropped. 

• Do users need to locate an item rapidly in a large list? (Win32 only) If so, use a 
combo box because users can select an item by typing its full name. By contrast, the 
Win32 drop-down list selects items based only by the last character typed (so typing 
“Jun” into a list of months would match November, not June). In this case, use a combo 
box even if the possible choices are constrained. 

3.4.9 Editable List Boxes 
• Are the possible choices constrained? If so, use a single-selection list or normal 

drop-down list instead. Combo boxes are for unconstrained input, where users 
may need to enter a value not currently in the list. Because the input is 
unconstrained, if users enter text that is not valid you must handle the error with 
an error message. 

• Can you enumerate the most likely choices in advance? If not, use a text box 
instead. 

• Is it important to encourage users to review the alternative choices or invite 
change? If not, consider an editable drop-down list instead. 

• Do you want to draw attention to the option? If not, consider an editable drop-
down list instead. Because drop-down lists are compact, they are good choices for 
options that you want to underemphasize. 

• Is screen space at a premium? If so, use an editable drop-down list because the 
screen space used is fixed and independent of the number of choices. 

• Always include at least three items in editable list boxes to justify the additional 
screen space. 
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3.4.10 Usage Patterns 

3.4.10.1 Guidelines 

3.4.10.1.1 General 
Don’t use the change of a drop-down list or combo box to: Perform commands. 

Display other windows, such as a dialog box to gather more input. 

Dynamically display other controls related to the selected control (screen readers 
cannot detect such events). 

3.4.10.2 Presentation 
• Sort list items in a logical order, such as grouping highly related options 

together, placing most common options first, or using alphabetical order. Sort 
names in alphabetical order, numbers in numeric order, and dates in chronological 
order. Lists with 12 or more items should be sorted alphabetically to make items 
easier to find.  

• Place options that represent All or None at the beginning of the list, 
regardless of the sort order of the remaining items. 

• Enclose metaoptions in parentheses.  

• When disabling a drop-down list or combo box, also disable any associated 
labels and command buttons.  

3.4.11 Drop-Down Lists 
• When a single drop-down list is used to change the view of an associated control, 

change the view immediately on selection instead of requiring a separate 
command button. Use a separate command button only if the list takes a 
significant amount of time to render. However, list headers and menu buttons are 
the preferred controls for this purpose.  

• Don’t have blank list items—use metaoptions instead. Users don’t know how 
to interpret blank items, whereas the meaning of metaoptions is explicit.  

3.4.11.1 Preview Drop-Down Lists 
• Use previews in the list items when it is better to show with images than describe 

using text alone.  

− Don’t use unnecessary, unhelpful icons in previews.  
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3.4.12 Combo Boxes 
• Limit the length of the input text when you can. For example, if the valid input 

is a number between 0 and 999, use a combo box that is limited to three 
characters. 

• If there are many possible options, focus the list contents on the most likely 
options. Because users can enter values that aren’t in the list, combo boxes don’t 
have to list all choices, just the likely choices or a representative sample.  

3.5 Default Values (Page 87) 
Select the safest (to prevent loss of data or system access) and most secure option 
by default. If safety and security aren’t factors, select the most likely or convenient 
option. Exception: Display a blank default value if the control represents a property 
in a mixed state, which happens when displaying a property for multiple objects that 
don’t have the same setting. 

3.5.1 Prompts 
Use a prompt when: 

• Screen space is at such a premium that using a label or instruction is undesirable, 
such as on a toolbar. 

• The prompt is primarily for identifying the purpose of the list in a compact way. It 
must not be crucial information that users need to see while using the combo box. 

Don’t use prompts just to direct users to select something from the list or to click 
buttons. For example, prompts like Select an option or Enter a filename and then 
click Send are unnecessary. 

• Draw the prompt text in italic gray and real text in normal black. The prompt text 
must not be confused with real text. 

• Keep the prompt text concise. You can use fragments instead of full sentences. 

• Use sentence-style capitalization.  

• Don’t use ending punctuation or ellipsis. 

− The prompt text should not be editable, and should disappear once users click 
in or tab into the text box. Exception: The prompt is displayed if the text box 
has default input focus, and only disappears once the user starts typing. 

− The prompt text is restored if the text box is still empty when it loses input 
focus. 
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Recommended Sizing And Spacing

 
Figure 3-3: Recommended sizing and spacing for buttons 

• Choose a width appropriate for the longest valid data. Drop-down lists cannot 
be scrolled horizontally, so users can see only what is visible in the control. (Note, 
however, that combo boxes can have AutoScroll functionality enabled.) 

• Include an additional 30% (up to 200% for shorter text) for any text (but not 
numbers) that will be localized. 

• Choose a list length that eliminates unnecessary vertical scrolling. Because 
drop-down lists are displayed on demand, their lists should show up to 30 items. 
Editable list boxes (those that don’t have a drop-down button) should show 
between 3 and 12 items. 

3.5.2 Labels 

3.5.2.1 Control Labels 
Write the label as a word or phrase, not as a sentence, and end it with a colon. 
Exceptions: Editable drop-down lists with prompts located where space is at a 
premium. 

If a drop-down list or combo box is subordinate to a radio button or check box and is 
introduced by its label ending with a colon, don’t put an additional label on the 
control. 

Assign a unique access key for each label. For guidelines, see Keyboard. 

Use sentence-style capitalization. 

Position the label either to the left of or above the control, and align the label with the 
left edge of the control. If label is on the left, vertically align the label text with the 
control text.  

• You may specify units (seconds, connections, and so on) in parentheses after the 
label. 

• Don’t make the content of the drop-down list or combo box (or its units label) 
part of a sentence, because this is not localizable. 

3.5.3 Option Text 
• Assign a unique name to each option. 
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• Use sentence-style capitalization, unless an item is a proper noun. 

• Write the label as a word or phrase, not as a sentence, and use no ending 
punctuation. 

• Use parallel phrasing, and try to keep the length about the same for all options. 

3.5.4 Instructional Text 
• If you need to add instructional text about a drop-down list or combo box, add it 

above the label. Use complete sentences with ending punctuation. 

• Use sentence-style capitalization. 

• Additional information that is helpful but not necessary should be kept short. 
Place this information either in parentheses between the label and colon, or 
without parentheses below the control.  

3.5.5 Group Boxes 

3.5.5.1 Is This The Right Control? 
While group boxes are a strong visual means of indicating relationships, overusing 
them adds visual clutter and greatly reduces the space available on a surface. They are 
visually heavy and should be used sparingly—only when there isn’t a better solution. 

A design trend in Windows® is a simpler, cleaner appearance by eliminating 
unnecessary lines. 

To decide whether a group box is necessary, consider these questions: 

• Is there more than one control in the group? If not, use a plain text label 
instead. A rare exception is to use a group box with a single control to maintain 
consistency with other group boxes on the same surface.  

• Are the controls related? Does showing the relationship add clarity? If not, 
present the controls separately outside of a group box. 

• Are all the controls inside the group? If so, indicate the relationship on the larger 
surface, such as the parent dialog box or page.  

• Can you effectively communicate the relationships using layout alone? If so, use 
layout instead. You can place related controls next to each other and put extra 
spacing between unrelated controls. You can also use headings and indenting to 
show hierarchical relationships.  
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• Can you effectively communicate the relationships using a separator? If so, 
use a separator instead. A separator is a horizontal line that unifies the controls 
below it. Separators provide a simpler, cleaner look. However, unlike group 
boxes, they work best when they span the full width of the surface. Developers: 
You can implement a separator with an etched rectangle with a height of one.  

• Can you effectively communicate the relationships without text? If so, 
consider using graphic elements such as backgrounds or aggregators. 

3.6 Guidelines (Page 94) 
• Don’t nest group boxes. Use layout to show relationships within a group box.  

− Don’t put controls in group box labels. Exception: You can use a check box as 
a group box label if all of the controls inside the box are enabled and disabled 
by the check box. 

• Don’t disable group boxes. To indicate that a group of controls doesn’t currently 
apply, disable all the controls within the group box, but not the group box itself. 
This approach is more accessible and can be supported consistently by all UI 
frameworks. 

3.6.1 Labels 
Label all group boxes. 

• Don’t assign an access key to the label. Doing so is unnecessary and makes the 
other access keys harder to assign. Instead, assign access keys to the controls 
within the group box. Exception: If a surface has many controls, there may not be 
enough access keys available. If so, reduce the number of access keys by 
assigning them to group boxes instead of the controls within the group boxes. 

• Use sentence-style capitalization. 

• Write the label using a noun or a noun phrase, not as a sentence, and use no 
ending punctuation, including colons.  

• Use parallel phrasing for group box labels within the same surface. 

• Keep group box labels concise. Don’t use instructional text as the label. You can 
have instructional text within the group box, however. 

• Don’t repeat the group box label in control labels within the box. For example, if 
the group box is labeled Alignment, label the option buttons Left, Right, and so on, 
not Left alignment or Right alignment. 

• Don’t refer to group boxes in user interface text. 
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3.6.2 Using Links 

3.6.2.1 Is This The Right Control? 
To decide, consider these questions: 

• Is the link used to navigate to another page, window, or Help topic; display a 
definition; initiate a command; or choose an option? If not, use another control. 

• Would a command button be a better choice? Use a command button if: The 
control initiates an immediate action, including displaying a window, and that 
command relates to the primary purpose of the window. 

− A window is displayed to gather input or making choices, even if for a 
secondary command. 

− The label is short, consisting of four or fewer words, thus avoiding the 
awkward appearance of long buttons. 

− The command is not inline. 
− The control appears within a group of other related command buttons. 
− The action is destructive or irreversible. Because users associate links with 

navigation (and the ability to back out), links aren’t appropriate for commands 
with significant consequences. 

− Similarly, in a wizard or task flow, the command represents commitment. In 
such windows, command buttons suggest commitment whereas links suggest 
navigating to the next step. 

For a detailed comparison, see Command Buttons vs. Links. 

3.6.2.2 Making Links Specific, Relevant, And Predictable 
Concise links are more likely to be read than verbose links. Eliminate unnecessary text and 
detail. Link labels don’t have to be comprehensive. 

To evaluate your link text: 

• Make sure the link text reflects the scenarios that the link supports. 

• Make sure the results of the link are predictable. Users shouldn’t be surprised by 
the results. 

If you do only two things... (1) Make links discoverable by visual inspection alone. 
Users shouldn’t have to interact with your program to find links. (2) Use links that 
give specific descriptive information about the result of clicking on the link, using as 
much text as necessary. Users should be able to accurately predict the result of a link 
from its link text and optional infotip. 
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3.6.3 Guidelines 

3.6.3.1 Interaction 
Display a busy pointer if the result of clicking a link isn’t instantaneous. Without 
feedback, users might assume that the click didn’t happen and click again. 

3.6.4 Color 
• Use the theme or link system colors for visited and unvisited links. The 

meaning of these colors is consistent across all programs. If for any reason users 
don’t like these colors (perhaps for accessibility reasons), they can change them 
themselves. 

• For navigation links, use different colors for visited and unvisited links. Keep 
the history of visited links only for the duration of the program instance. The 
visited color is important to indicate where users have already been, preventing 
them from unintentionally revisiting the same pages repeatedly. 

• For other types of links, don’t use the visited link color. There isn’t sufficient 
value in identifying “visited” commands, for example. 

• Don’t color text that isn’t a link because users may assume that it is a link. 
Use bold or a shade of gray where you’d otherwise use colored text. Exception: 
You can use colored text if all links are either underlined or placed within 
standard navigation or command locations.  

3.6.5 Underlining 
• For links that are necessary to perform a primary task, provide visual clues 

so that users can recognize links by visual inspection alone. These clues 
include underlining, graphics or bullets, and standard link locations. Users 
shouldn’t have to hover over an object or attempt to click on it to determine if it is 
a link. Use underlined text if the link isn’t obvious from its context. 

• Don’t underline text that isn’t a link because users may assume that it is a link. Use 
italics where you’d otherwise use underlined text. Reserve underlining only for links.  

• When printing, don’t print underlines or link colors. Printed links have no value and 
are potentially confusing. 

3.6.6 Text with Icon Links 
• Use the arrow icon only for command links. Regular links shouldn’t use the 

arrow icon unless they are being used as a substitute for command links in 
Windows XP. 

• Place the icon to the left of the text. The icon needs to lead into the text visually.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
28 

• Make the result of clicking the icon the same as clicking the text. Doing 
otherwise would be unexpected and confusing. 

3.6.7 Graphics-Only Links 
Don’t use graphics-only links. Users have difficultly recognizing them as links and 
any text within the graphic (used to indicate their action when clicked) creates a 
localization problem. 

3.6.8 Navigation Links 
• Make sure navigation links don’t require commitment. Users should always 

be able to return to the initial state, either by using Back for inplace navigation or 
Cancel to close a new window. 

• Link to specific content rather than general content. For example, it is better 
to link to the relevant section of a document than to link to the beginning. 

• Use a link only if the linked material is relevant, helpful, and not redundant. 
Use restraint in navigation links—don’t use them just because you can. 

• If a link navigates to an external site, put the URL in the infotip so that users 
can determine the target of the link. 

• Link only the first occurrence of the link text. Redundant links are unnecessary 
and can make text difficult to read.  

− Exceptions: If an instruction has a link, put the link in the instruction.  
• Link to later occurrences if they are far away from the first. For example, you can 

link redundantly in different sections within a Help topic. 

3.6.9 Task Links 
Use task links for commands that aren’t destructive or are easily reversible. 
Because users associate links with navigation (and the ability to back out), links 
aren’t appropriate for commands with significant consequences. Commands that 
display a dialog box or a confirmation are a good choice.  

3.7 Menu Links (Page 102) 
• Group related navigation and task links into menus. A menu of related links 

placed within a standard navigation or command location makes it easier to find 
and understand the links than when they’re placed separately. 

• For selection-dependent menus, remove menu links that don’t apply. Don’t 
disable them. Doing so eliminates clutter and users won’t miss links that require 
selection.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
29 

• For selection-independent menus, disable menu links that don’t apply. Don’t 
remove them. Doing so makes the menus more stable and such links easier to 
find.  

3.7.1 Link Infotips 
If a link requires further explanation, provide the explanation in either a 
supplemental explanation in a separate text control or an infotip, but not both. 
Use complete sentences and ending punctuation. Providing both is unnecessary if the 
text is the same, and confusing if the text is different. 

• Don’t provide an infotip that is merely a restatement of the link text.  

3.7.2 Text 
• Don’t assign an access key. Links are accessed using the Tab key. 

• Use links that give specific descriptive information about the result of 
clicking on the link, using as much text as necessary. The link text should 
indicate the result of clicking on the link. Users should be able to accurately 
predict the result of a link from its link text and optional infotip.  

− For inline links: Preserve the capitalization and punctuation of the text. 
− Don’t include ending punctuation in the link unless the text is a question. 
− Link on the most relevant part of the text and choose link text that is large 

enough to be easy to click.  
Avoid putting two different inline links next to each other. Users are likely to 
believe they are a single link.  

• For independent links (not inline): Use sentence-style capitalization. 

• Don’t use ending punctuation unless the link is a question.  

• Use links that are clearly differentiated from the other links on the screen. Users 
should be able to accurately predict and differentiate between link targets.  

• Don’t add Click or Click here to the link text. It isn’t necessary because a link 
implies clicking. Also, Click here and here alone convey no information about the 
link when read by a screen reader.  

3.7.3 Navigation Links 
• Start the link with a noun and clearly describe where clicking the link will 

go. Don’t use ending punctuation. On occasion you may need to start navigation 
links with a verb, but don’t use verbs that reiterate navigation that is already 
implied by the fact of linking, such as View, Open, or Go to. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
30 

• Present a navigation link as a URL if it navigates to a Web page and you 
expect the target users to recall the URL and type it into a browser. If 
possible, design such URLs to be short and easy to remember.  

• If the link includes a URL to a Web site starting with “www,” omit the http:// 
protocol name and use lowercase text.  

3.7.4 Task Links 
• Start the link with an imperative verb and clearly describe the task that the 

link performs. Don’t use ending punctuation. 

• End the link with an ellipsis if the command needs additional information 
(including a confirmation) for successful completion. Don’t use an ellipsis 
when the successful completion of the task is to display another window—only 
when additional information is needed to perform the task.  

• If necessary, end a task link with “now” to distinguish it from a navigation link.  

3.7.5 Link Infotips 
Use full sentences and ending punctuation. 

For more guidelines and examples, see Tooltips and Infotips. 

3.8 List Boxes (Page 105) 

3.8.1 Is This The Right Control? 
To decide, consider these questions: 

• Does the list present data, rather than program options? Either way, a list box 
is a suitable choice regardless of the number of items. By contrast, radio buttons 
or check boxes are suitable only for a small number of program options. 

• Do users need to change views, group, sort by columns, or change column 
widths and order? If so, use a list view instead. 

• Does the control need to be a drag source or a drop target? If so, use a list 
view instead. 

• Do the list items need to be copied to or pasted from the clipboard? If so, use 
a list view instead.  

3.8.2 Single-Selection Lists 
• Is the control used to choose one item from a list of mutually exclusive values? If 

not, use another control. For choosing multiple items, use a standard multiple-
selection list, check box list, list builder, or add/remove list instead. 
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• Is there a default option that is recommended for most users in most situations? Is 
seeing the selected option far more important than seeing the alternatives? If so, 
consider using a drop-down list if you don’t want to encourage users to make 
changes by hiding the alternatives.  

• Does the list require constant interaction? If so, use a single-selection list to 
simplify the interaction.  

• Does the setting seem like a relative quantity? Would users benefit from instant 
feedback on the effect of setting changes? If so, consider using a slider instead. 

• Is there a significant hierarchical relationship between the list items? If so, use a 
tree view control instead. 

• Is screen space at a premium? If so, use a drop-down list instead because the 
screen space used is fixed and independent of the number of list items.  

3.8.3 Standard Multiple-Selection Lists And Check Box Lists 
• Is multiple selection essential to the task or commonly used? If so, use a check 

box list to make multiple selection obvious, especially if your target users aren’t 
advanced. Many users won’t realize that a standard multiple-selection list 
supports multiple selection. Use a standard multiple-selection list if the check 
boxes would draw too much attention to multiple selection or result in too much 
screen clutter. 

• Is the stability of the multiple selection important? If so, use a check box list, list 
builder, or add/remove list because clicking changes only a single item at a time. 
With a standard multiple selection list, it’s very easy to clear all the selections—
even by accident. 

• Is the control used to choose zero or more items from a list of values? If not, use 
another control. For choosing one item, use a single-selection list instead. 

3.8.4 Preview Lists 
Are the options easier to select with images than with text alone? If so, use a preview 
list. 

3.8.5 List Builders And Add/Remove Lists 
• Is the control used to choose zero or more items from a list of values? If not, 

use another control. For choosing one item, use a single-selection list instead. 

• Does the order of the selected items matter? If so, the list builder and 
add/remove list patterns support order, whereas the other multiple-selection 
patterns do not. 

• Is it important for users to see a summary of all the selected items? If so, the 
list builder and add/remove list patterns display only the selected items, whereas 
the other multiple-selection patterns do not. 
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• Are the possible choices unconstrained? If so, use an add/remove list so that 
users can choose values not currently in the list. 

• Does adding a value to the list require a specialized dialog box for choosing 
objects? If so, use an add/remove list and display the dialog box when users click 
Add. 

• Is screen space at a premium? If so, use an add/remove list instead because it 
uses less screen space by not always showing the set of options. 

3.8.6 Guidelines 

3.8.6.1 Presentation 
• Sort list items in a logical order, such as grouping related options together, 

placing most frequently used items first, or using alphabetical order. Sort names 
in alphabetical order, numbers in numeric order, and dates in chronological order. 
Lists with 12 or more items should be sorted alphabetically to make items easier 
to find.  

− Place options that represent All or None at the beginning of the list, regardless 
of sort order of the remaining items. 

− Enclose metaoptions in parentheses.  
− Don’t have blank list items—use metaoptions instead. Users don’t know how 

to interpret blank items, whereas the meaning of meta-options is explicit.  

3.8.6.2 Interaction 
• Consider providing double-click behavior. Double-clicking should have the 

same effect as selecting an item and performing its default command. 

• Make double-click behavior redundant. There should always be a command 
button or context menu command that has the same effect. 

• If users can’t do anything with the selected items, don’t allow selection.  

− When disabling a list box, also disable any associated labels and command 
buttons. 

− Don’t use the change of the selected item in a list box to:  
• Perform commands. 

• Display other windows, such as a dialog box to gather more input. 

• Dynamically display other controls related to the selected control (screen 
readers cannot detect such events). Exception: You can dynamically 
change static text used to describe the selected item.  
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− Avoid horizontal scrolling. Multicolumn lists rely on horizontal scrolling, 
which is generally harder to use than vertical scrolling. Multicolumn lists that 
require horizontal scrolling may be used when you have many alphabetically 
sorted items and sufficient screen space for a wide control.  

3.9 Multiple-Selection Lists (Page 113) 
• Consider displaying the number of selected items below the list, especially if 

users are likely to select several items. This information not only gives useful 
feedback, but it also clearly indicates that the list box supports multiple selection.  

− You can provide other selection metrics that might be more meaningful, such 
as the resources required for the selections.  

• If there are potentially many list items and selecting or clearing all of them is 
likely, add Select all and Clear all command buttons. 

• For standard multiple-selection lists, don’t use multiple-selection mode because 
this selection mode has been deprecated. For equivalent behavior, use a check box 
list instead. 

3.9.1 Default Values 
• Select the safest (to prevent loss of data or system access) and most secure 

option by default. If safety and security aren’t factors, select the most likely or 
convenient option. Exception: Don’t select any items if the control represents a 
property in a mixed state, which happens when displaying a property for multiple 
objects that don’t have the same setting. 

3.9.1.1 Recommended Sizing And Spacing 

 
Figure 3-4: Recommended size and spacing for drop-down menus 

• Choose a list box width appropriate for the longest valid data. Standard list 
boxes cannot be scrolled horizontally, so users can see only what is visible in the 
control. 

• Include an additional 30% (up to 200% for shorter text) for any text (but not 
numbers) that will be localized. 

• Choose a list box height that displays an integral number of items. Avoid 
truncating items vertically. 
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• Choose a list box height that eliminates unnecessary vertical scrolling. List 
boxes should display between 3 and 20 items without the need for scrolling. 
Consider making a list box slightly longer if doing so eliminates the vertical scroll 
bar. Lists with potentially many items should display at least five items to 
facilitate scrolling by showing more items at a time and making the scroll bar 
easier to position.  

• If users benefit from making the list box larger, make the list box and its 
parent window resizable. Doing so allows users to adjust the list box size as 
needed. However, resizable list boxes should display no fewer than three items. 

3.9.2 Labels 

3.9.2.1 Control Labels 
• All list boxes need labels. Write the label as a word or phrase, not as a sentence; 

use a colon at the end of the label.Exception: Omit the label if it is merely a 
restatement of a dialog box’s main instruction. In this case, the main instruction 
takes the colon (unless it’s a question) and access key. 

• If a list box is subordinate to a radio button or check box and is introduced by that 
control’s label ending with a colon, don’t put an additional label on the list box 
control.  

• Assign a unique access key. For guidelines, see Keyboard. 

• Use sentence-style capitalization. 

• Position the label either to the left of or above the control, and align the label with 
the left edge of the control. If label is on the left, vertically align the label text 
with the first line of text in the control.  

• For multiple-selection list boxes, use a label that clearly indicates multiple 
selection is possible. Check box list labels can be less explicit.  

3.9.3 Option Text 
• Assign a unique name to each option.  

• Use sentence-style capitalization, unless an item is a proper noun. 

• Write the label as a word or phrase, not as a sentence, and use no ending 
punctuation. 

• Use parallel phrasing, and try to keep the length about the same for all options.  

3.9.4 Instructional And Supplemental Text 
• If you need to add instructional text about a list box, add it above the label. Use 

complete sentences with ending punctuation. 
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• Use sentence-style capitalization. 

• Additional information that is helpful but not necessary should be kept short. 
Place this text either in parentheses between the label and colon, or without 
parentheses below the control.  

3.10 List Views (Page 17) 

3.10.1 Is This The Right Control? 
A list view is more than just a more flexible and functional list box: its extra 
functionality results in different usage. The following table shows the comparison. 

To decide if this is the right control, consider these questions: 

• Does the list present data, rather than program options? If not, consider using a 
list box instead. 

• Do users need to change views, group, sort by columns, or change column widths 
and order? If not, use a list box instead. 

• Does the control need to be a drag source or a drop target? If so, use a list view. 

• Do the list items need to be copied to or pasted from the clipboard? If so, use a list 
view. 

3.10.2 Check Box List Views 
• Is the control used to choose zero or more items from a list of data? To choose 

one item, use single selection instead.  

• Is multiple selection essential to the task or commonly used? If so, use a check 
box list view to make multiple selection obvious, especially if your target users 
aren’t advanced. If not, use a standard multiple-selection list view if the check 
boxes would draw too much attention to multiple selection or result in too much 
screen clutter. 

• Is the stability of the multiple selection important? If so, use a check box list, list 
builder, or add/remove list because clicking changes only a single item at a time. 
With a standard multiple selection list, it’s very easy to clear all the selections—
even by accident. 

3.10.3 Guidelines 

3.10.3.1 Presentation 
• Sort list items in a logical order. Sort names in alphabetical order, numbers in 

numeric order, and dates in chronological order. 
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• If appropriate, allow users to change the sort order. User sorting is important 
if the list has many items or if there are scenarios where items are found more 
effectively using a sort order other than the default. 

• Use the Always Show Selection attribute so that users can readily determine the 
selected item, even when the control doesn’t have focus.  

− Avoid presenting empty list views. If users create a list, initialize the list 
with instructions or example items that users might need.  

− If users can change views, group, sort by columns, or change columns and 
their widths and order, make those settings persist so they take effect the 
next time the list view is displayed. Make them persist on a per-list view, 
per-user basis. 

3.10.4 Interaction 
• Use single-click to select the list item the user is pointing to. Exception: For 

the command link list pattern, single-click selects the item and either closes the 
window or navigates to the next page. 

• Consider providing double-click behavior. Double clicking should have the 
same effect as selecting an item and performing its default command. 

• Make double-click behavior redundant. There should always be a command 
button or context menu command that has the same effect. 

• If a list item requires further explanation, provide the explanation in an infotip. 
Use complete sentences and ending punctuation.  

• Provide context menus of relevant commands. Such commands include Cut, 
Copy, Paste, Remove or Delete, Rename, and Properties. 

• If users can change the sort order and grouping, provide Sort By and Group 
By context menus. The first click on a column name sorts or groups the list in the 
ascending order for that column, the second click sorts or groups in descending 
order. Use the previous order (from another column) as the secondary key.  

• Make the list view column header accessible using the keyboard. Developers: 
You can do this by setting focus on the column header control. This capability is 
new to Windows Vista®. 

• When disabling a list view, also disable any associated labels and command 
buttons. 

• Avoid horizontal scrolling. The List mode uses horizontal scrolling. This mode 
is usually the most compact, but horizontal scrolling is generally harder to use 
than vertical scrolling. Consider using the Small Icon view instead if compactness 
isn’t important. However, List mode is a good choice when there are many 
alphabetically sorted items and sufficient screen space for a wide control.  
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3.10.5 Multiple-Selection Lists 
• Consider displaying the number of selected items below the list, especially if 

users are likely to select several items. This information not only gives useful 
feedback, but it also clearly indicates that the list view supports multiple selection.  

− For check box list views, if there are potentially many items and selecting or 
clearing all of them is likely, add Select all and Clear all command buttons. 

− Use mixed-state check boxes to indicate partial selection of the items in a 
container. The mixed state is not used as a third state for an individual item. 

3.10.6 Changing Views 
If users can change views: 

• Choose the most convenient view by default. Any changes users make should 
be made persistent on a per-list view, per-user basis. 

• Change the view using a split button, menu button, or drop-down list. 
Whenever practical, use a split button on the toolbar and change the button label 
to reflect the current view.  

• Choose default column widths appropriate for the longest data. List views 
automatically truncate long data with ellipses, so the column widths are 
appropriate if few ellipses are displayed by default. While users can resize 
columns, prefer other solutions:  

1. Size each column width to fit its data. 

2. Size the control width to fit its columns plus any likely scrollbars. 

3. If necessary, use horizontal scrolling. 

4. Have truncated data only for odd-sized items or as a last resort. 

5. If normal-sized data must be truncated by default, make the window and list view 
resizable. Include an additional 30% (up to 200% for shorter text) for any text 
(but not numbers) that will be localized.  

• Choose an appropriate default column order. Generally, order the columns as 
follows:  

1. First, the item name or identifying data. 

2. Next, other data useful in differentiating the list items. 

3. Next, the most useful (preferably short or fixed length) data. 

4. Next, less useful (preferable short or fixed length) data. 

5. Last, long, variable-length data. 
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Long, variable length-data is placed in the last columns to reduce the need for 
horizontal scrolling. Within these categories, place related information together in a 
logical sequence. 

When appropriate, allow users to add and remove columns, as well as change 
the order. Display the most useful columns by default. This is achieved with the 
Header Drag Drop attribute. 

• Choose an alignment appropriate for the data. Use the following rules: Right-align 
numbers, currencies, and times. 

• Left-align text, IDs (even if numeric), and dates. 

• For sortable column headings, the first click on a heading sorts the list in 
ascending order for the column, the second click sorts in descending order.  

− Use the previous sort order (from another column) as the secondary sort key.  
− Use the Full Row Select attribute so that users can readily determine the 

selected items in all columns. 
− Don’t use a sortable column header unless the data can be sorted. 
− Don’t use a column header if there is only one column and there is no 

need to reverse sort. Use a label instead to identify the data.  

3.11 Recommended Sizing And Spacing (Page 127) 

 
Figure 3-5: Recommended sizing and spacing of sample label 

• Choose a list view height that displays an integral number of items. Avoid 
truncating items vertically. 

• Choose a list view size that eliminates unnecessary vertical and horizontal 
scrolling in all supported views. List views should display between 3 and 20 
items. Consider making a list view slightly larger if doing so eliminates a scroll 
bar. Lists with potentially many items should display at least five items to 
facilitate scrolling by showing more items at a time and making the scroll bar 
easier to position. 

• If users benefit from making the list view larger, make the list view and its parent 
window resizable. Doing so allows users to adjust the list view size as needed. 
However, resizable list views should display no fewer than three items. 
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3.11.1 Labels 

3.11.1.1 Control Labels 
• All list views need labels. Write the label as a word or phrase, not as a sentence, 

ending with a colon using static text. 

• Assign a unique access key. See Keyboard for guidelines on assigning access 
keys. 

• Use sentence-style capitalization. 

• Position the label above the control and align the label with the left edge of the 
control. 

• For multiple-selection list views, write the label that clearly indicates multiple 
selection is possible. Check box list view labels can be less explicit.  

• You may specify units (seconds, connections, and so on) in parentheses after the 
label.  

3.11.1.2 Heading Labels 
• Keep the heading labels brief (three words or fewer).  

• Use a single noun or noun phrase with no ending punctuation. 

• Use sentence-style capitalization. 

• Align the heading the same way as the data.  

3.11.1.3 Group Labels 
• Use the following group labels for high-level collections: Names: Use first letter 

of name or letter ranges. 

• Sizes: Unspecified, 0 KB, 0–10 KB, 10–100 KB, 100 KB–1 MB, 1–16 MB, 16–
128 MB  

• Dates: Today, Yesterday, Last week, Earlier this year, and A long time ago. 

• Otherwise, group labels use the exact text of the data being grouped, including 
capitalization and punctuation. 

3.11.2 Data Text 
• Use sentence-style capitalization.  

• If you need to add instructional text about a list view, add it above the label. Use 
complete sentences with ending punctuation.  

• Use sentence-style capitalization. 
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• Additional information that is helpful but not necessary should be kept short. 
Place this information either in parentheses between the label and colon or 
without parentheses below the control. 

3.11.3 Progress Bars 

3.11.3.1 Is This The Right Control? 
To decide, consider these questions: 

• Will the operation complete in about five seconds or less? If so, use an activity 
indicator instead, because displaying a progress bar for such a short duration 
would be distracting. If the operation usually takes five seconds or less but 
sometimes takes more, start with a busy pointer and convert to a progress bar after 
five seconds. 

• Is an indeterminate progress bar used to wait for the user to complete a task? 
If so, don’t use a progress bar. Progress bars are for computer progress, not user 
progress. 

• Is an indeterminate progress bar combined with an animation? If so, use just 
the animation instead. The indeterminate progress bar is effectively a generic 
animation and adds no value to the animation. 

• Is the operation a very lengthy (longer than two minutes) background task 
for which users are more interested in completion than progress? If so, use a 
notification instead. In this case, users do other tasks in the meantime and are not 
monitoring the progress. Using a notification allows users to perform other tasks 
without disruption. Examples of such lengthy operations include printing, backup, 
system scans, and bulk data transfers or conversions. 

• When the operation is complete, will users be able to replay the results? If so, 
use a slider instead. Examples of such operations include video and audio 
recording and playback.  

3.11.4 Guidelines 

3.11.4.1 General 
• Provide progress feedback when performing a lengthy operation. Users should 

never have to guess if progress is being made.  

• Clearly indicate real progress. The progress bar must advance if progress is being 
made. If the range of expected completion times is large, consider using a non-
linear scale to indicate progress for the longer times. You don’t want users to 
conclude that your program has locked up when it hasn’t. 
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• Clearly indicate lack of progress. The progress bar must not advance if no 
progress is being made. You don’t want users to wait indefinitely for an operation 
that is never going to complete. 

• Provide useful progress details. Provide additional progress information, but only 
if users can do something with it. Make sure the text is displayed long enough for 
users to be able to read it.  

− Don’t provide unnecessary details. Generally users don’t care about the 
details of the operation being performed. For example, users of a setup 
program don’t care about the specific file being copied or that system 
components are being registered because they have no expectations about 
these details. Typically, a well-labeled progress bar alone provides sufficient 
information, so provide additional progress information only if users can do 
something with it. Providing details that users don’t care about makes the user 
experience overly complicated and technical. If you need more detailed 
information for debugging, don’t display it in release builds.  

− Provide useful animations. If done well, animations improve the user 
experience by helping users visualize the operation. Good animations have 
more impact than text alone. For example, the progress bar for the Outlook 
Delete command displays the Recycle Bin for the destination if the files can 
be recovered, but no Recycle Bin if the files can’t be recovered.  

− Don’t use unnecessary animations. Animations can be misleading because 
they usually run in a separate thread from the actual task and therefore can 
suggest progress even if the operation has locked up. Also, if the operation is 
slower than expected, users sometimes assume that the animation is part of the 
reason. Consequently, only use animations when there is a clear justification; 
don’t use them to try to entertain users. 

− Position animations centered over the progress bar. Put the animation 
above the progress bar labels, if you have any. If there is a Cancel or Stop 
button to the right of the progress bar, include the button when determining 
the center. 

− Play a sound effect at the completion of an operation only if it is very 
lengthy (longer than two minutes), infrequent, and important. If the user 
is likely to walk away from an important operation while it is processing, a 
sound effect restores the user’s attention. Using a sound effect upon 
completion in other circumstances would be a distracting annoyance. 

− Don’t steal input focus to show a progress update or completion. Users 
often switch to other programs while waiting and don’t want to be interrupted. 
Background tasks must stay in the background. 
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− Don’t worry about technical support. Because the feedback provided by 
progress bars isn’t necessarily accurate and is fleeting, progress bars aren’t a 
good mechanism for providing information for technical support. 
Consequently, if the operation can fail (as with a setup program), don’t 
provide additional progress information that is only useful to technical 
support. Instead, provide an alternative mechanism such as a log file to record 
technical support information.  

− Don’t put the percentage complete or any other text on a progress bar. 
Such text isn’t accessible and isn’t compatible with using themes.  

− Don’t combine a progress bar with a busy pointer. Use one or the other, 
but not both at the same time. 

− Don’t use vertical progress bars. Horizontal progress bars have a more 
natural mapping and better flow. 

3.11.5 Determinate Progress Bars 
• Use determinate progress bars for operations that require a bounded amount 

of time, even if that amount of time cannot be accurately predicted. Indeterminate 
progress bars show that progress is being made, but provide no other information. 
Don’t choose an indeterminate progress bar based only on the possible lack of 
accuracy alone.  

• Clearly indicate the progress phase. The progress bar must be able to indicate if 
the operation is in the beginning, middle, or end of an operation. For example, 
progress bars that immediately shoot to 99% completion, then stay there for a 
long time are particularly uninformative and annoying. In these cases, the 
progress bar should be set initially to at most 33% to indicate that the operation is 
still in the beginning phase. 

• Clearly indicate completion. Don’t let a progress bar go to 100% unless the 
operation has completed. 

• Provide a time remaining estimate if you can do so accurately. Time 
remaining estimates that are accurate are useful, but estimates that are way off the 
mark or bounce around significantly aren’t helpful. You may need to perform 
some processing before you can give accurate estimates. If so, don’t display 
potentially inaccurate estimates during this initial period. 

• Don’t restart progress. A progress bar loses its value if it restarts (perhaps 
because a step in the operation completes) because users have no way of knowing 
when the operation will complete. Instead, have all the steps in the operation 
share a portion of the progress and have the progress bar go to completion once.  

• Don’t back up progress. As with a restart, a progress bar loses its value if it 
backs up. Always increase progress monotonically. However, you can have a time 
remaining estimate that increases (as well as decreases) because the rate of 
progress may vary. 
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3.11.6 Indeterminate Progress Bars 
• Use indeterminate progress bars only for operations whose overall progress 

cannot be determined. Use indeterminate progress bars for operations that 
require an unbounded amount of time or that access an unknown number of 
objects. Use timeouts to give bounds to time-based operations. 

• Convert to a determinate progress bar once the overall progress can be 
determined. For example, if it takes significantly longer than two seconds to 
determine the number of objects, you can use an indeterminate progress bar while 
the objects are counted, and then convert to a determinate progress bar. 

• Don’t combine indeterminate progress bars with percent complete or time 
remaining estimates. If you can provide this information, use a determinate 
progress bar instead. 

• Don’t combine indeterminate progress bars with animations. An 
indeterminate progress bar is effectively a generic animation, so you should use 
one or the other but never both  

3.11.7 Modeless Progress Bars 
• If users can do something productive while the operation is in progress, provide 

modeless feedback. You might need to disable a subset of functionality that 
requires the operation to complete. 

• If the window has an address bar, display the modeless progress in the address 
bar. Otherwise, if the window has a status bar, display the modeless progress in 
the status bar. Put any corresponding text to its left in the status bar.  

3.12 Modal Progress Bars (Page 137) 
• Place modal progress bars on progress pages or progress dialog boxes. 

• Provide a command button to halt the operation if it takes more than a few 
seconds to complete, or has the potential never to complete. Label the button 
Cancel if canceling returns the environment to its previous state (leaving no side 
effects); otherwise label the button Stop to indicate that it leaves the partially 
completed operation intact. You can change the button label from Cancel to Stop 
in the middle of the operation if at some point it isn’t possible to return the 
environment to its previous state. Center the command button vertically with the 
progress bar instead of aligning their tops.  

3.12.1 Time Remaining 
• Use the following time formats. Start with the first of the following formats 

where the largest time unit isn’t zero, and then change to the next format once the 
largest time unit becomes zero.  

• For progress bars:  
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− If related information is shown in a colon format: Time remaining: h 
hours, m minutes Time remaining: m minutes, s seconds Time remaining: s 
seconds.  

− If screen space is at a premium: h hrs, m mins remaining m mins, s secs 
remaining s seconds remaining. 

− Otherwise: h hours, m minutes remaining m minutes, s seconds remaining s 
seconds remainingFor title bars: hh:mm remaining mm:ss remaining 0:ss 
remainingThis compact format shows the most important information first so 
that it isn’t truncated on the taskbar. 

• Make estimates accurate, but don’t give false precision. If largest unit is hours, 
give minutes (if meaningful) but not seconds.  

• Keep the estimate up-to-date. Update time remaining estimates at least every 5 
seconds.  

• Focus on the time remaining because that is the information users care about 
most. Give total elapsed time only when there are scenarios where elapsed time is 
helpful (such as when the task is likely to be repeated). If the time remaining 
estimate is associated with a progress bar, don’t have percent complete text 
because that information is conveyed by the progress bar itself. 

• Be grammatically correct. Use singular units when the number is one.  

• Use sentence-style capitalization. 

3.12.2 Progress Bar Colors 
• Use red or yellow progress bars only to indicate the progress status, not the 

final results of a task. A red or yellow progress bar indicates that users need to 
take some action to complete the task. If the condition isn’t recoverable, leave the 
progress bar green and display an error message. 

• Turn the progress bar red when there is a user recoverable condition that 
prevents making further progress. Display a message to explain the problem 
and recommend a solution. 

• Turn the progress bar yellow to indicate either that the user has paused the 
task or that there is a condition that is impeding progress but progress is still 
taking place (as, for example, with poor network connectivity). If the user has 
paused, change the Pause button label to Resume. If progress is impeded, display 
a message to explain the problem and recommend a solution. 

3.12.3 Meters 
• Use progress bars only for progress. Use meters to indicate percentages that 

aren’t related to progress.  
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Figure 3-6: Progress bars 

− Always use the recommended progress bar height. Exception: You may use a 
different height if the parent window doesn’t support the recommended 
height.  

− Use the minimum width if you want to make the progress bar unobtrusive. 
− Don’t use widths longer than the maximum recommended. The progress bar 

doesn’t have to fill the available space. 
− Center the progress bar horizontally if the window is much wider than the 

maximum recommended width. 

3.12.4 Labels 

3.12.4.1 Progress Bar Labels 
• Use a concise label with a static text control to indicate what the operation is 

doing. Start the label with a verb (for example, Copying) and end with an ellipsis. 
This label may change dynamically if the operation has multiple steps or is 
processing multiple objects. 

• Don’t assign a unique access key because the control isn’t interactive. 

• Use sentence-style capitalization. 

• If the operation was not directly initiated by the user, you can include an 
additional label to give the context and apologize for the interruption. Start this 
extra label with the phrase “Please wait while”. This label should not change 
during the operation.  

• Position the label above the progress bar and align the label with the left edge of 
the progress bar. 

3.12.4.2 Progress Bar Details 
• Provide details in static text, preceding the data with a label ending with a colon. 

Specify units (seconds, kilobytes, and so on) after the details text.  

• Use sentence-style capitalization. 
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• Position the details below the progress bar and align the label with the left edge of 
the progress bar. 

• Don’t give the percentage completed or remaining because that information is 
conveyed by the progress bar itself. 

3.12.5 Cancel Button 
• Label the button Cancel if canceling returns the environment to its previous state 

(leaving no side effect); otherwise, label the button Stop to indicate that it leaves 
the partially completed operation intact. 

• You can change the button label from Cancel to Stop in the middle of the 
operation if at some point it isn’t possible to return the environment to its previous 
state. 

3.12.6 Progress Dialog Box Titles 
• If the progress bar is displayed in a modal dialog box, the dialog box title should 

be the name of the program or the name of the operation. Don’t use what should 
be the progress bar label for the dialog box title.  

• If the progress bar is displayed in a modeless dialog box, optimize the title for 
display on the taskbar by concisely placing the distinguishing information first. 
Example: “66% Complete.”  

3.13 Progressive Disclosure Controls (Page 142) 

3.13.1.1 Is This The Right Control? 
To decide, consider these questions: 

• Do users need to see the information in some but not all scenarios, or some 
but not all of the time? If so, displaying the information using progressive 
disclosure simplifies the baseline experience, yet allows users to access the 
information easily.  

− If the information is displayed by default, are users ever likely to choose 
to hide it? Are there scenarios where users will need more space? Are users 
sufficiently motivated to customize the user interface (UI)? If not, display the 
information without using progressive disclosure.  

− Is the additional information advanced, substantial, complex, or related 
to an independent subtask? If so, consider displaying the information in a 
separate window using command buttons or links instead of using a 
progressive disclosure control. (Additional information is advanced if it is 
intended for advanced users. It’s complex if it makes other information hard 
to read or lay out.)  
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− Is the additional information a sentence or sentence fragment that 
describes what an item does or how it can be used? If so, consider using a 
tooltip or infotip. 

− Is the additional information related to the current task, but independent 
of the currently displayed information? If so, consider using tabs instead. 
However, collapsible lists are often preferable to tabs because they are more 
flexible and scalable. 

− Is showing or hiding the additional information essentially a data filter? 
If so, consider using a drop-down list or check boxes instead to apply the 
filter to the entire list. 

3.13.2 Guidelines 

3.13.2.1 General 
• Select the progressive disclosure pattern based on its usage.  

• Don’t use links for progressive disclosure controls. Use only the progressive 
disclosure controls presented in the Usage patterns section. However, do use links 
to navigate to Help topics.  

3.13.3 Interaction 
• For chevrons and arrows that aren’t directly labeled, use tooltips to describe what 

they do.  

− If a user expands or collapses an item, make the state persist so it takes 
effect the next time the window is displayed, unless users are likely to prefer 
starting in the default state. Make the state persist on a per-window, per-user 
basis. 

− Make sure that all expanded content can be collapsed and vice versa, and 
that the inverse operation is obvious. Doing so encourages exploration and 
reduces frustration. The best way to make the inverse operation obvious is to 
keep the control in the same fixed location. If you need to move the control, 
keep it in the same relative location within a visually distinct area.  

− Use only the access keys appropriate for the progressive disclosure 
pattern, as listed in the Usage patterns section. Don’t use Enter to activate 
progressive disclosure. 

3.13.4 Presentation 
• Don’t use triangular-shaped arrowheads for a purpose other than progressive 

disclosure.  
• Remove (don’t disable) progressive disclosure controls that don’t apply in the current 

context. Progressive disclosure controls should always deliver on their promise, so 
remove them when there isn’t more information to give.  
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3.13.5 Chevrons 
• Use single chevrons to show or hide in place. Use double chevrons to show or 

hide using a pop-up menu. You should always use double chevrons for command 
buttons with internal labels, however.  

• Provide a visual relationship between the chevron and its associated control. Because in-
place chevrons are placed to the right of their associated UI and right aligned, there can 
be quite a distance between a chevron and its associated control.  

3.13.6 Arrows 
• Don’t use arrow graphics that could be confused with Back, Forward, Go, or 

Play. Use simple triangular-shaped arrowheads (arrows without stems) on neutral 
backgrounds  

3.13.6.1 Recommended Sizing And Spacing 

 
Figure 3-7: Using arrows 
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3.13.7 Labels 
• For chevrons on a command button with an external label: Assign a unique access 

key. For assignment guidelines, see Keyboard. 

• Use sentence-style capitalization. 

• Write the label as a phrase and use no ending punctuation. 

• Write the label so that it describes the effect of clicking the button, and change the 
label when the state changes. 

• If the surface always displays some options, commands, or details, use the 
following label pairs:  

− More/Fewer options. Use for options or a mixture of options, commands, and 
details. 

− More/Fewer commands. Use for commands only. 
− More/Fewer details. Use for information only. 
− More/Fewer <object name>. Use for other object types, such as folders. 

Otherwise:  
• Show/Hide options. Use for options or a mixture of options, commands, 

and details. 

• Show/Hide commands. Use for commands only. 

• Show/Hide details. Use for information only. 

• Show/Hide <object name>. Use for other object types, such as folders. 

• For chevrons on a command button with an internal label, follow the standard 
command button label guidelines. 

3.13.8 Radio Buttons 

3.13.8.1 Is This The Right Control? 
To decide, consider these questions:  

• Is the control used to choose one option from a set of mutually exclusive choices? 
If not, use another control. To choose multiple options, use check boxes, a 
multiple-selection list or a check box list instead. 

• Is the number of options between two and seven? Since the screen space used is 
proportional to the number of options, keep the number of options in a group 
between two and seven. For eight or more options, use a drop-down list or single-
selection list. 
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• Would a check box be a better choice? If there are only two options, you could 
use a single check box instead. However, check boxes are suitable only for 
turning a single option on or off, whereas radio buttons can be used for 
completely different alternatives. If both solutions are possible:  

− Use radio buttons if the meaning of the cleared check box isn’t completely 
obvious.  

− Use radio buttons on wizard pages to make the alternatives clear, even if a 
check box is otherwise acceptable. 

− Use radio buttons if you have enough screen space and the options are 
important enough to be a good use of that screen space. Otherwise, use a 
check box or drop-down list.  

− Use a check box if there other check boxes on the page. 
• Would a drop-down list be a better choice? If the default option is 

recommended for most users in most situations, radio buttons might draw more 
attention to the options than necessary. Consider using a drop-down list if you 
don’t want to draw attention to the options, or you don’t want to encourage users 
to make changes. A drop-down list focuses on the current selection, whereas radio 
buttons emphasize all options equally.  

• Would a set of command buttons, command links, or a split button be a 
better choice? If the radio buttons are used only to affect how a command is 
performed, it is often better to present the command variations instead. Doing so 
allows users to choose the right command with a single interaction. 

• Do the options present program options, rather than data? The options’ 
values shouldn’t be based on context or other data. For data, use a drop-down list 
or single-selection list. 

• If the control is used on a wizard page or control panel, is the control a response 
to the main instruction and can users later change the choice? If so, consider 
using command links instead of radio buttons to make the interaction more 
efficient. 

• Are the values non-numeric? For numeric data, use text boxes, drop-down 
lists, or sliders. 

3.13.9 Guidelines 

3.13.9.1 General 
• List the options in a logical order, such as most likely to be selected to least, 

simplest operation to most complex, or least risk to most. Alphabetical ordering is 
not recommended because it is language dependent and therefore not localizable. 

• If none of the options is a valid choice, add another option to reflect this 
choice, such as None or Does not apply. 
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• Prefer to align radio buttons vertically instead of horizontally. Horizontal 
alignment is harder to read and localize.  

• Reconsider using group boxes to organize groups of radio buttons—this often 
results in unnecessary screen clutter. 

• Don’t use radio button labels as group box labels. 

• Don’t use the selection of a radio button to:  

− Perform commands. 
− Display other windows, such as a dialog box to gather more input. 
− Dynamically show or hide other controls related to the selected control 

(screen readers cannot detect such events). However, you can change text 
dynamically based on the selection. 

3.13.10 Subordinate Controls 
• Place subordinate controls to the right of or below (indented, flush with the radio 

button label) the radio button and its label. End the radio button label with a 
colon.  

− Leave dependent editable text boxes and drop-down lists enabled if they 
share the radio button’s label. When users type or paste anything into the 
box, select the corresponding option automatically. Doing so simplifies the 
interaction.  

− Avoid nesting radio buttons with other radio buttons or check boxes. If 
possible, keep all the options at the same level.  

• If you do nest radio buttons with other radio buttons or check boxes, disable 
these subordinate controls until the high-level option is selected. Doing so 
avoids confusion about the meaning of the subordinate controls. 

3.13.11 Default Values 
Because a group of radio buttons represents a set of mutually exclusive choices, 
always have one radio button selected by default. Select the safest (to prevent loss of 
data or system access) and most secure and private option. If safety and security 
aren’t factors, select the most likely or convenient option. Exceptions: Don’t have a 
default selection if:  

• There is no acceptable default option for safety, security, or legal reasons and 
therefore the user must make an explicit choice.  

If the user doesn’t make a selection, display an error message to force one. 

The user interface (UI) must reflect the current state and the option hasn’t been set 
yet. A default value would incorrectly imply that the user doesn’t need to make a 
selection. 
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The goal is to collect unbiased data. Default values would bias data collection. 

The group of radio buttons represents a property in a mixed state, which happens 
when displaying a property for multiple objects that don’t have the same setting. 
Don’t display an error message in this case since each object has a valid state. 

Make the first option the default option, since users often expect that—unless that 
order isn’t logical. To do this, you might need to change the option labels.  

3.13.12 Recommended Sizing And Spacing 

 
Figure 3-8: Recommended sizing and spacing of radio buttons 

3.13.13 Labels 

3.13.13.1 Radio Button Labels 
• Label every radio button. 

• Assign a unique access key to each label. For assignment guidelines, see 
Keyboard. 

− Use sentence-style capitalization.  
• Write the label as a phrase, not as a sentence, and use no ending 

punctuation. Exception: If a radio button label also labels a subordinate 
control that follows it, end the label with a colon. 

• Use parallel phrasing, and try to keep the length about the same for all 
labels.  

• Focus the label text on the differences among the options. If all the options 
have the same introductory text, move that text to the group label. 

• Use positive phrasing. For example, use do instead of do not, and print 
instead of do not print. 

• Describe just the option with the label. Keep labels brief so it’s easy to 
refer to them in messages and documentation. If the option requires further 
explanation, provide the explanation in a static text control using 
complete sentences and ending punctuation.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
53 

Note: Adding an explanation to one radio button doesn’t mean 
that you have to provide explanations for all the radio 
buttons. Provide the relevant information in the label if you 
can, and use explanations only when necessary. Don’t 
merely restate the label for consistency. 

• If an option is strongly recommended, add “(recommended)” to the label. Be 
sure to add to the control label, not the supplemental notes.  

• If an option is intended only for advanced users, add “(advanced)” to the 
label. Be sure to add to the control label, not the supplemental notes.  

• If you must use multiline labels, align the top of the label with the radio button. 

• Don’t use a subordinate control, the values it contains, or its units label to create a 
sentence or phrase. Such a design isn’t localizable because sentence structure 
varies with language. 

3.13.13.2 Radio Button Group Labels 
• Use the group label to explain the purpose of the group, not how to make the 

selection. Assume that users know how to use radio buttons. For example, don’t 
say “Select one of the following choices”. 

• All radio button groups need labels. Write the label as a word or phrase, not as a 
sentence, ending with a colon using static text or a group box. Exception: Omit 
the label if it is merely a restatement of a dialog box’s main instruction. In this 
case, the main instruction takes the colon (unless it’s a question) and access key 
(if there is one) 

3.13.14 Search Boxes 

3.13.14.1 Guidelines 

3.13.14.1.1 Location 
• For application windows, locate Search in the upper-right corner. 

• For popup windows, locate Search wherever is most sensible and convenient. 
Exception: If Search is usually the first thing users do in a window (the primary 
entry point), center it at the top of the window. 

