Technology and the Benefits and Risks of Network Neutrality Requirements

Jon M. Peha Carnegie Mellon University

Associate Director, Center for Wireless & Broadband Networks Professor of Electrical Engineering and Public Policy

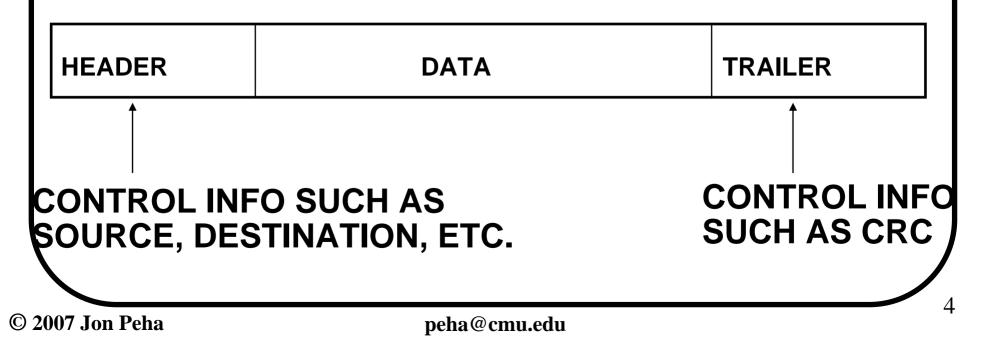
www.ece.cmu.edu/~peha

Federal Trade Commission Hearing, Feb. 13, 2007

© 2007 Jon Peha

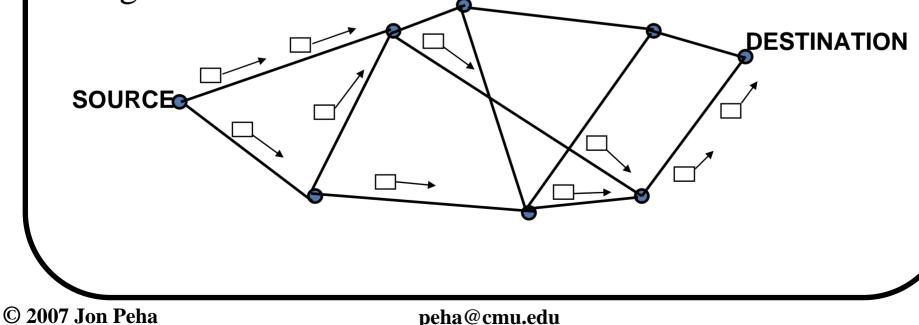
peha@cmu.edu

Net Neutrality and Discrimination


- Advocates say networks have ability and incentive to limit customer choices through discrimination.
- Opponents say network neutrality legislation could interfere with useful activities
- Both are right.
- This talk will address
 - How emerging technology can discriminate
 - How discrimination can benefit users
 - How discrimination can harm users, *if* network has sufficient market power
 - Why we should seek a *balanced* policy
 - How the issue has been mis-framed under vague principles

What is Net Neutrality?

- Definitions have *not* converged.
- According to principles endorsed by the FCC, consumers should
 - 1. have access to legal content of their choice
 - 2. be able to run applications of their choice
 - 3. be permitted to attach devices of their choice
 - 4. receive meaningful information on their service plans
 - or the right to choose among competing providers
- Access to content/application/device could depend on
 - availability,
 - availability at acceptable quality of service, and/or
 - availability at a reasonable price.


Internet is based on Packet Switching

Divide content into discrete pieces. Place data pieces into packets, with control information. Send each packet separately.

Early Internet Technology

- Best effort delivery of packets
 - packets lost, delayed, delivered out of order
- Most resources allocated first-come-first-served
 - Priority was possible, but not used
- Little intelligence within the network to defend against threats

Technology of Discrimination

- Two orthogonal aspects of discrimination
 - Must determine which packets/users/streams to favor
 - Must provide benefits to favored group

Determining which streams to favor

- Traditional: Use fields in header, one packet at a time
 - e.g. IP addresses, port numbers, MAC addresses
 - Reveals identity of sender and recipient, sometimes device manufacturer
 - Information about application is unreliable
- Now possible: Flow classification
 - Maintain state for all streams underway
 - Considers packet size, interpacket gap, stream duration
- Now possible: Deep packet inspection
 - Maintain state, combine info from many packets
 - Can access application-layer information
- Can cross-index with information not in traffic
 - use identity of user to look up billing info, credit info, etc.
- With all of the above, network has detailed info on each stream
 - It knows subscriber, application, content, content/service provider, attached device, billing info, and more

Helping favored streams/hurting others

- Block streams
- Put favored traffic in better "channel"
 - May or may not meet typical definition of "discrimination"
- Let traffic control algorithms adjust data rates, end-toend delays, packet loss rates, blocking rates (QoS)
 - Scheduling: which packet is transmitted next?
 - Dropping: which packet is dropped during overflow?
 - Admission control: which stream can begin transmission?
 - Routing: which path should a packet take?
- Add fee based on type of traffic observed
 - e.g. application, content, subscriber, content/service provider.

Benefits of Blocking

- Identify and block security threats
 - e.g. malware, denial of service attacks, fake control packets
 - Cannot always identify threat. There will be false positives and false negatives
- Block traffic from non-conforming devices
 - e.g. to insure that devices obey protocols

Discrimination to Improve Fairness

- With high-speed always-on connections, traffic from a few users can dominate network, so others could starve
- After a user's limit is reached,
 - block traffic, or
 - assign low priority to user's traffic, or
 - charge user extra

Discrimination for Diverse Services ("A bit is a bit" and other fallacies)

- Different services impose different burden on a network
 - High or low data rate.
 - Steady or highly bursty.
 - Different quality of service (QoS) requirements
 - May or may not adapt when there is congestion.
- With discriminatory traffic control algorithms
 - Carry more traffic and still meet diverse QoS requirements
 - Might reduce infrastructure cost per user.
- With discriminatory pricing
 - Can provide incentive to accept lower-priority service.
 - Can provide incentive to shift usage to less congested period
 - Can align price per packet with "cost" per packet.
 - Cost is opportunity cost

peha@cmu.edu

Monopoly Rents in the Broadband Market

- Network operator has *extensive* information
 - From inspecting all traffic, billing info, more
- Extract consumer surplus by using this info to set prices as close as possible to what user is willing to pay.
 - Shifts benefit of Internet access from users to carrier
 - For both consumers and content/service providers
- Intentionally degrade QoS so those willing to pay for better service will do so.

Monopoly Rents in Upstream Market

- Many "upstream" markets depend on Internet
 - e-commerce, communications (videoconferencing, VOIP), info distribution (video streaming, MP3s), advertising, consumer devices
- As with broadband market
 - Network can exploit extensive information
 - Deliberately degrade QOS to further segment market
 - To extract consumer surplus, set price near willingness to pay in each market
 - Shifts benefit of each market from users to carrier
- Separate markets
 - VOIP from downloading digital products
 - Downloading PDFs from downloading MP3s
 - Downloading one song from another

Monopoly Rents in Upstream Market

- Examples
 - On e-commerce sites, charge 1 cent for book sale, 2 cents for CD sale
 - Charge 20 cents for popular iTune download, 10 cents for less popular
 - Network knows which are popular.
 - Charge 10 cents per minute of (unaffiliated) VOIP traffic
- Observations
 - Can protect legacy services (telephony, video broadcasting)
 - One vendor calls this "revenue bypass"
 - Can extract monopoly rents from competitive markets
 - i.e. Consumer pays monopoly prices, some to carrier
 - Can do so without entering market or affiliating with provider

Content Filtering and Discourse

- Will networks limit access to content because it is harmful to the company?
- Politics
 - Advocacy for issues that the company opposes
 - Candidates who the company opposes
- Commerce
 - Rivals competing with the company
 - Consumers complaining about the company
 - Labor unions opposing the company
- There are accusations that some of this is happening already, and denials

A Balanced Policy

- Can we find a policy that limits how network operators can discriminate in a manner that
 - prevents them from fully exploiting market power in ways that seriously harm users, and
 - does not prevent them from using discrimination in ways that greatly benefit users?
- Impact on upstream markets is probably most important
 - More total consumer surplus in upstream markets.
 - Harder to prevent harmful discrimination in broadband market
- With discrimination intended to extract consumer surplus in upstream markets, prices are likely to be inconsistent with costs.
 - where costs are opportunity costs of carrying traffic
 - This observation may help define an effective balanced policy.

Conclusions on Discrimination

- Discrimination can benefit users
 - improve security, improve quality, decrease infrastructure cost, allocate resources to those who value them the most.
 - Imposing net neutrality could do harm.
- Discrimination can harm users if network operator has sufficient market power.
 - Network has access to extensive information
 - Using this info, network can discriminate to extract consumer surplus in broadband market and each upstream market,
 - even if the upstream market is competitive
 - even if the network is not affiliated with any upstream provider
 - Not imposing net neutrality could do harm

Conclusions on Net Neutrality

- Debate should focus on specifics of a balanced policy
 - Deter most harmful forms of discrimination
 - Allow most beneficial forms of discrimination
 - It may not be possible to preserve *all* beneficial discrimination and eliminate *all* harmful discrimination
- Debate has been mis-framed. It should not be about
 - The inherent evils of discrimination
 - Unfair affiliate relationships, vertical integration
 - The rights of networks to differentiation
 - The freedoms of end users
 - Other diversions

For more information, see

"The Benefits and Risks of Mandating Network Neutrality, and the Quest for a Balanced Policy"

www.ece.cmu.edu/~peha/policy.html

Jon M. Peha Carnegie Mellon University

www.ece.cmu.edu/~peha

Associate Director, Center for Wireless & Broadband Networks Professor of Electrical Engineering and Public Policy