3.13.14.1.2 Look 
Use the standard search button graphics. There are three versions:  

• Magnifying glass search symbol only (no button on hover). Use for Instant 
search. 
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• Magnifying glass search symbol with button. Use when button needs to be 
clicked to start the search. 

• Magnifying glass search symbol with button and drop-down arrow. Add a 
drop-down arrow when users can change the scope or when other settings are 
available. For Instant search, use a drop-down arrow only, and show a button on 
hover. 

For regular search, show the drop-down arrow on a button. 

• Don’t use a label; use an optional prompt instead. If users tend to assume that the 
search is a generic file search, use the prompt to  give the scope. Otherwise, use 
Type to search or a similar, concise phrase.  

3.13.14.1.3 Interaction 
• On input focus, automatically select any previously entered text. Doing so 

allows users to enter a new search by typing, or to modify the previous search by 
positioning the caret using the arrow keys.  

− Assign the keyboard shortcut for the Search box to be Ctrl-E. For more 
information about keyboard shortcut assignments, see Windows Keyboard 
Shortcut Keys. 

3.13.14.1.4 Functionality 
• Support Instant search whenever possible. Provide both regular and Instant 

searches if there are scenarios where regular searching is worth the extra wait 
time. 

• Regular searches must return relevant results within five seconds and Instant 
search must return results within two seconds. After this point, Search may 
continue to fill in less relevant results over time as long as the program is 
responsive and users can perform other tasks. You may have to index your search 
data to ensure this responsiveness. 

• If you provide both regular and Instant search modes, the Instant search results 
must be a subset of the regular search results. 

• All searching is prefix-based (no substring or suffix searching). The use of trailing 
wildcard characters is optional and doesn’t affect the results. If multiple words are 
entered, use OR searching. 

• A successful search adds a virtual page with the search results to the Back stack 
and Address bar. Multiple searches result in a single virtual page, so clicking 
Back always returns the original page. 

• If necessary for scale, rank the search results by relevance. 

• A blank search returns the original page. 
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3.13.14.2 Recommended Sizing And Spacing 

 
Figure 3-9: Recommended sizing and spacing of search fields 

3.13.15 Text 
• For the wording of the prompt in the Search box, either make it an instruction (for 

example, Type to search) or indicate the scope of the search (for example, Search 
for pictures). 

• Prompt text should be brief. A single word or short phrase should suffice. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation or ellipsis. 

3.13.16 Sliders 

3.13.16.1 Guidelines 
• Use a natural orientation. For example, if the slider represents a real-world 

value that is normally shown vertically (such as temperature), use a vertical 
orientation. 

• Orient the slider to reflect the culture of your users. For example, Western 
cultures read from left to right, so for horizontal sliders, put the low end of the 
range on the left and the high end on the right. For cultures that read from right to 
left, do the opposite. 

• Size the control so that a user can easily set the desired value. For settings 
with discrete values, make sure the user can easily select any value using the 
mouse. 

• Consider using a nonlinear scale if the range of values is large and users will 
likely select values at one end of the range. For example, time value might be 1 
minute, 1 hour, 1 day, or 1 month. 

• Whenever practical, give immediate feedback while or after a user makes a 
selection. For example, the Microsoft® Windows® volume control beeps to 
indicate the resulting audio volume. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
56 

• Use labels to show the range of values. Exception: If the slider is vertically 
oriented and the top label is Maximum, High, More, or equivalent, you can omit 
the other labels since the meaning is clear.  

• Use tick marks when users need to know the approximate value of the setting. 

• Use tick marks and a value label when users need to know the exact value of the 
setting they choose. Always use a value label if a user needs to know the units to 
make sense of the setting.  

• For horizontally-oriented sliders, place tick marks under the slider. For vertically-
oriented sliders, place tick marks to the right for Western cultures; for cultures 
that read from right to left, do the opposite. 

• Place the value label completely under the slider control so that the relationship is 
clear. Incorrect:  

• When disabling a slider, also disable any associated labels. 

• Don’t use both a slider and a numeric text box for the same setting. Use only the 
more appropriate control. Exception: Use both controls when the user needs both 
immediate feedback and the ability to set an exact numeric value. 

• Don’t use a slider as a progress indicator.  

• Don’t change the size of the slider indicator from the default size.  

• Don’t label every tick mark. 

3.13.16.2 Recommended Sizing And Spacing 

 
Figure 3-10: Recommended sizing and spacing of slider bars 

3.13.17 Labels 

3.13.17.1 Slider Labels 
• Use a static text label ending with a colon, or a group box label with no ending 

punctuation. 

• Assign a unique access key to each label. For assignment guidelines, see 
Keyboard. 

• Use sentence-style capitalization. 

• Position the slider label either to the left of the slider, or above and aligned with 
the left edge of the slider (or its left range identifier, if present).  
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3.13.17.2 Range Labels 
• Label the two ends of the slider range, unless a vertical orientation makes this 

unnecessary. 

• Use only word, if possible, for each label. 

• Don’t use ending punctuation. 

• Make sure these labels are descriptive and parallel. Examples: 
Maximum/Minimum, More/Less, Low/High, Soft/Loud. 

• Use sentence-style capitalization. 

• Don’t assign access keys. 

3.13.17.3 Value Labels 
• If you need a value label, display it below the slider. 

• Center the text relative to the control and include the units (such as pixels).  

3.14 Spin Controls (Page 168) 

3.14.1 Is This The Right Control? 
To decide, consider these questions: 

• Is the control used for numeric input? If not, use another control, such as a 
drop-down list or slider, to select from a fixed set of values. Use scroll bars for 
scrolling. 

• Do users think of the value as a relative quantity, not a numeric value? If so, 
use a slider instead. Use spin boxes only for exact, known numeric values. For 
example, users think about setting their audio volume to low or medium—not 
about setting the value to 2 or 5. 

• Is the control paired with a text box? If not, don’t use. Spin controls shouldn’t 
be used alone or with other types of controls besides a text box.  

• Are contiguous value ranges valid? If not, use a drop-down list of valid values instead.  

• Is using the spin control practical? Using a spin control is practical for:  

− Entering a small number, typically under 100. 
− Making small changes to an existing or default value. 
− While spin controls can be used for any numeric input, they are inefficient in 

situations other than these.  
• Is the spin control helpful? Is the control used in a context where users are likely 

to be using their mouse? If not, consider a spin control optional. 
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• Are the sibling controls drop-down lists? If there are other drop-down lists, 
consider using a drop-down list for consistency.  

• Are touch or pen users a primary target? If so, consider using a drop-down list 
instead. The arrow buttons in a spin control are too small to be used efficiently 
with touch or a pen. 

If a slider or a spin box is possible, use a spin box if: 

• Screen space is tight. 

• A user is likely to prefer using the keyboard. 

Use a slider if: 

• Users will benefit from instant feedback.  

3.14.2 Guidelines 

3.14.2.1 General 
Use spin controls whenever they are practical and helpful. Exception: To be 
consistent with other text boxes on the same user interface (UI), use spin controls 
even if they aren’t always practical.  

• Always make a spin control the “buddy” of the text box. Doing so places the spin 
control inside the text box. Correct: Incorrect: In the  

• Disable a spin control when its associated text box is disabled. The spin 
control is a supplemental input method—never the only input method. 

3.14.2.2 Values 
• Define the top button to increase the value by one unit and the bottom button 

to decrease by one unit. Typically, the unit is one, but it should be the smallest 
common change in value. Ideally, the spin control should cover all valid values, 
and it should be more convenient than typing in the text.  

− Use the spin control to limit input to valid values. Using a spin control 
should never result in an incorrect value. 
• At the end of a range of valid values, restart the range. The spin 

control metaphor is that the user is spinning a wheel of values, hence this 
wheel-like behavior. Exception: Don’t restart the range if the resulting 
value is certain to be incorrect.  

− Use text instead of special numeric values. Allow users to spin to these 
special values instead of having to know them and type them in.  

− If the value has delimiters, the associated text box should have multiple 
input focus points. Doing so allows the numeric segments to be manipulated 
individually.  
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− If the value has units, use the spin control to change those units as well.  

3.14.2.3 Labels 
Apply the text box labeling guidelines to label the associated text box. Spin controls 
are never labeled directly. 

3.14.2.4 Status Bars 
• Is the status relevant when users are actively using other programs? If so, use a 

notification area icon. 

• Does the status item need to display notifications? If so, you must use a 
notification area icon. 

• Is the window a primary window? If not, don’t use a status bar. Dialog boxes, 
wizards, control panels, and property sheets shouldn’t have status bars. 

• Is the information primarily status? If not, don’t use a status bar. Status bars must 
not be used as a secondary menu bar or toolbar. 

• Does the information explain how to use the selected control? If so, display the 
information next to the associated control using a supplemental explanation or 
instruction label instead. 

• Is the status useful and relevant? That is, are users likely to change their behavior 
as a result of this information? If not, either don’t display the status, or put it in a 
log file. 

• Is the status critical? Is immediate action required? If so, display the information 
in a form that demands attention and cannot be easily ignored, such as a dialog 
box or within the primary window itself 

• Is the program intended primarily for novice users? Inexperienced users are 
generally unaware of status bars, so reconsider the use of status bars in this case. 

• Making sure that the status information is useful and relevant. If not, don’t 
provide a status bar at all. 

• Not using status bars for crucial information. Users should never have to know 
what is in the status bar. If users must see it, don’t put it in a status bar. 

If you do only one thing:. Make sure that the status bar information is useful and 
relevant but not crucial. 

3.14.3 Guidelines 

3.14.3.1 General 
• Consider providing a View Status Bar command if only some users will need the 

status bar information. Hide the status bar by default if most users won’t need it. 
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• Don’t use the status bar to explain menu bar items. This help pattern isn’t 
discoverable. 

3.14.3.2 Presentation 
• Disable modal status that doesn’t apply. Modal status includes keyboard and 

document states. 

• Remove non-modal status that doesn’t apply. 

• Present status information in the following order: current window status; progress; 
and contextual information. 

3.15 Icons (Page 174) 
• Choose easily recognizable status icon designs. Prefer icons with unique outlines 

over square or rectangular shaped icons. 

• Use swaths of pure red, yellow, and green only to communicate status 
information. Otherwise, such icons are confusing.  

− Use icon variations or overlays to indicate status or status changes. Use icon 
variations to show changes in quantities or strengths. For other types of status, 
use these standard overlays:  

 
Figure 3-11: Displaying icons 
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− Don’t change status too frequently. Status bar icons shouldn’t appear noisy, 
unstable, or demand attention. The eye is sensitive to changes in the peripheral 
field of vision, so status changes need to be subtle. 

− For icons that provide important status information, prefer in-place labels. 
− Unlabeled status bar icons should have tooltips. 

3.15.1 Interaction 
Make a status bar area interactive to allow users direct access to related commands 
and options. Use a control that looks and behaves like a menu button or a split button. 
These status bar areas must have a drop-down arrow to indicate that they are 
clickable. 

Display the menu on left-click on mouse down, not mouse up. 

Don’t support right-clicking or double-clicking. Users don’t expect such interactions 
in a status bar, so they aren’t likely to attempt them. 

Display tooltips on hover.  

3.15.2 Text 
• Generally, use concise labels. Cut any text that can be eliminated. 

• Prefer sentence fragments, without ending punctuation. Use full sentences (with 
ending punctuation) only when sentence fragments aren’t significantly shorter. 

• For optional progress labels, indicate what the operation is doing with a label that 
starts with a verb (gerund form) and ends with an ellipsis. For example: 
“Copying...”. This label may change dynamically if the operation has multiple 
steps or is processing multiple objects. 

• Don’t use color, bold, or italic to emphasize status bar text. 

• For tooltip phrasing guidelines, see Tooltips and Infotips. 

3.16 Tabs (Page 176) 
• Can the controls comfortably fit on a single, reasonably sized page? If so, use a 

single page. 

• Is there only one tab? If so, use a single page. 

• Are the tabs related to each other in some obvious way? If not, consider splitting 
the information into separate windows of related information. 

• If used for settings, are settings on different pages completely independent? Will 
changing a setting on one page affect settings on other pages? If they’re not 
independent, use task pages or a wizard instead. 
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• Are the tabs mostly peers of each other, or is there a hierarchical relationship? If 
hierarchical, consider using progressive disclosure or child dialog boxes to show 
related information. 

• Are the tabs used to display steps within a task? You can use “tabs” to display 
steps within a task only if they are presented to look like steps, and there is an 
obvious, alternative way to get to the text step, such as a Next button. Otherwise, 
if the steps are required, use pages in a page flow or a wizard. If the steps are 
optional, display the optional steps using modal dialog boxes instead. 

• Are the tabs different views of the same data? If so, consider using a split button 
or drop-down list to change views. While tabs can be used effectively for 
changing views, the alternatives are more lightweight. 

3.17 Guidelines (Page 178) 

3.17.1.1 General 
Use horizontal tabs if:  

• The window has seven or fewer tabs. 

• All the tabs fit on one row, even when the user interface (UI) is localized. 
Use vertical tabs if:  

• The property window has eight or more tabs. 

• Using horizontal tabs would require more than one row.  

− Don’t nest tabs or combine horizontal tabs with vertical tabs. Instead, 
reduce the number of tabs, use only vertical tabs, or use another control such 
as a drop-down list. 

− Don’t scroll horizontal tabs. Horizontal scrolling isn’t readily discoverable. 
You may scroll vertical tabs, however.  

− For tabs on a resizable window or pane, put a scrollbar, when needed, on the 
page, not the window or pane. The tabs should always be visible and not scroll 
out of view.  

− Make sure the tabs look like tabs and not another type of control.  

3.17.1.2 Interaction 
• When controls apply only to a page, place them within the border of the tabbed 

page. 

• When controls apply to the entire window, place them outside the tabbed page. 
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• Don’t assign effects to changing tabs. Tabs must be accessible in any order. 
Changing the current tab should never have side effects, apply settings, or result 
in an error message. 

• Don’t assign a special meaning to the last tab selected. Tab selection is for 
navigation—the user’s last tab selection isn’t a setting. 

• Don’t make the settings on a page dependent on settings on other pages. Put any 
dependent settings on the same page instead. 

• If users are likely to start with the last tab displayed, make the tab persist and 
select it by default. Make the settings persist on a per-window, per-user basis. 
Otherwise, select the first page by default.  

3.17.1.3 Icons 
• Don’t put icons on tabs. Icons usually add unnecessary visual clutter, consume 

screen space, and often don’t improve user comprehension. Only add icons that 
aid in comprehension, such as standard symbols.  

− Exception: You can use clearly recognizable icons if there might be 
insufficient space to display meaningful labels: 

− Don’t use product logos for tab graphics. Tabs aren’t for branding. 

3.17.2 Dynamic Window Surface Pattern 
• Don’t use scroll bars on tab pages. Tabs function similarly to scroll bars—to 

increase the effective area of a window. One mechanism should be sufficient. 

• Use concise tab labels. Use one or two words that clearly describe the content of 
the page. Longer labels consume screen space, especially when the labels are 
localized. 

• Use specific, meaningful tab labels. Avoid generic tab labels that could apply to 
any tab, such as General, Advanced, or Settings. 

• If a tab doesn’t apply to the current context and users don’t expect it to, 
remove it. Doing so simplifies the UI and users won’t miss it.  

− If a tab doesn’t apply to the current context and users might expect it to: 
Display the tab. 

− Disable the controls on the page. 
− Include text explaining why the controls are disabled. 
− Don’t disable the tab, because doing so isn’t self-explanatory and prohibits 

exploration. Users looking for a specific value would be forced to look on all 
other tabs.  

3.17.2.1 Multiple Views And Documents Patterns 
• Use the view or document names on tab labels. 
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• Avoid excessively long tab names. If necessary, either have a maximum name 
size or truncate the displayed tab label using ellipses. Longer labels consume 
screen space, especially when the labels are localized. 

• If a tab doesn’t apply to the current context, remove the tab. 

3.17.2.2 Exclusive Options Pattern 
Don’t use this pattern! Use radio buttons or a drop-down list instead.  

3.17.3 Labels 
• Label tabs based on their pattern. Use nouns rather than verbs, without ending 

punctuation. See the preceding pattern guidelines for more information. 

• Use sentence-style capitalization. 

• Don’t assign an access key. Tabs are accessible through their shortcut keys 
(Ctrl+Tab, Ctrl+Shift+Tab, Ctrl+PgUp, Ctrl+PgDn). There is a shortage of good 
access key choices, so not assigning access keys to tabs makes it easier to assign 
them to other controls. 

3.18 Text Boxes (Page 185) 
• Is it practical to enumerate all the valid values efficiently? If so, consider a single-

selection list, list view, drop-down list, editable drop-down list, or slider instead. 

• Is the valid data completely unconstrained? Or is the valid data constrained only 
by format (constrained length or character types)? If so, use a text box. 

• Does the value represent a data type that has a specialized common control? 
Examples include date, time, or IPv4 or IPv6 address. If so, use the appropriate 
control, such as a date control rather than a text box. 

• If the data is numeric: Do users perceive the setting as a relative quantity? If so, 
use a slider. 

• Would the user benefit from instant feedback on the effect of setting changes? If 
so, use a slider, possibly along with a text box. For example, users can easily 
choose a color using a slider because they can immediately see the effect of 
changes to hue, saturation, or luminosity values. 

3.18.1 Guidelines 

3.18.1.1 General 
• When disabling a text box, also disable any associated labels, instruction labels, 

spin controls, and command buttons. 
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• Use auto-complete to help users enter data that is likely to be used repeatedly. 
Examples include user names, addresses, and file names. However, don’t use 
auto-complete for text boxes that may contain sensitive information, such as 
passwords, PINs, credit card numbers, or medical information. 

• Don’t make users scroll unnecessarily. If you expect data to be larger than the text 
box and you can readily make the text box larger without harming the layout, size 
the box to eliminate the need for scrolling.  

− Scroll bars: Don’t put horizontal scroll bars on multiline text boxes. Use 
vertical scrolling and line wrapping instead. 

− Don’t put any scroll bars on single-line text boxes. 
• For numeric input, you may use a spin control. For textual input, use a 

drop-down list or editable drop-down list instead. 

• Don’t use the auto-exit feature except for formatted data input. The 
automatic shift of focus can surprise users. 

3.18.2 Editable Text Boxes 
• Limit the length of the input text when you can. For example, if the valid input 

is a number between 0 and 999, use a numeric text box that is limited to three 
characters. All parts of text boxes that use formatted data input must have a short, 
fixed length. 

• Be flexible with data formats. If users are likely to enter text using a wide 
variety of formats, try to handle all the most common ones. For example, many 
names, numbers, and identifiers can be entered with optional spaces and 
punctuation, and the capitalization often doesn’t matter. 

• If you can’t handle the likely formats, require a specific format by using formatted 
data input or indicate the valid formats in the label.  

• Don’t use the formatted data input pattern if users are more likely to paste in long, 
complex data. Rather, reserve the formatted data input pattern for situations where 
users are more likely to type the data.  

• If users are more likely going to reenter the entire value, select all the text on 
input focus. If users are more likely to edit, place the caret at the end of the text.  

• Always use a multiline text box if new-line characters are valid input. 

• When the text box is for a file or path, always provide a Browse button. 

3.18.3 Numeric Text Boxes 
• Choose the most convenient unit and label the units. For example, consider 

using milliliters instead of liters (or vice versa), percentages instead of direct 
values (or vice versa), and so on.  
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• Use a spin control whenever it is helpful. However, sometimes spin controls 
aren’t practical, such as when users need to enter many large numbers. Use spin 
controls when:  

− The input is likely to be a small number, typically under 100. 
− Users are likely to make a small change to an existing number. 
− Users are more likely to be using the mouse than the keyboard. 

• Right-align numeric text whenever:  

− There is more than one numeric text box.  
− The text boxes are vertically aligned.  
− Users are likely to add or compare the values. 

• Always right-align monetary values. 

• Don’t assign special meanings to specific numeric values, even if those 
special meanings are used internally by your application. Instead, use 
check boxes or radio buttons for an explicit user selection.  

3.18.4 Password and PIN Input 
• Always use the password common control instead of creating your own. 

Passwords and PINs require special treatment to be handled securely.  

3.18.4.1 Data Output 
• Don’t use a border for single-line, read-only text boxes. The border is a visual 

clue that the text is editable. 

• Don’t disable single-line, read-only text boxes. This prevents users from selecting 
and copying the text to the clipboard. It also prevents users from scrolling the data 
if it exceeds the size of its boundaries. 

• Don’t set a tab stop on single-line, read-only text box unless the user is likely to 
need to scroll or copy the text.  

3.18.5 Input Validation And Error Handling 
• If the user enters a character that isn’t valid, ignore the character and display an 

input problem balloon that explains the valid characters  

− If the input data has a value or format that isn’t valid, display an input 
problem balloon when the text box loses input focus. 

− If the input data is inconsistent with other controls on the window, give an 
error message when the entire input is complete, such as when users click OK 
for a modal dialog box. 
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Don’t clear invalid input data unless users aren’t able to correct errors easily. Doing 
so allows users to correct mistakes without starting over. For example, you should 
clear incorrect passwords and PINs because users can’t correct them easily. 

3.19 Prompts (Page 190) 
Use a prompt when: 

• Screen space is at such a premium that using a label or instruction is undesirable, 
such as on a toolbar. 

• The prompt is primarily for identifying the purpose of the text box in a compact 
way. It must not be crucial information that the user needs to see while using the 
text box. 

• Don’t use prompts just to direct users to type something or to click buttons. For 
example, don’t write prompt text that says Enter a filename and then click Send. 

• Draw the prompt text in italic gray and the actual input text in normal black. The 
prompt text must not be confused with real text. 

• Keep the prompt text concise. You can use fragments instead of full sentences. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation or ellipsis. 

• The prompt text should not be editable and should disappear once users click in or 
tab into the text box. Exception: If the text box has default input focus, the 
prompt is displayed, and it disappears once the user starts typing. 

− The prompt text is restored if the text box is still empty when it loses input 
focus. 

3.19.1 Recommended Sizing And Spacing 

 
Figure 3-12: Recommended sizing and spacing of prompts 

• Choose a width appropriate for the longest valid data. In most situations, users 
shouldn’t have to scroll the longest likely string they’ll enter or view. 

• Include an additional 30% (up to 200% for shorter text) for any text (but not 
numbers) that will be localized. 
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• If the expected input has no particular size, choose a width that is consistent 
with the other text boxes or controls on the window. 

• Size multiline text boxes to display an integral number of lines of text.  

3.19.2 Labels 

3.19.2.1 Text Box Labels 
• All text boxes need labels. Write the label as a word or phrase, not as a sentence, 

ending with a colon, and using static text.  
Exceptions: 

− Text boxes with prompts located where space is at a premium. 
− For labeling, a group of text boxes used for formatted data input should be 

treated as a single text box. 
− If a text box is subordinate to a radio button or check box, and is introduced 

by its label ending with a colon, don’t put an additional label on the text box. 
− Omit control labels that restate the main instruction. In this case, the main 

instruction takes the colon (unless it’s a question) and access key.  
• Assign a unique access key. For access key assignment guidelines, see 

Keyboard. 

• Use sentence-style capitalization. 

• Position the label either to the left of or above the text box, and align the 
label with the left edge of the text box. If the label is on the left, vertically 
align the label text with the text box text.  

• You may specify units (for example, seconds or connections) in 
parentheses after the label.  

• If a text box accepts an arbitrarily small maximum number of characters, 
you can state the maximum input in the label. The text box width should 
also suggest the maximum size.  

• Don’t make the content of the text box (or its units label) part of a 
sentence, because this is not localizable. 

• If the text box can be used to enter several items, make it clear how to 
separate the items in the label.  

3.19.2.2 Instruction Labels 
If you need to add instructional text about a text box, add it above the label.  

• Use complete sentences with ending punctuation.  

• Use sentence-style capitalization. 
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• Additional information that is helpful but not necessary should be kept short. 
Place this information either in parentheses between the label and colon, or 
without parentheses below the text box.  

3.19.2.3 Prompt Labels 
• Keep the prompt text concise. You can use fragments instead of full sentences. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation or ellipsis. 

• If the prompt directs users to enter information that will be acted upon by a button 
next to the text box, simply place the button next to the text box. Don’t use the 
prompt to direct users to click the button (for example, don’t write prompt text 
that says, Drag a file and then click Send). 

3.20 Tooltips and Infotips (Page 194) 
Developers: There is no infotip control; infotips are implemented with the tooltip 
control. The distinction is in usage, not implementation. 

• Is the information displayed based on pointer hover? If not, use another 
control. Display tips only as the result of user interaction—never display them on 
their own. By contrast, balloons can display on their own (as they do with 
notifications), so they have a tail that identifies their source. 

• Does a control have a text label? If not, use a tooltip to provide the label. Note 
that most controls should be labeled and therefore not have tooltips. Toolbar 
controls and command buttons with graphic labels should have tooltips.  

− Does an object benefit from a supplemental description or further 
information? If so, use an infotip. However, the text must be supplemental—
that is, not essential to the primary tasks. If it is essential, put it directly in the 
UI so that users don’t have to discover or hunt for it. 

− Is the supplemental information an error, warning, or status? If so, use 
another UI element, such as a balloon, error message, or status bar. 
Notification area icon infotips are an exception because they can be used to 
show status information. 

− Do users need to interact with the tip? If so, use another control, such as a 
balloon. Users can’t interact with tips because moving the mouse makes them 
disappear. 

− Do users need to print the supplemental information? If so, use another 
control, such as a static comment field. However, you can also use infotips to 
provide more direct access to this information.  

− Is the context such that users might find the tips annoying or distracting? 
If so, consider using another solution—including doing nothing at all. If you 
do use tips in such contexts, allow users to turn them off. 
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3.20.1 Appropriate Timeouts 
The appropriate automatic display and removal of tips is crucial to the goal of users 
maintaining control of their UI environment. Tips have three timeout values: 

• Initial. The time the pointer must remain stationary for the tip to appear. The 
default time is 0.5 seconds. 

• Reshow. The time the pointer must remain stationary as the pointer moves from 
one target to another. The default time is 0.1 seconds. 

• Removal. The time after which the tip is automatically removed. The default time 
is 5 seconds. 

If you do only one thing: Design discoverable tips that display concise, helpful, static, 
supplemental information in the appropriate place at the appropriate time. 

3.21 Guidelines (Page 200) 

3.21.1 Timeouts 
Use the default initial and reshow timeouts. Exception: Thumbnails that aren’t 
redundant and displayed on the side of their associated object can be shown 
immediately (without any delay). However, use the default initial timeout for 
redundant thumbnails (such as a large thumbnail tip for a small graphic object) or 
thumbnails that cover their associated object.  

• For tooltips, use the default five-second tip removal timeout. 

• For infotips, turn off the tip removal timeout. Developers: Since you can’t 
technically turn off the removal timeout, set it to its largest value. 

• For accessibility, if you need to set the timeout values to something other than the 
maximum value, make them multiples of the SPI_GETMOUSEHOVERTIME 
and SPI_GETMESSAGEDURATION system parameters instead of using fixed 
times. Doing so adjusts the timeouts to the speed of the user. 

3.21.2 Placement 
Avoid covering the object the user is about to view or interact with. Always place the 
tip on the side of the object, even if that requires separation between the pointer and 
the tip. Some separation isn’t a problem as long as the relationship between the object 
and its tip is clear. Exception: Full name tooltips used in lists and trees. 

• For collections of items, avoid covering the next object that the user is likely 
to view or interact with. For horizontally arranged items, avoid placing tips to 
the right; for vertically arranged items, avoid placing tips below.  
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• For potentially distracting (often large) tips, make sure that the information 
is helpful for most users. If that’s not the case, either make the distracting tips 
optional or even eliminate them. Otherwise, most users will have to move the 
pointer away from the target object to get rid of the tip.  

3.21.3 Tooltips 
• Use tooltips to provide labels for unlabeled controls. Controls that commonly 

have tooltips are toolbar buttons, graphic buttons, and progressive disclosure 
controls. Controls with prompts are considered labeled, such as text boxes and 
combo boxes. All other controls should have explicit labels.  

• Use sentence fragments without ending punctuation. 

− Use sentence-style capitalization. Exception: This guideline is new for 
Windows Vista®. For legacy applications, you may use title-style 
capitalization if necessary to avoid mixing capitalization styles. 

− Add an ellipsis if the label is for a command that needs additional 
information. 

− As with normal labels, keep tooltips brief—typically five words or less—but 
prefer specific labels over vague ones.  
• Tooltips may also provide more detail for labeled toolbar buttons if doing 

so is helpful. Don’t just repeat or give a wordy restatement of what is 
already in the label.  

• You don’t have to give labeled controls tooltips simply for the sake of 
consistency  

• Whenever appropriate, make tooltips more helpful by providing keyboard 
shortcuts and default values. Put this additional information in 
parentheses. Doing so makes tooltips helpful for labeled controls even 
when they otherwise just repeat the label. Don’t consider this additional 
text when evaluating the conciseness of a tooltip.  

3.21.4 Infotips 
• For infotips in nonstandard places, favor consistency over helpfulness to 

improve discoverability. Provide tips for all objects for which users are likely to 
want supplemental information, even if a few infotips might be obvious. Doing so 
avoids having users wait for an infotip that will never come. Exception: If only a 
few objects have helpful infotips, don’t use infotips at all. Rather, use self-
explanatory control labels or in-place supplemental text instead. 

• Use full sentences with ending punctuation. Exception: Notification area icon 
infotips don’t use ending punctuation.  

• Use sentence-style capitalization. 

• Use present tense, not future. 
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• Use parallel grammatical constructions. Parallelism requires that words and 
phrases that have the same function have the same form. Exception: For the full 
name infotip pattern, the infotip text exactly matches the phrasing, capitalization, 
and punctuation of the underlying control. 

• Avoid large infotips. Large infotips are difficult to read, and difficult to position 
without interfering with the underlying object. 

• Format infotips to make their content easier to read and scan. Large blocks of 
unformatted text can be difficult to read.  

3.21.4.1 Start Menu Infotips 
• Use Start menu infotips to describe the item concisely and list the primary tasks 

that users can perform with the item. 

• Be helpful. Focus on what users can do. Don’t just repeat the item name or even 
use it in the description at all. 

• Be specific. Avoid generic verbs and catch-all phrases like and other tasks. If the 
information is important, list it specifically; otherwise, assume that users 
understand that not everything is listed in the infotips. 

• Be concise. Use 25 words or less. Longer infotips discourage reading. 

• Start with a present-tense, imperative verb such as create, edit, show, and send. 
Prefer specific verbs over generic verbs such as manage and open, which really 
apply to most Start menu items. Get right to the point.  

− Don’t use language that sounds like marketing.  
− Because these infotips are indexed for the Start menu search box, describe 

your program’s important tasks using terms for which users are most likely to 
search. Consider using keywords and common synonymsUse sentence-style 
capitalization. 

• Developers: The Start menu infotip text comes from the item’s Comment field. 

3.21.4.2 Quick Launch Tooltips 
• Use a tooltip with the format: Launch (full program name) 

• Don’t use ending punctuation. 

• Don’t use additional text to describe the program or what it does. Because users 
choose the programs displayed in the Quick Launch bar, they already know their 
purpose. 

3.21.4.3 Control Panel Infotips 
• Use Control Panel infotips to concisely describe the Control Panel tasks and the 

hardware and software configured. 
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• Control Panel names and icons must have infotips. Individual tasks don’t have 
tooltips. 

• Be helpful. Focus on what users can do. Don’t just repeat the Control Panel item 
name or even use it in the description at all. 

• Be specific. Avoid generic verbs and catch-all phrases like and other hardware. If 
the information is important, list it specifically; otherwise, assume that users 
understand that not everything is listed in the infotips.  

− Be concise. Use 25 words or less. Longer infotips discourage reading.  
− Start with a present-tense, imperative verb.  
− Get right to the point. Don’t use language that applies to any Control Panel, 

such as “Use to view and configure settings for the appearance and 
functionality of your...” or “Provides options for you to...” 

− Don’t use language that sounds like marketing.  
− Because these infotips are indexed for the Control Panel search box, describe 

items using terms for which users are most likely to search. Consider using 
common synonyms for popular tasks and objects.  

− If a Control Panel item is likely to be confused with others, explain how it is 
different in the infotip.  

3.21.5 Icons 
Unlike previous versions of Windows, Windows Vista allows tips to have icons. 

• For tooltips, don’t use icons. 

• For infotips, use icons only if they aid in recognition or comprehension, or 
provide context. Most infotips shouldn’t have icons.  

• The icon must use the Aero-style and have an unobtrusive appearance. 

3.22 Tree Views (Page 208) 
• Is the data hierarchical? If not, use another control. 

• Does the hierarchy have at least three levels (not including the root)? If not, 
consider alternatives such as list view groups, tabs, drop-down lists, or 
expandable headings. 

• Do the items have auxiliary data? If so, consider using a list view in the Details 
view mode to take full advantage of the auxiliary data. 

• Does the lower-level data relate to independent subtasks? If so, consider 
displaying the information in an associated control or in a separate window 
(displayed using command buttons or links). 
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• Are the target users advanced? Advanced users are more proficient at using 
trees. If your application is aimed at novice users, avoid using tree views. 

• Do the items have a single, natural, hierarchical categorization that’s 
familiar to most users? If so, the data is ideal for a tree view. If there is a need 
for multiple views or sorting, use a list view instead. 

• Do users need to see the lower-level data in some but not all scenarios, or 
some but not all of the time? If so, the data is ideal for a tree view. 

3.22.1 Guidelines 

3.22.1.1 Presentation 
• Within a container, sort the items in a logical order. Sort names in alphabetical 

order, numbers in numeric order, and dates in chronological order. 

• Use the Always Show Selection attribute so that users can readily determine the 
selected item, even when the control doesn’t have input focus. 

• If the tree is acting as a table of contents, use the Single Expand attribute to 
simplify the management of the tree. This way, only the relevant portion of the 
tree is expanded. 

• Avoid presenting empty trees. If a user creates a tree, initialize the tree with 
instructions or example items that users might need.  

− Don’t make the container nodes collapsible if users have no reason to collapse 
them. Doing so adds unnecessary complexity. 

− If load performance is a problem, display only the first and second level 
containers of the tree by default. You can then load additional data on demand 
when a user expands branches in the tree. 

− If users expand or collapse a container, make that state persist so it takes 
effect the next time the tree view is displayed, unless users are likely to prefer 
starting in the default state. Persistence should be on a per-tree view, per-user 
basis. 

− If high-level containers have similar contents, consider using visual clues to 
differentiate them.  

3.22.1.2 Interaction 
• Consider providing double-click behavior. Double-clicking should have the 

same effect as selecting an item and performing its default command. 

• Make double-click behavior redundant. There should always be a command 
button or context menu command that has the same effect. 

• If an item requires further explanation, provide the explanation in an infotip.  
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− Provide context menus of relevant commands. Such commands include 
Cut, Copy, Paste, Remove or Delete, Rename, and Properties. 

− When disabling a tree view, also disable any associated labels and 
command buttons. 

3.22.2 Tree Organization 
• Use a natural hierarchical structure that’s familiar to most users. 

• If you can’t use such a structure, try to balance discoverability with a predictable 
user model that minimizes confusion. 

− To safely improve discoverability, place an item in multiple containers 
when: The item isn’t related to any other similar items (so users don’t become 
confused by incorrect associations). 

− There are only a few of such redundantly located items (so the tree doesn’t 
become bloated). 

− Use the simplest hierarchical structure that works well. To do so: Place the 
most commonly accessed objects in the first two levels of the tree (not 
counting the root node), and place less commonly accessed objects farther 
down the hierarchy. 

− Eliminate unnecessary or combine redundant intermediate-level containers. 
− Prefer breadth over depth. Ideally, a tree should have no more than four 

levels and the most commonly accessed objects should appear in the first two 
levels. 

− Determine if you really need a root node. Provide a root node if users need 
the ability to perform commands on the entire tree (possibly using a context 
menu on the root node). Otherwise, the tree is simpler and easier to use 
without it.  

• If the tree has alternative access methods such as a word search or an index, 
optimize the tree for browsing by focusing on the most useful content. With 
alternative access methods, the tree’s content doesn’t have to be comprehensive. 
Simplifying the tree makes it easier for users to find the most useful content. 

3.22.2.1 Check Box Tree Views 
• Display the number of selected items below the list, especially if users are 

likely to select several items. This feedback helps users confirm that their 
selection is correct.  

• If there are potentially many items and selecting or clearing all of them is likely, 
add Select all and Clear all command buttons. 

• Use mixed-state check boxes to indicate partial selection of the items in a 
container.  
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3.22.2.2 Recommended Sizing And Spacing 

 
Figure 3-13: Recommended sizing and spacing of check box trees 

• Choose a tree view width that avoids the need for horizontal scrolling for 
most items when the tree is fully expanded. 

• Include an additional 30% to accommodate localization. 

• Choose a tree view height that eliminates unnecessary vertical scrolling. 
Consider making a tree view slightly longer (or even more so if there is available 
space) if doing so reduces the need for a vertical scroll bar.  

• If users benefit from making the tree view larger, make the tree view and its 
parent window resizable. Doing so allows users to adjust the tree view size as 
needed. 

3.22.3 Labels 

3.22.3.1 Control Labels 
• All tree views need labels. Write the label as a word or phrase, not as a sentence, 

ending with a colon, and using static text. 

• Assign a unique access key. For assignment guidelines, see Keyboard. 

• Use sentence-style capitalization. 

• Position the label above the control, and align the label with the left edge of the 
control. 

• For multiple-selection  

3.22.4 Data Text 
Use sentence-style capitalization.  

3.22.5 Instructional Text 
• If you need to add instructional text about a tree view, add it above the label. Use 

complete sentences with ending punctuation. 
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• Use sentence-style capitalization. 

• Supplemental explanations that are helpful but not necessary should be kept short. 
Place this information either in parentheses between the label and colon, after the 
main instruction if used instead of a label, or below the control.  

3.23 Commands (Page 221) 

3.23.1 Menus 

3.23.1.1 Guidelines 

3.23.1.1.1 General 
All menu patterns except menu bars need a drop-down arrow to indicate the presence 
of a pull-down menu. The presence of menus goes without saying in a menu bar, but 
not in the other patterns. 

Don’t change menu item names dynamically. Doing so is confusing and unexpected. 
For example, don’t change a Portrait mode option to Landscape mode upon selection. 
For modes, use bullets and checkmarks instead. Exception: You can change menu 
item names that are based on object names dynamically. For example, lists of recently 
used files or window names can be dynamic. 

3.23.1.2 Menu Bars 
• Consider eliminating menu bars with three or fewer menu categories. If there 

are only a few commands, prefer lighter alternatives such as toolbar menus, or 
more direct alternatives such as command buttons and links. 

• Don’t have more than 10 menu categories. Too many menu categories is 
overwhelming and makes the menu bar difficult to use. 

• Consider hiding the menu bar if the toolbar or direct commands provide almost 
all of the commands needed by most users. Allow users to show or hide with a 
Menu bar check mark option in a toolbar menu.  

3.23.1.3 Hiding Menu Bars 
Generally, toolbars work great together with menu bars because having both allows 
each to focus on their strengths without compromise. 

• Hide the menu bar by default if your toolbar design makes having a menu bar 
redundant. 

• Hide the menu bar instead of removing it completely, because menu bars are more 
accessible for keyboard users. 
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• To restore the menu bar, provide a Menu bar checkmark option in the View (for 
primary toolbars) or Tools (for secondary toolbars) menu category. For more 
information, see Standard menu and split buttons. 

3.23.1.4 Menu Categories 
• Choose single word names for menu categories. Using multiple words makes 

the separation between categories confusing. 

• For programs that create or view documents, use the standard menu 
categories such as File, Edit, View, Tools, and Help. Doing so makes common 
menu items predictable and easier to find. 

• For other types of programs, consider organizing your commands and 
options into more useful, natural categories based on your program’s purpose 
and the way users think about their tasks and goals. Don’t feel obligated to use the 
standard menu organization if it isn’t suitable for your program. 

• If you choose to use non-standard menu categories, you must choose good 
category names. For more information, see the Labels section. 

• Prefer task-oriented menu categories over generic categories. Task-oriented 
categories make menu items easier to find.  

− Avoid menu categories with only one or two menu items. If sensible, 
consolidate with other menu categories, perhaps using a submenu. 
• Consider putting the same menu item in multiple categories only if: The 

menu item logically belongs in multiple menu categories. 

• You have data showing that users have trouble finding the item in a single 
menu category. 

• You have only one or two hard-to-find menu items in multiple categories. 

• Don’t put different menu items that use the same name in multiple 
categories. For example, don’t have different Options menu items in 
multiple categories. Exception: The tab menu pattern may have different 
Options and Help menu items in each tab menu.  

3.23.1.5 Menu Item Organization And Order 
• Organize the menu items into groups of seven or fewer strongly related items. For 

this, submenus count as a single menu item in the parent menu. 

• Don’t put more than 25 items within a single level of a menu (not counting 
submenus). 

• Put separators between the groups within a menu. A separator is a single line that 
spans the width of the menu. 

• Within a menu, put the groups in their logical order. If there is no logical order, 
place the most commonly used groups first. 
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• Within a group, put the items in their logical order. If there is no logical order, 
place the most commonly used items first. Put numeric items (such as zoom 
percentages) in numeric order. 

3.23.1.6 Submenus 
• Avoid using submenus unnecessarily. Submenus require more physical effort to 

use and generally make the menu items more difficult to locate. 

• Don’t put frequently used menu items in a submenu. Doing so would make 
using these commands inefficient. However, you can put frequently used 
commands in a submenu if they are normally accessed more directly, such as with 
a toolbar. 

• Consider using a submenu if:  

− Doing so simplifies the parent menu because it has many items (20 or more), 
or the submenu is part of a group of more than seven items. 

− The items in the submenu are used less frequently than those in the parent 
menu. 

− The submenu would have three or more items. 
− There are three or more commands that begin with the same word. In this 

case, use that word as the submenu label.  
• Use at most three levels of menus. That is, you can have a primary menu 

and at most two levels of submenus. Two levels of submenus should be 
rare. 

3.23.1.6.1 Presentation 
• Disable menu items that don’t apply to the current context, instead of removing 

them. Doing so makes menu bar contents stable and easier to find. Exceptions: 
For contextual menu categories, remove rather than disable context menu items 
that don’t apply to the current context. A menu category is contextual when it is 
displayed only for specific modes, such as when a certain object type is selected. 
For details, see the remove vs. disable guidelines for context menus. 

• If determining when a menu item should be disabled causes noticeable 
performance problems, leave the menu item active and if necessary have its 
selection result in an error message. 

3.23.1.7 Tab Menus 
Each tab menu may have context specific Options and Help menu items. This is in 
contrast to all other menu patterns. Each tab is used for a dedicated set of tasks, so 
any redundancy across tab menus isn’t confusing. 
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3.23.1.8 Context Menus 
• Use context menus only for contextual commands and options. The menu 

items should apply only to the selected (or clicked upon) object or window region, 
not the entire program. 

• Don’t make commands only available through context menus. Like shortcut 
keys, context menus are alternative means of performing commands and choosing 
options. For example, a Properties command is also available through the menu 
bar or the Alt+Enter access key. 

• Provide context menus for all objects and window regions that benefit from a 
small set of contextual commands and options. Many users right-click regularly 
and expect to find context menus anywhere. 

• Consider using a menu drop-down arrow button for context menus targeted 
at all users. Normally context menus are suitable for commands and options 
targeted at advanced users. However, you can use a menu drop-down button in 
cases where context menus are the best menu choice and you need to target all 
users.  

3.23.1.9 Menu Item Organization And Order 
• Organize the menu items into groups of seven or fewer strongly related items. 

• Avoid using submenus to keep context menus simple, direct, and efficient. 

• Don’t put more than 15 items within a context menu. 

• Put separators between the groups within a menu. A separator is a single line that 
spans the width of the menu. 

• Present menu items using the following order: Primary (most frequently used) 
commands Open Run Play Print <separator> Secondary commands supported by 
the object <separator> Transfer commands Cut Copy Paste <separator> Object 
settings <separator> Object commands Delete Rename <separator> Properties  

3.23.1.9.1 Presentation 
• Display the default command using bold. When practical, also make it the first 

menu item. The default command is invoked when users double-click or select an 
object and press Enter. 

• Remove rather than disable context menu items that don’t apply to the 
current context. Doing so makes context menus contextual and efficient. 
Exception: Disable menu items that don’t apply if there is a reasonable 
expectation for them to be available: Always have the relevant standard context 
menu commands, such as Cut, Copy, Paste, Delete, and Rename. 

• Always have the commands that complete related sets. For example, if there is a 
Back, there should also be a Forward. If there’s a Cut, always have a Copy and 
Paste.  
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3.24 Bullets and Checkmarks (Page 232) 
• Menu items that are options may use bullets and checkmarks. Commands may 

not. 

• Use a bullet to choose one option from a small set of mutually exclusive choices. 
There should always be at least two bullets in a group. For more information, see 
Radio buttons. 

• Use a checkmark to toggle an independent setting on or off. If the selected and 
cleared states aren’t clear and unambiguous opposites, use a set of bullets instead. 
For more information, see Check boxes. 

• For a mixed checkmark state, display a menu item without a checkmark. The 
mixed state is used for multiple selection to indicate that the option is set for 
some, but not all, objects, so each individual object has either the selected or 
cleared state. The mixed state is not used as a third state for an individual item. 

• Put separators between the related sets of checkmarks or bullets. A separator is a 
single line that spans the width of the menu. 

3.24.1 Icons 
Consider providing menu item icons for:  

• The most commonly used menu items. 

• Menu items whose icon is standard and well known. 

• Menu items whose icon well illustrates what the command does. 
If you use icons, don’t feel obligated to provide them for all menu items. Cryptic 
icons aren’t helpful, create visual clutter, and prevent users from focusing on the 
important menu items.  

Make sure menu icons conform to the Aero-style icon guidelines. 

3.24.2 Access Keys 
• Assign access keys to all menu items. No exceptions. 

• Whenever possible, assign access keys for commonly used commands according 
to the Standard Access Key Assignments. While consistent access key 
assignments aren’t always possible, they are certainly preferred—especially for 
frequently used commands. 

• For dynamic menu items (such as recently used files), assign access keys 
numerically.  

− Assign unique access keys within a menu level. You can reuse access keys 
across different menu levels. 
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• Make access keys easy to find: For the most frequently used menu items, 
choose characters at the beginning of the first or second word of the label, 
preferably the first character. 

• For less frequently used menu items, choose letters that are a distinctive 
consonant or a vowel in the label. 

• Prefer characters with wide widths, such as w, m, and capital letters. 

• Prefer a distinctive consonant or a vowel, such as “x” in “Exit.” 

• Avoid using characters that make the underline difficult to see, such as 
(from most problematic to least problematic): Letters that are only one 
pixel wide, such as “I” and “l”. 

• Letters with descenders, such as “g”, “j”, “p”, “q”, and “y”. 

• Letters next to a letter with a descender. 

3.24.3 Shortcut Keys 
• Assign shortcut keys to the most frequently used menu items. Infrequently 

used menu items don’t need shortcut keys because users can use access keys 
instead. 

• Don’t make a shortcut key the only way to perform a task. Users should also 
be able to use the mouse or the keyboard with Tab, arrow, and access keys.  

• For well-known shortcut keys, use the standard assignments. See Windows 
Keyboard Shortcut Keys for the well-known shortcut keys used by Windows 
programs. 

• Don’t assign different meanings to well-known shortcut keys. Because they 
are memorized, inconsistent meanings for well-known shortcuts are frustrating 
and error prone. See Windows Keyboard Shortcut Keys for the well-know 
shortcut keys used by Windows programs. 

• Don’t try to assign system-wide program shortcut keys. Your program’s 
shortcut keys will have effect only when your program has input focus. 

• Document all shortcut keys. Doing so helps users learn the shortcut key 
assignments. Exception: Don’t display shortcut key assignments within context 
menus. Context menus don’t display the shortcut key assignments because they 
are optimized for efficiency. 

• For non-standard key assignments: Choose shortcut keys that don’t have 
standard assignments. Never reassign standard shortcut keys. 

• Use nonstandard key assignments consistently throughout your program. 
Don’t assign different meanings in different windows. 

• If possible, choose mnemonic key assignments, especially for frequently used 
commands. 
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• Use function keys for commands that have a small-scale effect, such as 
commands that apply to the selected object. For example, F2 renames the selected 
item. 

• Use Ctrl key combinations for commands that have a large-scale effect, such 
as commands that apply to an entire document. For example, Ctrl+S saves the 
current document. 

• Use Shift key combinations for commands that extend or complement the 
actions of the standard shortcut key. For example, the Alt+Tab shortcut key 
cycles through open primary windows, whereas Alt+Shift+Tab cycles in the 
reverse order. Similarly, F1 displays Help, whereas Shift+F1 display context-
sensitive Help. 

• Don’t use the following characters for shortcut keys: @ £ $ {} [] \ ~ | ^ ' < >. 
These characters require different key combinations across languages or are locale 
specific.  

− Don’t use Ctrl+Alt combinations, because Windows interprets this 
combination in some language versions as an AltGR key, which generates 
alphanumeric characters. 

− If your program assigns many shortcut keys, provide the ability to 
customize the assignments. Doing so allows users to reassign conflicting 
shortcut keys and migrate from other products. Most programs don’t assign 
enough shortcut keys to need this feature. 

3.24.4 Standard Menus 
• Use the standard menu organization for programs that create or view 

documents. The standard menu organization makes common menu items 
predictable and easier to find. 

• For other types of programs, use the standard menu organization only when 
it makes sense to. Consider organizing your commands and options into more 
useful, natural categories based on your program’s purpose and the way users 
think about their tasks and goals. 

3.24.4.1 Standard Menu Bars 
The standard menu bar structure is as follows. This list shows the menu category and 
item labels, their order with separators, their access and shortcut keys, and their 
ellipses. 
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Figure 3-14: Menu category and item labels 
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Figure 3-15: Menu order with separators 
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Figure 3-16: Menu access and shortcut keys 

3.24.4.2 Standard Toolbar Menu Buttons 
The standard toolbar menu buttons are as follows. This list shows the menu category 
and item labels, their order with separators, their shortcut keys, and their ellipses. 
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Figure 3-17: Standard toolbar menu buttons 
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Figure 3-18: Menu order with separators 
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3.24.4.3 Standard Context Menus 
The standard context menu contents are as follows. This list shows the menu item 
labels, their order with separators, their access keys, and their ellipses. Context menus 
don’t show shortcut keys. 

 
Figure 3-19: Context menu contents 
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3.24.5 Using Ellipses 
While menu commands are used for immediate actions, more information might be 
needed to perform the action. Indicate a command that needs additional information 
(including a confirmation) by adding an ellipsis at the end of the label. 

In case of ambiguity (for example, the command label lacks a verb), decide based on 
the most likely user action. If simply viewing the window is a common action, don’t 
use an ellipsis. This doesn’t mean you should use an ellipsis whenever an action 
displays another window—only when additional information is required to perform 
the action. For example, the commands About, Advanced, Help, Options, Properties, 
and Settings must display another window when clicked, but don’t require additional 
information from the user. Therefore they don’t need ellipses. 

In case of ambiguity (for example, the command label lacks a verb), decide based on 
the most likely user action. If simply viewing the window is a common action, don’t 
use an ellipsis. 

Note: When determining if a menu command needs an ellipsis, 
don’t use the need to elevate privileges as a factor. 
Elevation isn’t information needed to perform a command 
(rather, it’s for permission) and the need to elevate is 
indicated with the security shield. 

3.24.6 Labels 
Use sentence-style capitalization. Exception: For legacy applications, you may use 
title-style capitalization if necessary to avoid mixing capitalization styles. 

3.24.7 Menu Category Names 
Use menu category names that are single word verbs or nouns. A multiple-word label 
might be confused for two one-word labels. 

Prefer verb-based menu names. However, omit the verb if it is Create, Show, View, 
or Manage. For example, the following menu categories don’t have verbs:  

• Table 

• Tools 

• Window 
For non-standard category names, use a single, specific word that clearly and 
accurately describes the menu contents. While the names don’t have to be so general 
that they describe everything in the menu, they should be predictable enough so that 
users aren’t surprised by what they find in the menu. 
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3.24.8 Menu Item Names 
• Use menu item names that start with a verb, noun, or noun phrase. 

• Prefer verb-based menu names. However, omit the verb if: The verb is Create, 
Show, View, or Manage. For example, the following commands don’t have verbs:  

− About 
− Advanced 
− Full screen 
− New 
− Options 
− Properties 

• The verb is the same as the menu category name to avoid repetition. For 
example, in the Insert menu category, use Text, Table, and Picture instead of 
Insert text, Insert table, and Insert picture. 

• Use specific verbs. Avoid generic, unhelpful verbs, such as Change and Manage. 

• Use singular nouns for commands that apply to a single object, otherwise use 
plural nouns. 

• Use modifiers as necessary to distinguish between similar commands. 
Examples: Insert row above, Insert row below. 

• For pairs of complementary commands, choose clearly complementary 
names. Examples: Add, Remove; Show, Hide; Insert, Delete. 

• Choose menu item names based on user goals and tasks, not on technology.  

• Use the following menu item names for the stated purpose:  

− Options To display program options. 
− Customize To display the program options specifically related to mechanical 

UI configuration. 
− Personalize To display a summary of commonly used personalization 

settings. 
− Preferences Don’t use. Use Options instead. 
− Properties To display an object’s property window. 
− Settings Don’t use as a menu label. Use Options instead. 

3.24.9 Submenu Names 
Menu items that display submenus never have an ellipsis on their label. The submenu 
arrow indicates that another selection is required.  
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3.25 Toolbars (Page 245) 

3.25.1 Guidelines 

3.25.1.1 Presentation 
• Choose a suitable toolbar style based on the number of commands and their 

usage. See the previous toolbar style table for guidance on how to choose. Avoid 
using a toolbar configuration that takes too much space from the program work 
area. 

• Place toolbars just above the content area, below the menu bar and address bar, 
if present.  

If space is at a premium, save space by:  

− Omitting the labels of well-known icons and less frequently used commands. 
− Using only a partial toolbar instead of the entire window width. 
− Consolidating related commands with a menu button or split button. 
− Using an overflow chevron to reveal less frequently used commands. 
− Displaying commands only when they apply to the current context.  

• For the unlabeled icons toolbar pattern, use a default configuration with no 
more than two rows of toolbars. If more than two rows might be useful, make 
the toolbars customizable. Starting with more than two rows can overwhelm 
users and take too much space from the program work area.  

• Disable individual toolbar buttons that don’t apply to the current context, 
instead of removing them. Doing so makes toolbar contents stable and easier to 
find. 

• Disable individual toolbar buttons if clicking on them would directly result in 
an error. Doing so is necessary to maintain a direct feel. 

• For the unlabeled icons toolbar pattern, remove entire toolbars if they don’t 
apply to the current context. Display them only in the applicable modes.  

• Display toolbar buttons left aligned. The Help icon, if present, is right aligned.  

• Exception: Windows 7-style toolbars left align program specific commands, but 
right align standard, well-known commands such as Options, View, and Help.  

• Don’t change toolbar button labels dynamically. Doing so is confusing and 
unexpected. However, you can change the icon to reflect the current state.  
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3.25.2 Controls And Commands 
• Prefer the most frequently used commands. For primary toolbars, provide 

comprehensive commands. Primary toolbars don’t have to be as comprehensive 
as menu bars, but they have to provide all the commands that aren’t readily 
discoverable elsewhere. Primary toolbars don’t need to have commands for:  

− Commands that are directly on the UI itself. 
− Commands typically accessed through context menus. 
− Standard, well-known commands like Cut, Copy, and Paste. 

• For supplemental toolbars, provide commands that are used the most 
frequently. Menu bar commands are a superset of the toolbar commands, so you 
don’t have to provide everything. Focus on quick, convenient command access 
and skip the rest. 

• Prefer direct controls. Use toolbar buttons in the following order of preference:  

− Icon button. Direct and takes minimal space. 
− Labeled icon button. Direct, but takes more space.  
− Split button. Direct for the most common command, but handles command 

variations. 
− Menu button. Indirect, but presents many commands. 

• Prefer immediate commands. For commands that can either be immediate or 
have additional input for flexibility: For primary toolbars, use the flexible 
versions of commands, (such as Print...). 

• For supplemental toolbars, use the immediate versions in the toolbar (such as 
Print) and use flexible versions in the menu bar (such as Print...). 

• Provide labels for frequently used commands, especially if their icons aren’t 
well-known icons.  

• Don’t put commands in toolbar menus that are also directly on the toolbar.  

3.25.3 Organization And Order 
• Organize the commands within a toolbar into related groups. 

• Place the most frequently used groups first. Within a group, put the commands in 
their logical order. Overall, the commands should have a logical flow to make 
them easy to find, while still having the most frequently used commands appear 
first. Doing so is most efficient, especially if there is overflow. 

• Use group dividers only if the commands across groups are weakly coupled. 
Doing so makes the groupings obvious and the commands easier to find.  

− Avoid placing destructive commands next to frequently used commands. 
Use either order or grouping to get separation. Also, consider not placing 
destructive commands in the toolbar, but only in the menu bar or context 
menus instead.  
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− Use the overflow chevron to indicate that not all commands can be 
displayed. But use overflow only if there isn’t sufficient room to display all 
the commands.  

− Make sure that the most frequently used commands are directly 
accessible from the toolbar (that is, not in overflow) in small window 
sizes. If necessary, reorder the commands, move less frequently used 
commands to menu buttons or split buttons, or even remove them completely 
from the toolbar. If this remains a problem, reconsider your choice of toolbar 
style. 

3.25.4 Hiding Menu Bars 
• Hide the menu bar by default if your toolbar design makes having a menu bar 

redundant. 

• Hide the menu bar instead of removing it completely, because menu bars are more 
accessible for keyboard users. 

• To restore the menu bar, provide a Menu bar checkmark option in the View (for 
primary toolbars) or Tools (for secondary toolbars) menu category. For more 
information, see Standard menu and split buttons. 

• Display the menu bar when users press the Alt key, and set input focus on the first 
menu category. 

3.25.5 Interaction 
• On hover, display the button affordance to indicate that the icon is clickable. 

After the tooltip timeout, display the tooltip or infotip.  

− On left single-click: For command buttons, interact with the control as 
normal. 

− For mode buttons, display the control to reflect the currently selected mode. 
If the mode affects the behavior of mouse interaction, also change the pointer.  
• For property buttons and drop-down lists, display the control to reflect 

the state of the currently selected objects, if any. On interaction, update the 
control’s state and apply the change to the selected objects. If nothing is 
selected, do nothing. 

• On left double-click, perform the same action as a left single-click. 
Exception: On rare occasions, a toolbar command can be used more 
efficiently modally. In such cases, use double-click to toggle the mode.  

• On right-click: For customizable toolbars, display the context menu for 
customizing the toolbar. Display the menu on right-click on mouse down, 
not mouse up. 

• For other toolbars, do nothing. 
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3.25.6 Icons 
• Provide icons for all toolbar controls except drop-down lists.  

• Exception: Windows 7-style toolbars use icons only for commands whose icons 
are well known; otherwise they use text labels without icons. Doing so improves 
the clarity of the labels, but requires more space.  

• Make sure toolbar icons are clearly visible against the toolbar background color. 
Always evaluate toolbar icons in context and in high-contrast mode. 

• Choose icon designs that clearly communicate their purpose, especially for the 
most frequently used commands. Well-designed toolbars need icons that are self-
explanatory because users can’t find commands efficiently using their tooltips. 
However, toolbars still work well if icons for a few less frequently used 
commands aren’t self-explanatory. 

• Choose icons that are recognizable and distinguishable, especially for the most 
frequently used commands. Make sure the icons have distinctive shapes and 
colors. Doing so helps users find the commands quickly even if they don’t 
remember the icon symbol. 

• Make sure toolbar icons conform to the Aero-style icon guidelines. 

3.25.7 Standard Menu And Split Buttons 
• If you are using menu buttons and split buttons in a toolbar, try to use the 

following standard menu structures and their relevant commands whenever 
possible. Unlike menu bars, toolbar commands don’t take access keys. 

3.25.8 Primary Toolbars 
These commands mirror the commands found in standard menu bars, so they should 
be used only for primary toolbars. This list shows the button labels (and type) with 
their order and separators, shortcut keys, and ellipses. Note that the command for 
displaying and hiding the menu bar is in the View menu. 
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Figure 3-20: Primary toolbar 
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Figure 3-21: Menu order and separtors 
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3.25.9 Supplemental Toolbars 
These commands supplement standard menu bars. This list shows the button labels 
(and type) with their order and separators, shortcut keys, and ellipses. Note that the 
command for displaying and hiding the menu bar is in the Tools menu. 
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Figure 3-22: Supplemental toolbar 
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Figure 3-23: Supplemental toolbar order and separators 
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The supplemental toolbar category names differ from the standard menu category 
names because they need to be more encompassing. For example, the Organize 
category is used instead of Edit because it contains commands that aren’t related to 
editing. To maintain consistency between menu bars and toolbars, use the standard 
menu category names if doing so wouldn’t be misleading. 

3.25.10 Palette Windows 
• Palette windows use shorter title bars to minimize their screen space. Put a Close 

button on the title bar. 

• Set the title bar text to the command that displayed the palette window. 

• Use sentence-style capitalization without ending punctuation. 

• Provide a context menu for window management commands. Display this context 
menu when users right-click on the title bar.  

− When possible and useful, make palette windows resizable. Indicate that 
the window is resizable, using resize pointers when over the window frame. 

− When a palette window is redisplayed, display it using the same state as 
last accessed. When closing, save the window size and location. When 
redisplaying, restore the saved window size and location. Also, consider 
making these attributes persistent across program instances on a per user 
basis. 

3.25.11 Customization 
• Provide customization for toolbars consisting of two or more rows. Only the 

unlabeled icons style needs customization. Simple toolbars with few commands 
don’t need customization. 

• Provide a good default configuration. Users shouldn’t have to customize their 
toolbars for common scenarios. Don’t depend upon users customizing their way 
out of a bad initial configuration. Assume that most users won’t customize their 
toolbars. 

• Provide a context menu with the following commands:  

− A check box list to display the available toolbars 
− Lock/Unlock toolbars 
− Customize... 
− Lock customizable toolbars by default, to prevent accidental changes. 
− For the Customize command, display an options dialog box that provides the 

ability to choose which toolbars are displayed and the commands on each 
toolbar.  

• Provide a Reset command to return to the original toolbar configuration in the 
Customize options dialog box. 
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− Provide the ability to customize the toolbars using drag-and-drop in the 
following ways: Set toolbar order and positions. 

− Set toolbar lengths, displaying any toolbars that are too small to display their 
contents with an overflow chevron. 

− If supported, undock toolbars to become palette windows and vice versa. 
− When the Customize options dialog box is displayed:  

• Set the toolbar contents. 

• Set the order of the toolbar contents. Doing so allows users to make 
changes more directly and efficiently.  

• Save all toolbar customizations, on a per-user basis. 

3.25.12 Using Ellipses 
• Use an ellipsis to indicate that a command requires more information before it can 

take effect. Put the ellipsis at the end of the tooltip and label, if there is one. 

• If a command cannot take effect immediately, however, no ellipsis is required. 

Because toolbars are constantly displayed, and space is at a premium, ellipses should 
be used infrequently. 

Note: For menus displayed by a toolbar, apply the menu ellipses 
guidelines. 

Recommended sizing and spacing 

 
Figure 3-24: Recommended sizing and spacing of toolbar customizations  

3.26 Labels (Page 259) 

3.26.1 General 
Use sentence-style capitalization. Exception: For legacy applications, you may use 
title-style capitalization if necessary to avoid mixing capitalization styles. 
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3.26.2 Unlabeled Icon Buttons 
Use a tooltip to label the command. For the tooltip text, use what the label would be 
if the button were labeled, but include the shortcut key if there is one.  

3.26.3 Labeled Icon Buttons 
• Use a concise label. Use a single word if possible, four words maximum. 

• Place the label to the right of the icon. 

• Use an infotip to describe the command. Because the buttons are labeled, using a 
tooltip instead of an infotip would be redundant.  

3.26.4 Drop-Down Lists 
• If the list always has a value, use the current value as the label.  

• If an editable drop-down list doesn’t have a value, use a prompt  

3.26.5 Menu Buttons and Split Buttons 
• Prefer verb-based menu button names. However, omit the verb if it is Create, 

Show, View, or Manage. For example, Tools and Page menu buttons don’t have 
verbs. 

• Use a single, specific word that clearly and accurately describes the menu 
contents. While the names don’t have to be so general that they describe 
everything in the menu, they should be predictable enough so that users aren’t 
surprised by what they find in the menu. 

• While not required, provide infotip descriptions if they are helpful. 

3.26.6 Menu Items 
• Use menu item names that start with a verb, noun, or noun phrase. 

• Prefer verb-based menu names. However, omit the verb if it is Create, Show, 
View, or Manage. For example, the following commands don’t use verbs:  

− About 
− Advanced 
− Full screen 
− New 
− Options 
− Properties 

• Use specific verbs. Avoid generic, unhelpful verbs, such as Change and Manage. 
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• Use singular nouns for commands that apply to a single object, otherwise use 
plural nouns.  

• For pairs of complementary commands, choose clearly complementary 
names. Examples: Add, Remove; Show, Hide; Insert, Delete. 

• Choose menu item names based on user goals and tasks, not on technology. 

• Use the following menu item names for the stated purpose:  

− Options: To display program options. 
− Customize: To display the program options specifically related to mechanical 

UI configuration. 
− Personalize: To display a summary of commonly used personalization 

settings. 
− Preferences: Don’t use. Use Options instead. 
− Properties: To display an object’s property window. 
− Settings: Don’t use as a menu label. Use Options instead. 

• Menu items that display submenus never have an ellipsis on their label. The 
submenu arrow indicates that another selection is required. 

3.27 Ribbons (Page 261) 

3.27.1 Guidelines 

3.27.2 General 
• Don’t combine ribbons with menu bars and toolbars within a window. 

Ribbons must be used in place of menu bars and toolbars. However, a ribbon may 
be combined with palette windows and navigation elements, such as Back and 
Forward buttons and an Address bar. 

• Always combine a ribbon with an Application button and Quick Access 
Toolbar. 

• Select the left-most tab (usually Home) when a program is started. Don’t 
make the last selected tab persist across program instances. 

• Show the ribbon in its normal state (not minimized) when a program is 
started for the first time. Users often leave default settings unchanged, so 
minimizing the ribbon at program start will likely cause all commands to be less 
efficient. Also, showing the ribbon initially minimized can be disorienting. 

• Make the ribbon state persist across program instances. For example, if a user 
minimizes the ribbon, it should be shown minimized the next time the program is 
run. But again, don’t make the last selected tab persist in this way. 
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3.27.3 Tabs 
• Whenever practical, use standard tabs. Using standard tabs greatly improves 

discoverability, especially across programs. See the standard ribbon tabs later in 
this article. 

• Label the first tab Home, if appropriate. The Home tab should contain the most 
frequently used commands. If you have frequently used commands that don’t fit 
into the other tabs, the Home tab is the right place for them. 

• Add a new tab if: Its commands are strongly related to specific tasks, and can 
be accurately described by the tab label. Adding the tab should help make its 
commands easy to find, not harder. 

• Its commands are mostly unrelated to tasks on other tabs. Adding the tab 
shouldn’t require more tab switching during commonly performed tasks. 

• The tab has enough commands to justify having an extra place to look. Don’t 
have tabs with only a few commands. Exception: Consider adding a tab with a 
few commands if they are strongly related to a specific task and adding the tab 
greatly simplifies an overly complex Home tab. 

• Generally, having fewer tabs is better, so remove tabs that don’t help achieve 
these goals. 

• For the remaining tabs, place the most frequently used tabs first, while 
maintaining a logical order across the tabs. 

• Optimize the tab design so that users find commands quickly and 
confidently. All other considerations are secondary. 

• Don’t provide a Help tab. Instead, provide assistance using program-wide Help 
and enhanced tooltips. 

• Use a maximum of seven core tabs. If there are more than seven, it becomes 
difficult to determine which tab has a command. While seven core tabs is 
acceptable for applications with many commands, most programs should aim for 
four or fewer tabs. 

3.27.4 Contextual Tabs 
• Use a contextual tab to display a collection of commands that are relevant 

only when users select a particular object type. If there are only a few, 
frequently used commands, it may be more convenient and more stable to use a 
regular tab, and simply disable commands when they don’t apply.  

− Include only the commands that are specific to a particular object type. 
Don’t put commands only on a contextual tab if users might need them 
without first selecting an object. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
106 

− Include the commands frequently used when working with a particular 
object type. Put frequently used general contextual commands on context 
menus and minitoolbars to avoid tab switching during commonly performed 
tasks. Alternatively, consider putting general commands redundantly on a 
contextual tab if doing so avoids frequent tab switching. But don’t overdo 
this—don’t try to include every command that a user might need while 
working with the object.  

− Choose a contextual tab color that is different from the currently 
displayed contextual tabs. The same tab set can appear at a later time using a 
different color in order to achieve this, but try to use consistent color 
assignments across invocations whenever possible. 
• Select a contextual tab automatically when: The user inserts an object. In 

this case, select the first contextual tab in the set. 

• The user double-clicks an object. In this case, select the first contextual 
tab in the set. 

• The user selected a contextual tab, clicked off the object, then 
immediately clicked an object of the same type. In this case, return to 
the previously selected contextual tab. 

• Doing so aids discoverability, improves the perception of stability, and 
reduces the need to switch tabs. However, leave users in control by not 
automatically selecting contextual tabs in other circumstances. 

• When removing a contextual tab that is the active tab, make the 
Home tab or first tab the active tab. Doing so appears the most stable. 

3.28 Modal Tabs (Page 273) 
• Use a modal tab to display a collection of commands that apply with a particular 

temporary mode, and none of the core tabs apply. If some of the core tabs apply, 
use a contextual tab instead, and disable the commands that don’t apply. Because 
modal tabs are very limiting, they should be used only when there isn’t a better 
alternative.  

− To close a modal tab, put the Close <mode> command as the last 
command on the tab. Use the Close icon to make the command easy to find. 
Give the mode in the command to prevent confusion about what is being 
closed.  

− To close a modal tab, also redefine the Close button on the window’s title 
bar to close the mode instead of the program. User testing has shown that 
many users expect this behavior. 

3.28.1 Standard Ribbon Tabs 
Whenever practical, map your program’s commands to these standard tabs, given in 
their standard order of appearance. 
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3.28.2 Regular Tabs 
• Home. Contains the most frequently used commands. If used, it is always the first 

tab. 

• Insert. Contains commands to insert content and objects into a document. If used, 
it is always the second tab. 

• Page layout. Contains commands that affect the page layout, including themes, 
page setup, page backgrounds, indenting, spacing, and positioning. (Note that the 
indenting and spacing groups can be on the Home tab instead, if there is enough 
room there.) If used, it is always the third tab. 

• Review. Contains commands to add comments, track changes, and compare 
versions. 

• View. Contains commands that affect the document view, including view mode, 
show/hide options, zooming, window management, and macros—the commands 
traditionally found in the Windows menu category. If used, it is the last regular 
tab unless the Developer tab is showing. 

• Developer. Contains commands used only by developers. If used, it is hidden by 
default and the last regular tab when displayed. 

Most programs don’t need the Review and Developer tabs. 

3.28.3 Contextual Tabs 
• Format. Contains commands related to changing the format of the selected object 

type. Usually applies to part of an object. 

• Design. Contains commands, often in galleries, to apply styles to the selected 
object type. Usually applies to the entire object. 

• Layout. Contains commands to change the structure of a complicated object, such 
as a table or chart. 

If you have contextual commands related to format, design, and layout, but not 
enough for multiple tabs, just provide a Format tab. 

3.28.4 Groups 
• Whenever practical, use standard groups. Having common commands appear 

with the same names and similar locations greatly improves discoverability. See 
the standard ribbon groups later in this article. 

• Add a new group if: Its commands are strongly related and can be accurately 
described by the group label. Adding the group should help make its commands 
easy to find, not harder. 
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• Its commands have a weaker relationship to the commands in other groups. 
While all the commands on a tab should be strongly related, some command 
relationships are stronger than others. 

• The group has enough commands to justify having an extra place to look. 
Aim for 3–5 commands for most groups. Avoid having groups with only 1–2 
commands, although having an in-ribbon gallery without any other commands 
within a group is acceptable. Having many groups with a single command 
suggests too much structure or lack of command cohesion. 

• Don’t over-organize by adding groups where they aren’t needed. 

• Consider splitting a group if: The group has commands that greatly benefit from 
having extra labels. For example, the commands might need clarification or their 
labels might have repetitive text.  

− Place the most commonly used groups in the most prominent locations, and 
make sure there is a logical order for the groups across the tab. 

− Optimize the group design so that users find commands quickly and 
confidently. All other considerations are secondary. 

− Don’t scale groups containing a single button to a pop-up group icon. When 
scaling down, leave them as a single button. 

− Use a maximum of seven groups. If there are more than seven groups, it 
becomes more difficult to determine which group has a command. 

3.28.5 Standard Ribbon Groups 
Whenever practical, map your program’s commands to these standard groups, which 
are given within their associated tabs in their standard order of appearance. 

3.28.5.1 Main Tab 
• Clipboard 

• Font 

• Paragraph 

• Editing 

3.28.5.2 Insert Tab 
• Tables 

• Illustrations 

3.28.5.3 Page Layout Tab 
• Themes 

• Page setup 
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• Arrange 

3.28.5.4 Review Tab 
• Proofing 

• Comments 

3.28.5.5 View Tab 
• Document views 

• Show/hide 

• Zoom 

• Window 

3.28.6 Commands 

3.28.6.1 General 
Take advantage of the discoverability and scalability of ribbons by exposing all 
the commonly used commands. When appropriate, move frequently used 
commands from dialog boxes to the ribbon, especially those that are known to be 
hard to find. Ideally, users should be able to perform common tasks without using any 
dialog boxes.  

• Don’t use the scalability of ribbons to justify adding unnecessary complexity. 
Continue to exercise restraint—don’t add commands to a ribbon just because you 
can. Keep the overall command experience simple. The following are ways to 
simplify the presentation: Use context menus and minitoolbars for in-place, 
contextual commands.  

• Move (or keep) rarely used commands in dialog boxes. Use dialog box 
launchers to access these commands. You can still use dialog boxes with ribbons! 
Just try to reduce the need for using them during common tasks. 

• Eliminate redundant, seldom used features. 

3.28.6.2 Presentation 
Present each command on only one tab. Avoid multiple paths to the same 
command—especially if the command requires many clicks to invoke. It may seem 
like a convenience to find a command through multiple paths. But keep in mind that 
when users find what they are looking for, they stop looking. It is all too easy for 
users to assume that the first path they find is the only path—which is a serious 
problem if that path is inefficient. Exception: Contextual tabs may duplicate a few 
commands from the Home and Insert tabs if doing so prevents changing tabs for 
common contextual tasks. 
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Within a group, put the commands in their logical order, while giving preference to 
the most frequently used commands. Overall, the commands should have a logical 
flow to make them easy to find, while still having the most frequently used 
commands appear first. Generally, commands with 32 × 32 pixel icons appear before 
commands with 16 × 16 pixel icons to aid scanning across groups. 

Avoid placing destructive commands next to frequently used commands. A command 
is considered destructive if its effect is widespread and either it cannot be easily 
undone or the effect isn’t immediately noticeable. 

Use separators to indicate strongly related commands, such as a set of mutually 
exclusive options. 

Consider using toolbar-style groups for sets of strongly related, well-known 
commands that don’t need labels. Doing so allows you to present many commands in 
a compact space without affecting discoverability and ease of learning. To be so well 
known, such commands are frequently used, instantly recognized, and therefore tend 
to be on the Home tab.  

• Use 32 × 32 pixel icons for the most frequently used and important labeled 
commands. When scaling a group down, make these commands the last to 
convert to 16 × 16 pixel icons. 

• Avoid arbitrary command placement. Think carefully about your tab and group 
design to ensure that users aren’t wasting time inspecting every tab to find the 
command they want. 

• Avoid marketing-based placement. Marketing objectives around the promotion 
of new features tend to change over time. Consider future versions of your 
product and how much frustration a constantly changing organization will cause. 

• Prefer direct controls. A command is direct if invoked with a single click (that 
is, without navigating through menus). However, with the exception of in-ribbon 
galleries, direct controls don’t support Live preview, so the need for Live preview 
is also a factor. If a command is among a related set of formatting options, and 
Live preview is important and practical, use Live preview to indicate the effect of 
the options—especially if users are likely to choose the wrong option otherwise. 
If the command is used frequently, use an in-ribbon gallery for directness. If the 
command is used infrequently, use a drop-down gallery. Otherwise, to obtain 
directness use ribbon controls in the following order of preference (all other 
considerations being equal):  

− Command buttons, check boxes, radio buttons, and in-place galleries. 
These are always direct. 

− Split buttons. Direct for the most common command, but indirect for the 
command variations. 

− Menu buttons. These are indirect, but present many commands that are easy 
to find. 
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− Text boxes (with spin controls). Text input generally requires more effort 
than the other control types. 

• If your ribbon consists mostly of menu buttons when displayed at full size, you 
might as well use a menu bar. 

• Prefer immediate commands. A command is immediate if it takes effect 
immediately (that is, without dialog boxes to gather additional input). If a 
command might require input, consider using a split button, with the immediate 
command in the button portion, and the commands that require input in the 
submenu.  

3.28.7 Galleries 
Use a gallery if:  

• There is a well-defined, related set of choices from which users typically 
choose. There may be an unbounded number of variations, but the likely 
selections should be well contained. If the choices aren’t strongly related, 
consider using separate galleries. 

• The choices are best expressed visually, such as formatting features. Using 
thumbnails makes it easier to browse, understand, and make choices. While the 
choices can be labeled, the selection is made visually and text labels shouldn’t be 
required to understand the choices. 

• The choices show the result that is achieved immediately with a single click. 
There shouldn’t be any follow-up dialog box to further clarify the user’s intention, 
or a set of steps to achieve the indicated result. If users might want to adjust the 
choice, let them do so afterwards. 

Don’t use a gallery to display many regular commands within a group. 

Use an in-ribbon gallery if:  

• The choices are used frequently.  

• The choices need the space and are worth the space potentially being taken from 
other commands. 

For typical usage, there is no need to group or filter the presented choices. 

• The choices can be displayed effectively within the height of a ribbon (which 
is 48 pixels). 

• Choose the smallest standard gallery thumbnail size that does the job well.  

− For in-ribbon galleries, use thumbnails of 16 × 16, 48 × 48, or 64 × 48 pixels. 
− For drop-down galleries, use thumbnails of 16 × 16, 32 × 32, 48 × 48, 64 × 

48, 72 × 96, 96 × 72, 96 × 96, or 128 × 128 pixels. 
• All gallery items should have the same thumbnail size. 
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• For in-ribbon galleries:  

− Display a minimum of three choices; more if there is room. If there isn’t 
sufficient space to display at least three choices in the typical window size, 
use a drop-down gallery instead. 

− Expand in-ribbon galleries to take advantage of available space. Use the 
additional space to show more items and make them easier to choose with a 
single click. 

• For drop-down galleries:  

− Display the gallery from either a combo box, drop-down list, split button, or 
menu button. 

− If the user clicks the main window to dismiss the drop-down gallery, just 
dismiss the gallery without selecting or modifying the contents of the main 
window. 

− If a gallery has many choices and some choices are rarely used, simplify the 
default gallery by focusing on the commonly used choices. For the remaining 
commands, provide an appropriate command at the bottom of the gallery 
drop-down. If the command shows a list of more variations, name it “More 
<singular feature name> options...” 

− If the command presents a dialog box that allows users to create their own 
custom options, name it “Custom <feature name>...” 

• Organize the choices into groups, if doing so makes browsing more efficient. 

• If a gallery has many items, consider adding a filter to help users find choices 
more efficiently. To avoid confusion, initially display the gallery unfiltered. 
However, most galleries shouldn’t require a filter because they shouldn’t have so 
many choices, and using groups should be sufficient.  

3.28.8 Previews 
• Use previews to show the effect of a command without users having to perform it 

first. By using helpful previews, you can improve the efficiency and ease of 
learning of your program, and reduce the need for trial-and-error. For the different 
types of command previews, see Previews in the Design Concepts section of this 
article. 

• For live previews, make sure that the preview can be applied and the current state 
restored within 500 milliseconds. Doing so requires the ability to apply formatting 
changes quickly and in a way that is interruptible. Users must be able to evaluate 
different options rapidly for live previews to have their full benefit. 

• Avoid using text in previews. Otherwise, the preview images will have to be 
localized. 
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3.28.9 Icons 
• Provide icons for all ribbon controls except drop-down lists, check boxes, and 

radio buttons. Most commands will require both 32 × 32 and 16 × 16 pixel icons 
(only 16 × 16 pixel icons are used by the Quick Access Toolbar). Galleries 
typically use 16 × 16, 48 × 48, or 64 × 48 pixel icons.  

• Provide unique icons. Don’t use the same icon for different commands. 

• Make sure ribbon icons are clearly visible against the ribbon background 
color. Always evaluate ribbon icons in context and in high-contrast mode.  

• Choose icon designs that clearly communicate their effect, especially for the 
most frequently used commands. Well-designed ribbons have self-explanatory 
icons to help users find and understand commands efficiently. 

• Choose icons that are recognizable and distinguishable, especially for the most 
frequently used commands. Make sure the icons have distinctive shapes and 
colors. Doing so helps users find the commands quickly, even if they don’t 
remember the icon symbol.  

• If useful, change the icon to reflect the current state. Doing so is especially 
useful for split buttons whose default effect can change.  

• Make sure ribbon icons conform to the Aero-style icon guidelines. However, 
ribbon icons are shown straight on instead of being shown in perspective.  

3.29 Enhanced Tooltips (Page 282) 
• All ribbon commands should have enhanced tooltips to give the command 

name, shortcut key, description, and optional supplemental information. Avoid 
tooltips that simply restate the label.  

− When practical, completely describe the command using a concise 
description. Link to Help only if further explanation is really necessary.  

− When helpful, illustrate the effect of the command using a preview.  

3.29.1 Access Keys And Keytips 
Note: Keytips are the mechanism used to display access keys for 

commands displayed directly on a ribbon. (Access keys for 
drop-down menu commands are indicated with an 
underlined character.) They differ from menu access keys 
in the following ways: Two character access keys can be 
used. For example, FP can be used to access the Format 
painter command. 

The access key assignments are shown using tips instead of underlines, so the 
character width and descenders aren’t a factor in making assignments. 
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• Assign access keys to all ribbon tabs and commands. The only possible 
exception is for commands coming from legacy add-ins. 

For the Application button and Quick Access Toolbar:  

• Assign F to the Application button. This assignment is used because of the 
Application button’s similarity to the traditional File menu. 

For the Quick Access Toolbar and recently used file lists, assign access keys 
numerically. 

For tabs:  

• Assign H to Home. 

• Starting with the most frequently used tabs, assign the first letter of the label. 

• For any tabs that cannot be assigned to the first letter, choose a distinctive 
consonant or a vowel in the label. 

• For programs that used to support menu bars, strive to maintain access key 
compatibility to the best extent practical. Avoid assigning different meanings to 
access keys from legacy menu categories. For example, if the legacy menu bar 
version of a program had an Edit menu, strive to use an E access key to the 
equivalent tab. If there is no equivalent tab, don’t assign an E access key to any 
tab to prevent confusion. 

For ribbon commands, menus, and submenus: Assign unique access key 
combinations within a tab. You can reuse access key combinations within different 
tabs.  

• Whenever possible, assign the standard access keys for commonly used 
commands. See the standard access key table. 

− For other commands: For the most frequently used commands, choose letters 
at the beginning of the first or second word of the label, preferably the first 
letter.  

− For less frequently used commands, choose letters that are a distinctive 
consonant or a vowel in the label, such as “x” in “Exit.”  

− For the least frequently used commands and dialog box launchers, use two 
letters as necessary. 

− For menus and submenus, use a single letter to reduce the number of 
keystrokes required for the complete command. 

• Don’t use access keys starting with J, Y, or Z because they are used for contextual 
tabs, unassigned keytips, and popup groups.  

− For pop-up groups: Use a two-letter access key that starts with Z. 
− Starting with the most frequently used groups, assign the second access key 

letter to the first letter of the label. 
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− For any remaining groups, choose a distinctive consonant or a vowel in the 
label. 

3.29.2 Application Buttons 
• Use an Application button to present a menu of commands that involve doing 

something to or with a file. Examples include commands that traditionally go in 
the File menu to create, open, and save files, print, and send and publish 
documents. 

• Always provide an Application button when using a ribbon. If the program 
doesn’t use files, use the Application button to access the program options and the 
Exit command. Application buttons always display a command menu—they are 
never just decorative. 

Use the following standard Application menu commands when appropriate:  

 
Figure 3-25:Application menu commands 
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• Reserve commands that belong in the Application menu only for that menu. Don’t 
place them redundantly in any of the tabs. 

• For each menu item, provide:  

− A label with the command name. 
− A 32 × 32 pixel icon. 
− A brief description. Make sure the description can be displayed using at most 

two lines of text. 
− Use tooltips to document the shortcut keys. Unlike normal menus, Application 

menus don’t document the shortcut keys using labels.  

3.29.3 Quick Access Toolbars 
• Use the Quick Access Toolbar to provide access to frequently used commands. 

The commands can be from the Application button or the ribbon. 

• Always provide a Quick Access Toolbar when using a ribbon. Do so even if the 
ribbon has a single tab; this provides consistency across programs. 

• Prepopulate the Quick Access Toolbar with the frequently used commands in the 
Application menu. Provide Save and Undo if your program supports them, and 
Open and Print if supported and frequently used. 

• For the Customize Quick Access Toolbar menu, provide up to 12 of the most 
frequently used immediate commands. Immediate commands don’t require 
additional input before they take effect, and are therefore well-suited for the 
Quick Access Toolbar. While these can be any immediate commands, prefer 
those commands that aren’t on the Home tab, because users are more likely to 
choose those. 

• For the Customize Quick Access Toolbar menu, if there is a pair of related 
commands, provide both, regardless of frequency. Common pairs are Open/Close, 
Back/Forward, and Undo/Redo. 

• For the Customize Quick Access Toolbar dialog, provide a way to add any 
command. Provide a Popular commands filter that displays the most frequently 
used commands, and select this filter by default. 

3.29.4 Dialog Box Launchers 
• Provide a group with a dialog box launcher if there is a related dialog box 

with infrequently used commands and settings. The dialog box should contain 
all the commands in the group, plus others—not a completely different set of 
commands or the same commands as the group.  

• Don’t use a dialog box launcher to perform commands directly. A dialog box 
launcher must display a dialog box. 
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• Don’t use a dialog box launcher to access frequently used commands and 
settings. Compared to commands directly on the ribbon, the dialog box 
commands and settings are relatively undiscoverable. 

• Match the name of the dialog box with the name of the group. It doesn’t have 
to be an exact match, but the names should be similar enough so that users aren’t 
surprised by the results.  

• Display only the commands and settings that relate to the group. If the dialog 
box displays other things, users may conclude that this path to these other 
commands and settings is the only path.  

3.29.5 Labels 

3.29.5.1 Tabs 
• Label all tabs. 

• Whenever practical, use the standard ribbon tabs.  

• Prefer concise, single word labels. While multiword labels are acceptable, they 
take more space and are harder to localize. 

− Choose meaningful tab names that clearly and accurately describe their 
content. The names should be specific, but not overly specific. Tab names 
should be predictable enough so that users aren’t surprised by their content. 
Note that the Home tab is generically named because it is used for the most 
frequently used commands.  

− Choose tab names that reflect their purpose. Consider the goals or tasks 
associated with the tab. 

− Choose tab names that are clearly distinct from all the other tab names. 
− Use either nouns or verbs for tabs. Tab names don’t require parallel 

phrasing, so choose the best label regardless of whether it’s a noun or verb. 
− Don’t use gerunds (names that end in “-ing”). Use the verb from which the 

gerund is derived instead.  
− Avoid tab names with the same initial letters, especially adjacent tabs. 

When the ribbon is scaled down, these tab names will have the same truncated 
text.  

− Prefer singular names. However, you can use a pural name if the singular 
name is awkward. 

− Use title-style capitalization. 
• Don’t use ending punctuation. 
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3.29.6 Contextual Tabs And Tab Sets 
• End contextual tab set labels with “Tools”. Doing so helps identify the purpose 

of contextual tabs. 

• Use title-style capitalization. 

• Don’t use ending punctuation. 

3.30 Groups (Page 285) 
• Label all groups. Exception: Omit the group label if the group has a single 

command and the group and command labels would be the same.  

• Whenever practical, use the standard ribbon groups. 

• Prefer concise, single word labels. While multiword labels are acceptable, they 
take more space and are harder to localize. 

• Choose meaningful group names that clearly and accurately describe their 
content. The names should be specific, not generic.  

• Choose group names that reflect their purpose. Consider the goals or tasks 
associated with the commands in the group. 

• Avoid using gerunds (names that end in “-ing”). You can use gerunds, however, 
if using the verb from which the gerund is derived would be confusing. For 
example, use “Editing” and “Proofing” instead of “Edit” and “Proof.” 

• Don’t use group names that are the same as tab names. Using the tab name 
that the group is on provides no information, and using the name of a different tab 
is confusing.  

• Prefer singular names. However, you can use a pural name if the singular name 
is awkward.  

− Use sentence-style capitalization. 
− Don’t use ending punctuation. 

3.30.1 Commands 
Label all commands. Having explicit text labels helps users find and understand 
commands. Exception: A command can be unlabeled if its icon is extremely well 
known and space is at a premium. Most likely, unlabeled commands will be on the 
Home tab. In this case, assign its Name property to an appropriate text label. This 
enables assistive technology products such as screen readers to provide users with 
alternative information about the graphic. 

• For command buttons, use a concise, self-explanatory label. Use a single word if 
possible; four words maximum. 
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• For drop-down lists, if the list always has a value, use the current value as the 
label.  

• If an editable drop-down list doesn’t have a value, use a prompt. 

− Drop-down lists that aren’t self-explanatory or are infrequently used need an 
explicit label. Put a colon at the end of the label.  

• For text boxes, use an explicit label. Put a colon at the end of the label.  

• Use sentence-style capitalization. Doing so is more appropriate for the Windows 
tone. 

− Start the label with an imperative verb. Exceptions: Omit the verb if it’s the 
same as the tab or group name. 

− Omit common verbs like Show, Create, Insert, or Format if the verb is easily 
inferred from the remaining label. 

− Don’t use ending punctuation. 
− To conserve space, don’t put ellipses on ribbon command labels. 

However, ellipses are used by commands in the Application button and drop-
down menus. 

3.30.2 Enhanced Tooltips 
• Use the title to give the command name and its shortcut key, if applicable. 

• For the title, don’t use ending punctuation. 

• Start the description with a verb. Use the description to help users determine 
whether a specific feature is the one they are looking for. The description should 
be phrased to complete the sentence “This is the right feature to use if you want 
to...”.  

• Keep the description short. Get right to the point. Lengthy text discourages 
reading. 

• For split buttons, use a different tooltip to explain the split button menu.  

• Use an optional supplemental description to explain how to use the control. This 
text can include information about the state of the control (including why it is 
disabled) if the control itself doesn’t indicate state. Keep this text short, and use a 
Help topic for more detailed explanations.  

• For the description and supplemental description, use complete sentences with 
ending punctuation.  

3.30.3 Application Buttons 
• Use “Quick” to indicate an immediate version of a command.  

− Use an ellipsis to indicate that a command requires more information. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
120 

− Use sentence-style capitalization. 

3.31 Text (Page 298) 

3.31.1 Guidelines 

3.31.1.1 General 
• Remove redundant text. Look for redundant text in window titles, main 

instructions, supplemental instructions, content areas, command links, and 
commit buttons. Generally, leave full text in main instructions and interactive 
controls, and remove any redundancy from the other places. 

− Avoid large blocks of UI text. Ways of doing this include chunking text into 
shorter sentences and paragraphs. 

− When necessary, providing Help links to useful, but not essential, 
information. 

− Choose object names and labels that clearly communicate and 
differentiate what the object does. Users shouldn’t have to figure out what 
the object really means or how it differs from other objects.  
• If you want to make sure that users read specific text related to an action, 

place it on an interactive control.  

• Use one space between sentences. Not two. 
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Figure 3-26: Test fonts, sizes, and colors 

 
Figure 3-27: Use blue text for main instructions 

• Use blue text only for links and main instructions. 

• Use green text only for URLs in search results. 
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3.31.2 Other Text Characteristics 

3.31.2.1 Bold 
• Use bold sparingly to draw attention to text users must read. For example, 

users scanning down a list of radio button options may appreciate seeing the 
labels in bold, to stand out from text that adds supplemental information about 
each option. Be aware that using too much bold lessens its impact. 

• With labeled data, use bold to emphasize whichever is more important for 
the data as a whole. For mostly generic data (where the data has little meaning 
without its labels, as with numerals or dates), use bold labels and plain data so 
that users can more easily scan and understand the types of data. 

• For mostly self-explanatory data, use plain labels and bold data so that users can 
focus on the data itself. 

• Alternatively, you can use dark gray text to deemphasize less important 
information instead of using bold to emphasize the more important information.  

− Not all fonts support bold, so it should never be crucial to understanding the 
text. 

3.31.2.2 Italic 
• Use to refer to text literally. Don’t use quotation marks for this purpose.  

• Use for prompts in text boxes and editable drop-down lists.  

• Use sparingly to emphasize specific words to aid in comprehension. 

• Not all fonts support italic, so it should never be crucial to understanding the 
text. 

3.31.2.3 Bold italic 
Don’t use bold italic in UI text. 

3.31.2.4 Underline 
• Don’t use, except for links. 
• Don’t use for emphasis. Use italic instead. 

3.31.3 Punctuation 

3.31.3.1 Periods 
• Don’t place at the end of control labels, main instructions, or Help links. 
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• Place at the end of supplemental instructions, supplemental explanations, or any 
other static text that forms a complete sentence. 

3.31.3.2 Question Marks 
Place at the end of all questions. Unlike periods, question marks are used for all 
types of text. 

3.31.3.3 Exclamation Points 
In business applications, avoid. Exceptions: Exclamation points are sometimes used 
in the context of download completion (“Done!”) and to call attention to Web content 
(“New!”). 

3.31.3.4 Commas 
In a list of three or more items, always put a comma after the next-to-last item in the 
list. 

3.31.3.5 Colons 
• Use colons at the end of external control labels. This is particularly important 

for accessibility because some assistive technologies look for colons to identify 
control labels. 

• Use a colon to introduce a list of items.  

3.31.3.6 Ellipses 
• Ellipses mean incompleteness. Use ellipses in UI text as follows: Commands: 

Indicate that a command needs additional information. Don’t use an ellipsis 
whenever an action displays another window—only when additional information 
is required. For more information, see Command Buttons. 

• Data: Indicate that text is truncated. 

• Labels: Indicate that a task is in progress (for example, “Searching...”). 

3.31.3.7 Quotation Marks And Apostrophes 
• To refer to text literally, use italic formatting rather than quotation marks. 

• Put window titles and control labels in quotation marks only if required to prevent 
confusion and you can’t format using bold instead. 

• When possible, use curved quotation marks and apostrophes instead of straight 
ones. 

• For quotation marks, prefer double-quotation marks (“ ”); avoid single-quotation 
marks (‘ ’).  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
124 

3.31.3.8 Capitalization 
• Use title-style capitalization for titles, sentence-style capitalization for all 

other UI elements. Doing so is more appropriate for the Windows tone. 
Exception: For legacy applications, you may use title-style capitalization for 
command buttons, menus, and column headings if necessary to avoid mixing 
capitalization styles.  

− For feature and technology names, be conservative in capitalizing. 
Typically, only major components should be capitalized (using title-style 
capitalization).  

− For feature and technology names, be consistent in capitalizing. If the 
name appears more than once on a UI screen, it should always appear the 
same way. Likewise, across all UI screens in the program, the name should be 
consistently presented. 
• Don’t capitalize the names of generic user interface elements, such as 

toolbar, menu, scroll bar, button, and icon. Exceptions: Address bar, 
Links bar. 

• Don’t use all capital letters for keyboard keys. Instead, follow the 
capitalization used by standard keyboards, or lowercase if the key is not 
labeled on the keyboard.  

− Don’t use all capital letters for emphasis. Studies have shown that this is 
hard to read, and users tend to regard it as “screaming.” For warnings, use a 
warning icon and a clearly-worded explanation of the situation. There is no 
need to add, for example, the term WARNING in all capital letters. 

3.31.4 Dates And Times 
• Don’t hard-code the format of dates and times. Respect the user’s choice of 

locale and customization options for the date and time formats. The user selects 
these in the Region and Language control panel item.  

• Use the long date format for scenarios that benefit from having additional 
information. Use the short date format for contexts that don’t have sufficient 
space for the long format. While users choose what information they would like to 
include in the long and short formats, designers choose which format to display in 
their programs based on the scenario and the context. 

3.31.5 Globalization And Localization 
• For controls with variable contents (such as list views and tree views), choose a 

width appropriate for the longest valid data. 

• Include space enough in the UI surface for an additional 30% (up to 200% for 
shorter text) for any text (but not numbers) that will be localized. Translation from 
one language to another often changes line length of text. 
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• Don’t compose strings from substrings at run time. Instead, use complete 
sentences so that there is no ambiguity for the translator. 

• Don’t use a subordinate control, the values it contains, or its units label to 
create a sentence or phrase. Such a design is not localizable because sentence 
structure varies with language.  

− Don’t make only part of a sentence a link, because when translated, that text 
might not remain together. Link text should therefore form a complete 
sentence by itself. Exception: Glossary links can be inserted inline, as part of 
a sentence. 

3.31.6 Title Bar Text 
• Choose the title bar text based on the type of window: Top-level, document-

centric program windows: Use a “document name–program name” format. 
Document names are displayed first to give a document-centric feel. 

• Top-level program windows that are not document-centric: Display the 
program name only. 

• Dialog boxes: Display the command, feature, or program from which the dialog 
box came. Don’t use the title to explain the dialog box’s purpose—that’s the 
purpose of the main instructions. For more guidelines, see Dialog Boxes. 

• Wizards: Display the wizard name. Note that the word “wizard” should not be 
included in wizard names.  

• For top-level program windows, if the title bar caption and icon are 
displayed prominently near the top of the window, you can hide the title bar 
caption and icon to avoid redundancy. However, you still have to set a suitable 
title internally for use by Windows. 

• For dialog boxes, don’t include the words “dialog” or “progress” in the titles. 
These concepts are implied and leaving these words off makes the titles easier for 
users to scan. 

3.31.7 Main Instructions 
• Use the main instruction to explain concisely what users should do in a given 

window or page. Good main instructions communicate the user’s objective rather 
than focusing just on manipulating the UI. 

• Express the main instruction in the form of an imperative direction or 
specific question. Incorrect:  

− Exceptions: Error messages, warning messages, and confirmations may use 
different sentence structures in their main instructions. 
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− Use specific verbs whenever possible. Specific verbs (examples: connect, 
save, install) are more meaningful to users than generic ones (examples: 
configure, manage, set). For control panel pages and wizard pages, if you 
can’t use a specific verb, you may prefer to omit the verb completely.  

− For dialogs, such as error messages and warnings, don’t omit the verb. 
− Don’t feel obliged to use main instruction text if adding it would only be 

redundant or obvious from the context of the UI  
• Be concise—use only a single, complete sentence. Pare the main instruction 

down to the essential information. If you must explain anything more, consider 
using a supplemental instruction. 

• Use sentence-style capitalization. 

• Don’t include final periods if the instruction is a statement. If the instruction is 
a question, include a final question mark. 

• For progress dialogs, use a gerund phrase briefly explaining the operation in 
progress, ending with an ellipsis. Example: “Printing your pictures...” 

3.31.8 Supplemental Instructions 
When necessary, use a supplemental instruction to present additional information 
helpful to understanding or using the window or page, such as:  

• Providing context to explain why the window is being displayed if it is program 
or system initiated. 

• Qualifying information that helps users decide how to act on the main instruction. 

• Defining important terminology. 

− Don’t use a supplemental instruction if one isn’t necessary. Prefer to 
communicate everything with the main instruction if you can do so concisely. 

− Don’t repeat the main instruction with slightly different wording. Instead, 
omit the supplemental instruction if there is nothing more to add. 

− Use complete sentences and sentence-style capitalization. 

3.31.9 Control Labels 
• Label every control or group of controls. Exceptions: Text boxes and drop-down 

lists can be labeled using prompts. 

• Progressive disclosure controls are generally unlabeled. 

• Subordinate controls use the label of their associated control. Spin controls are 
always subordinate controls. 

• Omit control labels that restate the main instruction. In this case, the main 
instruction takes the access key.  
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• Label placement:  

− Balloons, check boxes, command buttons, group boxes, links, tabs, and tips 
are labeled directly by the control itself. 

− Drop-down lists, list boxes, list views, progress bars, sliders, text boxes, and 
tree views are labeled above, flush left, or to the left. 

− Progressive disclosure controls are usually unlabeled. Chevron buttons are 
labeled to the right. 

− Assign a unique access key for each interactive control except for links. 
Keep labels brief. Note, however, that adding a word or two to a label can 
help clarity, and sometimes eliminates the need for supplemental 
explanations. 

− Prefer specific labels over generic ones. Ideally users shouldn’t have to read 
anything else to understand the label.  

• For lists of labels, such as radio buttons, use parallel phrasing, and try to keep the 
length about the same for all labels. 

• For lists of labels, focus the label text on the differences among the options. If all 
the options have the same introductory text, move that text to the group label.  

− In general, prefer positive phrasing. For example, use do instead of do not, 
and notify instead of do not notify. Exception: The check box label, “Don’t 
show this message again,” is widely used. 

− Omit instructional verbs that apply to all controls of the given type. 
Rather, focus labels on what is unique about the controls. For example, it goes 
without saying that users need to type into a text box control or that users need 
to click a link.  

− In some cases, the following parenthetical annotations to control labels may 
be helpful: If an option is optional, consider adding “(optional)” to the 
label. 

− If an option is strongly recommended, add “(recommended)” to the label. 
Doing so means the setting is optional, but should be set anyway. 

− If an option is intended only for advanced users, consider adding 
“(advanced)” to the label. 

− You may specify units (seconds, connections, and so on) in parenthesis after 
the label.  

3.32 Supplemental Explanations (Page 314) 
• Use supplemental explanations when controls require more information than 

can be conveyed by their label. But don’t use a supplemental explanation if one 
isn’t necessary—prefer to communicate everything with the control label if you 
can do so concisely. Typically, supplemental explanations are used with 
command links, radio buttons, and check boxes.  
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− When necessary, use bold in the control labels to make the text easier to scan 
when there are supplemental explanations.  

− Adding a supplemental explanation to one control in a group doesn’t mean 
that you have to provide explanations for all the other controls in the group. 
Provide the relevant information in the label if you can and use explanations 
only when necessary. Don’t have supplemental explanations that merely 
restate the label for consistency.  

− If a supplemental explanation follows a command link, write the supplemental 
text in second person.  

− Use complete sentences and ending punctuation. 

 
Figure 3-28: Supplemental explanations 
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Figure 3-29: Supplemental explanations 
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Figure 3-30: Supplemental explanations 

 
Figure 3-31: Supplemental explanations 
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Figure 3-32: Supplemental explanations 

 
Figure 3-33: Supplemental explanations 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
132 

3.33 Style and Tone (Page 319) 

3.33.1 Guidelines 

3.33.1.1 Use The Windows Tone 
Tone in your program should be: 

• Accurate. Users should feel reassured that the information is technically accurate. 
If the information isn’t accurate, the user’s experience with that specific task is 
spoiled, and he loses faith in any other assistance he reads from that source. 

• Encouraging. Use language that conveys that the software empowers users to do 
things, rather than allows them to do things. For example, use “you can” rather 
than “Windows lets you” or “this feature allows you.” (Exception: it’s okay to use 
“allow” when referring to features—such as security features—that permit or 
deny an action.)  

• Insightful. Users should believe that you (and by extension your application) 
know when a certain task is complicated and that you will guide them through it. 
At the same time, treat users as intelligent people who happen to need help with a 
particular problem.  

• Objective. Sometimes users want a richer explanation; often though they just 
want to know what they need to move on. This requires objectivity—to recognize 
that the goal (productivity, curiosity, enjoyment) is the user’s goal, not the 
writer’s. It also requires that you shed any predisposed notions about the user. 

• User-focused. Write from the user’s perspective and preferably from the 
perspective of what you can do for the user. Users should feel that they will find 
information that is relevant and accessible to them. 

− Light. A light voice feels easy to deal with and quick to comprehend. It isn’t 
difficult or burdensome, and it avoids straining to be profound or serious. 

− Inspiring. An inspiring voice motivates users, stimulating them to take action. 
A certain enthusiasm marks this kind of voice, giving it a more engaging 
personality than the machine-like tone users have often come to expect from 
their computers. 

− Straightforward. A straightforward voice is candid and open, free from 
pretense or deceit. 

− Trustworthy. A trustworthy voice is worthy of confidence, reliable, accurate, 
and honest. It only takes only a few inaccuracies to lose the user’s trust, but it 
may take a long time to earn that trust back. 

By contrast, be sure to avoid the following tones, which are much more likely to 
receive a negative reaction: 
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• Machine tone. Feels like having an impersonal, inflexible exchange with a 
computer or robot. 

• Corporate tone. Feels like having a monologue with an all-powerful, all-
knowing, impersonal corporation. 

• Law enforcement tone. Feels like being interrogated with a barrage of intrusive 
questions. 

• Lawyerly tone. Feels like being asked to perform some legally significant act. 

• Sales rep tone. Feels like being asked to buy or try something, with any concerns 
being glossed over. 

• Superior, condescending, or angry tone. Feels like the software is belittling 
users, talking down to them, or upset with them. Typically, this tone is very 
technical, draws unnecessary attention to the user’s mistakes, and feels rude. 

• Boastful tone. Feels like the software is bragging about its accomplishments or 
otherwise drawing too much attention to itself. 

• Flippant tone. Feels like users’ goals and emotions aren’t being taken seriously, 
or their use of the program is being taken for granted. 

3.33.1.2 Use Real-World Language 
• Use everyday words when you can and avoid words you wouldn’t say to 

someone else in person. This is especially effective if you are explaining a 
complex technical concept or action. Imagine yourself looking over the user’s 
shoulder and explaining how to accomplish the task.  

− Use short, plain words whenever possible. Shorter words are more 
conversational, save space on screen, and are easier to scan.  

− Don’t invent words or apply new meanings to standard words. Assume 
that users are more familiar with a word’s established meaning than with a 
special meaning given it by the technology industry. When an industry term is 
required, provide an in-context definition. Avoid jargon, but remember that 
some expressions specific to computer usage—hacker, burn a CD, and so 
on—are already part of everyday speech.  

− Don’t use symbols as a substitute for simple words.  

3.33.1.3 Be Precise 
Choose words with a clear meaning.  

• Omit needless words—don’t use two or three words when one will do.  

• Avoid unnecessary adverbs.  

• Choose single-word verbs over multi-word verbs.  

• Don’t convert verbs to nouns and nouns to verbs.  
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3.33.1.4 Be Consistent 
• Consistent terminology promotes learning and a better understanding of technical 

concepts. Inconsistency forces users to figure out whether different words and 
actions mean the same thing.  

• Consistent syntax helps set users' expectations. Once these expectations are set, 
users can more quickly parse text that uses consistent syntax. For example, if 
instructions are always written in the imperative form, users will learn to pay 
closer attention to imperative sentences. 

3.33.1.5 Contractions 
Contractions lend a shorter, snappier, more conversational rhythm to writing. Use 
them as appropriate and in context. Don’t use contractions with product names or 
other proper nouns. 

3.33.1.6 Colloquialisms, Idioms, And Slang 
Consider using colloquialisms or slang only in special situations, such as product 
tours, setup screens, or content that won't be localized. Recent studies have shown 
that users enjoy the unexpected word or familiar phrase. Bear in mind that using 
colloquialisms and slang can be difficult and costly to translate effectively, so such 
language is best used judiciously.  

3.33.1.7 Person 
• Address the user as you, directly or indirectly. 

• Use the second person (you, your) to tell users what to do. Often the second 
person is implied.  

− Use the first person (I, me, my) to let users tell the program what to do.  
− Use “we” judiciously. The first-person plural can suggest a daunting corporate 

presence. However, it can be preferable to using the name of your application. 
Use “we recommend” rather than “it is recommended.” 

− Avoid third-person references (the user) because they create a more formal, 
less personal tone. 

3.33.1.8 Voice 
• Use the active voice, which emphasizes the person or thing doing the action. It is 

more direct and personal than the passive voice, which can be confusing or sound 
formal.  

• Use the passive voice only to avoid a wordy or awkward construction; when the action 
rather than the doer is the focus of the sentence; when the subject is unknown; or in error 
messages, when the user is the subject and might feel blamed for the error if the active 
voice were used.  
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• Phrase statements in the positive form, and emphasize what users can accomplish, 
rather than what they can’t. 

3.33.1.9 Attitude Toward The User 
• Be polite, supportive, and encouraging. The user should never feel 

condescended to, blamed, or intimidated.  

− Strike the right balance: be warm toward the user without being too 
intimate or too business-like. Imagine that you are helping a friend use the 
product for the first time. This person is not your best friend or significant 
other, but instead, a neighbor or family friend. Users should feel comfortable 
and at home when using your program, but the language should not feel 
presumptuous or too familiar. 
• Limit please to situations that inconvenience the user in some way, 

such as: The user is asked to do something inconvenient, such as waiting, 
repeating a task or updating a program. 

• The user can’t complete a task because of a missing feature, design flaw, 
or program bug.  

• The user has gone out of his or her way to be helpful, as by participating 
in a customer feedback program or filing a bug report. 

− You should also use please whenever its absence would be considered curt. 
• Use sorry only in error messages that result in serious problems for the user 

(for example, data loss, the user can’t continue to use the computer, or the user 
must get help from a technical representative). Don’t apologize if the issue 
occurred during the normal functioning of the program (for example, if the user 
needs to wait for a network connection to be found).  

3.33.1.10 Sentence Structure And Length 
• Because users often scan text, make every word count. Simple, concise 

sentences (and paragraphs) not only save space on the screen but are the most 
effective means of conveying that an idea or action is important. Use your best 
judgment—make sentences tight, but not so tight that the tone seems abrupt and 
unfriendly. 

• Avoid repetition. Review each window and eliminate duplicate words and 
statements. Don’t avoid important text—be explicit whenever necessary—but 
don’t be redundant and don’t explain things that go without saying. 

− Use sentence fragments if appropriate. Sentence fragments are short and 
punchy—and, as they typically take the interrogative form, they are a good 
way of directly engaging the user.  

− Start sentences with conjunctions (and, but, or) if you need to. 
− Substitute lists and tables for complex sentences. Lists (whether numbered 

or bulleted) and tables are clearer and easier to scan. 
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− Use parallel grammatical constructions. Parallelism requires that words and 
phrases that have the same function have the same form. Use parallel 
language whenever you express ideas of equal weight, and for UI elements 
that are parallel in function (such as headings, labels, lists, or page titles).  

3.34 Messages (Page 326) 

3.34.1 Guidelines 

3.34.1.1 Presentation 
• Use task dialogs whenever appropriate to achieve a consistent look and layout. 

Task dialogs require Windows Vista® or later, so they aren’t suitable for earlier 
versions of Windows. If you must use a message box, separate the main 
instruction from the supplemental instruction with two line breaks. 

3.34.1.2 User Input Errors 
• Whenever possible, prevent or reduce user input errors by: Using controls that are 

constrained to valid values. 

• Disabling controls and menu items when clicking would result in error, as long as 
it’s obvious why the control or menu item is disabled. 

• Providing good default values.  

− Use modeless error handling (in-place errors or balloons) for contextual user 
input problems. 

− Use balloons for non-critical, single-point user input problems detected while 
in a text box or immediately after a text box loses focus. Balloons don’t 
require available screen space or the dynamic layout that is required to display 
in-place messages. Display only a single balloon at a time. Because the 
problem isn’t critical, no error icon is necessary. Balloons go away when 
clicked, when the problem is resolved, or after a timeout. In this  

− Use in-place errors for delayed error detection, usually errors found by 
clicking a commit button. (Don’t use in-place errors for settings that are 
immediately committed.) There can be multiple in-place errors at a time. Use 
normal text and a 16 × 16 pixel error icon, placing them directly next to the 
problem whenever possible. In-place errors don’t go away unless the user 
commits and no other errors are found.  

− Use modal error handling (task dialogs or message boxes) for all other 
problems, including errors that involve multiple controls or are noncontextual 
or noninput errors found by clicking a commit button. 
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− When a user input problem is reported, set input focus to the first control with 
the incorrect data. Scroll the control into view if necessary. If the control is a 
text box, select the entire contents. It should always be obvious what the error 
message is referring to. 

− Don’t clear incorrect input. Instead, leave it so that the user can see and 
correct the problem without starting over. Exception: Clear incorrect password 
and PIN text boxes because users can’t correct masked input effectively. 

3.34.1.3 Troubleshooting 
• Avoid creating troubleshooting problems. Don’t rely on a single error message 

to report a problem with several different detectable causes. 

• Use a different error message (typically a different supplemental instruction) 
for each detectable cause. For example, if a file cannot be opened for several 
reasons, provide a separate supplemental instruction for each reason. 

• Use a message with multiple causes only when the specific cause can’t be 
determined. In this case, present the solutions in order of likelihood of fixing the 
problem. Doing so helps users solve the problem more efficiently.  

3.34.1.4 Icons 
• Modal error message dialogs don’t have title bar icons. Title bar icons are used 

as a visual distinction between primary windows and secondary windows. 

 Use an error icon. Exceptions: If the error is a user input problem displayed 
using a modal dialog box or balloon, don’t use an icon. Doing so is counter to the 
encouraging tone of Windows. However, in-place error messages should use a 
small error icon (16 × 16 pixel) to clearly identify them as error messages.  

− If the problem is for a feature that has an icon (and not a user input problem), 
you can use the feature icon with an error overlay. If you do this, also use the 
feature name as the error’s subject.  
• Don’t use warning icons for errors. This is often done to make the 

presentation feel less severe. Errors aren’t warnings.  

3.34.1.5 Progressive Disclosure 
• Use a Show/Hide details progressive disclosure button to hide advanced or 

detailed information in an error message. Doing so simplifies the error 
message for typical usage. Don’t hide needed information, because users might 
not find it.  

− Don’t use Show/Hide details unless there really is more detail. Don’t just 
restate the existing information in a more verbose format. 

− Don’t use Show/Hide details to show Help information. Use Help links 
instead. 
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3.34.1.6 Don’t Show This Message Again 
If an error message needs this option, reconsider the error and its frequency. If it 
has all the characteristics of a good error (relevant, actionable, and infrequent), it 
shouldn’t make sense for users to suppress it.  

3.34.2 Default Values 
Select the safest, least destructive, or most secure response to be the default. If safety 
isn’t a factor, select the most likely or convenient command. 

3.34.3 Help 
• Design error messages to avoid the need for Help. Ordinarily users shouldn’t 

have to read external text to understand and solve the problem, unless the solution 
requires several steps. 

• Make sure the Help content is relevant and helpful. It shouldn’t be a verbose 
restatement of the error message—rather, it should contain useful information that 
is beyond the scope of the error message, such as ways to avoid the problem in 
the future. Don’t provide a Help link just because you can. 

• Use specific, concise, relevant Help links to access Help content. Don’t use 
command buttons or progressive disclosure for this purpose. 

• For error messages that you can’t make specific and actionable, consider 
providing links to online Help content. By doing so, you can provide users with 
additional information that you can update after the program is released. 

3.34.4 Error Codes 
• For error messages that you can’t make specific and actionable or they benefit 

from Help, consider also providing error codes. Users often use these error codes 
to search the Internet for additional information. 

• Always provide a text description of the problem and solution. Don’t depend just 
on the error code for this purpose.  

− Assign a unique error code for each different cause. Doing so avoids 
troubleshooting. 

− Choose error codes that are easily searchable on the Internet. If you use 32-bit 
codes, use a hexadecimal representation with a leading “0x” and uppercase 
characters.  

− Use Show/Hide details to display error codes. Phrase as Error code: <error 
code>.  
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3.34.5 Sound 
Don’t accompany error messages with a sound effect or beep. Doing so is jarring 
and unnecessary. Exception: Play the Critical Stop sound effect if the problem is 
critical to the operation of the computer, and the user must take immediate action to 
prevent serious consequences. 

3.34.6 Text 

3.34.6.1 General 
• Remove redundant text. Look for it in titles, main instructions, supplemental 

instructions, command links, and commit buttons. Generally, leave full text in 
instructions and interactive controls, and remove any redundancy from the other 
places. 

• Use user-centered explanations. Describe the problem in terms of user actions 
or goals, not in terms of what the software is unhappy with. Use language that the 
target users understand and use. Avoid technical jargon.  

• Don’t use the following words:  

− Error, failure (use “problem” instead) 
− Failed to (use “unable to” instead) 
− Illegal, invalid, bad (use “incorrect” instead) 
− Abort, kill, terminate (use “stop” instead) 
− Catastrophic, fatal (use “serious” instead) 

• Don’t use phrasing that blames the user or implies user error. Avoid using “you” 
and “your” in the phrasing. While the active voice is generally preferred, use the 
passive voice when the user is the subject and might feel blamed for the error if 
the active voice were used.  

• Be specific. Avoid vague wording, such as syntax error and illegal operation. 
Provide specific names, locations, and values of the objects involved.  

• Don’t give possibly unlikely problems, causes, or solutions in an attempt to 
be specific. Don’t provide a problem, cause, or solution unless it is likely to be 
right. For example, it is better to say “An unknown error occurred” than 
something that is likely to be inaccurate. 

• Avoid the word “please,” except in situations in which the user is asked to do 
something inconvenient (such as waiting) or the software is to blame for the 
situation.  
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− Use the word “sorry” only in error messages that result in serious 
problems for the user (for example, data loss or inability to use the 
computer). Don’t apologize if the issue occurred during the normal 
functioning of the program (for example, if the user needs to wait for a 
network connection to be found). Correct: We’re sorry, but Fabrikam Backup 
detected an unrecoverable problem and was shut down to protect files on your 
computer. 

− Refer to products using their short names. Don’t use full product names or 
trademark symbols. Don’t include the company name unless users associate 
the company name with the product. Don’t include program version numbers.  

− Use double quotation marks around object names. Doing so makes the text 
easier to parse and avoids potentially embarrassing statements. Exception: 
Fully qualified file paths, URLs, and domain names don’t need to be in double 
quotation marks. 

− Avoid starting sentences with object names. Doing so is often difficult to 
parse. 

− Don’t use exclamation marks or words with all capital letters. 
Exclamation marks and capital letters make it feel like you are shouting at the 
user. 

3.34.6.2 Titles 
• Use the title to identify the command or feature from which the error 

originated. Exceptions: If an error is displayed by many different commands, 
consider using the program name instead. 

• If that title would be redundant or confusing with the main instruction, use the 
program name instead. 

• Don’t use the title to explain or summarize the problem—that’s the purpose of 
the main instruction.  

− Use title-style capitalization, without ending punctuation. 

3.34.6.3 Main Instructions 
• Use the main instruction to describe the problem in clear, plain, specific language. 

• Be concise—use only a single, complete sentence. Pare the main instruction down 
to the essential information. You can leave the subject implicit if it is your 
program or the user. Include the reason for the problem if you can do so 
concisely. If you must explain anything more, use a supplemental instruction.  

• Be specific—if there are objects involved, give their names. 
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• Avoid putting full file paths and URLs in the main instruction. Rather, use a short 
name (such as the file name) and put the full name (such as the file path) in the 
supplemental instruction. However, you can put a single full file path or URL in 
the main instruction if the error message doesn’t otherwise need a supplemental 
instruction.  

• Don’t give the full file path and URL at all if it’s obvious from the context.  

• Use present tense whenever possible. 

• Use sentence-style capitalization. 

• Don’t include final periods if the instruction is a statement. If the instruction is a 
question, include a final question mark. 

3.34.6.4 Main Instruction Templates 
While there are no strict rules for phrasing, try using the following main instruction 
templates whenever possible: 

• <optional subject name> can’t <perform action> 

• <optional subject name> can’t <perform action> because <reason> 

• <optional subject name> can’t <perform action> to “<object name>” 

• <optional subject name> can’t <perform action> to “<object name>” because 
<reason> 

• There is not enough <resource> to <perform action> 

• <Subject name> doesn’t have a <object name> required for <purpose> 

• <Device or setting> is turned off so that <undesired results> 

• <Device or setting> isn’t <available | found | turned on | enabled> 

• “<object name>” is currently unavailable 

• The user name or password is incorrect 

• You don’t have permission to access “<object name>” 

• You don’t have privilege to <perform action> 

• <program name> has experienced a serious problem and must close immediately  
Of course, make changes as needed for the main instruction to be grammatically 
correct and comply with the main instruction guidelines. 

3.34.6.5 Supplemental Instructions 
• Use the supplemental instruction to: Give additional details about the problem. 

• Explain the cause of the problem. 
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• List steps the user can take to fix the problem. 

• Provide measures to prevent the problem from reoccurring. 
Whenever possible, propose a practical, helpful solution so users can fix the problem. 
However, make sure the proposed solution is likely to solve the problem. Don’t waste 
users’ time by suggesting possible, but improbable, solutions.  

• If the problem is an incorrect value that the user entered, use the supplemental 
instruction to explain the correct values. Users shouldn’t have to determine this 
information from another source. 

• Don’t provide a solution if it can be trivially deduced from the problem statement.  

• If the solution has multiple steps, present the steps in the order in which they 
should be completed. However, avoid multi-step solutions because users have 
difficulty remembering more than two or three simple steps. If more steps are 
required, refer to the appropriate Help topic. 

• Keep supplemental instructions concise. Provide only what users need to know. 
Omit unnecessary details. Aim for a maximum of three sentences of moderate 
length. 

• To avoid mistakes while users perform instructions, put the results before the 
action.  

• Don’t recommend contacting an administrator unless doing so is among the most 
likely solutions to the problem. Reserve such solutions for problems that really 
can only be solved by an administrator.  

• Don’t recommend contacting technical support. The option to contact technical 
support to solve a problem is always available, and doesn’t need to be promoted 
through error messages. Instead, focus on writing helpful error messages so that 
users can solve problems without contacting technical support.  

• Use complete sentences, sentence-style capitalization, and ending punctuation. 

3.34.6.6 Commit Buttons 
• If the error message provides command buttons or command links that solve the 

problem, follow their respective guidelines in Dialog Boxes. 

• If the program must terminate as a result of the error, provide an Exit program 
button. To avoid confusion, don’t use Close for this purpose. 

Otherwise, provide a Close button. Don’t use OK for error messages, because this 
wording implies that problems are OK. Exception: Use OK if your error reporting 
mechanism has fixed labels (as with the MessageBox API.) 
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3.35 Warning Messages (Page 357) 

 
Figure 3-34: Guidelines 

For modal dialog boxes:  

• Use task dialogs whenever appropriate to achieve a consistent look and layout. 
Task dialogs require Windows Vista® or later, so they aren’t suitable for earlier 
versions of Windows. 

• Display only one warning message per condition. For example, display a single 
warning that completely explains a condition instead of describing it one detail at 
a time per message. Displaying a sequence of warning dialogs for a single 
condition is confusing and annoying. 

• Don’t display a warning more than once per condition. Constant warnings quickly 
become ineffective and annoying. Users often become more focused on getting 
rid of the warning than addressing the problem. If you must warn repeatedly for a 
single condition, use progressive escalation. 

• Don’t accompany warnings with a sound effect or beep. Doing so is jarring and 
unnecessary. Exception: If the user must respond immediately, you can use a 
sound effect. 

3.35.1 Icons 
• Don’t place a warning icon in the title bar of a dialog box. 

• Use a warning icon. Exceptions: If the warning is for a feature that has an icon, 
you can use the feature icon with a warning overlay.  
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3.35.2 Don’t Show This Message Again 
If a warning dialog box needs this option, reconsider the warning and its 
frequency. If it has all the characteristics of a good warning (involves risk, and is 
immediately relevant, actionable, not obvious, and infrequent), it shouldn’t make 
sense for users to suppress it. 

3.35.3 Progressive Disclosure 
• If you must include advanced information in a warning message, reveal it by 

using progressive disclosure buttons (for example, “Show details”). Doing so 
simplifies the warning for typical usage. Don’t hide needed information because 
users might not find it. 

• Don’t use “Show details” unless there really is more detail. Don’t just restate 
the existing information in a different format. 

3.35.4 Default Values 
Select the safest, least destructive, or most secure response to be the default. 

3.35.5 Text 

3.35.5.1 General 
• Remove redundant text. Look for it in titles, main instructions, supplemental 

instructions, content areas, command links, and commit buttons. Generally, leave 
full text in instructions and interactive controls, and remove any redundancy from 
the other places. 

• Don’t use the terms “warning” or “caution” in the text. When used correctly, 
the warning icon sufficiently communicates that users must proceed with caution.  

3.35.5.2 Titles 
Use the title to identify the command or feature where the warning came from. 
Exceptions: If a warning is displayed by many different commands, consider using 
the program name instead. 

If that title would be redundant or confusing with the main instruction, use the 
program name instead. 

• Don’t use the title to explain what to do in the dialog—that’s the purpose of the 
main instruction. 

• Use title-style capitalization, without ending punctuation. 
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Figure 3-35: Main instructions 

• Be concise—use only a single, complete sentence. Strip the main instruction 
down to the essential information. If you must explain anything more, use a 
supplemental instruction. 

• Use words like “now” and “immediately” if the user must act immediately. 
Don’t use these words if there is no urgency. 

• Be specific—if there are objects involved, give their full names. 

• Use sentence-style capitalization. 

 
Figure 3-36: Supplemental instructions 
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3.36 Confirmations (Page 369) 

3.36.1 Guidelines 

3.36.1.1 General 
Use “Save changes” confirmations only when there are significant changes. Don’t 
confirm changes that weren’t directly made by the user, such as automatic document 
reformatting.  

 
Figure 3-37: Icons 

3.36.1.2 Commit Buttons 
• Use specific responses to the main instruction if the reason for the confirmation is 

obvious or can be made self explanatory. Otherwise, use Yes and No buttons for 
confirmation responses. Doing so makes users give the confirmation some 
thought before responding.  

• Never use OK and Cancel for confirmations.  

• To close a program or restart Windows, use specific responses to the main 
instruction. To prevent any misunderstanding, don’t use Close or Yes/No for this 
purpose.  

3.36.1.3 Command Links 
• For the clarifications pattern, consider using command links to make the 

alternatives clear.  

• Present the most commonly used command links first. The resulting order should 
roughly follow the likelihood of use, but also have a logical flow. 

• If a command link requires further explanation, provide a supplemental 
explanation. Supplemental explanations describe why users might want to choose 
the option or what happens if the option is chosen. 
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Figure 3-38: Default values 

3.36.1.4 Don’t Show This Message Again 
• Use this option only for the routine and ulterior motive confirmation 

patterns. For the other patterns, if the information is necessary, it should always 
be displayed. 

• Don’t provide this option to justify displaying an unnecessary confirmation. 
Just get rid of the confirmation instead.  

3.36.1.5 Bulk Operations 
• For confirmations that apply to bulk operations, provide an option to apply the 

confirmation to the entire operation.  

• Eliminate or postpone confirmations in a bulk operation.  

3.36.1.6 Progressive Disclosure 
• If you must include advanced information in a confirmation message, reveal it by 

using progressive disclosure buttons (for example, “Show details”). Doing so 
simplifies the confirmation for typical usage. Don’t hide needed information 
because users might not find it. 

• Don’t use “Show details” unless there really is more detail. Don’t just restate the 
existing information in a different format. 

3.36.1.7 User Account Control 
• Don’t use the User Account Control (UAC) elevation UI as a substitute for a 

confirmation. If an action needs a confirmation, use a separate dialog box. 
During the elevation UI, users need to focus on whether they started task and if 
the program is trustworthy. 
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• Display the confirmation before the elevation UI. Doing so eliminates 
unnecessary elevations. 

3.36.2 Text 

3.36.2.1 General 
• Remove redundant text. Look for redundant text in titles, main instructions, 

supplemental instructions, content areas, command links, and commit buttons. 
Generally, leave full text in instructions and interactive controls, and remove any 
redundancy from the other places. 

• Don’t use “warning” or “caution” in the text. If users need to proceed with 
caution, indicate this using a warning icon instead.  

3.36.2.2 Titles 
Use the title to identify the command or feature where the confirmation came 
from. Exceptions: If a confirmation is displayed by many different commands, 
consider using the program name instead. 

• If that title would be redundant or confusing with the main instruction, use the 
program name instead. 

• However, if the confirmation is from a long-running task and may display well 
after the task started, always use the command or feature to clearly identify the 
context.  

• Don’t use the title to explain what to do in the dialog—that’s the purpose of the 
main instruction. 

• If it adds clarity, start the title with the word “Confirm.” 
For risky action confirmations, you may add the name of the object involved for extra 
emphasis.  

• Use title-style capitalization, without ending punctuation. 

3.36.2.3 Main Instructions 
• Be concise—use only a single, complete sentence. Strip the main instruction 

down to the essential information. If you must explain anything more, use a 
supplemental instruction. 

• Be specific—if there are objects involved, give their full names. 

• Use positive phrasing. Positive phrasing is easier for users to understand.  

• For risky action confirmations, use the term “permanently” to indicate that an 
action can’t be undone.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
149 

• Use sentence-style capitalization. 

 
Figure 3-39: Supplemental instructions 

• Don’t repeat the main instruction with slightly different wording. Instead, 
omit the supplemental instruction if there is not more to add. 

• For unintended consequence confirmations, consider using the term 
“anyway” to concisely indicate that there is a reason not to continue in case 
the user overlooked the main instruction. See Design concepts for more 
information. 

• Use complete sentences, sentence-style capitalization, and ending punctuation. 

3.37 Notifications (Page 384) 

3.37.1 Guidelines 

3.37.1.1 General 
• Select the notification pattern based on its usage. For a description of each 

usage pattern, see the previous table. 

• Don’t use any notifications during the initial Windows experience. To 
improve its first experience, Windows 7 suppresses all notifications displayed 
during the first few hours of usage. Design your program assuming users won’t 
see any such notifications. 

3.37.1.2 What To Notify 
Don’t notify of successful operations, except in the following circumstances:  
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• Security. Users consider security operations to be of the highest importance, so 
notify users of successful security operations. 

• Recent failure. Users don’t take successful operations for granted if they were 
failing immediately before, so notify users of success when the operation was 
recently failing. 

• Prevent inconvenience. Report successful operations when doing so might avoid 
inconveniencing users. Consequently, notify users when a successful operation is 
performed in an unexpected way, such as when an operation is lengthy or 
completes earlier or later than expected. 

• In other circumstances, either give no feedback for success or give feedback 
“on demand.” Assume that users take successful operations for granted. You can 
give feedback on demand by displaying an icon (or changing an existing icon) in 
the notification area while the operation is being performed, and removing the 
icon (or restoring the previous icon) when the operation is complete. 

− For the FYI pattern, don’t give a notification if users can continue to work 
normally or are unlikely to do anything different as the result of the 
notification.  

− Exception: You can notify users of information of questionable relevance if it 
is optional and users opt in.  

− For the noncritical system event and FYI patterns, use complete notifications 
for a single event. Don’t present several partial ones.  

 
Figure 3-40: When to notify 

• For the action failure pattern, if the problem might correct itself within 
seconds, delay the failure notification for an appropriate amount of time. If 
the problem corrects itself, report nothing. Notify only after enough time has 
passed that the failure is noticeable. If you report too early, most likely users 
won’t notice the problem reported, but they will notice the unnecessary 
notification.  
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• For the action success and FYI patterns, use the real-time option so that stale 
notifications aren’t queued when users are running a full-screen application or 
aren’t actively using their computer.  

• For the non-critical system event pattern, don’t create the potential for 
notification storms by staggering events tied to well-known events such as 
user logon. Instead, tie the event to some time period after the event. For 
example, you could remind users to register your product five minutes after user 
logon. 

3.37.1.3 How Long To Notify 
In Windows Vista and later, notifications are displayed for a fixed duration of 9 
seconds. 

3.37.1.4 How Often To Notify 

 
Figure 3-41: The number of times to display a notification is based on its design pattern 

For optional user tasks, don’t try to pester users into submission by constantly 
displaying notifications. If the task is required, display a modal dialog box 
immediately instead of using notifications. 

3.37.1.5 Notification Escalation 
Don’t assume that users will see your notifications. Users won’t see them when:  

• They are immersed in their work. 

• They aren’t paying attention. 

• They are away from their computer. 

• They are running a full-screen application. 

• Their administrator has turned off all notifications for their computer. 
If users must eventually take some kind of action, use progressive escalation to 
display an alternative UI that users cannot ignore. 
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3.37.1.6 Interaction 
Make notifications clickable when:  

• Users should perform an action. Clicking the notification should display a 
window in which users can perform the action. This approach is preferred for the 
action failure and optional user task design patterns. 

• Users may want to see more information. Clicking the notification should 
display a window in which users can view additional information. 

• Always display a window when users click to perform an action. Don’t have 
clicking perform an action directly. 

• Clicking to show more information should always show more information. 
Don’t just rephrase the information already in the notification. 

3.37.1.7 Icons 
• For the action failure pattern, use the standard error icon. 

• For the noncritical system event patterns, use the standard warning icon. 

• For other patterns, use icons showing objects that relate to or suggest the subject, 
such as a shield for security or a battery for power. 

• Use icons based on your application or company branding if your target users will 
recognize them and there is no better alternative. 

• For progressive escalation, consider using icons with a progressively more 
emphatic appearance as the situation becomes more urgent 

• Don’t use the standard information icon. That notifications are information goes 
without saying. 

− Consider using large icons (32 × 32 pixels) when: Users will quickly 
comprehend the icon rather than the text. 

− The large icons convey their meaning more clearly and effectively than the 
standard 16 × 16 pixel icons. 

− The icon uses the Aero-style.  

3.37.1.8 Notification Queuing 
• For the action success and FYI patterns, use the real-time option so that the 

notification isn’t queued for long. These notifications have value only when they 
can be displayed immediately. 

• Remove queued notifications when they are no longer relevant. Developers: 
You can do this by setting the NIF_INFO flag in uFlags and set szInfo to an 
empty string. There is no harm in doing this if the notification is no longer in the 
queue. 
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3.37.1.9 System Integration 
If your application doesn’t always have an icon in the notification area when it’s 
running, display an icon temporarily during the asynchronous task or event that 
caused the notification. 

3.37.2 Text 

3.37.2.1 Title Text 
• Use title text that briefly summarizes the most important information you need to 

communicate to users in clear, plain, concise, specific language. Users should be 
able to understand the purpose of the notification information quickly and with 
minimal effort. 

• Use text fragments or complete sentences without ending punctuation. 

• Use sentence-style capitalization. 

• Use no more than 48 characters (in English) to accommodate localization. The 
title has a maximum length of 63 characters, but you must allow for 30% 
expansion when the English-language text is translated. 

3.37.2.2 Body Text 
• Use body text that gives a description (without repeating the information in the 

title) and, optionally, that gives specific details about the notification, and also lets 
users know what action is available. 

• Use complete sentences with ending punctuation. 

• Use sentence-style capitalization. 

• Use no more than 200 characters (in English) to accommodate localization. The 
body text has a maximum length of 255 characters, but you must allow for 30 
percent expansion when the English-language text is translated. 

• Include essential information in the body text, such as specific object names. 
(Examples: user names, file names, or URLs.) Users : 

− Shouldn’t have to open another window to find such information. 
• Put double quotation marks around object names. Exception: Don’t use quotation 

marks when: 

• The object name always uses title-style capitalization, such as with user 
names. 

• The object name is offset with a colon (example: Printer name: My 
printer). 

• The object name can be easily determined from the context. 
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If you must truncate object names to a fixed maximum size to accommodate 
localization, use an ellipsis to indicate truncation.  

Use the following phrasing if the notification is actionable:  

• If users can click the notification to perform an action: <brief description of 
essential information> <optional details> Click to <do something>.  

• If users can click the notification to see more information: <brief description of 
essential information> <optional details> Click for more information.  

• Don’t say that the user “must” perform an action in a notification. 
Notifications are for non-critical information that users can freely ignore. If users 
really must perform an action, don’t use notifications. 

• If users should perform an action, make the importance clear. 

• For the action failure and non-critical system event patterns, describe problems 
in plain language.  

• Describe the event in a way that is relevant to the target users. A notification 
is relevant if there’s a reasonable chance that users will perform a task or change 
their behavior as the result of the notification. You can often accomplish this by 
describing notifications in terms of user goals instead of technological issues.  

3.38 Interaction (Page 398) 

3.38.1 Guidelines 

3.38.1.1 Interaction 
• Don’t use the Shift key to modify commands in menus or dialog boxes. Doing so 

is undiscoverable and unexpected. Incorrect:  

• Don’t disable a control with input focus. Doing so may prevent the window from 
receiving keyboard input. Instead, before disabling a control with input focus, 
move input focus to another control. 

• If a window is displayed out of context, potentially surprising users, you may 
need to prevent significant unintended consequences:  

− Don’t assign a default button. 
− Don’t assign access keys. 
− Give initial input focus to a control other than a commit button. 
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3.38.1.2 Keyboard Navigation 
• Always show the input focus indicator. Exception: You can temporarily 

suppress the input focus indicator if: The input focus indicator is visually 
distracting (as with a large list view not in Details view). 

• The Enter key’s usage is likely preceded by other keyboard input, such as Alt or 
arrow keys. 

• The input focus indicator is displayed upon any keyboard input. 

• Assign initial input focus to the control that users are most likely to interact 
with first, which is often the first interactive control. If the first interactive 
control isn’t a good choice, consider changing the window’s layout. 

• Assign tabs stops to all interactive controls, including read-only edit boxes. 
Exceptions: Group sets of related controls that behave as a single control, such as 
radio buttons. Such groups have a single tab stop. 

• Properly contain groups so that the arrow keys cycle both forward and backward 
within the group and stay within the group. 

• Tab order should follow reading order, which generally flows from left to 
right, top to bottom. Consider making exceptions for commonly used controls 
by putting them earlier in the tab order. Tab should cycle through all the tab stops 
in both directions without stopping. 

• Within a tab stop, the arrow key order should flow from left to right, top to 
bottom, without exceptions. The arrow keys should cycle through all items in 
both directions without stopping. 

• Present the commit buttons in the following order:  

− OK/[Do it]/Yes 
− [Don’t do it]/No 
− Cancel 
− Apply (if present) 

• Where [Do it] and [Don’t do it] are specific responses to the main instruction.  

• Select the safest (to prevent loss of data or system access) and most secure 
command button or command link to be the default. If safety and security 
aren’t factors, select the most likely or convenient response. 

• Keyboard navigation shouldn’t change control values or result in an error 
message. Never require users to change a control’s initial value during 
navigation. Instead, initialize controls that validate on exit with valid values, and 
validate a control’s value only when it has changed. 
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3.38.1.3 Access Keys 

 
Figure 3-42: Access key assignments 

Whenever possible, assign access keys for commonly used commands according 
to the following table. While consistent access key assignments aren’t always 
possible, they are certainly preferred—especially for frequently used commands.  
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Figure 3-43: Access keys and commands 

 
Figure 3-44: Access keys and commands 
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Figure 3-45: Access keys and commands 

 
Figure 3-46: Access keys and commands 

• Prefer characters with wide widths, such as w, m, and capital letters. 

• Prefer a distinctive consonant or a vowel, such as “x” in “Exit.” 
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• Avoid using characters that make the underline difficult to see, such as (from 
most problematic to least problematic):  

− Characters that are only one pixel wide, such as “i” and “l”. 
− Characters with descenders, such as “g”, “j”, “p”, “q”, and “y”. 
− Characters next to a letter with a descender. 
− When assigning access keys in wizard pages, remember to reserve “B” for 

Back and “N” for Next. 
− When assigning access keys in property pages, remember to reserve “A” for 

Apply, if used. 

3.38.1.4 Menu Access Keys 
• Assign access keys to all menu items. No exceptions. 

• For dynamic menu items (such as recently used files), assign access keys 
numerically.  

• Assign unique access keys within a menu level. You can reuse access keys across 
different menu levels. 

• Make access keys easy to find:  

− For the most frequently used menu items, choose characters at the beginning 
of the first or second word of the label, preferably the first character. 

− For less frequently used menu items, choose letters that are a distinctive 
consonant or a vowel in the label. 

3.38.1.5 Dialog Box Access Keys 
Whenever possible, assign unique access keys to all interactive controls or their 
labels. Read-only text boxes are interactive controls (because users can scroll them 
and copy text), so they benefit from access keys. Don’t assign access keys to OK, 
Cancel, and Close buttons. Enter and Esc are used for their access keys. However, 
always assign an access key to a control that means OK or Cancel, but has a different 
label.  

• Group labels. Normally, the individual controls within a group are assigned 
access keys, so the group label doesn’t need one. However, assign an access key 
to the group label and not the individual controls if there is a shortage of access 
keys. 

• Generic Help buttons, which are accessed with F1. 

• Link labels. There are often too many links to assign unique access keys, and link 
underscores hide the access key underscores. Have users access links with the Tab 
key instead. 

• Tab names. Tabs are cycled using Ctrl+Tab and Ctrl+Shift+Tab. 
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• Browse buttons labeled “...”. These can’t be assigned access keys uniquely. 

• Unlabeled controls, such as spin controls, graphic command buttons, and 
unlabeled progressive disclosure controls. 

• Non-label static text or labels for controls that aren’t interactive, such as 
progress bars. 

• Assign commit button access keys first to ensure that they have the standard 
key assignments. If there isn’t a standard key assignment, use the first letter of 
the first word. For example, the access key for Yes and No commit buttons should 
always be “Y” and “N”, regardless of the other controls in the dialog box. 

• For negative commit buttons (other than Cancel) phrased as a “Don’t”, 
assign the access key to the “n” in “Don’t”. If not phrased as a “Don’t”, use the 
standard access key assignment or assign the first letter of the first word. By 
doing so, all Don’ts and No’s have a consistent access key. 

• To make access keys easy to find, assign the access keys to a character that 
appears early in the label, ideally the first character, even if there is a keyword 
that appears later in the label. 

• Assign at most 20 access keys, so you have a few unassigned characters to 
facilitate localization. 

• If there are too many interactive controls to assign unique access keys, you 
may assign nonunique access keys if: The controls would otherwise be too 
difficult to navigate to. 

• The non-unique access keys don’t conflict with the access keys of commonly used 
controls. 

• Don’t use menu bars in dialog boxes. It’s difficult to assign unique access keys 
in this case, because the dialog box controls and menu items share the same 
characters. 

3.38.1.6 Shortcut Keys 
• Assign shortcut keys to the most commonly used commands. Infrequently 

used programs and features don’t need shortcut keys because users can use access 
keys instead. 

• Don’t make a shortcut key the only way to perform a task. Users should also 
be able to use the mouse or the keyboard with Tab, arrow, and access keys.  

• Don’t assign different meanings to well-known shortcut keys. Because they 
are memorized, inconsistent meanings for well-known shortcuts are frustrating 
and error prone. For the well-known shortcut keys used by Windows programs, 
see Windows Keyboard Shortcut Keys. 

• Don’t try to assign system-wide program shortcut keys. Your program’s 
shortcut keys will have effect only when your program has input focus. 
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• Document all shortcut keys. Document shortcuts in menu bar items, toolbar 
tooltips, and a single Help article that documents all shortcut keys used. Doing so 
helps users learn the shortcut key assignments—they shouldn’t be a secret. 
Exception: Don’t display shortcut key assignments within context menus. 
Context menus don’t display the shortcut key assignments because these menus 
are optimized for efficiency. 

• If your program assigns many shortcut keys, provide the ability to customize 
the assignments. Doing so allows users to reassign conflicting shortcut keys and 
migrate from other products. Most programs don’t assign enough shortcut keys to 
need this feature. 

3.38.1.7 Choosing Shortcut Keys 
• For well-known shortcut keys, use the standard assignments. For the well-

known shortcut keys used by Windows programs, see Windows Keyboard 
Shortcut Keys. 

• For non-standard key assignments, use the following recommended shortcut 
keys for more frequently used commands. These shortcut keys are 
recommended because they don’t conflict with the well-known shortcuts and are 
easy to press:  

− Ctrl-G, J, K, L M, Q, R, or T 
− Ctrl-any number 
− F7, F8, F9, or F12 
− Shift-F2, F3, F4, F5, F7, F8, F9, F11, or F12 
− Alt-any function key except F4 

• Use the following recommended shortcut keys for less frequently used 
commands. These shortcut keys don’t have conflicts, but are harder to press—
often requiring two hands.  

− Ctrl-any function key except F4 and F6 
− Ctrl+-Shift-any letter or number 

• Make frequently used shortcut keys easy to remember:  

− Use letters instead of numbers or function keys. 
− Try to use a letter that is in the first word or most memorable character within 

the command’s keywords. 
• Use function keys for commands that have a small-scale effect, such as 

commands that apply to the selected object. For example, F2 renames the selected 
item. 

• Use Ctrl key combinations for commands that have a large-scale effect, such as 
commands that apply to an entire document. For example, Ctrl-S saves the current 
document. 
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• Use Shift key combinations for commands that extend or complement the actions 
of the standard shortcut key. For example, the Al-Tab shortcut key cycles through 
open primary windows, whereas Alt-Shift-Tab cycles in the reverse order. 
Similarly, F1 displays Help, whereas Shift-F1 displays context-sensitive Help. 

• When using arrow keys to move or resize an item, use Ctrl-arrow keys for more 
granular control. 

3.38.1.8 Choosing Shortcut Keys (What Not To Do) 
• Don’t distinguish between key locations. For example, Windows can 

distinguish between left and right Shift, Alt, Ctrl, Windows logo, and 
Application keys, as well as keys on the numeric keypad. Assigning behavior to 
only one key location is confusing and unexpected. 

• Don’t use the Windows logo modifier key for program shortcut keys. 
Windows logo key is reserved for Windows use. Even if a Windows logo key 
combination isn’t being used by Windows now, it may be in the future.  

• Don’t use the Application key as a shortcut key modifier. Use Ctrl, Alt, and 
Shift instead. 

• Don’t use shortcut keys used by Windows for program shortcut keys. Doing 
so will conflict with the Windows system shortcut keys when your program has 
input focus. For the shortcut keys used by Windows, see Windows Keyboard 
Shortcut Keys. 

• Don’t use Alt-alphanumeric key combinations for shortcut keys. Such 
shortcut keys may conflict with access keys. 

• Don’t use the following characters for shortcut keys: @ £ $ {} [] \ ~ | ^ ' < >. 
These characters require different key combinations across languages or are locale 
specific. 

• Avoid complex key combinations, such as three or more keys together (example: 
Ctrl-Alt-spacebar) or keys that are far apart on the keyboard (example: Ctrl-F5). 
Use simple shortcut keys for frequently used commands. 

• Don’t use Ctrl-Alt combinations, because Windows interprets this combination 
in some language versions as an AltGR key, which generates alphanumeric 
characters. 

3.38.2 Keyboard And Mouse Combinations 
For links, use Shift-click to navigate using a new window and Ctrl-click to navigate 
using a new tab. This approach is consistent with Windows Internet Explorer®. 
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3.39 Windows Keyboard Shortcut Keys (Page 415) 

3.39.1 Keyboard  
The following tables summarize the standard Microsoft® Windows® shortcut key 
assignments. 

The following shortcuts can be used by any program, but they must have the given 
meaning. 

3.39.1.1 General Shortcuts 

 
Figure 3-47: Shortcuts 
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Figure 3-48: Text formatting shortcuts 

 
Figure 3-49: Tree view shortcuts 
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Figure 3-50: Search box and other control shortcuts 

 
Figure 3-51: Windows shortcuts 
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Figure 3-52: Navigation shortcuts 

 
Figure 3-53: Windows key shortcuts 
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Figure 3-54: Windows key shortcuts 

 
Figure 3-55: Accessibility shortcuts 
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Figure 3-56: Windows Explorer shortcuts 

 
Figure 3-57: Windows Internet Explorer shortcuts: General shortcuts 
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Figure 3-58: Navigation and Favorites Center shortcuts 

 
Figure 3-59: Tab shortcuts 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
170 

 
Figure 3-60: Address bar and Search bar shortcuts 

3.40 Mouse and Pointers (Page 422) 

3.40.1 Guidelines 

3.40.1.1 Click Affordance 
• Never require users to click an object to determine if it is clickable. Users 

must be able to determine clickability by visual inspection alone.  

• Primary UI (such as commit buttons) must have a static click affordance. Users 
shouldn’t have to hover to discover primary UI.  

• Secondary UI (such as secondary commands or progressive disclosure controls) 
can display their click affordance on hover. 

• Text links should statically suggest link text, then display their click affordance 
(underline or other presentation change, with hand pointer) on hover. 

• Graphics links only display a hand pointer on hover. 

• Use the hand (or “link select”) pointer only for text and graphic links. 
Otherwise, users would have to click on objects to determine if they are links. 
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3.40.1.2 Standard Mouse Button Interactions 
The following table summarizes the mouse button interactions that apply in most 
cases. 

 
Figure 3-61: Interactions and effects 

3.40.1.3 Mouse Interaction 
• Make click targets at least 16x16 pixels so that they can be easily clicked by 

any input device. For touch, the recommended minimum control size is 23 × 23 
pixels (13 × 13 DLUs). Consider dynamically changing the size of small targets 
when the user is pointing to make them easier to acquire.  

• Make splitters at least five pixels wide so that they can be easily clicked by 
any input device. Consider dynamically changing the size of small targets when 
the user is pointing to make them easier to acquire.  

• Provide users a margin of error spatially. Allow for some mouse movement 
(for example, three pixels) when users release a mouse button. Users sometimes 
move the mouse slightly as they release the mouse button, so the mouse position 
just before button release better reflects the user’s intention than the position just 
after.  

• Provide users a margin of error temporally. Use the system double-click speed 
to distinguish between single and double clicks. 
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• Have clicks take effect on mouse button up. Allow users to abandon mouse 
actions by removing the mouse from valid targets before releasing the mouse 
button. For most mouse interactions, pressing a mouse button only indicates the 
selected target and releasing the button activates the action. Auto-repeat functions 
(such as pressing a scroll arrow to continuously scroll) are an exception. 

• Capture the mouse for selecting, moving, resizing, splitting, and dragging. 

• Use the Esc key to let users abandon compound mouse interactions such as 
moving, resizing, splitting, and dragging. 

• If an object doesn’t support double clicks but users are likely to assume it 
does, interpret a “double click” as one single click. Assume the user intended a 
single action instead of two.  

• Ignore redundant mouse clicks while your program is inactive. For example, 
if the user clicks a button 10 times while a program is inactive, interpret that as a 
single click. 

• Don’t use double drags or chords. A double drag is a drag action commenced 
with a double-click, and a chord is when multiple mouse buttons are pressed 
simultaneously. These interactions aren’t standard, aren’t discoverable, are 
difficult to perform, and are most likely performed accidentally.  

• Don’t use Alt as a modifier for mouse interactions. The Alt key is reserved for 
toolbar access and access keys. 

• Don’t use Shift-Ctrl as a modifier for mouse interactions. Doing so would be 
too difficult to use. 

• Make hover redundant. To make your program touchable, take full advantage of 
hover but only in ways that are not required to perform an action. This usually 
means that an action can also be performed by clicking, but not necessarily in 
exactly the same way. Hover isn’t supported by most touch technologies, so users 
with such touchscreens can’t perform any tasks that require hovering. 

3.40.1.4 Mouse Wheel 
• Make the mouse wheel affect the control, pane, or window that the pointer is 

currently over. Doing so avoids unintended results. 

• Make the mouse wheel take effect without clicking or having input focus. 
Hovering is sufficient. 

• Make the mouse wheel affect the object with the most specific scope. For 
example, if the pointer is over a scrollable list box control in a scrollable pane 
within a scrollable window, the mouse wheel affects the list box control. 

• Don’t change the input focus when using the mouse wheel. 

• Give the mouse wheel the following effects: For scrollable windows, panes, and 
controls:  
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− Rotating the mouse wheel scrolls the object vertically, where rotating up 
scrolls up. For the wheel to have natural mapping, rotating the mouse wheel 
should never scroll horizontally because doing so is disorienting and 
unexpected. 

− If the Ctrl key is pressed, rotating the mouse wheel zooms the object, 
where rotating up zooms in and rotating down zooms out. 

− Tilting the mouse wheel scrolls the object horizontally. 
• For zoomable windows and panes (without scrollbars):  

− Rotating the mouse wheel zooms the object, where rotating up zooms in and 
rotating down zooms out. 

− Tilting the mouse wheel has no effect. 
• For tabs:  

− Rotating the mouse wheel can change the current tab, regardless of the 
orientation of the tabs. 

− Tilting the mouse wheel has no effect. 
• If the Shift and Alt keys are depressed, the mouse wheel has no effect. 

• Use the Windows system settings for the vertical scroll size (for rotating) and 
horizontal scroll size (for tilting). These settings are configurable through the 
Mouse control panel item. 

• Make rotating the mouse wheel more rapidly result in scrolling more rapidly. 
Doing so allows users to scroll large documents more efficiently. 

• For scrollable windows, consider having clicking the mouse wheel button put 
the window in “reader mode.” Reader mode plants a special scroll origin icon 
and scrolls the window in a direction and speed relative to the scroll origin.  

3.40.1.5 Hiding The Pointer 
Don’t hide the pointer. Exceptions: Presentation applications running in full screen 
presentation mode may hide the pointer. However, the pointer must be restored 
immediately when users move the mouse, and can be rehidden after two seconds of 
inactivity. 

Environments without a mouse (such as kiosks) can permanently hide the pointer. 

By default, Windows hides the pointer while the user is typing in a text box. This 
Windows system setting is configurable through the Mouse control panel item. 

3.40.1.6 Activity Pointers 
The activity pointers in Windows are the busy pointer () and the working in 
background pointer ().  
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• Display the busy pointer when users have to wait more than one second for an 
action to complete. Note that the busy pointer has no hot spot, so users can’t click 
anything while it is displayed. 

• Display the working in background pointer when users have to wait more than 
one second for an action to complete, but the program is responsive and there is 
no other visual feedback that the action isn’t complete. 

• Don’t combine activity pointers with progress bars or progress animations. 

3.40.1.6.1 Caret 
• Don’t display the caret until the text input window or control has input 

focus. The caret suggests input focus to users, but a window or control can 
display the caret without input focus. Of course, don’t steal input focus so that an 
out-of- context dialog box can display the caret.  

• Place the caret where users are most likely to type first. Usually this is either 
the last place the user was typing or at the end of the text. 

3.40.1.6.2 Accessibility 
• For users who can’t use the mouse at all, make the mouse redundant with the 

keyboard. Users should be able to do everything with the keyboard that they can 
with the mouse, except actions for which fine motor skills are essential, such as 
drawing and game playing. 

• Users should be able to do everything with the mouse that they can with the 
keyboard, except efficient text entry. 

• For users with limited ability to use the mouse: Don’t make double-clicking and 
dragging the only way to perform an action. 

3.41 Touch (Page 436) 

3.41.1 Guidelines 

3.41.1.1 Control Usage 
• Prefer using common controls. Most common controls are designed to support a 

good touch experience. 

• Choose custom controls that are designed to support touch. You might need to 
have custom controls to support your program’s special experiences. Choose 
custom controls that:  

− Can be sized large enough to be easily touchable. 
− When manipulated, move and react the way real-world objects move and 

react, such as by having momentum and friction. 
− Are forgiving by allowing users to easily correct mistakes. 
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− Are forgiving of inaccuracy with clicking and dragging. Objects that are 
dropped near their destination should fall into the correct place. 

− Have feedback that is clearly visible even when the finger is over the control, 
such a ripple effect.  

• Prefer constrained controls. Use constrained controls like lists and sliders 
whenever possible, instead of unconstrained controls like text boxes, to reduce the 
need for text input. 

• Provide appropriate default values. Select the safest (to prevent loss of data or 
system access) and most secure option by default. If safety and security aren’t 
factors, select the most likely or convenient option, thereby eliminating 
unnecessary interaction. 

• Provide text autocompletion. Provide a list of most likely or recently input 
values to make text input much easier. 

• For important tasks that use multiple selection, if a standard multiple-
selection list is normally used, provide an option to use a check box list 
instead. 

3.41.1.2 Control Sizing 
• For common controls, use the recommended control sizes. The recommended 

control sizing satisfies the 23 × 23 pixel (13 × 13 DLU) minimum size, except for 
check boxes and radio buttons (their text width compensates somewhat), spin 
controls (which aren’t usable with touch but are redundant), and splitters.  

• For command buttons used for the most important or frequently used 
commands, use a minimum size of 40 × 40 pixels (23 × 22 DLUs) whenever 
practical. Doing so yields better speed and accuracy, and also feels more 
comfortable to users.  

− For other controls: Use larger click targets. For small controls, make the 
target size larger than the statically visible UI element. For example, 16 × 16 
pixel icon buttons can have a 23 × 23 pixel click target buttons, and text 
elements can have selection rectangles 8 pixels wider than the text and 23 
pixels high.  

− Use redundant click targets. It’s acceptable for click targets to be smaller 
than the minimum size if that control has redundant functionality.  

• Respect system metrics. Use system metrics for all sizes—don’t hardwire sizes. 
If necessary, users can change the system metrics or dpi to accommodate their 
needs. However, treat this as a last resort because users shouldn’t normally have 
to adjust system settings to make UI usable.  
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3.41.1.3 Control Layout And Spacing 
• Choose a layout that places controls close to where they are most likely going 

to be used. Keep task interactions within a small area whenever possible. Avoid 
long distance hand movements, especially for common tasks and for drags. 

• Use the recommended spacing. The recommended spacing is touch-friendly. 
However, if your program can benefit from larger sizing and spacing, consider the 
recommended sizing and spacing to be minimums when appropriate. 

• Interactive controls should either be touching or preferably have at least 5 
pixels (3 DLUs) of space between them. Doing so prevents confusion when 
users tap outside their intended target. 

• Consider adding more than the recommended vertical spacing within groups 
of controls, such as command links, check boxes, and radio buttons, as well as 
between the groups. Doing so makes them easier to differentiate. 

• Consider adding more than the recommended vertical spacing dynamically 
when an action is initiated using touch. Doing so makes objects easier to 
differentiate, but without taking more space when using a keyboard or mouse. 
Increase the spacing by a third of its normal size or at least 8 pixels.  

3.41.1.4 Interaction 
• Make hover redundant. Take full advantage of hover, but only in ways that are 

not required to perform an action. This usually means that the action can also be 
performed by clicking, but not necessarily in exactly the same way. Hover isn’t 
supported by most touch technologies, so users with such touchscreens can’t 
perform any tasks that require hovering. 

− For programs that need text input, fully integrate the touch keyboard feature 
by: Providing appropriate default values for user input. 

− Providing auto-complete suggestions when appropriate. 
• Allow users to zoom the content UI if your program has tasks that require 

editing text. Consider automatically zooming to 150% when touch is used. 

• Provide smooth, responsive panning and zooming wherever appropriate. 
Redraw quickly after a pan or zoom to remain responsive. Doing so is necessary 
to make direct manipulation feel truly direct. 

• During a pan or zoom, make sure that the contact points stay under the 
finger throughout the gesture. Otherwise, the pan or zoom is difficult to control. 

• Because gestures are memorized, assign them meanings that are consistent 
across programs. Don’t give different meanings to gestures with fixed semantics. 
Use an appropriate program-specific gesture instead. 
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3.41.1.5 Windows Touch Gestures 
Use the following gestures whenever applicable to your program. These gestures are 
the most useful and natural. 

• Panning Entry state: One or two fingers in contact with the screen. Motion: Drag, 
with any additional fingers remaining in same position relative to each other. Exit 
state: Last finger up ends the gesture. Effect: Move the underlying object directly 
and immediately as the fingers move. Be sure to keep the contact point under the 
finger throughout the gesture.  

• Zoom Entry state: Two fingers in contact with the screen at the same time. 
Motion: Fingers move apart or together (pinch) along an axis. Exit state: Any 
finger up ends the gesture or the fingers break the axis. Effect: Zoom the 
underlying object in or out directly and immediately as the fingers separate or 
approach on the axis. Be sure to keep the contact points under the finger 
throughout the gesture.  

• If animated carefully, allowing users to zoom while panning can be a powerful, 
efficient interaction.  

• Rotate Entry state: Two fingers in contact with the screen at the same time. 
Motion: One or both fingers rotate around the other, moving perpendicular to the 
line between them. Exit state: Any finger up ends the gesture. Effect: Rotate the 
underlying object the same amount as the fingers have rotated. Be sure to keep the 
contact points under the finger throughout the gesture.  

• Rotation makes sense only for certain types of objects, so it’s not mapped to a 
system Windows interaction. Rotation is often done differently by different 
people. Some people prefer to rotate one finger around a pivot finger, while others 
prefer to rotate both fingers in a circular motion. Most people use a combination 
of the two, with one finger moving more than the other. While smooth rotation to 
any angle is the best interaction, in many contexts, such as photo viewing, it is 
best to settle to the nearest 90 degree rotation once the user lets go. In photo 
editing, a small rotation can be used to straighten the photo. 

• Two-finger tap Entry state: Two fingers in contact with the screen at the same 
time. Motion: No motion. Exit state: Any finger up ends the gesture. Effect: 
Alternatively zooms or restores the default view for the object between the 
fingers.  

• Press and tap Entry state: One finger in contact with the screen, followed by a 
second finger. Motion: No motion. Exit state: Second finger up ends the gesture. 
Effect: Performs a right click for the object under the first finger.  

3.41.1.6 Forgiveness 
• Provide an Undo command. Ideally, you should provide a simple way to undo 

all commands, but your program may have some commands whose effect cannot 
be undone. 
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• Whenever practical, provide good feedback on finger down, but don’t take 
actions until finger up. Doing so allows users to correct mistakes before they 
make them. 

• Whenever practical, allow users to correct mistakes easily. If an action takes 
effect on finger up, allow users to correct mistakes by sliding while the finger is 
still down. 

• Whenever practical, indicate that a direct manipulation can’t performed by 
resisting the movement. Allow the movement to happen, but have the object 
settle back in place when released to clearly indicate that the action was 
recognized but can’t be done. 

• Have clear physical separation between frequently used commands and 
destructive commands. Otherwise, users might touch destructive commands 
accidentally. A command is considered destructive if its effect is widespread and 
either it cannot be easily undone or the effect isn’t immediately noticeable.  

• Confirm commands for risky actions or commands that have unintended 
consequences. Use a confirmation dialog box for this purpose. 

• Consider confirming any other actions that users tend to do accidentally 
when using touch, and which either go unnoticed or are difficult to undo. 
Normally, these are called routine confirmations and are discouraged based on 
the assumption that users don’t often issue such commands by accident with a 
mouse or keyboard. To prevent unnecessary confirmations, present these 
confirmations only if the command was initiated using touch.  

3.42 Pen (Page 453) 

3.42.1 Guidelines 

3.42.1.1 Control Usage 
• Prefer using common controls. Most common controls are designed to support a 

good pen experience.  

• Prefer constrained controls. Use constrained controls like lists and sliders 
whenever possible, instead of unconstrained controls like text boxes, to reduce the 
need for text input. 

• Provide appropriate default values. Select the safest (to prevent loss of data or 
system access) and most secure option by default. If safety and security aren’t 
factors, select the most likely or convenient option, thereby eliminating 
unnecessary interaction. 

• Provide text autocompletion. Provide a list of most likely or recently input 
values to make text input much easier. 
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• For important tasks that use multiple selection, if a standard multiple-
selection list is normally used, provide an option to use a check box list 
instead. 

• Respect system metrics. Use system metrics for all sizes—don’t hardwire sizes. 
If necessary, users can change the system metrics or dpi to accommodate their 
needs. However, treat this as a last resort because users shouldn’t normally have 
to adjust system settings to make UI usable.  

3.42.1.2 Control Sizing, Layout, And Spacing 
• For common controls, use the recommended control sizes. These are large 

enough for a good pen experience, except for spin controls (which aren’t usable 
with a pen but are redundant). 

• Choose a layout that places controls close to where they are most likely going 
to be used. Keep task interactions within a small area whenever possible. Avoid 
long distance hand movements, especially for common tasks and for drags. 

• Use the recommended spacing. The recommended spacing is pen-friendly. 

• Interactive controls should either be touching or preferably have at least 5 
pixels (3 DLUs) of space between them. Doing so prevents confusion when 
users tap outside the intended target. 

• Consider adding more than the recommended vertical spacing within groups 
of controls, such as command links, check boxes, and radio buttons, as well as 
between the groups. Doing so makes them easier to differentiate. 

3.42.2 Interaction 
• For programs designed to accept handwriting, enable default inking. Default 

inking allows users to input ink by just starting to write, without having to tap, 
give a command, or do anything special. Doing so enables the most natural 
experience with a pen. For programs not designed to accept handwriting, handle 
pen input in text boxes as selection. 

• Allow users to zoom the content UI if your program has tasks that require 
editing text. Consider automatically zooming to 150% when a pen is used. 

• Because gestures are memorized, assign them meanings that are consistent 
across programs. Don’t give different meanings to gestures with fixed semantics. 
Use an appropriate program-specific gesture instead. 

3.42.3 Handedness 
If a window is contextual, always display it near the object that it was launched 
from. Place it out of the way so that the source object isn’t covered by the window.  
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• If displayed using the mouse, when possible place the contextual window offset 
down and to the right.  

• If displayed using a pen, when possible place the contextual window so as not to 
be covered by the user’s hand. For right-handed users, display to the left; 
otherwise display to the right.  

3.42.4 Forgiveness 
• Provide an undo command. Ideally, you should provide undo for all commands, 

but your program may have some commands whose effect cannot be undone.  

• Provide good hover feedback. Clearly indicate when the pen is over a clickable 
target. Such feedback is a great way to prevent accidental manipulation. 

• Whenever practical, provide good feedback on pen down, but don’t take 
actions until a move or pen up. Doing so allows users to correct mistakes before 
they make them. 

• Whenever practical, allow users to correct mistakes easily. If an action takes 
effect on pen up, allow users to correct mistakes by sliding while the pen is still 
down. 

3.43 Accessibility (Page 463) 

3.43.1 Guidelines 

3.43.1.1 General 
• Don’t disrupt or disable activated features of the operating system or other 

products that are identified as accessibility features. You can identify these 
features by referring to the documentation of the operating system or product in 
question. 

• Don’t force users to interact with your program as the top window on the screen. 
If a function or a window is required continuously for users to perform a task, that 
window should always remain visible, if the user so chooses, regardless of its 
position relative to other windows. For example, if the user has a movable on-
screen keyboard that is on top of all other windows so that it is visible at all times, 
your program should never obscure it by mandatory placement at the top of the Z 
order. 

• Use system colors, fonts, and common controls whenever possible. By doing so, 
you significantly reduce the number of accessibility issues users encounter. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
181 

3.43.1.2 Addressing Particular Impairments 

3.43.2 Visual 
• Never rely on color alone to convey meaning. Use color only as a means of 

reinforcing the meaning provided by text, design, location, or sound.  

• Use alternative (alt) text infotips to describe graphics. 

• Don’t use text in graphics. Users with visual impairments may have graphics 
turned off (for example, in a Web browser), or may simply not see or look for text 
placed in graphics. 

• Ensure that dialog boxes and windows have meaningful names, so that a user 
who is hearing rather than seeing the screen (for example, using a screen reader) 
gets appropriate contextual information. 

• Respect the user’s settings for visual display by always obtaining font 
typefaces, sizes, and colors, Windows display element sizes, and system 
configuration settings from the Theme and GetSystemMetrics APIs. 

• Keep balloon text concise so that it is easier to read and minimizes disruption to 
screen readers.  

3.43.3 Hearing 
• Never rely on sound alone to convey meaning. Use sound only as a means of 

reinforcing the meaning provided by text, design, location, or color. 

• Enable users to control the volume of audio output. Use the Windows Volume 
Mixer for this purpose. For more information, see Sound. 

• Target your program’s sound to occur in a range between 500 Hz and 3000 
Hz or be easily adjustable by the user into that range. Sounds in this range are 
most likely to be detectable by people with hearing impairment. 

3.43.4 Dexterity 
• Make UI timeout values relative to GetDoubleClickTime() instead of using 

absolute times. Doing so adjusts the timeouts to the speed of the user.  

• Assign access keys to all menu items so that users who prefer working with the 
keyboard have the same ability to navigate your program as users who work with 
the mouse. 

• Don’t make double-clicking and dragging the only way to perform an action. 
These can be difficult movements for some users. 

• Don’t remove menu bars from your program. Menu bars are easier than toolbars 
for keyboard users to access. If you don’t want the menu bar visible by default, 
hide it instead. 
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• Make Help accessible from the keyboard by providing tab stops for Help buttons 
and links. 

• To improve awareness of the access key assignments in your program, you can 
display them at all times. In Control Panel, go to the Ease of Access Center, and 
click Make the keyboard easier to use; then select the Underline keyboard 
shortcuts and access keys check box. 

3.43.5 Cognitive 
• Use progressive disclosure to hide complexity.  

• Use icons, toolbars, and other visual aids to reduce cognitive load of reading text.  

• When possible, provide auto-complete functionality in text boxes and editable 
drop-down lists, so that users don’t have to type the entire name of commands, 
file names, or similar choices from a limited set of options. This reduces cognitive 
load for all users, and reduces the amount of typing for users for whom spelling or 
typing is difficult, slow, or painful.  

• Demonstrate difficult concepts in Help by including tutorials and animations. 
Note that animations can be difficult for users with seizure impairment, and 
therefore should be used only when necessary. 

3.43.6 Seizure 
• Don’t use flashing or blinking text, objects, or other elements having a flash or 

blink frequency in the range between 2–55 Hz. 

• Limit use of animations. Some users are particularly sensitive to screen 
movement, especially in the periphery of their visual field. If you use animation to 
draw attention to something, make sure that attention is deserved and worthy of 
interrupting the user. 

3.43.7 Speech Or Language 
• Organize and write clear, concise, easily understood text. Usability tests show 

that unfolding key information at the end of a phrase improves comprehension.  

• Access keys 

• Prefer characters with wide widths, such as w, m, and capital letters. 

• Prefer a distinctive consonant or a vowel, such as “x” in “Exit.” 

• Avoid using characters that make the underline difficult to see, such as (from 
most problematic to least problematic):  

− Characters that are only one pixel wide, such as “i” and “l”. 
− Characters with descenders, such as “g”, “j”, “p”, “q”, and “y”. 
− Characters next to a letter with a descender. 
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3.43.8 Menu Access Keys 
• Assign access keys to all menu items. No exceptions. 

• For dynamic menu items (such as recently used files), assign access keys 
numerically.  

• Assign unique access keys within a menu level. You can reuse access keys across 
different menu levels. 

• Make access keys easy to find:  

− For the most frequently used menu items, choose characters at the beginning 
of the first or second word of the label, preferably the first character. 

− For less frequently used menu items, choose letters that are a distinctive 
consonant or a vowel in the label. 

3.43.9 Dialog Box Access Keys 
Whenever possible, assign unique access keys to all interactive controls or their 
labels. Read-only text boxes are interactive controls (because users can scroll them 
and copy text), so they benefit from access keys. Don’t assign access keys to OK, 
Cancel, and Close buttons. Enter and Esc are used for their access keys. However, 
always assign an access key to a control that means OK or Cancel, but has a different 
label.  

• Group labels. Normally, the individual controls within a group are assigned 
access keys, so the group label doesn’t need one. However, assign an access key 
to the group label and not the individual controls if there is a shortage of access 
keys. 

• Generic Help buttons, which are accessed with F1. 

• Link labels. There are often too many links to assign unique access keys, and link 
underscores hide the access key underscores. Have users access links with the Tab 
key instead. 

• Tab names. Tabs are cycled using Ctrl+Tab and Ctrl+Shift+Tab. 

• Browse buttons labeled “...”. These can’t be assigned access keys uniquely. 

• Unlabeled controls, such as spin controls, graphic command buttons, and 
unlabeled progressive disclosure controls. 

• Nonlabel static text or labels for controls that aren’t interactive, such as 
progress bars. 

• Assign commit button access keys first to ensure that they have the standard 
key assignments. If there isn’t a standard key assignment, use the first letter of 
the first word. For example, the access key for Yes and No commit buttons should 
always be “Y” and “N”, regardless of the other controls in the dialog box. 
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• For negative commit buttons (other than Cancel) phrased as a “Don’t”, 
assign the access key to the “n” in “Don’t”. If not phrased as a “Don’t”, use the 
standard access key assignment or assign the first letter of the first word. By 
doing so, all Don’ts and No’s have a consistent access key. 

• To make access keys easy to find, assign the access keys to a character that 
appears early in the label, ideally the first character, even if there is a keyword 
that appears later in the label. 

3.43.10 Text 
• Use colons at the end of external control labels. Some assistive technologies 

look for colons to identify control labels. 

• Position labels consistently relative to the elements that they are labeling. 
This helps assistive technology correctly associate the labels with their 
corresponding controls, and helps users of screen enlargers know where to look 
for a label or control.  

• Don’t use text to draw lines, boxes or other graphical symbols. Characters 
used in this way can confuse users of screen readers. For example, a box drawn 
with the letter “X” around an area of text is read by screen-reader software as “X 
X X X X X” on the first line, followed by “X” and the content and “X”. 

3.44  Window Management (Page 475) 

3.44.1 Guidelines 

3.44.1.1 General 
• Support the minimum Windows effective resolution of 800 × 600 pixels. For 

critical user interfaces (UIs) that must work in safe mode, support an effective 
resolution of 640 × 480 pixels. Be sure to account for the space used by the 
taskbar by reserving 48 vertical relative pixels for windows displayed with the 
taskbar. 

• Optimize resizable window layouts for an effective resolution of 1024 × 768 
pixels. Automatically resize these windows for lower screen resolutions in a way 
that is still functional. 

• Be sure to test your windows in 96 dpi (100%) at 800 × 600 pixels, 120 dpi 
(125%) at 1024 × 768 pixels, and 144 dpi (150%) at 1200 × 900 pixels. Check for 
layout problems, such as clipping of controls, text, and windows, and stretching of 
icons and bitmaps. 

• For programs with touch and mobile use scenarios, optimize for 120 dpi. High-dpi 
screens are currently prevalent on touch and mobile PCs. 
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• Resizable windows no longer must show the resize glyph in the lower-right 
corner, because: All sides and edges of a window are resizable, not just the lower-
right corner. 

• The glyph requires a status bar to display, yet many resizable windows don’t 
provide status bars. 

• The resizable window borders and resize pointers are more effective at 
communicating that a window is resizable than the resize glyph. 

3.44.1.2 Title Bar Controls 
Use the title bar controls as follows: 

• Close. All primary and secondary windows with a standard window frame should 
have a Close button on the title bar. Clicking Close has the effect of canceling or 
closing the window.  

• Minimize. All primary windows and long-running modeless secondary windows 
(such as progress dialogs) should have a Minimize button. Clicking Minimize 
reduces the window to its taskbar button. Consequently, windows that can be 
minimized require a title bar icon. 

• Maximize/Restore down. All resizable windows should have a 
Maximize/Restore down button. Clicking Maximize displays the window in its 
largest size, which for most windows is full screen; whereas clicking Restore 
down displays the window in its previous size. However, some windows don’t 
benefit from using a full screen, so these windows should maximize to their 
largest useful size. 

3.44.1.3 Window Size 
• Choose a default window size appropriate for its contents. Don’t be afraid to 

use larger initial window sizes if you can use the space effectively. 

• Use resizable windows whenever practical to avoid scroll bars and truncated 
data. Windows with dynamic content and lists benefit the most from resizable 
windows. 

• For text documents, consider a maximum line length of 65 characters to make 
the text easy to read. (Characters include letters, punctuation, and spaces.) 

• Fixed-sized windows: Must be entirely visible and sized to fit within the work 
area. 

• Resizable windows: May be optimized for higher resolutions, but sized down 
as needed at display time to the actual screen resolution. 

• For progressively larger window sizes, must show progressively more 
information. Make sure that at least one window portion or control has resizable 
content. 
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• Should avoid default restored sizes that are maximized or near maximized. 
Instead, choose a default size that is typically the most useful without being full 
screen. Assume that users will maximize the window instead of resizing to make 
it full screen. 

• Should set a minimum window size if there is a size below which the content 
is no longer usable. For resizable controls, set minimum resizable element sizes 
to their smallest functional sizes, such as minimum functional column widths in 
list views. 

• Should change the presentation if doing so makes the content usable at 
smaller sizes.  

3.44.1.4 Window Location 
• For the following guidelines, “centering” means to bias vertical placement 

slightly towards the top of the monitor, instead of placing exactly in the middle. 
Put 45% of the space between the top of the monitor/owner and the window top, 
and 55% between the bottom of the monitor/owner and the window bottom. Do 
this because the eye is naturally biased towards the top of the screen.  

• If a window is contextual, always display it near the object that it was launched 
from. Place it out of the way so that the source object isn’t covered by the 
window. If displayed using the mouse, when possible place it offset down and to 
the right.  

Show contextual windows near the object that it was launched from.  

If displayed using a pen, when possible place it so as not to be covered by the user’s 
hand. For right-handed users, display to the left; otherwise display to the right.  

• Place progress dialogs out of the way in the lower-right corner of the active 
monitor.  

− If a window isn’t related to the current context or user action, place it 
away from the current pointer location. Doing so prevents accidental 
interaction. 

− If a window is a top-level application or document, always cascade its 
origin off the upper-left corner of the monitor. If created by the active 
program, use the active monitor; otherwise, use the default monitor. 

− If a window is a top-level utility, always display it “centered” in the 
monitor. If created by the active program, use the active monitor; otherwise, 
use the default monitor.  

− If a window is an owned window, initially display it “centered” on top of 
the owner window. For subsequent display, consider displaying it in its last 
location (relative to the owner window) if doing so is likely to be more 
convenient.  
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− For modeless dialogs, always display initially on top of the owner window 
to make them easy to find. However, if the user activates the owner window, 
that may obscure the modeless dialog.  

− If necessary, adjust the initial location so that the entire window is visible 
within the target monitor. If a resizable window is larger than the target 
monitor, reduce it to fit. 

3.44.2 Window Order (Z Order) 
• Always place owned windows on top of their owner window. Never place 

owned windows under their owner windows, because most likely users won’t see 
them. 

• Respect users’ Z order selection. When users select a window, bring only the 
windows associated with that instance of the program (the window plus any 
owner or owned windows) to top of the Z order. Don’t change the order of any 
other windows, such as independent instances of same program. 

3.44.3 Window Activation 
• Respect users’ window state selection. If an existing window needs attention, 

flash the taskbar button three times to draw attention and leave it highlighted, but 
don’t do anything else. Don’t restore or activate the window. Don’t use any sound 
effects. Instead, let users activate the window when they are ready. Exception: If 
the window doesn’t appear on the taskbar, bring it to the top of all the other 
windows and flash its title bar instead. 

• Restoring a primary window should also restore all its secondary windows, even 
if those secondary windows have their own taskbar button. When restoring, place 
secondary windows on top of the primary window. 

3.44.4 Input Focus 
• Windows displayed by user-initiated actions should take input focus, but 

only if the window is rendered immediately (within 5 seconds). Once the 
window is rendered, it can take input focus once. If a window renders slowly 
(more than 5 seconds), users are likely to perform another task while they wait. 
Taking focus at this point would be an annoyance, especially if done more than 
once. 

• Windows that aren’t immediately displayed or displayed by a system-
initiated action shouldn’t take input focus. Instead, display on top without 
focus, and let users activate them when they are ready. Exception: Credential 
Manager. 
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3.44.5 Persistence 
• When a window is redisplayed, consider displaying it in the same state as last 

accessed. When closing, save the monitor used, window size, location, and state 
(maximized vs. restore). When redisplaying, restore the saved window size, 
location, and state using the appropriate monitor. Also, consider making these 
attributes persist across program instances on a per-user basis. Exceptions: Don’t 
save or make these attributes persist for windows when their usage is such that 
users are far more likely to want to start completely over. 

• For programs likely to be used on Windows Tablet and Touch Technology 
computers, save two windows states for landscape and portrait modes. For more 
information, see Designing for Varying Display Sizes. 

• If the current monitor configuration prevents displaying a window using its 
last state: Try to display the window using its last monitor. 

• If the window is larger than the monitor, resize the window as necessary. 

• Move the location toward the upper-left corner to fit within the monitor as 
necessary. 

• If the above steps don’t solve the problem, revert to the default window placement 
guidelines. Consider restoring the previous size, if possible.  

3.45 Dialog Boxes (Page 483) 

3.45.1 Guidelines 

3.45.1.1 General 
• Don’t use scrollable dialog boxes. Don’t use dialog boxes that require the use of a 

scroll bar to be viewed completely during normal usage. Redesign the dialog box 
instead. Consider using progressive disclosure or tabs. 

• Don’t have a menu bar or status bar. Instead, provide access to commands and 
status directly on the dialog box itself, or by using context menus on the relevant 
controls. Exception: Menu bars are acceptable when a dialog box is used to 
implement a primary window (such as a utility).  

− If a dialog box requires immediate attention and the program isn’t active, 
flash its taskbar button three times to draw attention, and leave it 
highlighted. Don’t do anything else: don’t restore or activate the window and 
don’t play any sound effects. Instead, respect the user’s window state 
selection and let the user activate the window when ready.  
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3.45.2 Modal Dialog Boxes 
• Use for critical or infrequent, one-off tasks that require completion before 

continuing. 

• Use a delayed commit model so that changes don’t take effect until explicitly 
committed. 

• Implement using a task dialog whenever appropriate to achieve a consistent look. 
Task dialogs do require Windows Vista or later, so they aren’t suitable for earlier 
versions of Windows. 

3.45.3 Modeless Dialog Boxes 
• Use for frequent, repetitive, on-going tasks. 

• Use an immediate commit model so that changes take effect immediately. 

• For modeless dialogs, use an explicit Close command button in the dialog to close 
the window. For both, use a Close button on the title bar to close the window. 

• Consider making modeless dialog boxes dockable. Dockable modeless dialogs 
allow for more flexible placement.  

3.45.4 Multiple Dialog Boxes 
• Don’t display more than one owned choice dialog at a time from an owner choice 

dialog. Displaying more than one makes the meaning of the commit buttons 
difficult for users to understand. You may display other types of dialog boxes 
(such question dialogs) as needed. 

• For a sequence of related dialogs, consider using a multi-page dialog if possible. 
Use individual dialogs if they aren’t clearly related. 

3.45.5 Multipage Dialog Boxes 
• Use a multipage dialog box instead of individual dialog boxes when you have the 

following sequence of related pages:  

− A single input page (optional) 
− A progress page 
− A single results page 

The input page is optional because the task may have been initiated 
somewhere else. Doing so gives the resulting experience a stable, simple, 
lightweight feel.  

• Don’t use a multipage dialog if the input page is a standard dialog. In this case the 
consistency of using a standard dialog is more important. 
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• Don’t use Next or Back buttons and don’t have more than three pages. Multi-page 
dialog boxes are for single-step tasks with feedback. They aren’t wizards, which 
are used for multi-step tasks. Wizards have a heavy, indirect feel compared to 
multi-page dialog boxes. 

• On the input page, use specific command buttons or command links to initiate the 
task. 

• Use a Cancel button on the input and progress pages, and a Close button on the 
results page. 

3.45.6 Presentation 
• To make dialog boxes easy to find and access, clearly associate the dialog with its 

source, and work well with multiple monitors: 

• Initially display dialogs “centered” on top of the owner window. For subsequent 
display, consider displaying it in its last location (relative to the owner window) if 
doing so is likely to be more convenient.  

• If a dialog is contextual, display it near the object from which it was launched. 
However, place it out of the way (preferably offset down and to the right) so that 
the object isn’t covered by the dialog.  

• For modeless dialogs, display initially on top of the owner window to make it 
easy to find. If the user activates the owner window, that may obscure the 
modeless dialog. 

• If necessary, adjust the initial location so that the entire dialog is visible within the 
target monitor. If a resizable window is larger than the target monitor, reduce it to 
fit. 

• When a dialog is redisplayed, consider displaying it in the same state as last 
accessed. On close, save the monitor used, window size, location, and state 
(maximized vs. restore). On redisplay, restore the saved dialog size, location, and 
state using the appropriate monitor. Also, consider making these attributes persist 
across program instances on a per-user basis. 

• For resizable windows, set a minimum window size if there is a size below which 
the content is no longer usable. Consider altering the presentation to make the 
content usable at smaller sizes.  

• Don’t use the Always on Top attribute. Exception: Use only when a dialog box 
implements an essentially modal operation, but it needs to be suspended briefly to 
access the owner window. For example, when spell-checking a document, users 
may occasionally leave the spell check dialog box and access the document to 
correct errors. 
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3.45.7 Title Bars 
• Dialog boxes don’t have title bar icons. Title bar icons are used as a visual 

distinction between primary windows and secondary windows. Exception: If a 
dialog box is used to implement a primary window (such as a utility) and 
therefore appears on the taskbar, it does have a title bar icon. In this case, 
optimize the title for display on the taskbar by concisely placing the 
distinguishing information first. 

• Dialog boxes always have a Close button. Modeless dialogs can also have a 
Minimize button. Resizable dialogs can have a Maximize button. 

• Don’t disable the Close button. Having a Close button helps users stay in 
control by allowing them to close windows they don’t want. Exception: For 
progress dialogs, you may disable the Close button if the task must run to 
completion to achieve a valid state or prevent data loss. 

• The Close button on the title bar should have the same effect as the Cancel or 
Close button within the dialog box. Never give it the same effect as OK. 

• If the title bar caption and icon are already displayed in a prominent way near the 
top of the window, you can hide the title bar caption and icon to avoid 
redundancy. However, you still have to set a suitable title internally for use by 
Windows.  

3.45.8 Interaction 
• When displayed, user initiated dialog boxes should always take input focus. 

Program initiated dialog boxes shouldn’t take input focus because the user may be 
interacting with another window. Such interaction misdirected at the dialog box 
may have unintended consequences. 

• Assign initial input focus to the control that users are most likely to interact 
with first, which is usually (but not always) the first interactive control. Avoid 
assigning initial input focus to a Help link. 

• For keyboard navigation, tab order should flow in a logical order, generally 
from left to right, top to bottom. Usually tab order follows reading order, but 
consider making these exceptions: Put the most commonly used controls earlier in 
tab order. 

• Put Help links at the bottom of a dialog box, after the commit buttons in tab order. 

• When assigning order, assume that users display dialog boxes for their intended 
purpose; so, for example, users display choice dialogs to make choices, not to 
review and click Cancel.  

• Pressing the Esc key always closes an active dialog box. This is true for dialog 
boxes with Cancel or Close, and even if Cancel has been renamed to Close 
because the results can no longer be undone. 
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3.45.9 Access Keys 
Whenever possible, assign unique access keys to all interactive controls or their 
labels. Read-only text boxes are interactive controls (because users can scroll them 
and copy text) so they benefit from access keys. Don’t assign access keys to: OK, 
Cancel, and Close buttons. Enter and Esc are used for their access keys. However, 
always assign an access key to a control that means OK or Cancel, but has a different 
label.  

• Group labels. Normally, the individual controls within a group are assigned 
access keys, so the group label doesn’t need one. However, if there is a shortage 
of access keys, assign an access key to the group label and not the individual 
controls. 

• Generic Help buttons, which are accessed with F1. 

• Link labels. There are often too many links to assign unique access keys, and the 
underscores often used to signify links hide the access key underscores. Access 
links with the Tab key instead. 

• Tab names. Tabs are cycled using Ctrl-Tab and Ctrl-Shift-Tab. 

• Browse buttons labeled “...”. These Browse buttons can’t be assigned access 
keys uniquely. 

• Unlabeled controls, such as spin controls, graphic command buttons, and 
unlabeled progressive disclosure controls. 

• Nonlabel static text or labels for controls that aren’t interactive, such as 
progress bars. 

• Whenever possible, assign access keys for commonly used commands 
according to the Standard Access Key Assignments. While consistent access 
key assignments aren’t always possible, they are certainly preferred—especially 
for frequently used dialog boxes. 

• Assign commit button access keys first to ensure that they have the standard 
key assignments. If there isn’t a standard key assignment, use the first letter of 
the first word. For example, the access key for Yes and No commit buttons should 
always be “Y” and “N”, regardless of the other controls in the dialog box. 

• To make access keys easy to find, assign the access keys to a character that 
appears early in the label, ideally the first character, even if there is a keyword 
that appears later in the label. 

• Prefer characters with wide widths, such as w, m, and capital letters. 

• Prefer a distinctive consonant or a vowel, such as “x” in Exit. 

• Avoid using characters that make the underline difficult to see, such as (from 
most problematic to least problematic): Letters that are only one pixel wide, such 
as i and l. 
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− Letters with descenders, such as g, j, p, q, and y. 
− Letters next to a letter with a descender. 

3.45.10 Progress Dialogs 
• For long-running tasks, assume that users will do something else while the task is 

completing. Design the task to run unattended. 

• Present users with progress feedback dialog box if an operation takes longer than 
five seconds to complete, along with a command to cancel or stop the operation. 
Exception: For wizards and task flows, use a modal dialog for progress only if the 
task stays on the same page (as opposed to advancing to another page) and users 
can’t do anything while waiting. Otherwise, use a progress page or in-place 
progress. 

• If the operation is a long-running task (over 30 seconds) and can be performed in 
the background, use a modeless progress dialog so that users can continue to use 
your program while waiting. 

• Modeless progress dialogs:  

− Have a Minimize button on the title bar. 
− Are displayed on the taskbar. 
− Implement modeless progress dialogs so that they continue to run even if the 

owner window is closed.  
• Provide a command button to halt the operation if it takes more than a few 

seconds to complete, or has the potential never to complete. Label the button 
Cancel if canceling returns the environment to its previous state (leaving no side 
effects); otherwise, label the button Stop to indicate that it leaves the partially 
completed operation intact. You can change the button label from Cancel to Stop 
in the middle of the operation, if at some point it isn’t possible to return the 
environment to its previous state.  

• Provide a command button to pause the operation if it takes more than several 
minutes to complete, and it impairs users’ ability to get work done. Doing so 
doesn’t force the user to choose between completing the task and getting their 
work done.  

• Gather as much information as you can before starting the task.  

• If recoverable problems are detected, have users deal with all problems found at 
the end of the task. If that isn’t practical, have users deal with problems as they 
happen. 

• Don’t abandon tasks as the result of recoverable errors.  

• Indicate problems by turning the progress bar red.  
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• If the results are clearly apparent to users, close the progress dialog 
automatically on successful completion. Otherwise, use feedback only to report 
problems: To display simple feedback, display the feedback in the progress 
dialog, and change the Cancel button to Close. 

• To display detailed feedback, close the progress dialog box and display an 
informational dialog. 

• Don’t use a notification for completion feedback. Use either a progress dialog 
or an action success notification, but not both.  

3.45.11 Time Remaining 
• Use the following time formats. Start with the first of the following formats 

where the largest time unit isn’t zero, then change to the next format once the 
largest time unit becomes zero.  

• For progress bars:  

− If related information is shown in a colon format: Time remaining: h 
hours, m minutes Time remaining: m minutes, s seconds Time remaining: s 
seconds. 

− If screen space is at a premium: h hrs, m mins remaining m mins, s secs 
remaining s seconds remaining. Otherwise: h hours, m minutes remaining m 
minutes, s seconds remaining s seconds remaining. 

• For title bars: hh:mm remaining mm:ss remaining 0:ss remainingThis compact 
format shows the most important information first so that it isn’t truncated on the 
taskbar. 

• Make estimates accurate, but don’t give false precision. If largest unit is hours, 
give minutes (if meaningful) but not seconds. Incorrect: hh hours, mm minutes, 
ss seconds 

• Keep the estimate up-to-date. Update time remaining estimates at least every 5 
seconds.  

• Focus on the time remaining because that is the information users care about 
most. Give total elapsed time only when there are scenarios where elapsed time is 
helpful (such as when the task is likely to be repeated). If the time remaining 
estimate is associated with a progress bar, don’t have percent complete text 
because that information is conveyed by the progress bar itself. 

• Be grammatically correct. Use singular units when the number is one. 
Incorrect: 1 minutes, 1 seconds 

• Use sentence-style capitalization. 
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3.45.12 Icons And Graphics 

3.45.12.1 Graphics 
Don’t use large graphics that serve no purpose beyond filling space with eye candy. 
Keep the appearance simple instead.  

3.45.12.2 Title Bar Icons 
Dialog boxes don’t have title bar icons. Exception: If a dialog box is used to 
implement a primary window (such as a utility) and therefore appears on the taskbar, 
it does have a title bar icon. 

 
Figure 3-62: Choosing the body icon 

• Consider using icons to help users visually recognize your program’s 
features. This technique is most effective when the icons are easily recognizable 
and used in several locations within your program.  

• Use icons to help users recognize the object in question.  

• Consider using icons to help make features self-explanatory.  

• Use an icon in About Box dialogs for application branding.  

3.45.12.3 Footnote Icons 
• If you have a footnote, consider using a footnote icon to summarize the footnote’s 

subject.  

• Don’t use a footnote icon that repeats the body icon. 

• Don’t use the error or information standard icons. Error conditions must be 
conveyed through the body icon and footnotes are always for information, making 
the information icon redundant. However, you can use the standard warning icon 
and the yellow security shield to alert users of risky consequences. 

3.45.12.4 Commit Buttons 
Notes: 
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• These guidelines don’t apply to question dialogs using command links, because 
that pattern uses command links instead of buttons. 

• [Do it] and [Don’t do it] are affirmative and negative responses, respectively, to 
the main instruction. 

 
Figure 3-63: Choosing the commit buttons based on the design pattern 

• All commit buttons except Apply result in closing the dialog box window. 

• Don’t confirm commit buttons. Doing so unnecessarily can be very annoying. 
Exceptions: The action is potentially catastrophic. 

• The action is clearly inconsistent with other actions. 

• If incorrect, the action may result in a significant loss of data, time, or effort on 
behalf of the user. For more guidelines and examples, see Confirmations.  

• Don’t disable commit buttons. Exceptions: If users must elevate to make a 
change, disable the positive commit buttons until the user makes a change. Doing 
so prevents users from elevating just to close a window by forcing them to click 
Cancel. For more exceptions, see Disabling or removing controls vs. giving error 
messages.  

• Right-align commit buttons in a single row across the bottom of the dialog box, 
but above the footnote area. Do this even if there is a single commit button (such 
as OK).  

• Present the commit buttons in the following order:  

− OK/[Do it]/Yes 
− [Don’t do it]/No 
− Cancel 
− Apply (if present) 
− Help (if present) 

• If you have many related commit buttons, consolidate them using split buttons. 
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• Have a clear separation from commit buttons (which close the window) and all 
other command buttons (such as Advanced). 

3.45.13 Responding To Main Instructions 
• Use positive commit buttons that are specific responses to the main instruction, 

instead of generic labels such as OK or Yes/No. Users should be able to 
understand the options by reading the button text alone. Exceptions: Use Close for 
dialogs that don’t have settings, such as informational dialogs. Never use Close 
for dialogs that have settings. 

• Use OK when the “specific” responses are still generic, such as Save, Select, or 
Choose. Use OK when changing a specific setting or a collection of settings. 

• For legacy dialog boxes without a main instruction, you can use generic labels 
such as OK. Often such dialog boxes aren’t designed to perform a specific task, 
preventing more specific responses. 

• Certain tasks require more thought and careful reading for users to make informed 
decisions. This is usually the case with confirmations. In such cases, you can 
purposely use generic commit button labels to force users to read the main 
instructions and prevent hasty decisions.  

• Alternatively, you can add the word “anyway” to the positive commit button label 
to indicate that the dialog box presents a reason not to proceed and that users 
should read the dialog carefully before proceeding.  

• Use Cancel or Close for negative commit buttons instead of specific responses to 
the main instruction. Quite often users realize that they don’t want to perform a 
task once they see a dialog box. If Cancel or Close were relabeled to specific 
responses, users would have to carefully read all the commit buttons to determine 
how to cancel. Labeling Cancel and Close consistently makes them easy to find. 
Exceptions: Don’t use Yes/Cancel. Always use Yes/No as a pair. 

• Use a specific response when Cancel is ambiguous.  

• Don’t map generic labels to their specific meaning with text in the content area. 
Instead, use specific commit button labels, or a question dialog using links if the 
labels are lengthy.  

3.45.14 Yes And No Buttons 
• Prefer specific responses to Yes and No buttons. While there’s nothing wrong 

with using Yes and No, specific responses can be understood more quickly, 
resulting in efficient decision making. However, confirmations usually have Yes 
and No buttons to make users give the confirmation some thought before 
responding. 
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• Use Yes and No buttons only to respond to yes or no questions. The main 
instruction should be naturally expressed as a yes or no question. Never use OK 
and Cancel for yes or no questions.  

• Consider phrasing the main instruction as a yes or no question if commit 
buttons with specific phrasing turn out to be long or awkward. Alternatively, 
you can use command links for longer responses (five words or more) to the main 
instruction.  

• Don’t use Yes and No buttons if the meaning of the No response is unclear. If 
so, use specific responses instead. 

3.45.15 OK Buttons 
• In modal dialogs, clicking OK means apply the values, perform the task, and close 

the window. 

• Don’t use OK buttons to respond to questions.  

• Don’t assign access keys to OK, because Enter is the access key for the default 
button. Doing so makes the other access keys easier to assign. 

• Label OK buttons correctly. The OK button should be labeled OK, not Ok or 
Okay. 

• Don’t use OK buttons for errors or warnings. Problems are never OK. Use Close 
instead.  

• Don’t use OK buttons in modeless dialog boxes. Rather, modeless dialogs should 
use task-specific commit buttons (for example, Find). However, some modeless 
dialog boxes require only a Close button. 

3.45.16 Cancel Buttons 
• Clicking Cancel means abandon all changes, cancel the task, close the window, 

and return the environment to its previous state, leaving no side effect. For nested 
choice dialog boxes, clicking Cancel in the owner choice dialog means any 
changes made by owned choice dialogs are also abandoned. 

• Provide a Cancel button to let users explicitly abandon changes. Dialog boxes 
need a clear exit point. Don’t depend on users finding the Close button on the title 
bar. Exception: Don’t provide a Cancel button for dialog boxes without settings. 
The OK and Close buttons have the same effect as Cancel in this case.  

• Don’t assign access keys to Cancel, because Esc is the access key. Doing so 
makes the other access keys easier to assign. 

• Don’t use Cancel buttons in modeless dialog boxes. Rather, use Close instead. 
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• Don’t disable the Cancel button. Users should always be able to cancel dialog 
boxes. Exception: You may disable the Cancel button in a progress dialog if there 
is a period during which the operation can’t be cancelled. However, a better 
solution is to design such operations to always be cancelable. 

3.45.17 Close Buttons 
• Use Close buttons for modeless dialog boxes, as well as modal dialogs that cannot 

be cancelled. 

• Clicking Close means close the dialog box window, leaving any existing side 
effects. Don’t use Done, because it isn’t an imperative construction. For nested 
choice dialog boxes, clicking Close in the owner choice dialog means any 
changes made by owned choice dialogs are preserved. 

• Put an explicit Close button in the dialog box body. Dialog boxes need a clear exit 
point. Don’t depend on users finding the Close button on the title bar. 

• Make sure the Close button on the title bar has the same effect as Cancel or Close. 

• Don’t assign access keys to Close, because Esc is its the access key. Doing so 
makes the other access keys easier to assign. 

3.45.18 Apply Buttons 
Don’t use Apply buttons in dialog boxes that aren’t property sheets or 
control panels. The Apply button means apply the pending changes, but leave the 
window open. Doing so allows users to evaluate the changes before closing the 
window. However, only property sheet and control panels have this need.  

3.45.19 Commit Buttons For Indirect Dialog Boxes 
Note: Indirect dialog boxes are displayed out of context, either as 

an indirect result of a task or the result of a problem with a 
system or background process. For indirect dialogs, the 
Cancel button is ambiguous because it could mean cancel 
the dialog or cancel the entire task. 

• If users need to both cancel the dialog box and the task, give commit buttons 
to do both. Label the button that cancels the dialog box with a negative response 
to the main instruction. Label the button that cancels the entire task with Cancel. 
Using Cancel allows the dialog box to be used in many contexts.  

• If users just need to cancel the dialog but not the task, use a button with a 
specific, negative response to the main instruction, and don’t have a Cancel 
button.  
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3.46 Command Links (Page 503) 
• Present a set of lengthy commands using command links, instead of 

command buttons or a combination of radio buttons and an OK button. 
Doing so allows users to respond with a single click. However, this approach 
works only for a single question. 

• Present the most commonly used command links first. The resulting order 
should roughly follow the likelihood of use, but also have a logical flow. 
Exception: Command links that result in doing everything should be placed first.  

• If a command link requires further explanation, provide a supplemental 
explanation. Supplemental explanations describe why users might want to choose 
the command, or what happens if the command is chosen. 

• Don’t use supplemental explanations that are wordy restatements of the 
command link. Use a supplemental explanation only when you can’t make a 
command link self-explanatory. Providing a supplemental explanation for one 
command link doesn’t mean that you have to provide them for all commands.  

• Use phrases that start with a verb, without ending punctuation. 

• If a command is strongly recommended, consider adding “(recommended)” 
to the label. Be sure to add to the link label, not the supplemental explanation. 

• If a command is intended only for advanced users, consider adding 
“(advanced)” to the label. Be sure to add to the link label, not the supplemental 
explanation. 

• Always provide an explicit Cancel button. Don’t use a command link for this 
purpose. Incorrect: In this example, the dialog box uses a command link instead 
of a Cancel button. 

3.46.1 Don’t Show This <Item> Again 
• Consider using a Don’t show this <item> again option to allow users to suppress 

a recurring dialog box, only if there isn’t a better alternative. It is better always to 
show the dialog if users really need it, or simply eliminate it if they don’t. 

• Use this specific phrasing—replace <item> with the specific item. For example, 
Don’t show this reminder again. When referring to a dialog box in general, use 
Don’t show this message again. 

• Clearly indicate when user input will be used for future default values by adding 
the following sentence under the option: Your selections will be used by default in 
the future. 

• Don’t select the option by default. If the dialog box really should be displayed 
only once, do so without asking. Don’t use this option as an excuse to annoy 
users—make sure the default behavior isn’t annoying.  

• Make the setting persist on a per-user basis. 
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• If users select the option and click Cancel, this option does take effect. This 
setting is a meta-option, so it doesn’t follow the standard Cancel behavior of 
leaving no side effect. Note that if users don’t want to see the dialog in the future, 
most likely they want to cancel it as well. 

• If users may need to restore these dialog boxes, provide a Restore messages 
command in the program’s Options dialog box. 

3.46.2 Ask me later 
• Provide this option to dismiss a dialog box only when: The dialog box is 

indirect, so users are likely to be focused on another task. 

• Users must respond but not immediately, so they can continue with their work. 

• The question requires sufficient thought or effort such that users might make 
better decisions if given more time. 

• The dialog box or option will be presented automatically later (so that users 
really are asked later). Otherwise, expect users to respond now, but allow them to 
close the dialog box normally with either Cancel or Close. When used properly, 
this option should be rare. 

3.46.3 More/Fewer 
• Use More/Fewer progressive disclosure buttons to show or hide advanced or 

rarely used options, commands, or details that target users typically don’t need. 
Doing so simplifies the dialog box for typical usage. Don’t hide commonly used 
options, commands, or information because users might not find them.  

• Don’t use More/Fewer controls unless there really is more detail to show. Don’t 
just restate the same information in a different format. 

• Don’t use More/Fewer controls to show Help. Use Help links or footnotes instead. 

• With task dialogs, avoid combining More/Fewer controls with Don’t show this 
<item> again. This combination has an awkward appearance. 

• For labeling guidelines, see Progressive Disclosure.  

3.46.4 Footnotes 
Use footnotes for information that’s not essential to a dialog box’s purpose, but that 
users may find helpful in making decisions. Most users should be able to skip 
footnotes and still make informed decisions in their response to the dialog box.  

3.46.5 Disabling or Removing Controls vs. Giving Error Messages 
When a control doesn’t apply in the current context, consider the following options:  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
202 

• Remove the control when there is no way for users to enable it, or users don’t 
expect it to apply and its state doesn’t change frequently. Doing so simplifies the 
dialog box, and users won’t miss it. Having a control appear and disappear 
frequently is annoying.  

• Disable the control when users expect it to apply or its state changes frequently, 
and users can easily deduce why the control is disabled. An example of easy 
deduction is disabling a commit button when there is a single, empty text box that 
requires any input. You can use balloons to display non-critical user input 
problems with text boxes and editable drop-down lists. However, if the problem 
can’t be explained with a balloon or involves multiple controls, the deduction 
would no longer be easy. 

• Otherwise, leave the control enabled, but give an error message when it is used 
incorrectly. Disabling in this case would make it difficult for users to understand 
why the control is disabled. Users would be forced to determine the problem 
through experimentation and deductive logic. It’s better just to provide a helpful 
error message to explain the problem explicitly. 

Tip: If you aren’t sure whether you should disable a control or give an error 
message, start by composing the error message that you might give. If the error 
message contains helpful information that target users aren’t likely to quickly 
deduce, leave the control enabled and give the error. Otherwise, disable the 
control. 

• If you disable a control, also disable all associated controls, such as its label, 
supplemental explanations, or command buttons. However, don’t disable its group 
box, group label, or group explanation if there are any.  

3.46.6 Required Input 
• To indicate that users must provide information in a control, consider the 

following options: Don’t indicate anything, but handle missing required input 
with error messages. This approach reduces clutter and works well if most input 
is optional or users aren’t likely to skip controls, thus keeping the number of error 
messages low.  

• Indicate required input using an asterisk at the beginning of the label. 
Explain the asterisk using either:  

− A footnote at the bottom of the content area that says * Required input. 
−  A tooltip on the asterisk that says Required input. 

This approach works well if there aren’t many required controls, but poorly if 
most controls are required.  

• If all controls require input, state “All input required” at an appropriate 
place at the top of the content area. This approach reduces clutter for this 
specific case. 
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• Indicate optional inputs with “(optional)” after the label. This approach works 
well if most input is required, but poorly otherwise.  

• For consistency, try to use the same method to indicate required input 
throughout your program. Specifically, indicate either required or optional 
input as needed, but avoid using both within the same program. 

3.46.7 Error Handling 
• Prevent errors by using controls that are constrained to valid user input. You can 

also help reduce the number of errors by providing reasonable default values. 

• Validate user input as soon as possible, and show errors as closely to the point of 
input as possible. 

• Use modeless error handling (in-place errors or balloons) for user input problems. 
Use balloons for noncritical, single-point user input problems detected while in a 
text box or immediately after a text box loses focus. Balloons don’t require 
available screen space or the dynamic layout that is required to display in-place 
messages. Display only a single balloon at a time. Because the problem isn’t 
critical, no error icon is necessary. Balloons go away when clicked, when the 
problem is resolved, or after a timeout.  

• Use in-place errors for delayed error detection, usually errors found by clicking a 
commit button. (Don’t use in-place errors for settings that are immediately 
committed.) There can be multiple in-place errors at a time. Use normal text and a 
16 × 16 pixel error icon, placing them directly next to the problem whenever 
possible. In-place errors don’t go away unless the user commits and no other 
errors are found.  

• Use modal error handling (task dialogs or message boxes) for all other problems, 
including errors that involve multiple controls, or are noncontextual or noninput 
errors found by clicking a commit button. 

• When an input problem is found and reported, set input focus to the first control 
with the incorrect data. Scroll the control into view if necessary. 

3.46.8 Help 
When providing user assistance, consider the following options (listed in their order 
of preference):  

• Give interactive controls self-explanatory labels. Users are more likely to read the 
labels on interactive controls than any other text. 

• Provide in-context explanations using static text labels. 

• Provide a specific Help link to a relevant Help topic. 
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• Locate Help links at the bottom of the content area of the dialog box. If the 
dialog box has a footnote and the Help link is related to it, place the Help link 
within the footnote.  

• Exception: If a dialog box has several distinct groups of settings that have 
separate Help topics (perhaps within group boxes), locate the Help links at the 
bottom of the groups.  

• Don’t use general or vague Help topic links or generic Help buttons. Users 
often ignore generic Help. 

3.46.9 Default Values 
• Include a default commit button on every dialog box. 

• For question dialogs:  

− Select the safest (to prevent loss of data or system access), most secure 
response to be the default. If safety and security aren’t factors, select the most 
likely or convenient response. 

− Exception: Don’t make a destructive response the default unless there is an 
easy, obvious way to undo the command. 

• For choice dialogs:  

− For the initial default values, select the safest (to prevent loss of data or 
system access) and most secure values for each control. If safety and 
security aren’t factors, select the most likely or convenient options. 

− For the subsequent default values, reselect the previously selected options if 
those values are likely to be repeated, and doing so is safe and secure. 
Otherwise, select the initial default values.  

3.46.10 Recommended Sizing And Spacing 
• Support the minimum Windows Vista screen resolution of 800 × 600 pixels. 

Layouts may be optimized for resizable windows using a screen resolution of 
1024 × 768 pixels. 

• Use resizable windows whenever practical to avoid scroll bars and truncated 
data. Windows with dynamic content and lists benefit the most from resizable 
windows. 

• Fixed-sized windows must be entirely visible and sized to fit within the work 
area. 

• Resizable windows may be optimized for higher resolutions, but sized down 
as needed at display time to the actual screen resolution. 

• Choose a default window size appropriate for its contents. Don’t be afraid to 
use larger initial window sizes if you can use the space effectively.  
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3.46.11 Text 

3.46.11.1 General 
• Remove redundant text. Look for redundant text in titles, main instructions, 

supplemental instructions, content areas, command links, and commit buttons. 
Generally, leave full text in instructions and interactive controls, and remove any 
redundancy from the other places. 

• Use positive phrasing. Positive phrasing is easier for users to understand.  

• If necessary, use the word “window” to refer to the dialog box itself. 

• Use the second person (“you/your”) to tell users what to do in the main 
instruction and content area. Often the second person is implied.  

• Use the first person (“I/me/my”) to let users tell the program what to do in 
controls in the content area that respond to the main instruction.  

3.46.11.2 Dialog Box Titles 
• Use the title to identify the command, feature, or program where a dialog 

box came from. If dialog is user initiated, identify it using the command or 
feature name. Exceptions:  

− If a dialog box is displayed by many different commands, consider using the 
program name instead.  

− If that title would be redundant with the main instruction, use the program 
name instead. 

− If it is program or system initiated (and therefore out of context), identify it 
using the program or feature name to give context. 

• Don’t use the title to explain what to do in the dialog—that’s the purpose of the 
main instruction. 

• Use the exact command name for command-based names, but don’t include the 
ellipsis if there is one. You can include the command’s menu title if necessary to 
compose a good title. Example: for an Object... command in an Insert menu, use 
the title Insert Object. 

• If a modeless dialog box appears on the taskbar, optimize the title for display 
on the taskbar by concisely placing the distinguishing information first. 
Examples: “66% Complete,” and “3 Reminders.” 

• Don’t include the words “dialog” or “progress” in the title. This is implied, 
and leaving it off makes it easier for users to scan. 

• Use title-style capitalization, without ending punctuation. 
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3.46.11.3 Main Instructions 
• Use the main instruction to explain concisely what to do in the dialog. The 

instruction should be a specific statement, imperative direction, or question. Good 
instructions communicate the user’s objective with the dialog rather than focusing 
purely on the mechanics of manipulating it. 

• Omit the main instruction when the only thing you can say is obvious. In such 
cases, the content of the dialog box is self-explanatory. For example, the File 
Open and File Save common dialogs don’t need a main instruction because their 
context and design make their purpose obvious. 

• Omit control labels that restate the main instruction. In this case, the main 
instruction takes the access key.  

• Be concise—use only a single, complete sentence. Pare the main instruction 
down to the essential information. If you must explain anything more, use 
supplemental instruction. 

• Use specific verbs whenever possible. Specific verbs (examples: connect, save, 
install) are more meaningful to users than generic ones (examples: configure, 
manage, set). 

• Use sentence-style capitalization.  

• Don’t include final periods if the instruction is a statement. If the instruction is 
a question, include a final question mark. 

• For progress dialogs, use a gerund phrase briefly explaining the operation in 
progress, ending with an ellipsis. Example: Printing your pictures... 

Tip: You can evaluate a main instruction by imagining what you would say to a 
friend. If responding with the main instruction would be unnatural, unhelpful, or 
awkward, rework the instruction. 

3.46.11.4 Supplemental Instructions 
• When necessary, use an optional supplemental instruction to present additional 

information helpful to understanding or using the page. You can provide more 
detailed information and define terminology. 

• If the appearance of the dialog box is program or system initiated (and therefore 
out of context), use the supplemental instruction to explain why the dialog has 
appeared. For such dialogs, the context is usually not obvious. 

• Don’t repeat the main instruction with slightly different wording. Instead, omit 
the supplemental instruction if there is not more to add. 

• Use complete sentences, sentence-style capitalization, and ending punctuation. 
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3.46.11.5 Command Links 
• Choose concise link text that clearly communicates and differentiates what 

the command link does. It should be self-explanatory and correspond to the main 
instruction. Users shouldn’t have to figure out what the link really means or how 
it differs from other links. 

• Always start command links with a verb. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation. 

• If necessary, provide any further explanation using complete sentences and 
ending punctuation. However, add such explanations only when needed—don’t 
add explanations to all command links just because one command link needs one. 

3.46.11.6 Commit Buttons 
• Use specific commit button labels that make sense on their own and are a 

response to the main instruction. Ideally users shouldn’t have to read anything 
else to understand the label. Users are far more likely to read command button 
labels than static text. 

• Start commit button labels with a verb. Exceptions are OK, Yes, and No. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation. 

• Assign a unique access key. Exception: Don’t assign access keys to OK and 
Cancel buttons because Enter and Esc are their access keys. Doing so makes the 
other access keys easier to assign. 

3.47 Dialog Box Design Concepts (Page 514) 
Make sure that your dialog box design (determined by its purpose, type, and user 
interaction) matches its usage (determined by its context, probability of user action, 
and frequency of display). 

Do the right thing by default. Don’t force users to configure their way out of a bad 
initial experience. Keep in mind that littering your program with unnecessary modal 
dialog boxes is more likely to foster outrage than user education. At a certain point, 
users tend to dismiss such dialog boxes without reading them. 
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3.48 Common Dialogs (Page 525) 

3.48.1 Guidelines 

3.48.1.1 General 
When appropriate, provide more direct or modeless alternatives. Allow users to:  

• Open files by dropping them on your program. 

• Save files using their current name and location with a Save command. 

• Find the next occurrence of a string using the F3 key. 

• Print one copy of an entire document to the default printer with a Print command. 

• Change fonts and font attributes using a toolbar or palette window. 

• Change colors using a toolbar or palette window. 

 
Figure 3-64: Common dialogs and commands 

You can use more specific commands, as appropriate. Example: for exporting a file, 
use the command Export file instead of Save as. 

Set the dialog box title to reflect the command that launched it. Example: If Save File 
is launched from an Export file command, rename the dialog box to Export File. 
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3.48.1.2 Open File 
• For the initial default folder, use a specialized folder (Pictures, Music, Videos) as 

appropriate, otherwise use Documents. 

• For subsequent default folders, use the last folder opened by the user using the 
program. 

• When opening photo files, suppress file names by default. Photos are usually 
identified by their thumbnails and their names typically aren’t meaningful. 

3.48.1.3 Save File 
• For the initial default folder (if a new file is being saved for the first time), use the 

specialized folder (Pictures, Music, Videos) as appropriate, otherwise use 
Documents. 

• For temporary files, use the current user’s temporary folder. Choose plain, but 
unique file names. Example: Use File0001.tmp instead of ~DF1A92.tmp.  

• For the initial default file name, use a unique default name based on: The file’s 
contents, if known. Example: The first words in a document. 

• A pattern chosen by the user. Example: If the previous file was named “Hawaii 
1.jpg”, choose “Hawaii 2.jpg” as the next file. 

• A generic pattern based on the file type. Example: “Photo1.jpg”. 

• For subsequent defaults (if the file already exists), use the file’s current folder and 
name. 

• When saving a file, preserve its creation date. If your program saves files by 
creating a temporary file, deletes the original, and renames the temporary file to 
the original file name, be sure to copy the creation date from the original file. 

• Use Save File if the user selects the Save command without specifying a file 
name. 

3.48.1.4 File Types Lists 

Note: File types lists are used by Open File and Save File to 
determine the types of files displayed and the default file 
extension. 

• If the file types list is short (five or fewer), order the list by likelihood of usage. If 
the list is long (six or more), use an alphabetical order to make the types easy to 
find. 
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• For Save File, include all variations of the supported file extensions, even if 
uncommon, and put the most common extension first. The file handling logic 
looks at this list to determine if the user supplied a supported file extension. 
Example: If a JPEG file types list includes only .jpg and .jpeg, the file test.jpe 
might be saved as test.jpe.jpg. 

• For Save File, the initial default file type is the most likely chosen by the target 
user. The subsequent default is the file’s current type. 

• For Open File, the initial default file type is the most likely chosen by the target 
user. The subsequent default should be the last file type used. 

• For Open File, include an “All files” entry as the first item if users can open any 
file type, or may need to see all files in a folder at the same time. Consider 
providing other meta filters, such as “All pictures,” “All music,” and “All videos.” 
Place these immediately after “All files.” 

− Use the format “File type name (*.ext1; *.ext2).” The file type name should 
be the registered file type name, which you can view in the Folder Options 
control panel item. Example: “HTML document (*.htm; *.html).” Exception: 
For meta-filters, remove the file extension list to eliminate clutter. Examples: 
“All files,” “All pictures,” “All music,” and “All videos.” 

− Use sentence-style capitalization for the file type names, and lowercase for 
the file type extensions. 

3.48.1.5 Open Folder 
For new programs, use the Open Files dialog in the “pick folders” mode. Doing so 
requires Windows Vista or later, so use the Open Folder dialog for programs that run 
in earlier versions of Windows. Developers: You can use the Open Files dialog in the 
“pick folders” mode by using the FOS_PICKFOLDERS flag. 

3.48.1.6 Font 
If necessary, you can filter the font list to show only the fonts available to your 
program. 

3.48.1.7 Persistence 
• Consider making the following values persistent to use as subsequent defaults: 

Input values (examples: default folders, default file names). 

• Selected options (examples: selected printer, printing options). 

• Views (examples: showing pictures in thumbnail view, showing pictures without 
file names, sorting by date, column widths).  

• Presentation (examples: window size, location, and contents). 

• Exception: Don’t make these values persist for common dialogs when their usage 
is such that users are far more likely to want to start completely over.  
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• When determining default values, consider what target users are most likely to 
want based on the important scenarios. Also, consider scenarios within a program 
instance, across multiple instances (both consecutive or concurrent), and across 
multiple documents. Don’t make values persist in circumstances that aren’t likely 
to be helpful. Example: For a typical document-based application, it’s helpful to 
use persistent Open File and Save File settings within a program instance and 
across consecutive instances, but keep concurrent instances independent. That 
way, users can work efficiently with several documents at a time. 

• Make the settings persist on a per-program, per-user basis.  

3.49 Wizards (Page 535) 
No content 

3.50 Property Windows (Page 536) 

3.50.1 Guidelines 

3.50.1.1 Property Sheets 
• Display a property sheet when users: Select the Properties command for an 

object. 

• Set input focus on an object and press Alt-Enter. 

3.50.1.1.1 Multiple-Object Property Sheets 
• Display the common properties of all the selected objects. Where the property 

values differ, display the controls associated with those values using a mixed 
state. (See the respective control guidelines for using mixed-state values.) 

• If the selected object is a collection of multiple discrete objects (such as a file 
folder), display the properties of the single grouped object instead of a 
multiple-object property sheet for the discrete objects. 

3.50.1.2 Options Dialog Boxes 
Don’t separate options from customization. That is, don’t have both an Options 
command and a Customize command. Users are often confused by this separation. 
Instead, access customization through options. 

3.50.1.3 Property Pages 
• Follow these guidelines for page order:  

− Make the General page or its equivalent the first page. 
− Make the Advanced page or its equivalent the last page. 
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− For the remaining pages:  Organize them into groups of related pages. 
−  Order the groups by the likelihood of their usage. 
− Within each group, order the pages either by their relationships or by the 

likelihood of their use. 
You shouldn’t have so many pages that there is a need to display them in 
alphabetical order. 

• Make pages coherent by relating all properties on each page to a single, specific, 
task-based purpose. 

• If space allows, explain the purpose of the property window at the top of the page 
if it isn’t obvious to your target users. If the page is used to perform only a single 
task, phrase the text as a clear instruction about how to perform that task. Use 
complete sentences, ending with a period.  

• Make similar content consistent across pages by using consistent control names 
and locations. For example, if several pages have Name boxes, try to place them 
in the same location on the page and use consistent labels. Similar content 
shouldn’t bounce around from page to page. 

• Place the same property on the same page throughout your application. For 
example, don’t put an Expiration property on the General tab for one object type, 
and on the Advanced tab for another type. 

• If users are likely to start with the last page displayed, make the page tab persist, 
and select it by default. Make the settings persist on a per-property window, per-
user basis. Otherwise, select the first page by default. 

• Don’t make the settings on a page dependent upon settings on other pages. Put the 
dependent settings on a single page instead. Changing a setting on one page 
should never automatically change settings on other pages. Exception: If the 
dependent settings are in two different property windows, use static text labels to 
explain this relationship in both locations. 

• Don’t scroll property pages. Both tabs and scrollbars are used to increase the 
effective area of a window, but one mechanism should be sufficient. Instead of 
using scrollbars, make the property pages larger and lay out the pages efficiently.  

3.50.1.4 First Pages 
• For object properties, put the object’s name on the first page. 

• If you are associating (optional) icons with your objects, display the appropriate 
icon in the upper-left corner of the first page. 
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3.50.1.5 General Pages 
• Avoid General pages. You aren’t required to have a General page. Use a General 

page only if: The properties apply to several tasks and are meaningful to most 
users. Don’t put specialized or advanced properties on a General page, but you 
can make them accessible through a command button on the General page. 

• The properties don’t fit a more specific category. If they do, use that name for the 
page instead.  

3.50.1.6 Advanced Pages 
• Avoid Advanced pages. Use an Advanced page only if: The properties apply to 

uncommon tasks and are meaningful primarily to advanced users. 

• The properties don’t fit a more specific category. If they do, use that name for the 
page instead. 

• Don’t call properties advanced based solely on technological measures. For 
example, a printer stapling option may be an advanced printer feature, but it is 
meaningful to all users, so it shouldn’t be on an Advanced page. 

3.50.1.7 Owned Property Windows 
• Don’t display more than one owned property window from a property 

window. Displaying more than one makes the meaning of the OK and Cancel 
buttons difficult to understand. You can display other types of auxiliary dialog 
boxes (such as object pickers) as needed.  

• For property windows that use a delayed commit model, make sure users can 
cancel changes made in an owned property window by clicking Cancel on the 
owner window. 

• If an owned property window requires an immediate commit, indicate that 
changes were committed by renaming the Cancel button on the owner 
window to Close. Revert the button back to Cancel if the user clicks Apply.  

3.50.1.8 Other Owned Windows 
If an owned window is used to perform an auxiliary task, don’t rename the Cancel 
button. The preceding guidelines apply only to owned property windows, not dialog 
boxes used to perform auxiliary tasks.  

3.50.2 Tabs 
• Use concise tab labels. Use one or two words that clearly describe the content of 

the page. Longer labels result in an inefficient use of screen space, especially 
when the labels are localized. 

• Use specific, meaningful tab labels. Avoid generic tab labels that could apply to 
any tab, such as General, Advanced, or Settings. 
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• Use horizontal tabs if:  

− The property window has seven or fewer tabs (including any third-party 
extensions). 

− All the tabs fit on one row, even when the UI is localized. 
− You use horizontal tabs on the other property windows in your application. 

• Use vertical tabs if:  

− The property window has eight or more tabs (including any third-party 
extensions). 

− Using horizontal tabs would require more than one row. 
− You use vertical tabs on the other property windows in your application.  

• For property inspectors, to conserve space, consider using a drop-down list 
instead of tabs, especially if the current tab is rarely changed by the user. 

• If a tab doesn’t apply to the current context and users don’t expect it to, 
remove the tab. Doing so simplifies the UI, and users won’t miss it.  

• If a tab doesn’t apply to the current context and users might expect it to:  

− Display the tab. 
− Disable the controls on the page. 
− Include text explaining why the controls are disabled. 
− Don’t disable the tab because doing so isn’t self-explanatory and prohibits 

exploration. Furthermore, users looking for a specific property would be 
forced to look on all other tabs.  

• Don’t assign effects to changing tabs. Changing the current tab should never have 
side effects, apply settings, or result in an error message. 

• Don’t nest tabs or combine horizontal tabs with vertical tabs. Instead, reduce the 
number of tabs, use only vertical tabs, or use another control such as a drop-down 
list. 

• Don’t use tabs if a property window has only a single tab and isn’t extensible. Use 
a regular dialog box with OK, Cancel, and an optional Apply button instead. 
Extensible property windows (which can be extended by third parties) always 
need to use tabs. 

• Don’t put icons on tabs. Icons usually add unnecessary visual clutter, consume 
screen space, and often don’t improve user comprehension. Only add icons that 
aid in comprehension, such as standard symbols.  

• Don’t use product logos for tab graphics. Tabs aren’t for branding. 

• Don’t scroll horizontal tabs. Horizontal scrolling isn’t readily discoverable. You 
may scroll vertical tabs, however.  
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3.50.3 Command Buttons 
• Place command buttons that apply to all property pages at the bottom of the 

property window. Right-align the buttons and use this order (from left to right): 
OK, Cancel, and Apply. 

• Place command buttons that apply only to individual property pages directly on 
the property page. 

3.50.4 Commit buttons 

3.50.4.1 OK Buttons 
• For owner property windows, the OK button means apply the pending changes 

(made since the window was opened or the last Apply), and close the window. 

• For owned property windows, the OK button means keep the changes, close the 
window, and apply the changes when the owner window’s changes are applied. 

• Don’t rename the OK button. Unlike other dialog boxes, property windows aren’t 
used to perform any one specific task. If it makes sense to rename the OK button 
(to Print, for example), the window isn’t a property window. 

• Don’t assign an access key. 

3.50.4.2 Cancel Buttons 
• The Cancel button means discard all pending changes (made since the window 

was opened or the last Apply), and close the window. 

• If all pending changes can’t be abandoned, rename the Cancel button to Close. 
Clicking Cancel must abandon all pending changes. 

• If the owned property window requires an immediate commit, rename the Cancel 
button on the owner window to Close to show that changes were committed. 

• Don’t assign an access key. 

3.50.4.3 Apply Buttons 
• For owner property sheets, the Apply button means apply the pending changes 

(made since the window was opened or the last Apply), but leave the window 
open. Doing so allows users to evaluate the changes before closing the property 
sheet. 

• For owned property sheets, don’t use. Using an Apply button on an owned 
property sheet makes the meaning of the commit buttons on the owner property 
sheet difficult to understand. 
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• Provide an Apply button only if the property sheet has settings (at least one) with 
effects that users can evaluate in a meaningful way. Typically, Apply buttons are 
used when settings make visible changes. Users should be able to apply a change, 
evaluate the change, and make further changes based on that evaluation. If not, 
remove the Apply button instead of disabling it.  

• Place all settings that users may want to apply on owner pages. Don’t use Apply 
buttons on owned property sheets, because doing so is confusing. 

• Use Apply buttons only with property sheets, not with options dialog boxes. 

• Enable the Apply button only when there are pending changes; otherwise, disable 
it. 

• Assign “A” as the access key. 

3.50.4.4 Close Buttons 
• If all pending changes can’t be abandoned, rename the Cancel button to Close. 

Clicking Cancel must abandon all pending changes. 

• Don’t confirm if users discard their changes. Exception: If the property window 
has settings that require significant effort to set and the user has made changes, 
you may display a confirmation if the user clicks the Close button on the title bar. 
The reason is that some users mistakenly assume that the Close button on the title 
bar has the same effect as the OK button. 

• With the exception of the confirmation message, make sure the Close button on 
the title bar has the same effect as Cancel or Close. 

3.50.5 Page Contents 
• Make sure the properties are necessary. Don’t clutter your pages with 

unnecessary properties just to avoid making hard design decisions. 

• Present properties in terms of user goals, not technology. Just because a 
property configures a specific technology doesn’t mean that you must present the 
property in terms of that technology. If you must present settings in terms of 
technology (perhaps because your users recognize the technology’s name), 
include a brief description of how the user benefits from that setting. 

• Present properties at the right level. You don’t need to present individual, low-
level settings on a property page, so present the properties at a level that makes 
sense to your users. 

• Design property pages for specific tasks. Determine the tasks that users will 
perform, and make sure there is a clear path to perform those tasks.  

• Organize property pages efficiently by reducing the number of tabs, deciding 
what goes on a page based on logical grouping and coherence, and simplifying the 
page’s presentation.  
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• If an option is strongly recommended, consider adding “(recommended)” to the 
label. 

• Provide a Restore Defaults command button for a property page or the entire 
property window when:  

− Your users are likely to consider the settings complex and difficult to 
understand. 

− Having incorrect settings may result in breaking functionality, but the defaults 
might restore functionality. 

− It’s easier for users to start over when the object is misconfigured.  
− Confirm the Restore Defaults command if its effect isn’t obvious or the 

settings are complex. Indicate the confirmation by using ellipses.  
• When appropriate, display a preview of the results of a setting.  

3.50.6 Help 
When providing user assistance, consider using the following options (listed in their 
order of preference):  

• Give interactive controls self-explanatory labels. Users are more likely to read the 
labels on interactive controls than any other text. 

• Provide in-context explanations using static text labels. 

• Provide a specific link to a relevant Help topic. 

• Locate Help links at the bottom of each page. If a page has several distinct 
groups of settings that have a Help topic (perhaps within group boxes), locate the 
Help link at the bottom of the group. 

• Don’t use general or vague Help topic links or generic Help buttons. Users 
often ignore generic Help. 

3.50.7 Standard Users And Protected Administrators 
Many settings require administrator privileges to change. If a process requires 
administrator privileges, Windows® and later requires Standard users and 
Protected administrators to elevate their privileges explicitly. Doing so helps 
prevent malicious code from running with administrator privileges. 

3.50.8 Default Values 
• The settings within a property window must reflect the current state of the 

application, object, or collection of objects. Doing otherwise would be 
misleading and possibly lead to undesired results. For example, if the settings 
reflect the recommendations but not the current state, users might click Cancel 
instead of making changes, thinking that no changes are needed. 
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• Choose the safest (to prevent loss of data or system access) and most secure 
initial state. Assume that most users won’t change the settings. 

• If safety and security aren’t factors, choose the initial state that is most likely 
or convenient. 

3.51 Text (Page 551) 

3.51.1 Commands 
• To display program options, use “Options.” 

• To display an object’s property window, use “Properties.” 

• To display a summary of the commonly used program customization settings, use 
“Personalize.” 

• Don’t use “Settings” or “Preferences.” 

• Don’t use ellipses for these commands. 

3.51.2 Property Sheet Titles 
• For a single object, use “[object name] Properties.” If the object has no name, use 

the object’s type name. (For example, User Account Properties.) 

• For multiple objects, use “[first object name], ... Properties.” If the objects have 
no names, use the objects’ type name. (For example, User Accounts Properties.) 

• If the objects have different types, use “Selection Properties.” 

• Use title-style capitalization. 

• Don’t use ending punctuation. 

• Don’t use hyphens, such as “[object name] - Properties.” 

3.51.3 Property Inspector Titles 
• Use “Properties.” 

• Use title-style capitalization. 

• Don’t use ending punctuation. 

3.51.4 Options Dialog Box Titles 
• Use “Options.” 

• Use title-style capitalization. 

• Don’t use ending punctuation. 
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3.51.5 Property Page Tab Names 
• Use concise tab labels. Use one or two words that clearly describe the content of 

the page. Using longer tab names results in an inefficient use of screen space, 
especially when the tab names are localized. 

• Use specific, meaningful tab labels. Avoid generic tab labels that could apply to 
any tab, such as General, Advanced, or Settings. 

• Write the label as a one- or two-word phrase and use no ending punctuation. 

• Use sentence-style capitalization. 

• Don’t assign a unique access key. 

3.51.6 Property Page Text 
• Avoid large blocks of text. 

• Provide enough room for the text to expand 30% if it will be localized. 

• Don’t use text phrased as a command on property windows. Because users might 
want to simply view settings, you don’t want to prompt them to change settings. 

• Use sentence-style capitalization and ending punctuation. 

3.52 Property Window Design Concepts (Page 553) 
To ensure that your property windows are useful and usable, follow these steps: 

• Make sure the properties are necessary. 

• Present properties in terms of user goals, not technology. 

• Present properties at the right level. 

• Design pages for specific tasks. 

• Design pages for Standard users and Protected administrators. 

• Organize the property pages efficiently. 

3.53 Visuals (Page 556) 

3.53.1 Guidelines 

3.53.1.1 Screen Resolution And Dpi 
• Support the minimum Windows effective resolution of 800 × 600 pixels. For 

critical UIs that must work in safe mode, support an effective resolution of 640 × 
480 pixels. Be sure to account for the space used by the taskbar by reserving 48 
vertical relative pixels for windows displayed with the taskbar. 
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• Optimize resizable window layouts for an effective resolution of 1024 × 768 
pixels. Automatically resize these windows for lower screen resolutions in a way 
that is still functional. 

• Be sure to test your windows in 96 dots per inch (dpi) (at 800 × 600 pixels), 
120 dpi (at 1024 × 768 pixels), and 144 dpi (at 1200 × 900 pixels) modes. 
Check for layout problems, such as clipping of controls, text, and windows, and 
stretching of icons and bitmaps. 

• For programs with touch and mobile use scenarios, optimize for 120 dpi. 
High-dpi screens are currently prevalent on touch and mobile PCs. 

3.53.1.2 Window Size 
• Choose a default window size appropriate for its contents. Don’t be afraid to 

use larger initial window sizes if you can use the space effectively. 

• Use a balanced height to width aspect ratio. An aspect ratio between 3:5 and 
5:3 is preferred, although an aspect ratio of 1:3 can be used for message dialog 
boxes (such as errors and warnings). 

• Use resizable windows whenever practical to avoid scroll bars and truncated 
data. Windows with dynamic content, documents, images, lists, and trees benefit 
the most from resizable windows. 

• For text documents, consider a maximum line length of 80 characters to make 
the text easy to read. (Characters include letters, punctuation, and spaces.) 

• Fixed-sized windows: Fixed-sized windows must be entirely visible and sized 
to fit within the work area. 

• Resizable windows: Resizable windows may be optimized for higher 
resolutions, but sized down as needed at display time to the actual screen 
resolution. 

• Progressively larger window sizes must show progressively more 
information. Make sure that at least one window portion or control has resizable 
content. 

• Keep the upper-left origin of the content fixed as the window is resized. Don’t 
move the origin to balance the content as the window size changes. 

• Set a maximum content size if the content can be too stretched too wide. If the 
content becomes unwieldy, don’t resize the content area beyond its maximum 
width or change the content’s origin as the window is resized larger. Instead, keep 
a maximum width and a fixed upper-left origin. 

• Set a minimum window size if there is a size below which the content is no 
longer usable. For resizable controls, set minimum resizable element sizes to 
their smallest functional sizes, such as minimum functional column widths in list 
views. Optional UI elements should be removed completely. 
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• Consider altering the presentation to make the content usable at smaller 
sizes.  

3.53.1.3 Control Size 
• Make all interactive controls at least relative 16 × 16 pixels. Doing so works 

well for all input devices, including Windows Tablet and Touch Technology. 

• Size controls to avoid truncated data. Don’t truncate data that must be read to 
perform a task. Size list view columns to avoid truncated data. 

• Size controls to eliminate unnecessary scrolling. Make controls slightly larger 
if doing so eliminates a scrollbar. There should be few vertical scrollbars and no 
unnecessary horizontal scrollbars.  

• Reduce the number of control sizes on a surface. Prefer using the standard 
recommended control sizes and when necessary, use a few consistently sized 
larger or smaller controls. Try to use a single width for list boxes and tree views, 
and no more than three widths for command buttons and drop-down lists. 
However, text box and combo box widths should suggest the length of their 
longest or expected input.  

• For controls that are sized based on their text, include an additional 30% (up 
to 200% for shorter text) for any text that will be localized. This guideline 
assumes the layout is designed using English text. Note also that this guideline 
refers to localized text, not numbers. 

• Extend static text controls, check boxes, and radio buttons to the maximum 
width that will fit in the layout. Doing so avoids truncation from variable length 
text and localization.  

3.53.1.4 Control Spacing 
If controls aren’t touching, have at least 3 DLUs (5 relative pixels) of space 
between them. Otherwise, users may click on inactive space between the controls. 
Since clicking inactive space has no result or visual feedback, users are often 
uncertain what went wrong. 

3.53.1.5 Placement 
• Arrange the UI elements within a surface to flow naturally in a left-to-right, top-

to-bottom order (in Western cultures). The placement of the UI elements conveys 
their relationship and should mirror the steps to perform the task. 

• Place UI elements that initiate a task in the upper-left corner or upper-center. Give 
the UI element that users should look at first the greatest visual emphasis. 

• Place UI elements that complete a task in the lower-right corner. 

• Place related UI elements together, and separate unrelated elements. 
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• Place required steps in the main flow. 

• Place optional steps outside the main flow, possibly deemphasized by using a 
suitable background or progressive disclosure. 

• Place frequently used elements before infrequently used elements in the scan path. 

3.53.1.6 Focus 
• Choose a single UI element that users need to look at first to be the focal 

point. The focal point should be something important that users need to find and 
understand quickly. 

• Place the focal point in the upper-left corner or upper-center. 

• Give the focal point the greatest visual emphasis, such as prominent text, 
default selection, or initial input focus. 

3.53.1.7 Alignment 
• Normally, use left alignment.  

• Use right alignment for numeric data, especially columns of numeric data. 

• Use right alignment for commit buttons, as well as controls aligned with right 
window edge. 

• Use center alignment when either left or right alignment is inappropriate or 
appears unbalanced. 

• When vertically aligning controls with text, align the text baselines to give a 
smooth horizontal reading flow. 

• For label alignment, refer to the Label alignment section in Design concepts. 

3.53.1.8 Accessibility 
• Don’t use layout as the only means to convey important information about a 

UI. Users who have visual impairments may not be able to interpret this 
presentation. For example, make sure that controls labels communicate their 
relationship to other items. 

• Don’t embed subordinate controls within control labels to create a sentence 
or phrase. Such associations are based purely on layout and aren’t handled well 
by keyboard navigation or accessibility assistive technologies. Furthermore, this 
technique isn’t localizable because sentence structure varies with language.  

• Make grouping accessible. Groups defined by window panes, group boxes, 
separators, text labels, and aggregators are automatically handled by accessibility 
aids. However, groups defined only by placement and backgrounds are not, and 
must be defined programmatically for accessibility. 
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Figure 3-65: Recommended sizing and spacing: Control Sizing 

 
Figure 3-66: Spacing 
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Figure 3-67: Spacing 

 
Figure 3-68: Spacing 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
225 

 
Figure 3-69: Spacing 

3.54 Window Frames (Page 598) 

3.54.1 Guidelines 

3.54.1.1 Window Frames 
Use standard window frames. Exception: To give immersive full screen, stand-alone 
applications a unique feel:   

• Consider hiding the window frame of the primary window. 

•  Consider using custom frames for secondary windows. 

−  If a custom frame is appropriate, choose a design that is lightweight and 
doesn’t draw too much attention to itself.  

• Don’t add controls to a window frame. Put the controls within the window 
instead.  

3.54.1.2 Full Screen Mode 
• For programs that have an optional full screen mode, to enable full screen mode:  

− Have a modal full screen command in the menu bar or toolbar. When the user 
clicks the command, show the command in its selected state.  

− Use F11 for the full screen shortcut key. 
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− If there is a toolbar and full screen mode is commonly used, also have a 
graphic toolbar button with a Full screen tooltip.  

− To revert back from full screen mode: Have a modal full screen command in 
the menu bar or toolbar. When the user clicks the command, show the 
command in its cleared state. 

− Use F11 for the full screen shortcut key. If not already assigned, Esc can also 
be used for this purpose. 

3.54.1.3 Glass 
Standard window frames use glass automatically in Windows, but you can also use 
glass in regions that touch the window frame. 

• Consider using glass strategically in small regions touching the window 
frame without text. Doing so can give a program a simpler, lighter, more 
cohesive look by making the region appear to be part of the frame.  

• Don’t use glass in situations where a plain window background would be 
more attractive or easier to use.  

3.55 Fonts (Page 605) 

 
Figure 3-70: Guidelines: Fonts and colors 
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Figure 3-71: Document headings 

 
Figure 3-72: Document headings 

• Developers: For elements that use fixed layout (such as Windows dialog 
templates and WinForms), hard code the appropriate font from the preceding 
table. 
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• For elements that use dynamic layout (such as Windows Presentation 
Foundation), use the theme fonts. Use theme APIs like DrawThemeText to draw 
text based on the theme symbol. Be sure to have an alternative based on system 
metrics in case the theme service isn’t running. 

• For Segoe UI, use a 9 point font size or larger. The Segoe UI font is optimized 
for these sizes, so avoid using smaller sizes. 

• Always match system text colors with their corresponding background 
colors. For example, if you choose COLOR_STATICTEXT for the text color, 
you must also choose COLOR_STATIC for the background color. 

• Always create new fonts based on proportional-sized variations of the system 
font. Given the system font metrics, you can create bold, italic, larger, and smaller 
variations. 

• Display large blocks of read-only text (such as license terms) against a light 
background instead of a gray background. Gray backgrounds suggest that the text 
is disabled and discourages reading. 

• Consider a maximum line length of 65 characters to make the text easy to read. 
(Characters include letters, punctuation, and spaces.) 

3.55.1 Attributes 
• Most UI text should be plain—without any attributes. Attributes may be used as 

follows:  

− Bold. Use in control labels to make the text easier to parse. Use sparingly to 
draw attention to text users must read. Using too much bold lessens its impact. 

− Italic. Use to refer to text literally instead of quotation marks. Use sparingly 
to emphasize specific words. Use for prompts in text boxes and editable 
drop-down lists. 

− Bold italic. Don’t use. 
− Underline. Don’t use except for links. Use italic instead for emphasis. 

Not all fonts support bold and italic, so they should never be crucial to understanding 
the text. 

3.56 Color (Page 610) 

3.56.1 Guidelines 

3.56.1.1 General 
Never use color as a primary method of communication, but as a secondary 
method to reinforce meaning visually. 
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3.56.1.2 Using Theme And System Colors 
• Whenever possible, choose colors by selecting the appropriate theme color or 

system color. By doing so, you can always respect users’ color preference. 

• Choose theme and system colors based on their purpose. Don’t choose colors 
based on their current appearance, as that appearance can be changed by the user 
or future versions of Windows. 

• Match foreground colors with their associated background colors. 
Foreground colors are guaranteed to be legible only against their associated 
background colors. Don’t mix and match foreground colors with other 
background colors, or worse yet, other foreground colors. 

• Don’t mix color types. That is, always match theme colors with their associated 
theme colors, system colors with their associated system colors, and hardwired 
colors with other hardwired colors. For example, a theme text color isn’t 
guaranteed to be legible against a hardwired background. 

− If you must use a color that isn’t a theme or system color: Prefer to derive the 
color from a theme or system color over hardwiring its value. Use the process 
described earlier in this article, in Using other colors. 

− Handle high-contrast mode as a special case. 
− Handle theme changes. Theme changes are handled automatically by windows 

with standard window frames and common controls. Windows with custom 
window frames, custom or owner-draw controls, and other use of color must 
handle theme changes explicitly.  

 
Figure 3-73: Color meaning 
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Figure 3-74: Luminosity 

3.56.1.3 Using Color In Data 
• When helpful, assign color to data to help users differentiate it. Note that users 

will assume that data with similar colors have similar meanings. 

• Assign colors by default that are easy to distinguish. Generally, colors are easy 
to distinguish if they are far apart from each other in the HSL/HSV color spaces, 
while maintaining high contrast with their background: When choosing colors, 
prefer triad harmonies or complementary hues, but not adjacent hues.  

 
Figure 3-75: The color wheel and triad harmonies 

− Colors have high contrast if there is a large difference in their hue, saturation, 
or luminosity.  

− Using a white or very light background makes contrasting foreground colors 
easier to distinguish.  

• Allow users to customize these color assignments because color choice is 
subjective and a personal preference. If there are many coordinated colors, allow 
users to change them as a group using color schemes. 
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• Allow users to label these color assignments. Doing so helps make them easier 
to identify and find. 

• Unlike UI colors, data should not change when the system colors change. 

3.56.2 Documentation 
• Refer to UI elements by their names, not by their colors. Such references 

aren’t accessible and the system colors may change. If a UI element’s name isn’t 
well known or not descriptive enough, show a screenshot to clarify.  

3.57 Icons (Page 620) 

3.57.1 Guidelines 

3.57.1.1 Perspective 
• Icons in Windows Vista are either three-dimensional and shown in perspective as 

solid objects, or two-dimensional objects shown straight-on. Use flat icons for 
files and for objects that are actually flat, like documents or pieces of paper.  

• Three-dimensional objects are represented in perspective as solid objects, seen 
from a low birds-eye view with two vanishing points.  

• In the smaller sizes, the same icon may change from perspective to straight-on. At 
the size of 16 × 16 pixels and smaller, render icons straight-on (front-facing). For 
larger icons, use perspective. Exception: Toolbar icons are always front-facing, 
even in larger sizes.  

3.57.1.2 Light Source 
• The light source for objects within the perspective grid is above, slightly in front 

of, and slightly to the left of the object. 

• The light source casts shadows that are slightly to the rear and right of the object’s 
base. 

• All light rays are parallel, and strike the object along the same angle (like the 
sun). The goal is to have a uniform lighting appearance across all icons and 
spotlight effects. Parallel light rays produce shadows that all have the same length 
and density, providing further unity across multiple icons. 

3.57.2 Shadows 

3.57.2.1 General 
• Use shadows to lift objects visually from the background, and to make 3D objects 

appear grounded, rather than awkwardly floating in space. 
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• Use an opacity range of 30–50% for shadows. Sometimes a different level of 
shadow should be used, depending on the shape or color of an icon. 

• Feather or shorten the shadow if necessary, to keep it from being cropped by the 
icon box size. 

• Don’t use shadows in icons at 24 × 24 or smaller sizes.  

3.57.3 Flat Icons 
• Flat icons are generally used for file icons and flat real-world objects, such as a 

document or a piece of paper. 

• Flat icon lighting comes from the upper-left at 130 degrees.  

• Smaller icons (for example, 16 × 16 and 32 × 32) are simplified for readability. 
However, if they contain a reflection within the icon (often simplified), they may 
have a tight drop shadow. The drop shadow ranges in opacity from 30–50 percent. 

• Layer effects can be used for flat icons, but should be compared with other flat 
icons. The shadows for objects will vary somewhat, according to what looks best 
and is most consistent within the size set and with the other icons in Windows 
Vista. On some occasions, it may even be necessary to modify the shadows. This 
will especially be true when objects are laid over others. 

• A subtle range of colors may be used to achieve desired outcome. Shadows help 
objects sit in space. Color impacts the perceived weight of the shadow, and may 
distort the image if it is too heavy.  

 
Figure 3-76: Basic flat icon shadow ranges 
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3.57.4 Color And Saturation 
• Colors are generally less saturated than they were Windows XP. 

• Use gradients to create a more realistic looking image. 

• Although there is no specific color palette for standard icons, remember that they 
need to work well together in many contexts and themes. Prefer the standard set 
of colors; don’t recolor standard icons, such as warning icons, because this 
disrupts users’ ability to interpret meaning. For more guidelines, see Color. 

• Icon files require 8-bit and 4-bit palette versions as well, to support the default 
setting in a remote desktop. These files can be created through a batch process, 
but they should be reviewed, as some will require retouching for better 
readability. 

• Bit levels: ICO design for 32-bit (alpha included) + 8-bit + 4-bit (dithered down 
automatically—pixel poke only most critical). Only a 32-bit copy of the 256 × 
256 pixel image should be included, and only the 256 × 256 pixel image should 
be compressed to keep the file size down. Several icon tools offer compression for 
Windows Vista. 

• Bit levels: Toolbars 24-bit + alpha (1 bit mask), 8-bit and 4-bit. 

• Toolbars or AVI files: Use magenta (R255 G0 B255) as the background 
transparency color. 

3.57.5 Size Requirements 

3.57.5.1 General 
Pay special attention to high visibility icons, such as main application icons, file icons 
that can appear in Windows Explorer, and icons appearing in the Start Menu or on the 
desktop.  

• Application icons and Control Panel items: The full set includes 16 × 16, 32 × 
32, 48 × 48, and 256 × 256 (code scales between 32 and 256). The .ico file format 
is required. For Classic Mode, the full set is 16 × 16, 24 × 24, 32 × 32, 48 × 48 
and 64 × 64. 

• List item icon options: Use live thumbnails or file icons of the file type (for 
e×ample, .doc); full set. 

• Toolbar icons: 16 × 16, 24 × 24, 32 × 32. Note that toolbar icons are always flat, 
not 3D, even at the 32 × 32 size. 

• Dialog and wizard icons: 32 × 32 and 48 × 48. 

• Overlays: Core shell code (for e×ample, a shortcut) 10 × 10 (for 16 × 16), 16 × 
16 (for 32 × 32), 24 × 24 (for 48 × 48), 128 × 128 (for 256 × 256). Note that some 
of these are slightly smaller but are close to this size, depending on shape and 
optical balance. 
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• Quick Launch area: Icons will scale down from 48 × 48 in Alt+Tab dynamic 
overlays, but for a more crisp version, add a 40 × 40 to .ico file. 

• Balloon icons: 32 × 32 and 40 × 40. 

• Additional sizes: These are useful to have on hand as resources to make other 
files (for e×ample, annotations, toolbar strips, overlays, high dpi, and special 
cases): 128 × 128, 96 × 96, 64 × 64, 40 × 40, 24 × 24, 22 × 22, 14 × 14, 10 × 10, 
and 8 × 8. You can use .ico, .png, .bmp, or other file formats, depending on code 
in that area. 

3.57.5.2 For High Dpi 

 
Figure 3-77: Windows Vista targets 96 dpi and 120 dpi 
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Figure 3-78: .ico file sizes (standard) 

 
Figure 3-79: .ico file sizes (special cases) 
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Figure 3-80: .ico file sizes (special cases) 

3.57.6 Annotations And Overlays 
• Annotations go in bottom-right corner of icon, and should fill 25% of icon area. 

Exception: 16 × 16 icons take 10 × 10 annotations. 

• Don’t use more than one annotation over an icon. 

• Overlays go in bottom-left corner of icon, and should fill 25% of icon area. 
Exception: 16 × 16 icons take 10 × 10 overlays. 

3.57.6.1 Level Of Detail 
• 16 × 16 size of many of these icons is still widely used and therefore important. 

• The details in an icon of this size must clearly show the key point of the icon. 

• As an icon gets smaller, transparency and some special details found in larger 
sizes should be sacrificed in order to simplify and get the point across. 

• Attributes and colors should be exaggerated and used to emphasize the key forms.  

• Simply scaling down from the 256 × 256 size does not work. 

• All sizes need relevant level of detail; the smaller the icon the more you need to 
exaggerate the defining details.  
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3.57.7 Icon Development 

3.57.7.1 Designing And Producing Icons 
• Hire an experienced graphic designer. For great graphics, images, and icons 

work with experts. Experience in illustrations using vector art or 3D programs is 
recommended. 

• Plan to do series of iterations, from initial concept sketches, to in-context mock-
ups, to final production review and fit-and-finish of icons in the working product. 

• Think ahead—icon creation can be expensive. Gather all existing details and 
requirements, such as: the complete set of icons needed; the main function and 
meaning for each; families or clusters in the set you want to be apparent; brand 
requirements; the exact file names; image formats used in your code; and size 
requirements. Ensure up front that you can make the most of your time with the 
designer. 

• Remember that the designer may not be familiar with your product, so 
provide functional information, screen shots, and spec sections, as 
appropriate. 

• Plan for geopolitical and legal reviews as appropriate. 

• Map out a timeframe and have regular communication. 

• Create concept sketches. 

• Try out the concept in different sizes. 

• Render in 3D if necessary. 

• Test sizes on different background colors.  

• Evaluate icons in the context of the real UI. 

• Produce final .ico file or other graphic resource formats. 

3.57.7.2 Tools 
• Pencil and paper: Initial concept ideas, listed and sketched. 

• 3D Studio Max: Render 3D objects in perspective. 

• Adobe Photoshop: Sketch and iterate, mock-up in context, and finalize details. 

• Adobe Illustrator/ Macromedia Freehand: Sketch and iterate, finalize details. 

• Gamani Gif Movie Gear: Produce .ico file (with compression if needed). 

• Axialis Icon Workshop: Produce .ico file (with compression if needed). 

• Microsoft Visual Studio® doesn’t support Windows Vista icons (there is no 
support for alpha channel or more than 256 colors). 
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3.57.7.3 Production 

3.57.7.3.1 Step 1: Conceptualize 
• Use established concepts where possible, to ensure consistency of meanings for 

the icon and its relevance to other uses. 

• Consider how the icon will appear in the context of the UI, and how it might work 
as part of a set of icons. 

• If revising an existing icon, consider whether complexity can be reduced. 

• Consider the cultural impact of your graphics. Avoid using letters, words, hands, 
or faces in icons. Depict representations of people or users as generically as 
possible, if needed. 

• If combining multiple objects into a single image in an icon, consider how the 
image will scale to smaller sizes. Use no more than three objects in an icon (two 
is preferred). For the 16 × 16 size, consider removing objects or simplifying the 
image to improve recognition. 

• Do not use the Windows flag in icons. 

3.57.7.3.2 Step 2: Illustrate 
• To illustrate Windows Aero style icons, use a vector tool such as Macromedia 

Freehand or Adobe Illustrator. Use the palette and style characteristics as outlined 
earlier in this article. 

• Illustrate image using Freehand or Illustrator. Copy and paste the vector images 
into Adobe Photoshop. 

• Make and use a template layer in Photoshop to make sure that work is done 
within square regions of the regulated sizes. 

• Create the images in a size a bit smaller than the overall icon size demands to 
allow space for a drop shadow (for those sizes that require one). 

• Place images at the bottom of the squares, so that all icons in a directory are 
positioned consistently. Avoid cutting off shadows. 

• If you are adding another object to an image or a series, keep the main object in a 
fixed position, and place flat smaller sized images in a fixed position, such as the 
lower-left or upper-right depending on the case. 

3.57.7.3.3 Step 3: Create the 24-bit images 
Once you’ve pasted sizes in Photoshop, check the readability of images, especially at 
16x16 and smaller sizes. Pixel-poking using percentages of colors may be required. 
Reduction of transparency may also be needed. It is common to exaggerate aspects at 
smaller sizes and to eliminate aspects as well, in order to focus on the key point. 

• The 8-bit icons will be displayed in any color mode lower than 32-bit and will not 
have the 8-bit alpha channel, so they may be hard to read). 
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• In Photoshop, duplicate the 24-bit image layer and rename the layer to 4-bit 
images. Index 4-bit images to the Windows 16 color palette. 

• Clean up images using only the colors from the 16 color palette. Outlines made 
from darker or lighter versions of the object’s colors are usually preferable to grey 
or black. 

• If working on a bitmap, be sure that the background color isn’t used in the image 
itself, because that color that will be the transparent color. Magenta (R255 G0 
B255) is often used as the background transparency color. 

3.57.7.3.4 Step 4: Create the 8-bit and 4-bit images 
• Now that the 24-bit images are ready to be made into 32-bit icons, 8-bit versions 

need to be created. 

• This is a great time to test contextual screen shots. It’s amazing what can be 
discovered by viewing other icons or a family of icons in context. This step can 
save time and money. It is much better to catch issues before files go through 
production and are handed off. 

• Add the drop shadow to your images in sizes that require them. 

• Merge the drop shadow and the 24-bit images together. 

• Create a new Photoshop file for each size. Copy and paste the appropriate image. 
Save each file as a .psd file. 

• Do not merge the image layer with the background layer. It’s helpful to include 
the size and color depth in the file name while working, but the file may 
ultimately need to be renamed. 

3.57.7.3.5 Step 5: Create the .ico file 
• Choose the application that best meets needs and skills of artists. Remember that 

icons to be used in a shipping product must be created in a tool that has been 
purchased or licensed. This means that trial versions cannot be used. 

• Both of the products listed below have been used by designers who have 
produced icons for Windows Vista, and each offers the ability to export to Adobe 
Photoshop CS. Gamani Gif Movie Gear: Produce .ico file 

• Axialis Icon Workshop: Produce .ico file 

• Visual Studio doesn’t support Windows Vista icons (there is no support for alpha 
channel or more than 256 colors), so its use is not recommended. 

• Icon (.ico format) files must contain the 4- and 8-bit versions, as well as the 24-bit 
+ alpha. 

• Save files as a “Windows icon (.ico)” no matter which icon creation program you 
choose to use. 
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• Some iconographic assets may actually be bitmap strips, which also require an 
alpha channel (for example, for toolbars), or .png files saved with transparency. 
Not all are necessarily .ico format; check for what format is supported in code. 

3.57.7.3.6 Step 6: Evaluate 
• Look at all sizes. 

• Look at the family together to evaluate family resemblance, optical balance, and 
distinction. 

• Look at in context to evaluate relative weights and visibility (make sure that one 
doesn’t dominate). 

• Consider cases that may not be used now, but could be in the near future. Could 
this icon ever be annotated or have an overlay? 

• Look at in code. 

3.57.8 Icons In The Context Of List Views, Toolbars, And Tree Views 

3.57.8.1 List Views 
• For Windows Vista, use thumbnails for files holding content that is visually 

distinct at small scale, such that users can directly recognize the file they are 
looking for. (Use the Windows Thumbnailing application programming interface 
for this.)  

• Application icon overlays (not shown here) on thumbnails help association with 
the application for the file type, in addition to showing the file’s preview. 

Note: For files without visually distinct content, don’t use 
thumbnails. Instead, use traditional symbolic file icons 
showing object representation and the associated 
application or type. 

3.57.8.2 Toolbars 
• Icons that appear in a toolbar must have an optical balance in size, color, and 

complexity. 

• Test potential icons in a contextual screen shot to avoid any undesired dominance 
or imbalances. 

• Testing in screen shots easily helps avoid expensive iterations in code. 

• Review the icons in code as well. Motion and other factors can impact the success 
of an icon; in some cases further iterations may be needed.  

3.57.8.3 Tree Views 
• Optical balance is needed to preserve the hierarchy in a tree view control. 
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• Therefore, icons that are typically used in this context should be evaluated there. 
Sometimes a particular 16 × 16 icon should be made smaller because its shape has 
an optical dominance over others. 

• Compensation for optical imbalances is an important part of producing top quality 
icons.  

3.58 Standard Icons (Page 635) 

3.58.1 Guidelines 
Note: For the following guidelines, “in-place” means on any 

normal window surface, such as within the content area of 
a wizard, property sheet, or control panel item page. 

3.58.1.1 General 
Choose standard icons based their message type, not the severity of the underlying 
issue:  

• Error. An error or problem that has occurred. 

• Warning. A condition that might cause a problem in the future. 

• Information. Useful information. 

If an issue straddles different message types, focus on the most important aspect that 
users need to act on. 

• Icons must always match the main instruction or other corresponding text, errors, 
because otherwise such contextual feedback would be too easy to overlook. 
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Figure 3-81: Icon size and error icons 

 
Figure 3-82: Windows backup error 
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Figure 3-83: Sign in errors 

 
Figure 3-84: Windows could not activate error 

• For task dialogs, don’t use error footnote icons. Error icons must be presented 
in the content area only. 
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Figure 3-85: Warning icons 

 
Figure 3-86: Warning icons 
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Figure 3-87: Warning icons 

• Don’t use warning icons to “soften” noncritical errors. Errors aren’t 
warnings—apply the error icon guidelines instead. 

• For question dialogs, use warning icons only for questions with significant 
consequences. Don’t use warning icons for routine questions.  

• For task dialogs, you can use a warning footnote icon to alert users of risky 
consequences. However, use a warning icon either in the content area or the 
footnote area, but not both.  

 
Figure 3-88: Information icons 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
246 

3.58.1.2 Question Mark Icons 
• Use the question mark icon only for Help entry points. For more information, see 

the Help entry point guidelines. 

• Don’t use the question mark icon to ask questions. Again, use the question mark 
icon only for Help entry points. There is no need to ask questions using the 
question mark icon anyway—it’s sufficient to present a main instruction as a 
question. 

• Don’t routinely replace question mark icons with warning icons. Replace a 
question mark icon with a warning icon only if the question has significant 
consequences. Otherwise, use no icon.  

3.59 Animations and Transitions (Page 660) 

3.59.1 Guidelines 

3.59.1.1 Effective Communication 
• Define and use an animation vocabulary to ensure that your animations and 

transitions have a consistent meaning, and use it consistently throughout your 
program. Most vocabularies should include entries for scene and object 
appearance and disappearance, navigation, basic interaction (hovering, selecting, 
clicking), object manipulation and interaction (moving, dropping, resizing, 
scrolling, panning, zooming, rotating, filtering), and attracting attention. 
Consistent meaning is crucial to effective communication. 

• Whenever practical, use the Windows animation vocabulary. While your program 
may have a different audience and different needs, often the benefits of 
consistency and familiarity outweigh the benefits of being different. If your 
program’s vocabulary must be different, use the same basic animation types as 
Windows, but give them the right personality for your program.  

• Don’t assign specific meanings to generic animations and transitions in an 
animation vocabulary. Generic transitions like fades and special effects like 
dissolves have no particular meaning (beyond appear or disappear), so they can be 
used freely  

• Make vocabulary entries clearly distinct. Related actions may have similar effects 
(for example, zooming in and zooming out should have inverse transitions), but 
unrelated actions should have clearly distinct effects (for example, zooming 
should never be confused with rotating).  

• Keep real-world effects realistic and consistent. If you use realistic animations 
and transitions, keep the experience consistent with the real world. Users should 
never be surprised, confused, or mislead by the results. And for consistency, don’t 
mix metaphors.  
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• Give inverse actions inverse animations. Doing so meets user expectations and 
simplifies the vocabulary. For example, if a pane appears by sliding in, remove it 
by sliding out—not with some other effect.  

• Make animations comprehensible. Users should be able to understand quickly the 
purpose of an animation. It’s possible to make an animation too small, too brief 
(less than 50 milliseconds), or so subtle that users aren’t able to comprehend their 
purpose. In such cases, either redesign to make the meaning clear, or remove.  

3.59.2 Patterns 

3.59.2.1 Hover Feedback 
• To appear responsive, strive to play animation within 50 milliseconds of entering 

or leaving the hover state. 

• To appear fast, make the duration of hover animations less than 50 milliseconds. 

• Use a fade in/fade out of hover effect. Doing so makes hover effects clearly 
distinct from click and selection feedback. 

3.59.2.2 Click Feedback 
• To appear responsive, strive to play animation within 50 milliseconds of click 

down event. Click up events don’t need click feedback. 

• To appear fast, make the duration of click animations less than 50 milliseconds. 

• Use a background flash or blink effect. Doing so makes click effects clearly 
distinct from hover and selection feedback. Because clicking requires hovering, 
make click feedback a smooth addition to hover feedback. 

3.59.2.3 Selection Feedback 
• To appear responsive, strive to play animation within 50 milliseconds of selection 

or deselection. 

• To appear fast, make the duration of selection animations less than 50 
milliseconds. 

• Use a fade in/fade out selection rectangle effect. Doing so makes selection clearly 
distinct from hover and click feedback. 

3.59.2.4 Progress Feedback 
• Use an activity indicator when an action can’t be performed within a second. 

Doing so indicates that the command has been received. 

• Use a progress bar when a task will take more than five seconds. For more 
guidelines, see Progress Bars. 
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• Use progress feedback animations that help users visualize the effect of long-
running tasks. Avoid unnecessary progress feedback animations—if an animation 
doesn’t communicate anything helpful, use a progress bar instead.  

• Have clearly identifiable completion and failure states. Users must be able to 
determine these final states quickly. 

• Stop showing progress when the underlying task isn’t making progress. Users 
need to be able to determine if progress isn’t being made, and react accordingly. 

3.59.3 Attractors 
• Use attractors with restraint. Unless the information is urgent, critical, or 

otherwise likely to affect the user’s immediate behavior, it’s usually better to 
change state inconspicuously and let users discover the change on their own. 
Solve distractions, not discoverability.  

• Choose an animation that draws the right level of attention. Attractor 
animations should draw just enough attention to themselves to fulfill their 
purpose, but no more. If the user must act immediately, choose an effect that 
demands attention no matter where the user is looking. For other situations, refer 
to the Attracting the right level of attention section to get the right combination 
of attention, noticeability, and urgency.  

• If the user doesn’t respond, don’t repeat the animation or use continuous 
animations. Instead, assume that the user chose not to act now, but may act later. 
Continuous animations make it difficult for users to concentrate on anything else. 

3.59.4 Relationship Animations 
• Use relationship animations to show where objects came from or where they 

went. 

• Relationship animations must start or end with the selected object. Don’t show 
relationships between objects the user isn’t currently interacting with. If users 
notice at all, what they’ll notice is the distraction. 

3.59.5 Illustrations/Previews 
• Use previews to show the effect of a command without users having to 

perform it first. By using helpful previews, you can improve the efficiency and 
ease of learning of your program, and reduce the need for trial-and-error. 

• Use illustrations and previews that have a clear interpretation. They have 
little value if confusing. 

• Play only one illustration at a time to avoid overwhelming users. If multiple 
simultaneous illustrations are possible, use mouse hover or a play button to let 
users indicate their interest. 
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• Play an illustration automatically if it is the main purpose of the window or 
page. Otherwise, if it’s optional, let users play it when they are ready. 

• Play animations at the optimal speed—not so fast they are difficult to 
understand, but not so slow they are tedious to watch. 

3.59.5.1 Object Grow/Shrink 
Don’t clip content during a resize. Expand containers before adding content. 
Remove content before reducing containers.  

3.59.5.2 Content Show/Hide/Change 
Display important information statically. Users shouldn’t have to access important 
information through progressive disclosure. 

3.59.5.3 Control Or Affordance Show/Hide 
• Display important controls when the user positions the pointer anywhere within 

the window or pane, or, if full screen, on mouse move. Users shouldn’t have to 
hunt for these controls, so make their discovery certain.  

• Display secondary controls or control affordances when the user positions the 
pointer on or near the commands. For easy discoverability, make the location 
obvious and the target large.  

3.59.5.4 Scene Transitions 
• Make physical scene transitions consistent with natural mapping. People read 

from left to right in Western cultures, and hierarchical diagrams flow from top to 
bottom. Consequently, going forward in time is indicated by left-to-right 
movement. The following physical scene transitions have natural mapping:  

− TransitionMeaning From leftMove back in task flowFrom rightMove 
forward in task flowFrom topMove up task hierarchyFrom bottomMove down 
task hierarchy 

• If your program plays sound, design scene transitions and audio transitions 
together. For example, if a scene fades out gradually, any sound should fade 
gradually as well. Don’t ruin seamless visual transitions by having abrupt sound 
transitions.  

3.59.5.5 Direct Manipulations 
• When using physical gestures in the interaction (like tossing), design the 

animation to feel like a natural response to the gesture. Link the interaction cause 
with the transition effect. Give the animation real-world physical characteristics 
such as acceleration, deceleration, momentum, resistance, weight, bounce, and 
rotation. 
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• To maintain a direct feel, keep an object’s contact points under the pointer 
smoothly throughout the interaction. Any lag, choppy response, or loss of contact 
destroys the perception of direct manipulation. Objects should never disappear 
while being manipulated. 

3.59.5.6 Sort, Filter, Or Reorder Transitions 
• For simple changes, show the entire transition. Users will be able to follow the 

entire transition easily. Simple changes involve four items or fewer. 

• For complex changes, emphasize the end of the motion as it slows down, and 
let the eye fill in the rest. Doing so makes the motion feel much more responsive 
and orderly.  

3.59.5.7 Performance Transitions 
• Consider performing slow transitions in two or three stages to make them appear 

faster and immediately interactive. Use the following composition order when 
appropriate:  

− External frame 
− Background 
− Initial content (using a temporary representation if necessary) 
− Primary controls (so that users can interact immediately)  
− Secondary controls and any remaining UI elements 
− Final content (if a temporary representation was used) Use transitions like 

fades and slides to make the composition appear smooth, orderly, and refined.  

3.59.6 Special Experience Animations 
• Reconsider animated splash screens (as well as static splash screens). Often 

splash screens just draw attention to how long a program takes to load, and they 
wear out their welcome quickly. While splash screens are acceptable if they are 
displayed only when user interaction isn’t possible, whenever practical a better 
alternative is to design your program so that users can interact with it 
immediately, even while it is still loading. 

• Provide a Skip Introduction command if an animated splash screen takes 
more than three seconds. Clicking anywhere on the splash screen should also 
dismiss it. Alternatively, use a short version of the animation after an initial 
period. 

3.59.6.1 Performance 
• Don’t make users wait for your program’s animations and transitions. Use 

brief animations and transitions (less than 200 milliseconds) whenever practical. 
Use faster animations (100 milliseconds) for more frequent operations.  
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• Design longer animations (more than one second—usually the progress feedback, 
illustration, and special experience patterns) so that users can continue to work 
while they are running. 

• Design long-running animations to make it clear to users that they can 
interact while the animation is running. Users won’t attempt to continue to 
work if the visual clues suggest that they can’t.  

− Use lightweight animations for CPU-intensive tasks. Doing so gives full 
processing power to the task. Furthermore, users won’t perceive that the 
lightweight animation is the reason why the task is CPU-intensive. 

− Don’t display an activity indicator during an animation or transition. 
Doing so destroys the effect. Design animations and transitions so that they 
are able to start right away. 

− Design animations to degrade gracefully whenever there are insufficient 
system resources. Animations can degrade by having variations that require 
fewer resources (such as shorter lengths or lower frame rates), or even not 
running at all. Regardless of the resources available, make sure the animations 
have high quality and look like animations instead of software bugs.  

3.59.7 Animation Characteristics 
Well-designed animations and transitions generally have these characteristics: 

• Brief duration. Most animations should be between 100 and 300 milliseconds, 
preferably either 1/6 second (167 milliseconds) or 1/4 second (250 milliseconds). 
(Special experiences and progress feedback can be longer.) Use faster animation 
times for more frequent operations. Generally, longer animations take more time 
to complete, take more time to understand, and feel slow. 

• Responsiveness. Animations should start within 50 milliseconds of the initiating 
event or user action. Longer start times feel unresponsive. 

• Acceleration/deceleration. To look natural, most animation effects need to 
accelerate when starting and decelerate when stopping. To look responsive, 
design animations to have fast starts. To appear controlled, design animations to 
have soft landings at the end. While this applies to motion effects, it also applies 
to any effect that suggests movement, such as zooms and even fades.  
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Figure 3-89: Speed vs. time 

• Motion. Animations portraying motion in particular need to accelerate and 
decelerate, so don’t use linear motion unless animation duration is very short. 
Motions should take the shorts path from beginning to end, without overshooting. 
The full motion path is not always required. When appropriate, emphasize the end 
of the motion as it slows down, and let the eye fill in the rest. Doing so makes the 
motion feel much more responsive and orderly. When animating the motion of 
several objects simultaneously, give them slightly different paths with slightly 
different timings to feel more natural.  

• Frame rate. Most animations should use a frame rate of 20 frames per second. If 
the animation is for a special experience or is related to the main purpose of the 
program, consider using a higher rate of 24–30 frames per second to improve 
smoothness and realism. 

• Scale. Design animations to work well across their entire range of intended usage. 
For example, page transitions should be designed to work for all page sizes. 

• Personality. Design animations to feel natural, subdued, and efficient rather than 
artificial, whimsical, or slow. 

3.59.8 Animated Text 
• While you may display text using a transition, don’t continuously animate text. 

Animated text is often distracting and more difficult to read than static text. 
Exceptions: You may animate text in situations where it is traditionally animated, 
and you provide an accessible alternative.  

• You may animate text if the purpose of the text is primarily decorative  
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3.59.8.1 Reducing Power Consumption 
• Design your animations to reduce power consumption. When designed 

properly, animations shouldn’t increase power consumption significantly. To 
reduce power consumption: Stop animating when the display is off. The display 
may be off for the purpose of saving power. 

• Don’t use long-running animations that aren’t user initiated. Animations that 
use high-resolution periodic timers reduce the efficiency of processor power 
management. Also, be sure to disable any high-resolution periodic timers when 
the animations are complete. 

• Suspend all animations when the system becomes idle. The period of user 
inactivity to become idle is determined by Power Options in Control Panel. 

3.59.8.2 Accessibility 
•  Don’t use animation as the only way to convey essential information. 

Animations should communicate information that is useful but not critical, 
because they aren’t accessible to users with visual impairments.  

• Make sure equivalent information is available through other means, such as: 
By inspection. Users can determine equivalent information by looking at the 
screen or objects involved in the animation.  

• By simple interaction. Users can determine equivalent information by hovering, 
clicking, or double clicking.  

• When appropriate, set input focus on the object changed during a transition. 
Doing so enables assistive technologies to detect where the change happened. But 
don’t change input focus when the user is using the keyboard. 

• Don’t use animations or transitions that flash or resize objects quickly. 
Flashing and rapid screen changes can cause problems for people with seizure 
impairments and other neurological disorders. 

• Allow users to turn off your program’s animations and transitions. To 
support this ability, respect the Turn off all unnecessary animations option in the 
Ease of Access Center in Windows.  

• Design tasks assuming that users will turn your program’s animations off. 
Make sure that doing so doesn’t disrupt the task flow significantly. 
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3.60 Graphic Elements (Page 674) 

3.60.1 Guidelines  

3.60.1.1 General 
Don’t convey essential information through graphic elements alone. Doing so 
presents accessibility issues for users with visual disabilities or impairments.  

3.60.2 Graphic Designs 
• Graphics are most effective when they reinforce a single simple idea. 

Complex graphics that require thought to interpret don’t work well. Hieroglyphics 
are best left for cave drawings.  

• Don’t use arrows, chevrons, button frames, or other affordances associated 
with interactive controls. Doing so invites users to interact with your graphics. 

• Avoid swaths of pure red, yellow, and green in your designs. To avoid 
confusion, reserve these colors to communicate status. If you must use these 
colors for something other than status, use muted tones instead of pure colors. 

• Use culturally neutral designs. What may have a certain meaning in one 
country, region, or culture may not have the same meaning in another. 

• Avoid using people, faces, gender, or body parts, as well as religious, 
political, and national symbols. Such images may not easily translate or could 
be offensive. 

• When you must represent people or users, depict them generically; avoid 
realistic depictions.  

3.60.3 Backgrounds And Banners 
• To emphasize content, use dark text on a light background. Black text on a 

light gray or yellow background works well.  

• To de-emphasize content, use light text on a dark background. White text on a 
dark gray or blue background works well.  

• If a gradient is used, make sure that the text color has good contrast across 
the entire gradient.  

• Always use a 16x16 pixel icon to draw attention to the banner. Banners are too 
easy to overlook otherwise. For more guidelines and examples, see Standard 
Icons. 

• Use backgrounds and banners with caution. While the intent of the background 
or banner may be to emphasize content, quite often the results are the opposite—a 
phenomenon known as “banner blindness.” 
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3.60.4 Glass 
• Consider using glass strategically in small regions touching the window 

frame without text. Doing so can give a program a simpler, lighter, more 
cohesive look by making the region appear to be part of the frame. 

• Don’t use glass in situations where a plain window background would be 
more attractive or easier to use. 

3.60.5 Separators 
• Use vertical and horizontal lines for separators. Be sure to have sufficient 

space between the separators and the content being separated. 

• For separators between sizable content (splitters), display the resize pointer on 
hover.  

3.60.6 Shadows 
• Use only to make your program’s most significant content or objects being 

dragged stand out visually against its background. Consider shadows to be visual 
clutter in other circumstances. 

3.60.7 High dpi Support 
• Support 96 and 120 dots per inch (dpi) video modes. Detect the dpi mode at 

startup and handle dpi change events. Windows is optimized for 96 and 120 dpi, 
and uses 96 dpi by default. 

• Prefer to provide separate bitmaps rendered specifically for 96 and 120 dpi 
over scaling graphics. At least provide 96 and 120 dpi versions for the most 
important, visible bitmaps, and either center or scale the others. Such applications 
are considered “high-dpi aware” and provide a better overall visual experience 
than programs that are automatically scaled by Windows. Developers: You can 
declare a program high-dpi aware (and prevent automatic scaling) setting the dpi 
aware flag in the program’s manifest, or by calling the SetProcessDPIAware() 
API during program initialization. You can use macros to simplify selecting the 
right graphics. For Win32 bitmaps, you can use SS_CENTERIMAGE to center or 
SS_REALSIZECONTROL to scale. 

• Check your program in both 96 and 120 dpi for:  

− Graphics that are too small or too large. 
− Graphics being clipped, overlapped, or otherwise not fitting properly. 
− Graphics that are poorly stretched (“pixilated”). 
− Text that is clipped or not fitting in graphic backgrounds. 
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3.60.8 Text 
For accessibility and localization, don’t use any text in graphics. Make exceptions 
only to represent branding and text as an abstract concept.  

3.61 Sound (Page 677) 

3.61.1 Guidelines 

3.61.1.1 Usage 
• Use sound with restraint—make sure there is a clear overall user benefit. Focus 

on sounds that keep users informed, are likely to change their behavior, or provide 
useful feedback. When in doubt, don’t use sound. 

• Select the sound and its characteristics based on how it is being used. For a 
description of each usage pattern, see the table in the previous section. 

• For notifications and feedback, don’t use sound as the only method of 
communication. Rather, use sound as a supplemental method to reinforce visual 
or textual cues. Doing so ensures that users can see the information if they can’t 
hear the sound. 

• Don’t play loud or harsh sounds frequently. Doing so is unnecessary and 
results in a poor user experience. The more often a sound is played, the less 
obtrusive it should be. Sounds don’t have to be loud or harsh to attract attention. 

− Don’t beep. Beeping isn’t appropriate for modern programs. Beeps can’t have 
specific meanings assigned to them, and users can’t control them. Exception: 
Critical system functions may beep to alert users of situations that they must 
attend to immediately, such as critically low battery power. 

3.61.1.2 Playback 
• Don’t repeat a sound more than two times consecutively. 

• For a consecutive sequence of related sound events, play a sound only on the first 
event. Avoid using multiple sounds because they may collide with each other or 
otherwise result in an unpleasant user experience. 

3.61.2 Sound Selection 
• Choose pleasant sounds. Don’t use unpleasant, alarming sounds, such as 

buzzing, crashing, and breaking. 

• Use sounds that are short (less than one second). 

• Use sounds that are roughly the same volume as the typical Windows sound. 
Users dislike having to turn the volume down when starting a computer or a 
program, especially in public environments such as meetings and presentations.  
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• The Microsoft® Windows® sound files are located in the Media folder within the 
Windows folder. 

• Don’t choose sounds that require localization. You can achieve this by using 
sounds that don’t use speech or have culturally-dependent meanings or 
connotations. 

3.61.3 Windows System Sounds 
• Use the built-in Windows system sounds whenever appropriate. 

• Choose to use system sounds based on their associated meaning, not just on 
the sound itself. System sounds must be used consistently. 

3.61.4 Sound Design 
When creating your own sounds: 

• Create sounds with the desirable sound characteristics. 

• Compose sounds with mostly mid-range to high frequencies (600 Hz to 2 
kHz). Don’t use low frequencies because they travel farther, are harder to locate, 
and can be alarming. 

• Set the relative amplitude of normal sounds to the level of the typical 
Windows sound. The Windows sounds have been appropriately leveled for home 
and work environments. Using different levels for your sounds will force users to 
make volume adjustments. Set important sounds to be slightly louder. Such 
sounds include action completions, action failures, and important system events. 

• Set frequently occurring sounds to be slightly softer. These include FYIs, 
branding sounds, and sound effects. 

• Choose sounds consistent with the meaning of the Windows sounds. To create 
a custom version of a Windows sound, preserve the same pitch and interval, but 
change the orchestration or timbre. Don’t assign different meanings to sounds 
with similar pitches and intervals as Windows sounds. 

• Design the sounds for your program to feel like they are related variations on 
a theme. Your program’s auditory experience should be coordinated with its 
visual experience. Design scene transitions and audio transitions together. For 
example, if a scene fades out gradually, any sound should fade gradually as well. 
Don’t ruin seamless visual transitions by having abrupt sound transitions. 

• Sounds must be in .wav file format. The 16-bit, 44.1 kHz stereo uncompressed 
pulse code modulation (PCM) format is recommended. If file size is important, 
use compressed or monaural (mono) formats, but be aware that there is an easily 
discernable quality loss that could reflect badly on your application. 
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3.61.5 Mixing 
• Don’t have volume or mute controls in your program. Instead, let users control 

relative volume settings among applications with the Windows volume mixer. If 
your program has a volume control, there will be multiple places where users 
adjust their settings, which may lead to confusion.  

• Exception: If the primary purpose if your program is audio or video playback or 
creation, it may be useful to have a volume control in the program. Use a slider 
control for this purpose and provide immediate feedback when the user changes 
the volume. 

3.61.6 Windows Integration 
• Register your program’s sounds in the Windows Sounds registry. Doing so 

allows the Windows volume mixer to add a slider for your program. 

• Register your program’s custom sound events. Doing so allows the Windows 
Sound control panel item to display them. Create the following key for each 
custom sound event: HKEY_CURRENT_USER | AppEvents | Event Labels | 
EventName = Event Name. 

− Don’t hardwire the sounds for your program’s sound events. Instead, 
specify the sounds to be played using registry entries. Doing so allows users to 
customize the sound events through the Sound control panel item. Exception: 
You can choose to hardwire sounds used for branding. 

− Don’t provide a way for users to configure sounds within your program’s 
options. Rather, use the Windows Sounds control panel item for this purpose. 

− Consider not assigning sounds to frequently occurring events by default. 
Don’t require users to configure their way out of an annoying initial 
experience. 

3.61.7 DirectSound Programming Issues 
• For DirectSound programs that have their own volume control, set the program 

volume to 100% by default. Doing so maximizes the dynamic range of your 
audio. 

• Don’t lock out other sound events by running your program in exclusive 
mode. Doing so can prevent other programs from working correctly. For 
example, using exclusive mode prevents a computer from being used as a 
telephony device. 

3.61.8 Text 
• Don’t use the phrase “sound adapter”. Use “sound card” instead. 

• Use “device” to refer generically to speakers, headphones, and microphones. 
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• Use “controller” to refer to audio hardware that controls devices, such as sound 
cards and chipsets.  

• Use the phrase “sound scheme” to describe a collection of sounds for common 
program events, such as logging on or receiving new e-mail. Use the phrase 
“desktop theme” to describe a collection of visual elements and sounds for your 
computer desktop. 

• Use the term “audio” to refer broadly to speech, music, and sounds. Use the term 
“sound” to refer more narrowly to the program and Windows sounds described in 
this article.  

3.62 Experiences (Page 686) 

3.62.1 Guidelines 

3.62.1.1 General 
• Choose a good product name that is memorable, distinctive, and concisely 

conveys the benefit of the product. This will be the foundation of your brand.  

• Focus your branding effort on the special experiences in your program, such as:  

− The first experiences, especially during setup and when the program is used 
for the first time. 

− The main window or home page. 
− The start and completion of important tasks.  
− Important transitions between tasks or program areas. 
− Log in and log off. 

• Prefer secondary branding elements. Limit your use of primary branding 
elements to a few strategic experiences. For example, consider using secondary 
graphics, transitions, and color instead of logos. Also, avoid prominent primary 
branding elements in places where users spend a lot of time because they may be 
perceived as clutter.  

• Don’t use branding that is distracting or harms usability or performance. 

• Don’t use the Windows desktop or Start menu for branding.  

3.62.2 Names And Logos 
• Limit the use of product and company logos in the user interface. Don’t 

plaster company or product logos on every UI surface. Limit product and 
company logos to at most two different surfaces, such as the main window or 
home page and the About box. 

• Limit product and company logos to at most twice on any single surface. 
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• Limit product and company names to at most three times on any surface.  

• Use small product and company logos. Place the logo out of the user’s 
workflow, and choose a size that is appropriate for its location. 

• Use graphic logos. Graphic logos are more stable than text logos because they 
aren’t affected by font, text size, language pack, or theme changes. 

• Don’t use animated logos. 

3.62.3 Controls 
Don’t use custom controls for branding. Rather, use custom controls when 
necessary to create a special immersive experience or when special functionality is 
needed.  

3.62.4 Splash Screens 
• Don’t use splash screens for branding. Avoid using splash screens because they 

may cause users to associate your program with poor performance. Use them only 
to give feedback and reduce the perception of time for programs that have 
unusually long load times.  

• Don’t use animated splash screens. Users often assume that the animated splash 
screen is the reason for a long load time. Too often, that assumption is correct. 

3.62.5 Sound 
• Generally, sound is not recommended just for branding. If you do use sound for 

branding: Play a sound only at program startup, but only if the program was 
launched by the user. 

• Synchronize the sound to a visual event, such as a UI transition like the display of 
a program window. 

3.63 Setup (Page 693) 

3.63.1 Guidelines 

3.63.1.1 General 
• Apply the standard wizard guidelines for wizard-based setup programs. Use 

these guidelines to determine good page design, effective navigation, good control 
labels, use of main instructions, and use of help. 

• Allow users to restart the setup program where they left off if it requires a lot 
of user input or takes a long time to complete. If users restart the program after 
closing it before completion, restore previous user input, and restart where the 
setup was stopped. 
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• Don’t display setup windows maximized. Displaying a setup window 
maximized presumes that users will give setup their undivided attention, which is 
unlikely. Instead, choose a size that is appropriate for the content to maintain a 
simple appearance. 

3.63.2 Windows Integration 
• Name the setup file “Setup.exe”. “Install.exe” is an acceptable alternative. This 

enables Windows (and users) to recognize the file as a setup program. Exception: 
For programs downloaded from the Internet, help users manage and organize their 
Downloads folder by including the name of the program in the name of the setup 
file. For example, SetupVisualStudioExpress2008.exe. 

• Copy program files to the proper file system locations. Doing so allows users 
and Windows to find and organize the files better.  

3.63.3 User Account Control 
• Digitally sign the setup executable file. Signed executables have many 

advantages, including using a more specific User Account Control Elevation UI. 
For information about signing files, see Introduction to Code Signing. 

• If a setup might require elevation, elevate as late as possible. Display the 
elevation UI only after the user has committed to an option that requires elevation. 
Usually, the elevation UI appears during the installation phase, not the decision 
phase. However, if a setup always requires elevation, elevate at its entry point. 

• Always require elevation for uninstall. Doing so prevents malware from 
uninstalling critical software without users knowing about it.  

• Once elevated, stay elevated until elevated privileges are no longer necessary. 
Users shouldn’t have to elevate multiple times to perform complete a program 
installation. 

• If special privileges are required for installation, verify the user’s credentials 
and report any problems on the first or second page. Don’t let users perform a 
lot of work only to find that they don’t have the right credentials to complete the 
installation. 

• Require the least privileges possible. For example, administrators are reluctant 
to install software that requires domain administrator credentials. 

3.63.4 Restarting Windows 
• Avoid restarting Windows. Most programs should install without restarting 

Windows. The primary reason program installations or updates require a system 
restart is that some of the files involved are currently being used by a running 
program. In this case, a better alternative is to make users aware of the situation, 
allow users to close these programs, and retry the action.  
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− If your setup must restart Windows: Use a single restart. Delay the restart 
required by any prerequisites until the program and its updates are completely 
installed. 

− Let users determine when it happens. Don’t restart Windows automatically, 
because users may lose work. Make sure that it’s clear to users that they have 
a choice.  

− If the user chooses to not restart Windows immediately, present any final 
feedback as a success, not a failure. While technically the installation isn’t 
complete until restart, it was successful from the user’s point of view. See 
Error pages for an example. 

3.63.5 Streamlining Setup 
• Whenever practical, start the installation process with a single step. For 

example, instead of adding a separate page in setup for the license terms, you may 
provide a link to them instead. If you link to the terms: Phrase the commit button 
as “Agree and install” to require explicit consent to accept the license terms. 

• Ensure that the license agreement link cannot be broken by linking to a file local 
to the setup instead of a Web page. 

• Provide the ability to print the license agreement from its display window. 

• Eliminate unnecessary options and questions. Postpone options that are more 
appropriate for the first use of the program or feature.  

− Don’t ask users questions about the system state. Detect this information 
automatically instead, and ask users to verify only if there is a reason to 
change. 

− Don’t ask questions about unimportant details. For example, for typical 
Windows programs it is safe to assume that you should copy program files to 
the Program Files folder.  

− Don’t ask permission to do what you shouldn’t do anyway. For example, most 
programs shouldn't include an option to put the program icon on the desktop. 

− Don’t confirm setup cancellation. If users click Cancel during setup, assume 
the cancellation was intentional and close the program without confirmation. 
If doing so risks losing significant time or effort, allow users to restart your 
setup program and pick up where they left off. 

• Optimize for unattended installation. Present all options and questions during 
the decision phase. 

• For the download and installation phases, delay requiring user input to any 
problems encountered until the end of the phase. By doing so, users can leave the 
installation unattended until they return at their convenience. 

• Eliminate unnecessary pages. If most users always just click Next on a page, 
consider getting rid of the page.  
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• Eliminate unnecessary text. Remove redundant text from instructions and labels. 

• Don’t explain basic Windows usage concepts 

− How wizards work  
− How setup works  

• Eliminate unnecessary effort. Provide good default values:  

− Generally, select the most secure and private response to be the default. 
−  If safety and privacy aren’t factors, select the most likely or convenient 

response.  
− If an option is strongly recommended, consider selecting it by default, or 

adding “(recommended)” to its label. 
• Advance pages automatically when a page has no input and the task is done 

successfully, such as with download, installation, progress, and updates pages. 
Once the step is done, stay on these pages only to show problems. 

• When practical, start the program automatically when setup is done, instead of 
showing a Congratulations or Completion page. When setup is run interactively, 
assume the user is installing your program in order to run it immediately, so 
running the program is the best feedback to show that setup is complete. 
Automatically running the program isn’t practical when the setup installs more 
than one program (for example, a suite consisting of many programs), when setup 
isn’t run interactively, or when the installation process isn’t complete after setup. 

3.63.6 Page Types 

3.63.6.1 Welcome and Getting Started Pages 
• Eliminate Welcome pages. While it’s great to feel welcome, users typically just 

click Next without reading. And because users typically skip over these pages 
without reading, the text does little more than state the obvious, by design.  

• Use a Getting Started page only if you must inform users about prerequisites 
for installing. Such prerequisites include installing required software or 
hardware, performing required system configuration changes and updates, 
performing a system backup to protect against data loss, or obtaining required 
information that the user isn’t likely to have already. 

• Whenever practical, provide the ability to perform the prerequisites directly 
from the setup program. Users should have to perform the steps manually only 
if there isn’t an alternative. 

• If a Welcome page or Getting Started page isn’t used, include the program 
name and description on whatever is the first page of the Setup program. 
You can use welcoming language as introductory text as long as the page’s 
purpose is clear. 
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3.63.6.2 License Terms Pages 
• Write the license terms using clear, concise text. Use plain language. Avoid 

“legalese.” 

• Present using a format that is easy to read and scan. Don’t use long passages of 
uppercase text.  

• Require explicit consent to accept the license terms. License acceptance should 
never be selected by default. If radio buttons are used to indicate acceptance, 
leave the options cleared by default and require users to accept the terms before 
enabling the Next button.  

• Don’t require users to scroll to the bottom of the license terms text before the 
Next button is enabled. This imposes an unnecessary burden on users to 
understand why the Next button is disabled. 

• Provide a Print command, either with a command button or a context menu. 
Present the terms in a format optimized for printing. 

3.63.6.3 Product Registration Pages 
• Require users to register only if they must in order to use the program. Clearly 

explain why users must register. 

• Provide optional registration only if there is a clear user benefit, such as to notify 
users of product updates. Leave this option cleared by default. 

• Allow users to register later. Provide a maximum of three reminders and allow 
users to dismiss the reminders with a single click. 

3.63.6.4 Scope Pages (Typical, Custom, Or Minimum) 
• Prefer to eliminate this page. Assume that most users want the typical setup 

experience (and design that experience so that it works well for most users). 

− If you must include a scope page: Explain the differences among options in 
terms of functionality and disk space. Users rely on the clarity of 
information on the scope page to ensure that they make the right choice. 

− Make sure that the custom options are necessary only for a small 
percentage of users, while most users can safely ignore them. If not, the 
options should be in the typical setup path. 

− If users choose custom options, have the typical installation options 
selected by default. Users regard the typical installation as the baseline, and 
want to customize by adding or removing options from that baseline. 

− If you must use a custom installation option, consider using relative button 
sizing and placement to guide most users to the typical installation.  
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3.63.6.5 Input Pages 
• Reduce the number of setup options by doing the right thing by default. For ways 

to eliminate options see Streamlining setup. 

• Provide acceptable default values whenever possible. Choose defaults that are 
secure and private, and are acceptable to most users without change. 

• Unless your program has unusual requirements, strive to have a single page of 
questions and options. But if your program requires several pages of questions 
and options, display them in the main wizard page flow. Don’t try to reduce the 
number of pages technically by putting options in dialog boxes or using tabs. 

− Validate input as soon as possible: Prohibit invalid characters on entry. 
− Use balloons to report problems with invalid text boxes. 
− Validate related fields on a page when users click Next. 
− Validate related fields across input pages as soon as problems can be detected. 

• Give all editable file paths a Browse button. Allow users to specify network 
paths.  

• For the final input page, label the commit button Install, not Next. Users 
shouldn’t be surprised by when the installation starts. Before the commit point, 
make sure that users can easily change any settings. 

3.63.6.6 Start Installation Pages 
• Eliminate this page if it has no purpose other than to summarize the previous 

choices and begin installation. If the input pages are clear and few in number, 
there should be no need to summarize them. Instead, the final input page should 
have the Install button, leading directly to the progress page.  

• For complex installations targeted at IT professionals, provide an 
Installation page with a comprehensive list of changes that the setup 
program will perform. Many IT professionals have strict change management 
control, so they need to know the effect installing the program will have in detail. 

3.63.6.7 Progress Pages 
• Always provide a progress page, even if the program installs quickly. Provide a 

separate progress page for the downloading phase if there is one. Disable the 
Back (or Previous) and Next buttons while the setup is in progress, but leave the 
Cancel button enabled and responsive. 

• Use a single, determinate progress bar. Follow the determinate progress bar 
guidelines, including: Clearly indicate completion. Don’t let a progress bar go to 
100 percent unless the operation has completed. 
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• Don’t restart progress. A progress bar loses its value if it restarts (perhaps because 
a step in the operation completes) because users have no way of knowing when 
the operation will complete. Instead, have all the steps in the operation share a 
portion of the progress and have the progress bar go to completion once. 

• Provide a concise description of the current step above the progress bar. For 
quick installations, such text is unnecessary; the progress bar alone is sufficient. 
For installations requiring a minute or longer, text can be helpful for users 
attending the setup. Use sentence fragments, typically beginning with a verb, 
and ending with an ellipsis.  

• Place text above the bar, not below.  

• Refrain from cluttering the progress page with unnecessary details. This page 
isn’t for technical support, so there’s no need to display registering GUIDs or 
specific files copied.  

3.63.6.8 Error Pages 
• If setup fails with a significant problem, display an error page that explains the 

problems along with practical steps to resolve them. Display the page with an 
error icon. Don’t use a dialog box for this purpose. 

• If setup completes with a minor recoverable problem, present the problem as an 
additional task instead of an error. Use positive, success-oriented, encouraging 
language, not terms like error, failure, or problem. Don’t use an error icon.  

3.63.6.9 Congratulations/Completion Pages 
• When installing a single program interactively, start the program (and close the 

setup wizard) to indicate successful setup, instead of displaying a completion 
page. Exceptions: Setups that are run from the command line should not start 
programs.  

− Automatic updates (for example, Windows Update) shouldn’t start programs. 
− Group policy installation shouldn’t start programs. 
− Any IT professional setup scenarios (because they are not installing for their 

own use). 
− If the setup has follow-up steps after installation, list them on a 

Completion page. But to justify a Completion page, make sure users are 
likely to perform the steps, and that the steps genuinely need to be stated (that 
is, they are not obvious). 

• When installing a suite of programs, display a Completion page to indicate 
success and any follow-up steps that may be necessary.  

• Leaving users in control 

• Don’t clutter the Start menu with entries for uninstall, readme files, Help files, or 
links to Web sites. For more guidelines, see Start menu. 
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• Don’t gather personal information, such as that used for marketing purposes. 
Setup isn’t an opportunity to push your own agenda, cross-sell other program 
offerings, or conduct market research; you can damage the trust relationship with 
your users this way. 

• Don’t force users to opt out of installing optional features. Allow them to opt in 
instead. For example, users should explicitly choose to install a Windows Desktop 
Gadget. 

• Allow users to add or remove optional features using the setup program after 
initial setup. Users can perform this task using the Uninstall or change a program 
control panel item. 

• For customer experience improvement initiatives, explain what data is 
transmitted, how it is used, and how long it is kept. Use a link to a privacy 
statement Help topic for this purpose. 

• Avoid using sound, because many installation scenarios are unattended, and 
because sound can be unnecessarily distracting even during attended installations. 

3.63.7 Security 
• For Internet-based setup, provide any security updates automatically during initial 

setup. Users should not have to update as a separate step. 

• Avoid recommending that users turn off firewalls as a prerequisite to installing 
your program. 

− If a firewall must be turned off, do the following: Limit the duration of this 
condition to as short a time as possible. 

− Explicitly point out when users can turn the firewall back on again. 

3.63.8 Uninstall 
• Uninstall should remove all traces of a program, including the following:  

− Program files, including the setup program. 
− Start menu entries. 
− Desktop icons and Quick Launch icons (if any). 
− Registry settings. 
− File associations. 

• Uninstall should leave behind the following:  

− User created files, such as document files. 
− Shared dynamic-link libraries stored in the System folder. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
268 

3.63.9 Help And Support 
• Design your setup program not to need Help by asking clear, self-explanatory 

questions. Reserve Help for advanced questions that really benefit from further 
explanation. 

• Don’t use readme files. These files are now obsolete and users don’t read them 
anyway. Instead, provide online content if needed. 

• Link to appropriate Help topics or troubleshooting content from setup error 
messages. Make sure the Help content provides a clear path to resolving the 
problem. For more information, see Error Messages. 

• Create log files to capture information useful to technical support. Don’t clutter 
the setup UI with technical support-related details that are meaningless to most 
users. Use log files for this purpose instead. 

3.63.10 Text 
• Be concise. Setup wizards often overexplain features and options, using blocks of 

text that are difficult to scan quickly. Exceptions: Spell out all acronyms. Setup is 
often users’ first experience with your program, so don’t assume they understand 
jargon such as acronyms. 

• Explain unfamiliar terminology and concepts, preferably in place but using Help 
topics if necessary. 

• Prefer a friendly, professional tone; avoid an overly-technical tone.  

• Don’t use now in command button labels because the immediacy of the command 
can be taken for granted. Exception: When necessary, use now to differentiate 
commands that start a task from commands that perform a task immediately.  

• Only one command in a task flow should be labeled with now. So, for example, a 
Download now command should never be followed by another Download now 
command. 

• Use license terms, not license agreement, licensing agreement, end user license 
agreement, or EULA. 
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3.64 First Experience (Page 711) 

3.64.1 Guidelines 

3.64.1.1 General 
Limit first experiences to tasks and settings required to use a program or feature, and 
only include these when there is no better alternative. See the previous table for 
alternatives. Exception: Add personalization or program customization settings to the 
first experience if their customization is part of the core experience or crucial to the 
user’s personal identification with the program.  

• Use the setup experience for tasks and settings if they apply to all users or 
changing settings requires elevation. 

• Use the first use experience for tasks and settings if they apply to individual 
users. 

3.64.2 Presentation 
• Prefer optional tasks and settings to required tasks and settings. Avoid 

forcing users to configure your program.  

• Take optional tasks and settings out of the main task flow whenever 
practical. For example, many setup programs provide a custom installation path 
to remove infrequently changed settings from the main task flow.  

− Don’t overwhelm users with tasks and settings: Start simple. Begin with 
simple, personalization settings and progress towards more complex, technical 
tasks and settings. For example, Windows setup starts with personal 
information and ends with network configuration. 

− Use a contextual first experience for tasks and settings if they apply only to 
features that aren’t fundamental to the main program.  

− Don’t present everything all at once. Consolidate to use a single UI instead 
of multiple UI surfaces, or display tasks at different times instead of all at 
once.  

• Express questions and options in terms of users’ goals and tasks, not in terms 
of technology. Provide options that users understand and clearly differentiate. 
Make sure to provide enough information for users to make informed decisions. 

• If the need for personal information isn’t obvious, explain why your program 
needs the information and how it will be used.  

• Present first experiences full screen only if users can’t productively perform 
other tasks. For example, Windows setup is presented full screen to discourage 
users from performing other tasks while Windows is being installed. Most first 
experiences shouldn’t be full screen. 
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3.64.3 Settings 
• For all settings, select the safest (to prevent loss of data or system access), 

most secure and private value by default. If safety and security aren’t factors, 
select the most likely or convenient value. Choosing good defaults is an effective 
way to simplify the first experience. 

• Require users to opt in for:  

− Settings with legal implications, such as end user licensing agreements 
(EULAs). Such settings can’t have default selections. 

− Features that perform automatic system configuration changes, such as 
Windows automatic updates. 

− Features that reveal personally identifiable information (PII) or system 
information. 

− Changes to the user’s desktop beyond adding entries to the Start menu, such 
as adding icons to the desktop or quick launch bar. 

− Optional software, such as product enhancements, subscriptions, and third-
party products.  

• If a setting is strongly recommended, add “(recommended)” to the label. For 
radio buttons and check boxes, be sure to add to the control label, not the 
supplemental notes. 

• If a setting is intended only for advanced users, add “(advanced)” to the 
label. For radio buttons and check boxes, be sure to add to the control label, not 
the supplemental notes. 

3.64.4 Tasks 
• Help users pass waiting time productively. If the waiting time is typically 

between one and two minutes, consider providing helpful information while users 
are waiting, such as a presentation of what is new during setup. 

If the waiting time is typically longer than two minutes, make it easy for users to 
perform other tasks. Display the estimated wait time, recommend that users do 
something else in the meantime, and make task completion obvious by changing 
the screen significantly. 

• Reconsider presenting tutorials during the first experience. Most likely users 
want to use your program right away and are interested in tutorials at a later point. 

• Don’t use feature advertisement notifications in the first experience. Instead 
of using a feature advertisement notification, design the feature to be easier to 
discover in contexts where it is needed, or don’t do anything special and let users 
discover the feature on their own. 
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• Don’t use any notifications during the initial Windows experience. To 
improve its first experience, Windows 7 suppresses all notifications displayed 
during the first few hours of usage. Design your program assuming users won’t 
see any such notifications.  

3.65 Printing (Page 718) 

3.65.1 Guidelines 

3.65.1.1 General 
• Don’t print blank pages or pages with just headers and footers. However, 

print blank pages if the headers or footers contain page numbers and those page 
numbers might referenced elsewhere. 

• Completely spool out any pending print jobs before shutting down a 
program. 

3.65.2 Formatting Pages 
• Reformat text layout to fit within the target page size. Never truncate text. 

• If users don’t control the format of the document: Automatically handle large 
objects by scaling, rotating, or splitting across pages.  

• Optimize the page breaks to eliminate blank and nearly blank pages. 

• Convert light text on a dark background to dark text on a white background. 

• Remove backgrounds and other design elements, especially if they are unsuitable 
for a black and white printer. 

• If your program presents separate partial documents, provide a printer-friendly 
format option to consolidate them into a single document for printing. 

• Remove interactive elements: Remove navigation controls and command buttons. 

• Make sure that all data is visible without scrollbars. 

• Replace links with their text equivalent.  

3.65.3 Oversized Objects 
Handling large objects, such as spreadsheets, graphics, and photos, is a problem 
unique to printing. Choose one of the following approaches: 

• Scale the object to fit on the page. This approach works well if the object is only 
slightly too large to print, keeping the object on a single page is important, and the 
object is still legible when scaled down.  



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
272 

• Rotate the page. This approach works well when a few pages print better in 
landscape mode when in portrait mode (and vice versa).  

• Print the object on several pages. The approach works well when the object 
can’t be scaled, or shouldn’t be scaled, and rotating the page doesn’t help or isn’t 
wanted. If the object has internal boundaries (such as the column and row dividers 
in a spreadsheet), break the pages on these boundaries instead of within the 
content. Also, repeat any elements required to understand the page, such as 
legends or column headers. When splitting an object on several pages, assign the 
page numbers in reading order (left to right, top to bottom).  

• Truncate the object (printing only the part of the object still visible after 
truncation). This approach is the simplest solution to implement, but likely to be 
the least acceptable. Also note that truncating is never acceptable for text.  

3.65.4 Headers And Footers 
• Provide headers and footers for advanced and intermediate document 

creation programs. Consider providing headers and footers for other types of 
programs if they are used for multipage documents. 

− Make headers and footers customizable. Allow users to define the left, 
center, and right portions. For headers, put the document name on the left side 
by default. 

− For footers, put the document copyright or source on the left side, and the 
page number on the right side, by default. 

− Use friendly file path and URLs. Display spaces as spaces, not “%20.” 

3.65.5 Print Commands 
• For menu bars and shortcut menus, use the Print command that displays the Print 

options common dialog. Use an ellipsis to indicate that additional information is 
required.  

• For toolbars used with a menu bar, use an immediate Print command. Clicking the 
button prints a single copy of the document to the default printer. Such toolbar 
commands should be immediate. To indicate that the command is immediate, put 
the default printer in the tooltip. Users can access the full Print command from the 
menu bar.  

− For toolbars used without a menu bar, use a Print split button. Clicking 
the button prints a single copy of the document to the default printer. Clicking 
the arrow portion of the button drops down a menu with full Print, Print 
preview, and Page setup commands.  

• For the ribbon command user interface, put the Print command in the application 
menu.  
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3.65.6 Print Options 
• Don’t create a custom Print options dialog box. If you must provide additional 

options, extend the Print options common dialog. Don’t use a separate dialog for 
additional print options.  

• When extending the Print options common dialog, don’t duplicate any 
features already provided. 

• If users are likely to maintain settings from one print job to the next, make 
those settings the defaults. For the first print job after program launch, use the 
standard default values, including the default printer. For subsequent print jobs in 
the program instance, preserve the last selected printer and paper size. Don’t 
preserve the number of copies or page ranges, because these are far less likely to 
be reselected later.  

• Optimize the settings by removing options that currently don’t apply. 
Remove options that are inconsistent with the capabilities of the selected printer 
or characteristics of the current document. For example, a photo printing 
application could limit the combinations of paper size, paper type, and print 
quality that give the best results, so choosing a glossy paper option might remove 
envelopes from the paper formats. If for any reason users want to see all the 
options, you can provide this ability through a control such as a check box.  

• For advanced document creation programs, save the document-related print 
options within the document itself. For these programs, the print options are an 
integral part of the document. 

• For other types of programs, save settings on a per-user basis. 

• Consider selecting a non-default printer for specialized printing. For example, 
a photo printing application could always select the printer last used by the 
program, regardless of the system default printer. Doing so assumes that the 
system default printer isn’t likely to be a photo printer. Such programs should 
save the setting for the last selected printer. 

• Don’t lock up your program while detecting printer capabilities. Doing so 
presents a poor user experience. Instead, either:  

− Perform the printer capability detection in a separate thread. 
− Time out after 10 seconds. 
− Provide a dialog box to allow users to cancel.  

3.65.7 Print Previews 
• Provide a print preview feature whenever appropriate. All document creation 

programs benefit from print previews, but users don’t expect them in simple 
document creation programs. For advanced document creation programs, consider 
having print preview support directly within the main program window.  
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− Provide print preview features that allow users to: Evaluate margins, page 
breaks, page orientation, headers, and footers. 

− Browse through all the pages. 
− Print directly from the print preview. 
− Consider providing an interactive print preview so that users can adjust 

frequently changed settings like margins and line breaks directly within the 
preview. 

− Have print preview pages render within one second. It’s better to have a 
print preview that renders quickly and is accurate enough to allow users to 
evaluate the print results than to have a completely accurate preview that 
renders slowly. 

− For advanced document creation programs, consider extending the 
standard Print dialog box by incorporating preview functionality directly 
within it, rather than creating a separate dialog for it. 

− Provide an obvious button for closing preview mode.  

3.65.8 Printing Errors 
Note: Once the print job has been spooled to the printer, 

Windows is responsible for any subsequent errors. Your 
program only has to handle errors that happen before the 
print job is spooled. 

Before spooling a print job, check for any potential printing problems the user 
can fix. Present a clear, concise confirmation before continuing to print. Whenever 
possible, offer to fix the problem automatically. Doing so can prevent a waste of time 
and money. 

3.65.9 Text 
For the option to print on both sides of the paper, label the option Print double-sided. 
Don’t use the phrase “Manual Duplex.” 

3.66 Windows Environment (Page 734) 

3.66.1 Desktop 

3.66.1.1 Guidelines 
• If your users are very likely to use your program frequently, provide an option 

during setup to put a program shortcut on the desktop. Most programs won’t be 
used frequently enough to warrant offering this option. 
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• Present the option unselected by default. Requiring users to select the option is 
important because once undesired icons are on the desktop, many users are 
reluctant to remove them. This can lead to unnecessary desktop clutter. 

• If users select the option, provide only a single program shortcut. If your product 
consists of multiple programs, provide a shortcut only to the main program. 

• Put only program shortcuts on the desktop. Don’t put the actual program or other 
types of files.  

3.67 Start Menu (Page 738) 

3.67.1 Program Names 
There are many factors in choosing a program name, most significantly your 
program’s image, recognition, and branding. The following Start menu guidelines 
affect your program’s discoverability, which is especially important for programs that 
are not well known or that are used infrequently. Programs that are well known or 
used frequently have much more latitude in naming. 

• Choose program names that are easy to browse: Use self-explanatory names so 
that users can understand the primary purpose of your program by its name alone. 

• Use program names that alphabetize well. Start names with an alphabetic 
character, not a space, number, or symbol. 

• Avoid putting a version number in a program name unless that is how users 
normally refer to your program. 

• Choose program names that are easy to search: Use either unique names that are 
easy to remember, or names that include words for which target users are likely to 
search. 

• Prefer individual words over compound words. 

• Avoid names that are easy to misspell or are misspellings. 

• Avoid names with jargon and made-up words. 

• Use title-style capitalization. 

3.67.2 Start Menu Files 
• Put only program shortcuts on the Start menu. Don’t put shortcuts to the 

following items on the Start menu:  

− Program uninstallers. Users access uninstallers through the Programs 
control panel item. 

− Help files. Users access Help topics directly from your program. 
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− Control panel items. Users access control panel items from the Control Panel 
home page. 

− Program options. Users access program options from the Options command. 
− Utility programs. Users access utilities from commands in the Tools menu. 
− Readme files. Reconsider the need for such files, because most users never 

look at them. If you do need a Readme file, let users access it from your setup 
program. 

− Web sites. Users access Web sites through appropriate links in your program, 
or Help for technical support sites. 

• Use only a single shortcut per program on the Start menu. Don’t put shortcuts 
in different locations, such as in the top level and in the Accessories folder. Don’t 
put shortcuts to access specific tasks within the program.  

• Label the program shortcut using the program’s name. Don’t use other labels 
or include additional information in the label, such as trademark symbols. Don’t 
include the company name unless users associate the company name with the 
product. Avoid putting the version number in a program shortcut unless that is 
how users normally refer to your program.  

• During setup, don’t provide an option to put the program shortcut in the 
Start menu. Do this automatically. 

• During setup, don’t provide an option to pin the program shortcut at the top 
of the Start menu. Let users choose to do this manually. Programs can no longer 
pin themselves in Windows Vista® and later. 

• Use title-style capitalization. 

3.67.3 Start Menu Folders 
• Locate program shortcuts in the top level of All Programs. The improved 

scalability of the Start menu in Windows 7 and Windows Vista makes programs 
easier to find at the top level. Exceptions: Use Control Panel to access control 
panel items. They don’t have shortcuts in All Programs. Also use Control Panel to 
access troubleshooting programs. 

• Use the Accessories folder if target users think of your program as an accessory, 
and it isn’t part of the core user experience. For example, Windows Media Player 
is a core user experience (and therefore in All Programs), whereas Sound 
Recorder is not a core user experience (so it is in Accessories). 

• Use the System Tools folder only if your program is a system maintenance utility. 
System maintenance utilities may appear in both System Tools and Control Panel. 

• Use the Administrative Tools folder for programs for IT professionals. 

• Don’t use the Maintenance folder. It is reserved in Windows Vista for Backup 
and Restore Center, Help and Support, Problem Reports and Solutions, and 
Windows Remote Assistance. 
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• Create a product folder only if your product is a collection of individual 
programs (three or more), and users think of your product in terms of that 
collection.  

• Use only a single-level product folder. Exception: Use a secondary folder only 
if the product is a collection of several programs (six or more), and two or more 
of these programs are considered secondary utilities.  

• Choose descriptive, yet concise folder names: Use three words or fewer.  

− Don’t include trademark symbols. Avoid putting a version number in a folder 
unless that is how users normally refer to your product. Put the version 
number in the Start menu infotip instead.  

− Use title-style capitalization. 
 Don’t use the term “folder” in folder names. 

3.67.4 Start Menu Infotips 
• Use Start menu infotips to describe the item concisely and list the primary tasks 

that users can perform with the item. 

• Be helpful. Focus on what users can do. Don’t just repeat the item name or even 
use it in the description at all. 

• Be specific. Avoid generic verbs and catch-all phrases like “and other tasks” and 
“and other kinds of documents”. If the information is important, list it 
specifically; otherwise, assume that users understand that not everything is listed 
in the infotips. 

• Be concise. Use 25 words or less. Longer infotips discourage reading. 

• Start with a present-tense, imperative verb such as “create, edit, show,” and 
“send”. Prefer specific verbs over generic verbs such as “manage” and “open.”  

• Get right to the point. Don’t use verbs that apply to any Start menu item, such as 
“start, lets you, use to,” and “provides”. 

• Don’t use language that sounds like marketing.  

• Use sentence-style capitalization. 

3.68 Taskbar (Page 744) 

3.68.1 Guidelines 

3.68.1.1 Taskbar Buttons 
• Make the following window types appear on the taskbar (for Windows 7, by using 

a taskbar button thumbnail):  
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− Primary windows (which includes dialog boxes without owners) 
− Property sheets 
− Modeless progress dialog boxes 
− Wizards 

• For Windows 7, use taskbar button thumbnails to group the following window 
types with the primary window taskbar button it was launched from. Each 
program (specifically, each program perceived as a separate program) should 
have a single taskbar button.  

− Secondary windows 
− Workspace tabs 
− Project windows 
− MDI child windows 

• Restoring a primary window should also restore all its secondary windows, 
even if those secondary windows have their own taskbar buttons. When restoring, 
place secondary windows on top of the primary window. 

• For Windows 7, programs that normally have desktop presence may 
temporarily display a taskbar button to show status. Do so only if your 
program is normally displayed on the desktop and users frequently interact with 
it. A program that normally runs without desktop presence should use its 
notification area icon instead, even though it might not always be visible.  

3.68.2 Icons 
• Design your program icon to look great on the taskbar. Ensure it is 

meaningful, and reflects its function and your brand. Make it distinct, make it 
special, and ensure it renders well in all icon sizes. Spend the time necessary to 
get it right. Follow the Aero-style icon guidelines. 

• If your program uses overlay icons, design your program’s base icon to 
handle overlays well. Overlay icons are displayed in the lower right corner, so 
design the icon so that area can be obscured.  

• Don’t use overlays in your program’s base icon, whether your program uses 
overlay icons or not. Using an overlay in the base icon will be confusing because 
users will have to figure out that it’s not communicating status.  

3.68.3 Overlay Icons 
• Use overlay icons to indicate useful and relevant status only. Consider the 

display of an overlay icon to be a potential interruption of the user’s work, so the 
status change must be important enough to merit a potential interruption.  

• Use overlay icons for temporary status. The overlay icons lose their value if 
displayed constantly, so normal program status should not show an icon. Remove 
the overlay icon when the icon:  
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− Is for a problem: Remove the icon once the problem has been resolved. 
− Alerts that something is new: Remove the icon once the user has activated 

the program. 
• Don’t display an icon to indicate that a problem has been solved. Instead, 

simply remove any previous icon indicating a problem. Assume that users 
normally expect your program to run without problems. 

• Display either overlay icons or notification area icons, but never both. Your 
program may support both mechanisms for backward compatibility, but if your 
program displays status using overlay icons, it shouldn’t also use notification area 
icons for status.  

• Don’t flash the taskbar button to draw attention to a status change. Doing so 
would be too distracting. Let users discover overlay icons on their own. 

• Prefer standard overlay icons to indicate status or status changes. Use these 
standard overlay icons:  

 
Figure 3-90: Standard overlay icons 

• For custom overlay icons, choose an easily recognizable design. Use high-
quality 16 × 16 pixel, full color icons. Prefer icons with distinctive outlines over 
square or rectangular shaped icons. Apply the other Aero-style icon guidelines as 
well. 

• Keep the design of custom overlay icons simple. Don’t try to communicate 
complex, unfamiliar, or abstract ideas. If you can’t think of a suitable custom 
icon, use a standard icon error or warning icon instead when appropriate. These 
icons can be used effectively to communicate many types of status. 

− Don’t change status too frequently. Overlay icons shouldn’t appear noisy, 
unstable, or demand attention. The eye is sensitive to changes in the peripheral 
field of vision, so status changes need to be subtle.  
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− Don’t change the icon rapidly. If underlying status is changing rapidly, have 
the icon reflect high-level status.  

− Don’t use animations. Doing so is too distracting. 
− Don’t flash the icon. Doing so is too distracting. If an event requires 

immediate attention, use a dialog box instead. If the event otherwise needs 
attention, use a notification. 

3.68.4 Taskbar Button Flashing 
Use taskbar button flashing sparingly to demand the user’s immediate attention 
to keep an ongoing task running. It’s hard for users to concentrate while a taskbar 
button is flashing, so assume that they will interrupt what they are doing to make it 
stop. While flashing a taskbar button is better than stealing input focus, flashing 
taskbar buttons are still very intrusive. Make sure the interruption is justified, such as 
to indicate that the user needs to save data before closing a window. Inactive 
programs should rarely require immediate action. Don’t flash the taskbar button if the 
only thing the user has to do is activate the program, read a message, or see a change 
in status. If immediate action isn’t required, consider these alternatives:  

• Use an action success notification to indicate that a task has completed. 

• Do nothing. Just wait for users to attend to the issue the next time they activate 
the program. This is often the best choice. 

• If an inactive program requires immediate attention, flash its taskbar button 
to draw attention and leave it highlighted. Don’t do anything else: don’t restore 
or activate the window and don’t play any sound effects. Instead, respect the 
user’s window state selection and let the user activate the window when ready. 

• For secondary windows that have a taskbar button, flash its button instead of 
the primary window’s taskbar button. Doing so allows users to attend to the 
window directly. 

• For secondary windows that don’t have a taskbar button, flash the primary 
window’s taskbar button and bring the secondary window on top of all the 
other windows for that program. Secondary windows that require attention 
must be topmost to ensure that users see them. 

• Flash only one taskbar button for one window at a time. Flashing more than 
one button is unnecessary and too distracting. 

• Remove the taskbar button highlight once the program becomes active. 

• When the program becomes active, make sure there is something obvious to 
do. Typically, this objective is accomplished by displaying a dialog box that asks 
a question or initiates an action. 
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3.68.5 Quick Launch Shortcuts 
Put program shortcuts in the Quick Launch area only if users opt in. Because Quick 
Launch was removed from Windows 7, programs designed for Windows 7 shouldn’t 
add program shortcuts to the Quick Launch area or provide options to do so. 

3.69 Jump Lists (Page 753) 

3.69.1 Design 
Design Jump Lists to satisfy your users’ goals for their everyday tasks. Consider: 
Your program’s purpose. Think about what users are most likely to do next. For 
document creation programs, users are likely to return to recently used documents. 
For programs that show existing content, users may want access to resources they use 
frequently. For other programs, users might be likely to do tasks they haven’t done 
before, such as read new messages, watch new videos, or check their next meeting. 

What users care about most. Think about why users would use the Jump List 
instead of other means. For example, users are more likely to care about destinations 
they explicitly identified as important (such as Web addresses users placed on their 
links bar or in Favorites, or typed in). They are less likely to care about those obtained 
indirectly or with little effort (such as Web addresses visited through redirection or by 
clicking links).  

• Don’t make destinations too granular. Making destinations too narrow and 
specific can result in redundancy, with several ways to go to the same place. For 
example, instead of listing individual Web pages, list top-level home pages 
instead; instead of listing songs, list albums.  

• Don’t fill all the available Jump List slots if you don’t need to. Focus Jump 
List content on the most useful items—if your program has only three useful 
items, provide only three. The more items in a Jump List, the more effort required 
to find any specific item.  

• Provide tooltips only when needed to help users understand Jump List items. 
Avoid redundant tooltips because they are an unnecessary distraction.  

3.69.2 Jump List Features vs. Program Features 
• Don’t make destinations and commands available only through Jump Lists. 

The same destinations and commands should be available directly from the 
program itself. 

• Use consistent names for destinations and labels for commands. Jump List 
items should be labeled the same as the equivalent items accessed directly from 
the program. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
282 

• Enable your program to handle destinations and commands even when the 
program isn’t running. Doing so is necessary for a consistent, dependable, and 
convenient experience.  

3.69.3 Grouping 
• Provide at least one and at most three groups. Jump List items are always 

grouped to label their purpose. Having more than three groups makes items harder 
to find. 

• Use the following standard group names when appropriate. Standard group 
names are easier for users to understand.  

• Recent Frequent Commands are given the Tasks group name, which is assigned 
by Windows and therefore can’t be changed. 

3.69.4 Commands 
Provide a fixed set of commands regardless of program running state, current 
document, or current user. The commands should apply to the entire program, not 
to a specific window or document. Doing so is necessary for a consistent, dependable, 
and convenient experience. Commands shouldn’t be removed or disabled. 
Exceptions: You may substitute or remove commands when:  

• A set of mutually exclusive commands share a single command slot, as long as 
one command always applies. 

• Commands don’t apply until specific features have been used, as long as the 
commands otherwise always apply. 

− Use the following standard command labels when appropriate. Standard 
command labels are easier for users to understand.  

− Sign in/Sign out New <object name> Play <object name> Go to <specific 
object name> Start Sync Present the commands in a logical order. Common 
orders include by frequency of use or order of use. Place highly related 
commands next to each other. Within the Tasks group, put separators between 
groups of related commands as needed. 

− Don’t provide commands for opening or closing the program. These 
commands are built into all Jump Lists. 

3.69.5 Command Icons 
Within the Tasks group, provide a command icon only when it helps users 
understand, recognize, or differentiate commands, especially when there is an 
established icon for the command used within the program. Exception: If your 
program uses both destinations (which always have icons) and commands, consider 
providing icons for all commands if not doing so would look awkward.  
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3.69.6 Destinations 
• Provide a dynamic set of destinations that are specific to the current user, but 

independent of the program running state or current document. As mentioned 
previously, make sure they fit your program’s purpose, are what users care about 
the most, and have the right level of specificity. 

− When suitable, use an “automatic” destination list. Automatic destinations 
are managed by Windows, but your program controls the specific destinations 
that are passed on. Consider using Recent for document creation programs 
where users are likely to return to recently used destinations.  

• Consider using Frequent for programs that show existing content, where users are 
likely to return to items that they use often. Frequent destinations are sorted in 
order of frequency, most frequent first.  

• Use Frequent if Recent would result in many useless destinations. Frequent lists 
are more stable, and the better choice when users go to many different 
destinations, but aren’t likely to return to rarely used ones.  

• If Recent or Frequent are equally suitable choices, use Recent because that 
approach is easier for users to understand and is more predictable. 

− If using Recent, and the program has an equivalent in the File menu, make the 
lists have the same contents in the same order. To users, these should appear 
to be the same lists.  

− When necessary, use a custom destination list. Your program has complete 
control over a custom destination list’s contents and sort order, and therefore 
can base the list on any factors. Create custom versions of Recent or Frequent 
if those are suitable, but the automatic management doesn’t work well for 
your program. For example, your program may need to track a variety of 
factors beyond open file commands. In this case, use the same name (Recent 
or Frequent) and sort order because users won’t be aware of the difference.  

− Otherwise, use a different type of destination to better satisfy your user’s 
goals. Often, these lists help users perform tasks that they haven’t done 
before, such as read new messages, watch new videos, or check their next 
meeting.  

− Choose a sort order that corresponds to the user’s mental model of the list. For 
example, a to-do style list would have the next thing to do listed first. If there 
is no clear mental model, sort the destination list in alphabetical order. 

− Don’t use multiple destination lists that give different views of the same 
data. Rather, multiple destination lists should have mostly different data to 
support difference scenarios. For example, you can provide a Recent list or a 
Frequent list, but not both. Doing so is wasteful if overlapping items are 
present, but confusing if overlapping items are removed.  

• If your program has a command to clear data for privacy, clear the Destinations 
lists as well. Destination lists may contain sensitive data. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
284 

3.69.7 Thumbnail Toolbars 

3.69.7.1 Interaction 
• Provide up to seven of the most important, frequently used commands that apply 

to the window shown in the thumbnail. Don’t feel obligated to provide as many 
commands as you can—if your program has only three important, frequently used 
commands, provide only three.  

• Use commands that are direct and immediate. These commands should have an 
immediate effect—clicking the command should not display a drop-down menu 
or dialog box for more input.  

• Disable commands that don’t apply to the current context, or that would directly 
result in an error. Don’t hide such commands because doing so makes the toolbar 
presentation unstable. 

• Don’t dismiss the thumbnail when users click a command if they are likely to 
review the results or immediately click another command. Remove the thumbnail 
for commands that indicate that the user is finished for now, such as with 
commands that display other windows.  

3.69.7.2 Presentation 
• Make sure thumbnail toolbar icons conform to the Aero-style icon guidelines. 

For each command, provide high-quality 16 × 16, 20 × 20, and 24 × 24 pixel, full 
color icons. The larger versions are used in high-dpi display modes.  

• Make sure the icons are clearly visible against the toolbar background color 
in both normal and hover states. Always evaluate icons in context and in the 
high-contrast modes. 

• Choose command icon designs that clearly communicate their effect. Well-
designed command icons are self-explanatory to help users find and understand 
commands efficiently. 

• Choose icons that are recognizable and distinguishable. Make sure the icons 
have distinctive shapes and colors. Doing so helps users find the commands 
quickly, even if they don’t remember the icon symbol. After initial use, users 
shouldn’t have to rely on tooltips to distinguish between the commands.  

• Provide a tooltip to label each command. A good tooltip labels the unlabeled 
control being pointed to. For guidelines and examples, see Tooltips and Infotips. 

3.69.8 Progress Bars 
• Follow the general progress bar guidelines, including not restarting or backing 

up progress, and using a red progress bar to indicate a problem. 
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• Avoid using indeterminate progress bars. Indeterminate progress bars show 
activity, not progress. Reserve indeterminate progress bars for those rare 
situations where users don’t take activity for granted. 

3.69.9 Deskbands 
Note: Deskbands are no longer recommended for Windows 7. 

Use a taskbar button with a thumbnail toolbar instead. Your 
program may support both mechanisms for backward 
compatibility. 

• Display deskbands only if users opt in. Offer to show deskbands in your 
program’s setup and properties, but the option must be turned off by default. 

• Keep deskbands compact and simple. Don’t include any features directly on 
deskband windows that aren’t accessed by most users in most scenarios. 
However, you can use menus to access less commonly used features. 

• Don’t display programs in the taskbar that minimize to deskbands. Minimize 
to a taskbar button or a deskband, but not both. 

• Make sure that deskbands use screen space efficiently in both horizontal and 
vertical orientations. Doing so usually requires having orientation-specific 
layouts.  

3.69.10 Text 

3.69.10.1 Window Titles 
When choosing window titles, consider the title’s appearance on the taskbar: 

• Optimize titles for display on the taskbar by concisely placing the distinguishing 
information first. 

• For modeless progress dialog boxes, first summarize the progress. Example: 
“66% Complete.”  

• Avoid window titles that have awkward truncations.  

3.69.11 Jump List Commands 
• Start commands with a verb. 

• Use sentence-style capitalization. 
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3.70 Notification Area (Page 766) 

3.70.1 Guidelines 

3.70.1.1 General 
• Provide only one notification area icon per component. 

• Use an icon with 16 × 16, 20 × 20, and 24 × 24 pixel versions. The larger versions 
are used in high-dpi display modes. 

When to show 

• For the temporary notification source pattern: Windows displays the icon when 
the notification is displayed. 

• Remove the icon based on its notification design pattern:  

 
Figure 3-91: Guidelines 

• For the temporary event status pattern, display the icon while the event is 
happening. 

• For all other patterns, display the icon when the program, feature, or process is 
running and the icon is relevant unless the user has cleared its Display icon in 
notification area option (for more information, see Context menus). Most icons 
are hidden by default in Windows 7, but can be promoted to the notification area 
by the user.  

• Don’t display icons meant for administrators to standard users. Record the 
information in the Windows event log. 
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3.70.2 Where To Show 
• Display windows launched from notification area icons near the notification area.  

 
Figure 3-92: Icons 

• Choose an easily recognizable icon design. Prefer icons with unique outlines 
over square or rectangular shaped icons. Keep the designs simple—prefer 
symbols over realistic images. Apply the other Aero-style icon guidelines as 
well. 

• Use icon variations or overlays to indicate status or status changes. Use icon 
variations to show changes in quantities or strengths. For other types of status, use 
the following standard overlays. Use only a single overlay, and locate it bottom-
right for consistency.  

• Avoid swaths of pure red, yellow, and green in your base icons. To avoid 
confusion, reserve these colors to communicate status. If your branding uses 
these colors, consider using muted tones for your base notification area icons. 

• For progressive escalation, use icons with a progressively more emphatic 
appearance as the situation becomes more urgent.  

− Don’t change status too frequently. Notification area icons shouldn’t appear 
noisy, unstable, or demand attention. The eye is sensitive to changes in the 
peripheral field of vision, so status changes need to be subtle.  

− Don’t change the icon rapidly. If underlying status is changing rapidly, have 
the icon reflect high-level status.  

− Don’t use long-running animations to show continuous activities. Such 
animations are a distraction. An icon’s presence in the notification area 
sufficiently indicates continuous activity. 
• Brief, subtle animations are acceptable to show progress during important 

temporary, transitive status changes.  

− Don’t flash the icon. Doing so is too distracting. If an event requires 
immediate attention, use a dialog box instead. If the event otherwise needs 
attention, use a notification. 
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− Don’t disable notification area icons. If the icon doesn’t currently apply, 
remove it. However, you can show an enabled icon with a disabled status 
overlay if users can enable from the icon.  

Note: The following click events should occur on mouse up, not 
mouse down. 

3.70.3 Hover 
Display a tooltip or infotip that indicates what the icon represents.  

3.70.4 Left Single-Click 
Display whatever users most likely want to see, which may be:  

• A flyout window, dialog box, or program window with the most useful settings 
and commonly performed tasks.  

• A status flyout.  

• The related control panel item. 

• The context menu. 
Users expect left single-clicks to display something, so not displaying anything makes 
a notification area icon appear unresponsive.  

• Display a context menu only if the other choices don’t apply, with the default 
command in bold. In this case, display the same context menu that is shown on 
right-click to avoid confusion. 

• Prefer using a popup window over a dialog box for a more lightweight feel. 
Show only the most common settings and have them take immediate effect for a 
simpler interaction. Dismiss the popup window if the user clicks anywhere 
outside the window. 

• Display small windows near the associated icon. However, large windows such 
as control panel items can be displayed in the center of the default monitor. 

3.70.5 Left Double-Click 
• Perform the default command on the context menu. Typically, this displays 

the primary UI associated with the icon, such as the associated control panel item, 
property sheet, or program window. 

• If there is no default command, perform the same action as a left single-click. 

3.70.6 Right-Click 
Display the context menu, with the default command in bold. 
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3.70.7 Context Menus 
• Display the context menu near its associated icon, but away from the taskbar. 

• The context menu may include the following items, as appropriate, in the listed 
order (exact text is in quotes):  

 
Figure 3-93: Primary commands 

• Remove rather than disable any context menu items that don’t apply. 

• For Open, Run, and Suspend/Resume commands, be specific about what is being 
opened, run, suspended, and resumed.  

• Use Suspend/Resume running background tasks, Enable/Disable for everything 
else. 

• Use check marks to indicate state. List and enable all states and place the check 
mark next to the current state. Don’t disable options or change option labels to 
indicate the current state.  

• All background tasks must have a Suspend/Resume command. Choosing the 
command should temporarily suspend the task. Users may want to temporarily 
suspend background tasks to increase system performance or reduce power 
consumption. Suspended background tasks are restarted when resumed by the 
user or when Windows is restarted. 

• Allow users to opt into or out of different notification types if your program has 
notifications that some users might not want to see. The FYI notification pattern 
requires users to opt in, so these notifications must be disabled by default.  

• Clearing the “Display icon in notification area” option removes the icon from the 
notification area, but doesn’t affect the underlying program, feature, or process. 
Users can redisplay the icon from the program’s Options dialog box. Don’t 
automatically re-display the icon when Windows is restarted. 

• The Exit command quits the program for the current Windows session and 
removes the icon. Don’t have an Exit command if program can’t be shut down. 
The program is restarted when Windows is restarted. Users can permanently quit 
the program from the Options dialog box. 
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− Don’t have an About command. Such information should be communicated 
by the icon, its infotip, and the context menu. If users want more information, 
they can view the primary UI. Exception: You may provide an About 
command if the icon is for a program that doesn’t have desktop presence. 

3.70.8 Rich Tooltips 
• Use rich tooltips only to make the information easier to understand. Don’t 

use rich tooltips just to decorate the feature. If you can’t use richness to make the 
information easier to understand, use a plain tooltip instead.  

• Use a concise presentation. Use concise text and a concise layout with a 32 × 32 
pixel icon. Spacious tooltips risk being distracting, especially when displayed 
unintentionally. 

• Don’t put controls or elements that appear interactive in a rich tooltip. 
Tooltips aren’t interactive and therefore shouldn’t appear interactive. Don’t use 
blue or underlined text.  

3.70.9 Notification Area Flyouts 
When appropriate, present notification area flyouts with three sections:  

• Summary. Display the same information that is displayed in the icon’s tooltip or 
infotip, possibly with more detail. For consistency, use the same text and icons, 
and generally the same layout (if using a rich tooltip). Unlike the infotips, this 
information is accessible when using touch. 

• Common tasks. Present the most commonly performed tasks directly in the 
flyout. 

• Related links. Provide at most one of each type of the following optional links:  

− A link to the most frequently performed task in Control Panel. Provide if there 
is a frequently performed task that can’t be presented in the common tasks 
section. 

−  A link to the related Control Panel item. This Control Panel item should 
allow users to perform any tasks that can’t be performed in the common tasks 
section. 

−  A link to a specific, relevant Help topic.  

3.70.10 Options Dialog Box 
• Options not accessible directly from the context menu must be in the Options 

dialog box. This dialog could be the feature’s control panel. 

• The Options dialog box may include the following items as appropriate (exact 
text is in quotes):  
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− Enable [feature name] (check box) Clearing this option permanently quits the 
program. Program can be restarted from its control panel item. The Exit 
command in the context menu quits the program only for the current Windows 
session. 

− “Display icon in notification area” (check box) Removing the icon from the 
notification area doesn’t affect the underlying feature. 
Selecting this option allows user to restore the icon, which of course can’t be 
done from the icon itself. 

− Disable features that are rarely used, or potentially annoying or distracting. 
Let users opt in to such features. 

3.70.11 Minimizing Programs To The Notification Area 
Note: Minimizing program windows to the notification area is no 

longer recommended for Windows 7. Use regular taskbar 
buttons instead. Your program may support both 
mechanisms for backward compatibility. 

• To reduce taskbar clutter, consider providing the ability to minimize programs to 
the notification area only if all of the following apply:  

− The program can have only a single instance. 
− The program is run for an extended period of time. 
− The icon shows status. 
− The icon can be a notification source. 
− Doing so is optional and users must opt in. 

Use the Minimize button on the application’s title bar, not the Close button. 

3.70.12 Text 

3.70.12.1 Infotips 
• The icon infotip should have one of the following formats (where the company 

name is optional):  

− (Company name) Feature, program, or device name  
− (Company name) Feature, program, or device name - Status summary  
− (Company name) Feature, program, or device name status statement.  
− (Company name) Feature, program, or device name Status list with each item on a 

separate line  
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3.70.12.2 Infotip Phrasing 
• Focus on the most useful information. Display other information on left single-

click. 

• Be concise. Use sentence fragments or simple statements. 

• Don’t use ending punctuation unless tip is phrased as a complete sentence. 

• Omit unnecessary words. Don’t include the software version or other extraneous 
information.  

• Don’t explain how to interact with the icon.  

3.71 Windows Desktop Gadgets (Page 784) 

3.71.1 Guidelines 

3.71.1.1 Controls 
• Have controls appear on hover. In the default state, show only what’s 

necessary. Most controls can be hidden until users hover the pointer over the 
gadget. This way you can draw attention to the most important parts of the gadget 
for both states.  

• Use tooltips to display all control labels because there isn’t enough space for 
labels.  

• Use controls that behave like common controls, but are themed 
appropriately for your gadget. Choose colors that match the visuals of your 
gadget. Due to size constraints, you may need to make controls smaller than the 
standard common control sizes.  

• Use standard glyphs for commands. If a command isn’t represented by a 
standard glyph, create an appropriate glyph that has a consistent style. You may 
need to adjust the color and brightness of the glyphs depending on the gadget 
surface. All glyphs should have a rest, hover, and down state. They should 
commit on mouse up so that users can change their mind.  

• Avoid using scrollbars by default. Instead, make default content fit comfortably 
within the gadget. For user customized content:  

− If necessary, use vertical scrollbars. 
− Consider using pagination if space is at a premium and it’s not important for 

users to have complete control over content position.  
− Consider truncating content if doing so still provides useful information, such 

as the first few lines of an e-mail message. Show the complete content in a 
flyout or link to the associated application. 

• Use Segoe UI, the Windows system font, for gadget text. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
293 

3.71.1.2 States 
• Expose core functionality in the concise/docked state. Design gadgets 

assuming that they are always run in the concise/docked state. Consider the target 
audience, key scenarios, space constraints, and simplicity when determining core 
functionality. 

• Use the detailed/floating state to provide extra functionality, but don’t do so 
gratuitously. Link to your application or Web site for complex tasks that require 
full attention or are more time intensive, instead of trying to embed them in your 
gadget. If there is no need to add extra functionality, make the concise/docked and 
detailed/floating states the same.  

• Use the same drop shadow for both states to ensure that they align properly 
when placed along the screen edge. 

• Use flyouts to display secondary information and functionality transiently. If 
the information and functionality always needs to be available, put it directly on 
the gadget—don’t put it in a flyout. Also, don’t use flyouts for options; use an 
options dialog box instead. The following table compares the appropriate 
functionality for concise/docked gadgets, detailed/floating gadgets, flyouts, and 
full applications: 

 
Figure 3-94: State and appropriate functionality 

• Use similar appearance and interaction for the concise/docked and 
detailed/floating states. Users may be confused if the concise/docked and 
detailed/floating gadgets look and behave very differently. While the space 
constraints for the concise/docked state may require a more compact layout, try to 
keep the interactive components in roughly the same place. In both states, the 
same actions should have the same results. 

• On installation, consider having the gadget perform an action that 
demonstrates its purpose. Doing so will make the gadget feel alive and self-
explanatory. For example, a calendar gadget could turn the pages to today’s date. 

• Avoid initial gadget configuration. Choose the most likely or convenient default 
options. Requiring an initial configuration will make a gadget feel too heavy. 

− Provide feedback for the loading and offline states. Let users know that 
your gadget is offline or loading. For the loading state, use an activity 
indicator with text that explains what is loading, such as “Getting data...”. 
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− For the offline state, use a 16 × 16 pixel information icon with “Service not 
available” or other appropriate text. If necessary, make the gadget 
recognizable by showing faded placeholder content or cached data. Gadgets 
should activate automatically when a connection becomes available. While 
gadgets may reflect loss of connectivity, they don’t have to draw attention to it 
because users are likely to discover connectivity loss through traditional 
means, such as the network notification area icon or their Web browser. 

• Maintain state across sessions. Users expect to find the gadget in the state they 
left it after last using their computer. For example, a partially solved puzzle 
should stay partially solved.  

3.72 Interaction (Page 788) 
• Use the standard Windows pointer behavior. For example, use the hand pointer 

only for links. 

• Don’t automatically change a gadget’s size. Automatic size changes confuse 
and annoy users, because changing one gadget's size causes the other gadgets 
either to move (with the Windows Vista Sidebar), or potentially to overlap or go 
off-screen (with Windows 7). Never change size on hover. When necessary, you 
can change size on click. 

• To the best extent possible, design your gadget to eliminate the need for error 
handling and other types of messages. These messages are contrary to the 
lightweight feel of gadgets. 

• If you must give an error, warning, or informational message, show the 
message in-place or as a different gadget state. Don’t use dialog boxes for these 
messages. Show the message along with the appropriate 16 × 16 pixel standard 
icon for error and warning messages. Use no icon at all for minor user input 
problems.  

• Don’t provide Help for your gadget. Make sure the design is self-explanatory 
instead. 

3.72.1 Animation And Sound 
• Use animation judiciously. Avoid gratuitous and distracting animation. The 

human eye is sensitive to motion, especially peripheral motion. When updating 
information, it is better to do it inconspicuously and wait for users to notice it at 
will. If you use animation to draw attention to something, make sure that attention 
is well deserved and worthy of interrupting the user’s train of thought. A 
transition, such as a cross fade, may make the update feel smoother, but it may 
also attract undue attention. Find the right balance between smoothness and 
impact by testing the gadget and tweaking variables such as animation speed and 
surface area. Animation that is triggered by a specific user action is encouraged. 
When used properly, it can make the gadget feel smooth and polished. 
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• Use sound judiciously. Don’t distract users with sounds. Use sound sparingly 
and only on user interaction.  

3.72.2 Options Dialog Boxes 
• Use an options dialog box only if needed. Some gadgets don’t need options. 

Useful options include personalization and feature customization, such as adding 
and removing content. Consider letting users adjust settings directly on the gadget 
if the options dialog box would duplicate much of the gadget. For example, users 
may expect to reorder items directly in a list by using drag-and-drop. Providing 
this functionality in the options dialog box might duplicate much of the gadget 
while making it harder for users to visualize the end result. 

• Don’t provide options in flyouts. 

• Provide access to the options dialog box through the Options button on the 
gadget. 

• Make the options dialog box look like property windows, but without tabs. 
Keep the options limited to a single page without a scroll bar. Follow the general 
layout guidelines for control placement in the dialog box. 

3.72.3 Windows Integration 
For Windows 7 programs that install gadgets:  

• Provide an option during program setup to install the gadget. 

• Present the option unselected by default. 

• If users select the option, install only a single gadget. 

• If the gadget is useful only after the program has been run by the user, install the 
gadget after first run instead of at setup. For example, a gadget that shows the 
most recent mail isn’t relevant until users set up their mail account. 

• Consider extending your gadget to Windows SideShow. 

3.72.4 Recommended Sizing And Spacing 
• Gadgets in the concise/docked state are 130 pixels wide. Include 5 pixels of 

drop shadow, 2 pixels on the left side and 3 on the right. 

• Gadgets in the concise/docked state should have a minimum height of 84 
pixels and have a recommended maximum height of 200 pixels. A gadget that 
uses space efficiently is more likely to be used. 

• Gadgets in the detailed/floating state should be no larger than 400 × 400 
pixels.  
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• Options dialog boxes have a client area of 278 pixels wide and are no more 
than 400 pixels high. The height should be adjusted to accommodate its controls 
without exceeding 400 pixels. 

• Options dialog box text is Segoe UI 12 pixels, with a line spacing of 14 pixels 
at 96 dpi.  

3.73 Control Panels (Page 792) 

3.73.1 Guidelines 

3.73.1.1 Property Sheet Control Panel Items 
Don’t use property sheets for new control panel items. Instead, use task flows to 
create a seamless experience and make full use of the categorization and search 
functionality of the control panel home page. 

3.73.2 Task Flow Control Panel Items 

3.73.2.1 General 
Keep the most important content and controls visible without scrolling. Users 
won’t scroll to see page content unless they have a reason to. You can make commit 
buttons always visible by placing them in a command area instead of the content 
area. Don’t break up pages just to avoid scrolling. You can vertically scroll long 
pages, as long as the most important controls are visible without scrolling.  

• Don’t use horizontal scrolling. Instead, redesign the page content and use 
vertical scrolling. Pages may have horizontal scrollbars only when made very 
narrow. 

• To navigate between pages: Use task links to start a task. 

• Use task links or a Next button to navigate to the next page in a multi-step task. 

• Use commit buttons to complete a task. 

• Use the Back button in the menu bar to return to previously viewed pages. Do not 
add a Back button to the command area. 

• Use the Address bar to return directly to the control panel home page. 

• Use See also links in the task pane to navigate to pages in other control panel 
items. Otherwise, navigation should stay within a single control panel item. 

• Put only the control panel home page in the Address bar. Clicking that link 
returns to the control panel home page, abandoning any work in progress without 
a confirmation. 
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• Don’t put a Close command button on control panel pages. Users can close a 
control panel window using the Close button on the title bar. 

3.73.2.2 Task Links And Buttons 
• When a page has a small set of fixed options, use task links instead of a 

combination of radio buttons and a Next button. This allows users to select a 
response with a single click. 

• You can put task links and buttons in the following places (in order of 
discoverability):  

− The command area (for command buttons on spoke pages only). 
− The content area:  

• Command buttons 

• Task links 

• Other links 

• Links in the task pane (hub pages only). 

• Base the location of task links and buttons on importance and need for 
discoverability. Put only commit buttons in the command area. 

• Put essential tasks in the content area. Command buttons tend to draw the most 
attention, so reserve them for commands users must see. Task links also draw 
attention, but less than command buttons. 

• Reserve the task pane and plain links for secondary (less important) tasks. 
The task pane is the least discoverable area of a task page, and plain links aren’t 
as visible as command buttons and task links. 

• For task links presented in the content area: If there are more than seven links, 
group the links into categories. Provide headings for each of the groups. 

• For fewer than seven links, present the links in a single group without a 
heading. 

• Present task links and buttons in a logical order. List task links vertically, 
command buttons horizontally. 

• Within categories, divide the commands into related groups. Present the task 
groups by placing the most commonly used first, and within each group, place the 
most commonly used tasks first. The resulting order should roughly follow the 
likelihood of use, but also have a logical flow. Exception: Task links that result 
in doing everything should be placed first. 

• If there are many task links, give the most important tasks a more prominent 
appearance by using a 24 × 24 pixel icon and two lines of text. For less 
important tasks, use a 16 × 16 pixel icon, or no icon, and a single line of link text.  
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• Have clear physical separation between frequently used commands and 
destructive commands. Otherwise, users might click destructive commands 
accidentally. You may need to reorder your commands somewhat to put 
destructive commands together. 

• Provide the mechanism to undo commands directly on the page. Users 
shouldn’t have to navigate somewhere else to undo a mistake. 

• For task links, use either all default task link icons or all custom icons. Don’t mix 
them. Consider using custom icons only if:  

− They aid users in comprehending the tasks. 
− They comply with the Aero icon standards. 

 They have an unobtrusive appearance. 

3.73.3 Dialog Boxes 
When using task flows, you generally want a task to flow from page to page within a 
single window, but the following circumstances are exceptions. 

• Use dialog boxes in the following circumstances:  

− To prompt users for an administrator user name and password. Always use the 
credential manager dialog box for this purpose. (Should be modal.) 

− To confirm an in-place command using a task dialog or message box. (Should 
be modal.) 

− To get input for in-place commands, such as for New, Add, Save As, Rename, 
and Print commands.  

− To perform secondary, stand-alone tasks. Using a modeless, secondary 
window allows such tasks to be performed independently and outside the 
main task flow. 

3.73.4 Hub Pages 

3.73.4.1 General 
• Use task-based hub pages when:  

− There are a small number of commonly used or important tasks. 
− The configuration involves one or two objects (examples: monitors, keyboard, 

mouse, game controllers). 
− The configuration applies system-wide (examples: date and time, security, 

power options). 
• Use object-based hub pages when:  

− The configuration could involve several objects (examples: user accounts, 
network connections, printers). 
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− The configuration applies only to the selected object. 
• Don’t use a hub page if the control panel item has a single page that contains all 

the tasks and properties involved. 

3.73.4.2 Object Lists 
• List items in a logical order. Sort named objects in alphabetical order, numbers 

in numeric order, and dates in chronological order. 

• For object-based hubs, provide object view commands in the task pane if the 
ability to change the view is important to the tasks. The ability to change views 
is important if there are many objects and the default presentation doesn’t work 
well for all scenarios. Users can change the list view even if there aren’t explicit 
commands through the list view context menu, but it’s less discoverable. 

3.73.4.3 Interaction 
Don’t put commit buttons on hub pages. Hub pages are fundamentally launch 
points. Users never “commit” hub pages—they are never done with them. And 
commit buttons on hub pages make any tasks initiated from a hub confusing (users 
will wonder if those tasks need to be committed). Exception: If changing a setting 
requires elevation, provide an Apply button with a security shield icon. Disable the 
commit button once changes have been applied.  

Consider putting the most useful properties directly on hub pages. Such hybrid 
hub pages are strongly recommended when users are most likely to use Control Panel 
to access those properties.  

• Use an immediate commit model for any settings on hybrid hub pages so that 
changes are made immediately. Again, users never commit a hub page. If a setting 
requires a commit button, don’t put it on a hub page. 

• Consider putting simple, “one-step” commands directly on hub pages instead of 
using navigation links. 

• Confirm in-place commands whose effects cannot be easily undone. Use a task 
dialog or message box.  

− For task-based hub pages, identify each task with a task link and an icon. 
You can also provide an optional description for each link. However, try to 
make the task links self-explanatory and provide optional descriptions only to 
links that really need them. 

− For object-based hub pages, single-clicking selects objects, and double-
clicking selects an object and navigates to its default page. The default page is 
typically a property page or a task-based hub page. 

− An object-based hub page may navigate to a task-based hub for the selected 
objects. However, such secondary hubs should be avoided because they make 
a control panel item feel too indirect. 
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3.73.5 Task Panes 
Use task panes to present links to commands, views, and related control panel items. 

• For task panes in task-based hubs, present links in the following order: 
Secondary commands. Present primary tasks only in the content area. Use the 
task pane for secondary, optional tasks. Consider a task primary if users must 
discover it in important scenarios; secondary if it’s acceptable for users not to 
discover it. 

− See also. The optional links that navigate to related control panel items. 
• For task panes in object-based hubs, present links in the following order:  

− Object views. The optional links used to control the presentation of the 
objects. 

− Fixed commands. The commands that are independent of the currently 
selected objects. 

− Contextual commands. The commands that depend on the currently selected 
objects, and are therefore not always displayed. 

− See also. The optional links that navigate to related control panel items. 
− Don’t use task panes in spoke pages. Unlike hub pages, spoke pages should 

be focused on completing the task. You don’t want to encourage users to 
navigate away before completion. 

3.73.6 See Also Links 
• Provide See also links in the task pane to help users find related control panel 

items, or the right control panel item if they have the wrong one. Link to items 
users are likely to associate with your control panel item.  

• Link to a specific task page if that is what users are more likely to recognize. 
Otherwise, link to the entire control panel item. Use the control panel name 
without adding the phrase, “control panel”. 

3.74 Spoke Pages (Page 799) 

3.74.1 General 
• Use task pages for commonly used or important tasks where users need more 

guidance and explanation. 

• Use form pages for features that have many settings and benefit from a direct, 
single-page presentation. The ideal tasks for such pages typically involve obvious 
changes to a few simple properties. 

• Don’t use task panes in spoke pages.  
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3.74.2 Interaction 
• Try to limit main tasks to a single page. If more than one page is required, you 

can: Use intermediate spoke pages for additional or optional steps. 
Intermediate spoke pages are committed by the final spoke page. 

• Use independent windows for independent auxiliary tasks. Independent 
windows are committed on their own, and independently of the main task. 

Doing so keeps the meaning of the commit buttons for the main task clear and 
unambiguous. Users should always be confident in understanding what they are 
committing to. 

• Don’t use See Also links within a task flow. These link to related, but different, 
control panel items. Although navigating to a different item is acceptable in hub 
pages, it is not in spoke pages, because doing so interrupts the task. 

• Don’t use spoke pages for simple input or confirmations. Use modal dialog 
boxes instead. 

3.74.2.1 Interaction (Intermediate Spoke Pages) 
• Use task links or a Next button to navigate to the next page. The way to proceed 

to the next step should always be obvious. 

• You can have navigation links to optional task steps. To avoid confusion when 
users commit to the task, those extra pages should be intermediate pages within 
the same control panel item. They shouldn’t have commit buttons, but should be 
committed when the main task is committed. 

3.74.2.2 Interaction (Final Spoke Pages) 
• Use commit buttons to complete a task. Use a delayed commit model for 

spoke pages, so that changes aren’t made until explicitly committed (if users 
navigate away using Back, Close, or the Address bar, changes are abandoned). 
The commit buttons are a visual clue that the user is about to complete a task. 
Don’t use links for this purpose. 

• Don’t confirm commit buttons (including Cancel). Doing so can be annoying. 
Exceptions:  

− The action has significant consequences and, if incorrect, not readily fixable. 
− The action may result in a significant loss of the user’s time or effort. 
− The action is clearly inconsistent with other actions. 

• Don’t confirm if users abandon changes by navigating away using Back, Close, 
or the Address bar. However, you may confirm if a potentially unintended 
navigation may result in a significant loss of the user’s time or effort. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
302 

• Don’t use command or navigation links (including See also links). On final 
spoke pages, users should explicitly complete or cancel the task. Users should not 
be encouraged to navigate somewhere else, because doing so would likely cancel 
the task implicitly. 

• When users complete or cancel a task, they should be sent back to the hub 
page from which the task was launched. If there is no such page, close the 
control panel window instead. Don’t assume that spoke pages are always 
launched from another page.  

• Remove the stale “committed” pages from the Windows Explorer Back stack 
when you return users back to the page that the task was launched from. Users 
should never see the pages that they have already committed to when clicking the 
Back button. Users should always make additional changes by completely redoing 
the task instead of clicking Back to modify stale pages.  

• Developers: You can remove these stale pages using the 
ITravelLog::FindTravelEntry() and ITravelLogEx::DeleteEntry() APIs. 

3.74.3 Commit Buttons 
Note: Cancel buttons are considered to be commit buttons. 

• Confirm tasks using commit buttons that are specific responses to the main 
instruction, instead of generic labels such as OK. The labels on commit buttons 
should make sense on their own. Avoid using OK because it isn’t a specific 
response to the main instruction, and therefore easier to misunderstand. 
Furthermore, OK is typically used with modal dialog boxes and incorrectly 
implies closing the control panel item window.  

• Exceptions:  

− Use OK for pages that don’t have settings. 
− Use OK when the specific response is still generic, such as Save, Select, or 

Choose, as when changing a specific setting or a collection of settings. 
− Use OK if the page has radio buttons that are responses to the main 

instruction. To maintain the delayed commit model, you can’t use task links 
on a final spoke page.  

• Provide a Cancel button to let users explicitly abandon changes. While users 
can implicitly abandon a task by not confirming their changes, providing a Cancel 
button allows them to do so with greater confidence. Exception: Don’t provide a 
Cancel button for tasks where users can’t make changes. The OK button has the 
same effect as Cancel in this case. 
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• Don’t use Close, Done, or Finish commit buttons. These buttons are typically 
used with modal dialog boxes and incorrectly imply closing the control panel item 
window. Users can close the window using the Close button on the title bar. Also, 
Done and Finish are misleading because users are returned to the page where the 
task was launched from, so they aren’t really done. 

• Don’t disable commit buttons. Otherwise users have to deduce why the commit 
buttons are disabled. It’s better to leave commit buttons enabled, and give a 
helpful error message whenever there is a problem. 

• Make sure the commit buttons appear on the page without scrolling. If the 
page is long, you can make commit buttons always visible by placing them in a 
command area, instead of in the content area.  

− Right-align the commit buttons and use this order (from left to right): positive 
commit buttons, Cancel, and Apply. 

3.74.4 Preview Buttons 
• Make sure the Preview button means to apply the pending changes now but 

restore the current settings if users navigate away from the page without 
committing to the changes. 

• You can use Preview buttons on any spoke page. Hub pages don’t need Preview 
buttons because they use an immediate commit model. 

• Consider using a Preview button instead of an Apply button for control panel 
pages. Preview buttons are easier for users to understand and can be used on any 
spoke page. 

• Provide a Preview button only if the page has settings (at least one) with effects 
that users can see. Users should be able to preview a change, evaluate the change, 
and make further changes based on that evaluation. 

• Always enable the Preview button. 

3.74.4.1 Live Previews 
A control panel item has live preview when the effect of changes on a spoke page can 
be seen immediately. 

• Consider using live preview for display settings when:  

− The effect is obvious, typically because it applies to the entire monitor. 
− The effect can be applied without significant delay. 
− The effect is safe and can be undone easily.  

• Use Save changes and Cancel for the commit buttons. “Save changes” keeps 
the current settings, whereas Cancel reverts to the original settings. “Save 
changes” is used instead of OK to make it clear that any previewed changes 
haven’t been applied yet. 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
304 

• Don’t provide an Apply button. The live preview makes Apply unnecessary. 

• Restore any changes if users navigate away using Back, Close, or the Address 
bar. To preserve changes, users must commit them explicitly. 

3.74.5 Apply Buttons 
• Make sure the Apply button means apply the pending changes (made since the 

task was started or the last Apply), but remain on the current page. Doing so 
allows users to evaluate the changes before moving on to other tasks. 

• Use Apply buttons only on final spoke pages. Apply buttons should not be used 
on intermediate spoke pages to maintain an immediate commit model. Exception: 
You can use Apply buttons on a hybrid hub page if changing a setting requires 
elevation. For more details, see hub page interaction. 

• Provide an Apply button only if the page has settings (at least one) with effects 
that users can evaluate in a meaningful way. Typically, Apply buttons are used 
when settings make visible changes. Users should be able to apply a change, 
evaluate the change, and make further changes based on that evaluation. 

• Enable the Apply button only when there are pending changes; otherwise, disable 
it. 

• Assign “A” as the access key. 

3.74.6 Control Panel Integration 
To integrate your control panel item with Windows, you can: 

• Register your control panel item (including its name, description, and icon), so 
that Windows is aware of it. 

− If your control panel item is top level (see below): Associate it with the 
appropriate category page. 

− Provide task links (including their name, description, keywords, and 
command line) to indicate primary tasks and allow users to navigate directly 
to the tasks. 

− Provide search terms to help users find your task links using the Control 
Panel search feature.  

3.74.7 Category Pages 
• Add your control panel item to a category page only if:  

− Most users need it. Example: Network and Sharing Center 
− It is used many times. Example: System 
− It provides important functionality that isn’t exposed elsewhere. Example: 

Printers 
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− Control panel items that meet these criteria are referred to as top level.  
• Don’t add your control panel item to a category page if:  

− It is rarely used or used for one-time setup. Example: Welcome Center 
− It is targeted at advanced users or IT professionals. Example: Color 

Management 
− It doesn’t apply to the current hardware or software configuration. Example: 

Windows SideShow (if not supported by current hardware). 
− Removing such control panel items from the category pages makes the top-

level items easier to find. Given their usage, these control panel items are 
sufficiently discoverable through search or contextual entry points.  

• Associate your top-level control panel item with the category under which users 
are most likely to look for it. This decision should be based on user testing. 

• Consider associating your top-level control panel item with the second most likely 
category as well. You should associate a control panel item with two categories if 
users are likely to look for its main tasks in more than one place. 

• Don’t associate your control panel item with more than two categories. The value 
of the categorization is undermined if control panel items appear in several 
categories. 

3.74.8 Task Links 
• Associate your control panel item with its primary tasks. You can display up 

to five tasks on a Category page, but additional tasks are used for control panel 
searching. Use the same phrasing as you do for task links, possibly removing 
some words to make the task links more succinct. 

• Prefer to have task links lead to different places in your control panel item. 
Having multiple links to the same place can be confusing. 

3.74.9 Search Terms 
• Register search terms for your control panel item that users are most likely to use 

to describe it. These search terms should include:  

− The features or objects configured. 
− The primary tasks. 
− These search terms should be based on user testing.  

• Also include common synonyms for these search terms. For example, 
“monitor” and “display” are synonyms, so both words should be included. 

• Include alternative spellings or word breaks. For example, users might search 
for either “web site” and “website.” Consider providing common misspellings as 
well. 
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• Consider singular vs. plural noun forms. The control panel search feature 
doesn’t automatically search for both forms; supply the forms for which users are 
likely to search. 

• Use simple present tense verbs. If you register “connect” as a search term, the 
search feature won’t automatically look for “connects,” “connecting,” and 
“connected.” 

• Don’t worry about case. The search feature is not case-sensitive. 

3.74.10 Standard Users And Protected Administrators 
Many settings require administrator privileges to change. If a process requires 
administrator privileges, Windows Vista and later requires Standard users and 
Protected administrators to elevate their privileges explicitly. Doing so helps prevent 
malicious code from running with administrator privileges. 

3.74.11 Schemes And Themes 
A scheme is a named collection of visual settings. A theme is a named collection of 
settings across the system. Examples of schemes and themes include Display, Mouse, 
Phone and Modem, Power Options, and Sound and Audio Options. 

• Allow users to create schemes when: Users are likely to change the settings. 

• Users are most likely to change settings as a collection. 

• Schemes are useful when users are in a different environment, such as a different 
physical location (country/region, time zone); using their computer in a different 
situation (on batteries, docked/undocked); or using their computer for a different 
function (presentations, video playback). 

• Provide at least one default scheme. The default scheme should be well named 
and apply to most users in most circumstances. Users shouldn’t have to create a 
scheme of their own. 

• Provide a preview or other mechanism so that users can see the settings within the 
scheme.  

• Provide Save As and Delete commands. A rename command isn’t necessary—
users can rename schemes by saving under the desired name and deleting the 
original scheme. 

• If the settings can’t be applied without a scheme, don’t allow users to delete all 
the schemes. Users shouldn’t have to create a scheme of their own. 

• If the schemes are not completely independent (for example, power schemes 
depend upon the current laptop mode of operation), make sure there is an easy 
way to change settings that apply across all schemes. For example with power 
schemes, make sure that users can set what happens when a portable computer’s 
lid is closed in a single location. 
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3.74.12 Miscellaneous 
Use Control Panel extensions for features that replace or extend existing 
Windows functionality. The following control panel items are extensible: Bluetooth 
Devices, Display, Internet, Keyboard, Mouse, Network, Power, System, Wireless 
(infrared).  

3.74.13 Default Values 
• The settings within a control panel item must reflect the current state of the 

feature. Doing otherwise would be misleading and possibly lead to undesired 
results. For example, if settings reflect the recommendations but not the current 
state, users might click Cancel instead of making changes, thinking that no 
changes are needed. 

• Choose the safest (to prevent loss of data or system access) and most secure 
initial state. Assume that most users won’t change the settings. 

• If safety and security aren’t factors, choose the initial state that is most likely 
or convenient. 

3.74.14 Text 

3.74.14.1 Item Names 
• Choose a descriptive name that clearly communicates and differentiates what 

the control panel item does. Most names describe the Windows feature or object 
being configured, and are displayed in the Classic View of the control panel home 
page.  

• Don’t include the words “Settings,” “Options,” “Properties,” or 
“Configuration” in the name. This is implied, and leaving it off makes it easier 
for users to scan.  

• If the control panel item configures related features, list only those features 
required to identify the item, and list the features the most likely to be 
recognized or used first.  

• Use title-style capitalization. 

3.74.14.2 Page Titles 

Note: As with all Explorer windows, control panel page titles are 
displayed on the address bar, but not the title bar. 

• For hub pages, use the control panel item name. 

• For spoke pages, use a concise summary of the page’s purpose. Use the page’s 
main instruction if it is concise; otherwise use a concise restatement of the main 
instruction.  
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3.75 Task Link Text (Page 807) 
The following guidelines apply to links to task pages, such as Category page task 
links and See also links. 

• Choose concise task names that clearly communicate and differentiate the 
task. Users shouldn’t have to figure out what the task really means or how it 
differs from other tasks. Incorrect: Adjust display settings Correct: Screen 
resolution. In the correct example, the wording conveys more precision. 

• Retain similar language between task links and the pages they point to. Users 
shouldn’t be surprised by the page that is displayed by a link. 

• For task pages, design the main instruction, commit buttons, and task links 
as a related set of text.  

• While tasks often start with verbs, consider omitting the verb on Category 
pages if it is a generic, configuration-related verb that doesn’t help 
communicate the task.  

• If the task configures several related features, list only the features that are 
representative of the set. Omit details that can be readily inferred.  

• You should phrase tasks in terms of technology only if target users would do 
so as well.  

• Use plural nouns only if the system can support more than one. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation. 

3.75.1 Main Instructions 
• For the hub page, use the main instruction to explain the user’s objective 

with the control panel item. The main instruction should help users determine if 
they have selected the right control panel item. Keep in mind that users might 
have selected your control panel item in error and are actually looking for settings 
that are part of another control panel item.  

• For spoke pages, use the main instruction to explain what to do on the page. 
The instruction should be a specific statement, imperative direction, or question. 
Good instructions communicate the user’s objective with the page rather than 
focusing purely on the mechanics of manipulating it.  

• Use specific verbs whenever possible. Specific verbs are more meaningful to 
users than generic ones. 

• Use sentence-style capitalization. 

• Don’t include final periods if the instruction is a statement. If the instruction is 
a question, include a final question mark. 
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3.75.2 Supplemental Instructions 
• For the hub page, use the optional supplemental instruction to further explain the 

purpose of the control panel item. 

• For spoke pages, use the optional supplemental instruction to present additional 
information helpful to understanding or using the page. You can provide more 
detailed information and define terminology. 

• Use complete sentences and sentence-style capitalization. 

3.76 Page Text (Page 809) 
• Don’t restate the main instruction in the content area.  

• Use the word “page” to refer to the page itself. 

• Use the second person (you, your) to tell users what to do in the main instruction 
and content area. Often the second person is implied.  

• Use the first person (I, me, my) to let users tell the control panel item what to do 
in the content area that responds to the main instruction.  

3.76.1 Task Links 
• Choose concise link text that clearly communicates and differentiates what 

the task link does. It should be self-explanatory and correspond to the main 
instruction. Users shouldn’t have to figure out what the link really means or how 
it differs from other links. 

• Always start task links with a verb. 

• Use sentence-style capitalization. 

• Don’t use ending punctuation.  

• If the task link requires further explanation, provide the explanation in a 
separate text control using complete sentences and ending punctuation. 
However, add such explanations only when needed—don’t add explanations to all 
task links because another task link needs one. 

3.76.2 Commit Buttons 
• Use specific commit button labels that make sense on their own and match 

the main instruction. Ideally users shouldn’t have to read anything else to 
understand the label. Users are far more likely to read command button labels 
than static text. 

• Always start commit button labels with a verb. 

• Don’t use Close, Done, or Finish. These button labels are better suited for other 
types of windows. 
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• Use sentence-style capitalization. 

• Don’t use ending punctuation. 

• Assign a unique access key. Exception: Don’t assign access keys to Cancel 
buttons, because Esc is its access key. Doing so makes the other access keys 
easier to assign.  

3.77 Help (Page 816) 

3.77.1 Guidelines 

3.77.1.1 Entry Points 
• Link to specific, relevant Help topics. Don’t link to the Help home page, the 

table of contents, a list of search results, or a page that just links to other pages. 
Avoid linking to pages structured as a large list of frequently asked questions, 
because it forces users to search for the one that matches the link they clicked. 
Don’t link to specific Help topics that aren’t relevant and helpful to the task at 
hand. Never link to empty pages. 

• Don’t put Help links on every window or page for the sake of consistency. 
Providing a Help link in one place doesn’t mean that you have to provide them 
everywhere. 

• Use Help links for dialog boxes, error messages, wizards, and property 
sheets. If the Help link applies to specific controls, place it under them, left-
aligned. If the Help link applies to the entire window, place it at the bottom left 
corner of the window’s content area.  

• Use Help links instead of generic textual references to Help whenever 
technically possible.  

• Use a Help button with the Help icon for the hub pages of control panel 
items. Place it in the upper-right corner. These buttons don’t have a label, but 
have a tooltip that reads Help.  

• F1 Help is optional. Users have grown accustomed to finding Help information 
related to the immediate context of the UI on the screen by pressing the F1 key, 
which is labeled Help on standard keyboards. You can include F1 Help if, for 
example, usability studies show that your users expect to find it, or your program 
UI is complex enough to benefit from contextual assistance. 

• Programs with menu bars can have a Help menu category.  

• For keyboard accessibility, provide tab stops for Help buttons and links. 

• Help button and link behavior should be as follows: Help pane opens and a 
dedicated Help topic is displayed; the UI that invoked the Help pane should 
remain open to preserve the contextual experience. 
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• Don’t use the following obsolete Help entry point styles: “Learn more” or 
“Learn more about...” links, generic Help buttons, and context-sensitive Help 
buttons on the title bar. Although they have been used in the past, usability 
studies have determined that users tend to ignore them. Use links to specific Help 
topics instead.  

• Don’t use “Learn more” or “Learn more about...” links. 

• Don’t use generic Help buttons. 

3.77.2 Content 
• Don’t create obvious content. Help topics that repeat what is in the primary UI 

don’t add value. 

• Don’t create content that the user can’t act on in some way. Exception: Some 
conceptual content delivers important background information without 
necessarily leading to user action. 

• Avoid vague resolutions to problems. For example, “contact your system 
administrator” or “reinstall the application” tend to frustrate users. Exception: 
Recommend contacting the system administrator if that is the only practical 
solution, and system administrators expect to be contacted for the problem. 

• Avoid content that addresses highly unlikely user scenarios. Develop your 
main Help content for what you anticipate will be normal usage; note important 
exceptions to expected usage, but treat this content as a lower priority. 

• Gather feedback from your users about how helpful your Help topics are. 
Allow users to rate individual topics. Conduct usability studies on your 
documentation to ascertain problems involving quality and discoverability of 
content. Tip: User feedback is also a great way to generate more task-based 
content, focused on what users are actually doing with your program, as opposed 
to feature-based content, focused simply on a description of the technology.  

• Provide multiple ways of accessing your content. A table of contents, an index, 
and a search mechanism are three of the most common methods of improving 
discoverability. 

• If there is more than one way to perform a task, in most cases you can just 
document the most common way used by inexperienced users. 

3.77.3 Icons 
Use the Help icon only for Explorer windows and the hub pages of control panel 
items. Don’t use the Help icon with Help links.  
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3.78 Text (Page 824) 

3.78.1 Help Links 
Provide specific information about the content of the Help topic, using as much 
relevant, concise text as necessary. Users often ignore generic Help links. Make sure 
the results of the link are predictable—users shouldn’t be surprised by the results. 
Exception: You can use “More information” to supplement instructions that are 
directly in the UI, especially if providing specific information in the Help link leads 
to unnecessary repetition or makes the link less compelling. 

• Whenever possible, phrase Help link text in terms of the primary question 
answered by the Help content. Don’t use “Learn more about,” “Tell me more 
about,” or “Get help with this” phrasing.  

• If the most relevant information can be summarized succinctly, put the summary 
directly in the UI instead of using a Help link. However, you can use a Help link 
to provide supplemental information.  

• Phrase Help links to clearly indicate assistance. Help links should never read like 
action links. 

• Use the entire Help link for the link text, not just the keywords.  

− Exception: Help links to external Web sites should simply use the name of 
the site or page as the link. Any text introducing the name of the site need not 
be included in the link itself. 

− Help links don’t have to match Help topic headings exactly, but there should 
be a strong and obvious connection between the two. Design links and 
headings in pairs for this reason.  

• If the Help content is online, make that clear in the link text. Doing so helps make 
the result of the links predictable.  

− Use complete sentences. 
− Don’t use ending punctuation, except for question marks. 
− Don’t use ellipses for Help links or commands. 

3.78.2 Help Content 
• Format UI elements using bold to make them easy to identify. This is especially 

useful for procedural Help topics, allowing users to scan through procedures and 
quickly see pertinent UI elements. 

• Format captions using italic. This applies to tables, art, screenshots, and other 
graphic elements that benefit from brief textual explanation. 

• Refer to Help simply as Help. Generally, don’t use the phrase “online Help” 
unless you are in fact referring to content on your Web site.  
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3.79 User Account Control (Page 827) 

3.79.1 UAC Shield Icon 
• Display controls with the UAC shield to indicate that the task requires immediate 

elevation when UAC is fully enabled, even if UAC isn’t currently fully enabled. 
If all paths of a wizard and page flow require elevation, display the UAC shield at 
the task’s entry point. Proper use of the UAC shield helps users predict when 
elevation is required. 

• If your program supports multiple versions of Windows, display the UAC shield 
if at least one version requires elevation. Because Windows XP never requires 
elevation, consider removing the UAC shields for Windows XP if you can do so 
consistently and without harming performance. 

• Don’t display the UAC shield for tasks that don’t require elevation in most 
contexts. Because this approach will sometimes be misleading, the preferred 
approach is to use a properly shielded contextual command instead. 

• Because tasks don’t remember elevated states, don’t change the UAC shield to 
reflect state. 

• Display the UAC shield even if User Account Control has been turned off or the 
user is using the Built-in Administrator account. Consistently displaying the UAC 
shield is easier to program, and provides users with information about the nature 
of the task. 

3.79.2 Elevation 
• Whenever possible, design tasks to be performed by Standard users without 

elevation. Give all users access to useful read-only information. 

• Elevate on a per task basis, not on a per setting basis. Don’t mix Standard user 
settings with administrative settings in a single page or dialog box. For example, 
if Standard users can change some but not all settings, split those settings out as a 
separate UI surface.  

• Don’t consider the need to elevate when determining if a control should be 
displayed or disabled. This is because:  

− In unmanaged environments, assume that Standard users could elevate by 
asking an administrator. Disabling controls that require elevation would 
prevent users from having administrators elevate. 

− In managed environments, assume that Standard users can’t elevate at all. 
Removing controls that require elevation would prevent users from knowing 
when to stop looking. 
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• To eliminate unnecessary elevation: If a task might require elevation, elevate as 
late as possible. If a task needs a confirmation, display the elevation UI only after 
the user has confirmed. If a task always requires elevation, elevate at its entry 
point. 

• Once elevated, stay elevated until elevated privileges are no longer necessary. 
Users shouldn’t have to elevate multiple times to perform a single task. 

• If users must elevate to make a change but choose not to make any changes, leave 
the positive commit buttons enabled but handle the commit as a cancel. Doing so 
eliminates users having to elevate just to close a window. 

• Don’t display an error message when tasks fail because users chose not to elevate. 
Assume that users intentionally chose not to proceed, so they won’t regard this 
situation as an error. 

• Don’t display warnings to explain that users might need to elevate their privileges 
to perform tasks. Let users discover this fact on their own. 

• Display the UAC shield and elevation UI based on the following table:  

 
Figure 3-95: Change settings link and UAC shield 



GUI Programming Standards and Conventions Version 1.0 

October 2010 GUI Programming Standards–UI Document Addendum 
315 

 
Figure 3-96: Applying Attributes warning message 

 
Figure 3-97: Clicking the Next button 
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Figure 3-98: Elevation UI 

3.79.3 Elevation UI 
• If the user provides an account that isn’t valid (name or password) or doesn’t have 

administrator privileges, just redisplay the Credential UI. Don’t display an error 
message. 

• If the user cancels the Credential UI, return the user back to the original UI. Don’t 
display an error message. 

• If User Account Control has been turned off and a Standard user attempts to 
perform a task that requires elevation, provide an error message that states “This 
task requires administrator privileges. To perform this task, you must log on using 
an administrator account.”  

3.79.4 Wizards 
• Don’t elevate multiple times. Once a wizard is elevated, it should stay elevated. 

• If the task is performed within the wizard, put a UAC shield on the Commit 
page’s “Next” button (which should be given a more specific label). When the 
user commits: If the next page is a Progress page, advance to that page and 
modally display the elevation UI. After successful elevation, perform the task. 

• If the next page is a Completion page, advance to that page (but temporarily 
replace its contents with “Waiting for permission...”) and modally display the 
elevation UI. After successful elevation, perform the task, and then display the 
Completion page contents. 

• If the user cancels the elevation UI, return to the Commit page. Doing so allows 
the user to try again. 
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• If the task is performed after the wizard completes, put a UAC shield on the 
Commit page’s “Finish” button (which should be given a more specific label). 
When the user commits: Remain on the Commit page and modally display the 
elevation UI. After successful elevation, close the wizard. 

• If the user cancels the elevation UI, return to the Commit page. Doing so allows 
the user to try again. 

• For lengthy wizards intended only for administrators, you can prompt for 
administrator credentials at the entry point before showing any UI. 

3.79.5 Text 
Don’t use an ellipsis just because a command requires elevation. The need to elevate 
is indicated with the UAC shield. 
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