

COST IMPACTS OF POTENTIAL

CARB PHASE 2 GASOLINE REGULATIONS

WSPA CONTRACT NO. DF 201-06 PHASES I, II AND III

DEPOSITION EXHIBIT U.S. District Court (C.D. Ca.) C.A. No. CV-95-2379 RG (JRx) 1361 Exhibit. Z Stirewalt & Associates 19 Date

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30046

> Robert E. Cunningham George W. Michalski Charles L. Miller

November 18, 1991

TABLE OF CONTENTS

-

I.	Introduction	1
11.	Executive Summary	4
111.	Gasoline Refining Primer	10
IV.	Analytical Approach	15
V.	Assumptions	19
VI.	Refinery LP Model Development	23
VII.	Model Run Matrix	28
VIII.	Base Cases Highlights and Discussion	31
IX.	Individual Property Changes	35
Х.	Reformulation Case Results	41
XI.	Need for Compliance Margins	52
XII.	Refinery Emissions Impacts	57
XIII.	Modeling Assumptions and Constraints	59

Tables

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30047

> TURNER, MASON & COMPANY Consulting Engineers

<u>Page</u>

I. INTRODUCTION The objective of our study for the Western States Petroleum Association (WSPA) was to determine the cost of potential California Air Resources Board (CARB) Phase 2 gasoline reformulations. These costs, along with calculated emissions benefits and macroeconomic impacts, could then be used to provide CARB with the cost-effectiveness and overall California economy impact of alternate Phase 2 gasoline proposals and assist them in establishing cost-effective regulations.

In order to improve the accuracy of these costs, we used a linear programming (LP) model approach to compare alternate reformulation costs. All reformulations explored were within real, practical refining limits. In addition to calculating base reformulation costs, we explored the cost impact of possible individual property limit changes.

Prior to initiating this study, TM&C had performed a gasoline reformulation screening study for the American Petroleum Institute (API) in 1989 and economic analysis of possible background gasoline reformulations for the Air Quality Industry Research Program (Auto/Oil) in 1990-91. In these studies, we significantly modified our refinery LP model to represent possible additional processing required to reformulate gasoline. These model changes permitted meeting reformulated criteria either singly or in combination.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30048

capability of TM&C

background

of authors

TM&C has been well recognized as having the best refining industry modeling expertise and competence available in consulting firms over the past seven years. TM&C has conducted industry studies for DOE, EPA, National Petroleum Council (NPC), API, WSPA, Auto/Oil, Motor Vehicle Manufacturers Association (MVMA) and International Lead and Zinc Research Organization (ILZRO). Our LP model and/or input data with gasoline reformulation has been sold to several major oil companies. It has also been used in gasoline reformulation studies for other associations, groups and individual companies.

TM&C used a very experienced team of LP model experts. This group is headed by Robert E. Cunningham and includes George W. Michalski and Charles L. Miller. Cunningham has managed studies for DOE, NPC, API and Auto/Oil, as well as this study for WSPA. He is highly regarded as the most competent LP industry modeler in the country with over 30 years of experience. He had almost fifteen years experience with Chevron before coming to TM&C in 1973. Michalski has over 35 years of experience, including significant experience with Ethyl Corporation as their LP modeling expert. He has developed LP models for numerous clients. Miller has over 20 years of experience, primarily with Texas City Refining (TCR). He has worked on several industry studies as a company expert for TCR, including the 1985 NPC study.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30049

Page 3

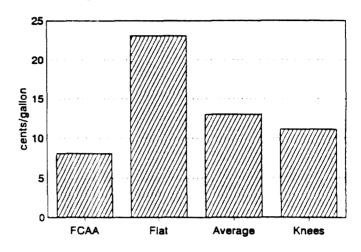
This report presents our findings from 35 LP model cases that involved the federal Clean Air Act (FCAA), three separate CARB Phase 2 proposals and many alternatives. From the results of these cases, we calculated the costs and detailed refining industry impacts of meeting potential CARB Phase 2 regulations. We also developed estimates of the costs for incremental changes in the gasoline properties CARB plans to regulate. Our cost results were then used by two other WSPA contractors to evaluate cost-effectiveness and California macroeconomic effects of alternate Phase 2 proposals.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30050

scope of report

II. EXECUTIVE SUMMARY

- The most pertinent 1996 cases evaluated are:
 - Base CARB Phase 1 regulations
 - FCAA Federal Clean Air Act statewide average limits
 - Flat October 4 CARB 2 with flat limits and compliance margins
 - Average October 4 CARB 2 modified to average limits at flat levels (no compliance margins)
 - Knees Close to property cost curve break points – average limits
- The property control maximum limits for these five cases are listed below. All cases have the same binding octane limits (not listed).


		OX						
<u>Case Name</u>	A	<u>(min)</u>	OL	BZ	<u>_S</u>	RVP	<u> 790</u>	<u>T50</u>
Base	-	0.4*	13*	-	210*	7.5	-	-
FCAA	25*	2.0	13*	0.95	163	7.1	328	-
Flat	20	2.0	3*	0.6	20	6.6	280	195*
Average	25	1.8	5	0.95	40	7.0	300	210*
Knees	25*	2.0	7	0.8	50	7.1	310	-

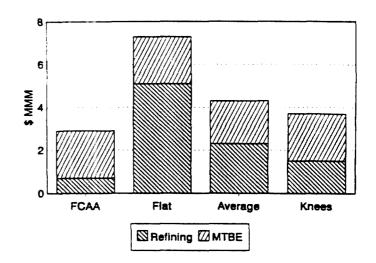
* LP results below limit.

 Calculated cost and cost range in cents per gallon (¢/G) as increases over the Base for the four CARB Phase 2 cases are as follows:

	FCAA	<u>Flat</u>	<u>Average</u>	<u>Knees</u>
Average, ¢/G	8	23	13	11
Range, ¢/G	6-11	20-28	11-16	9-14

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30051

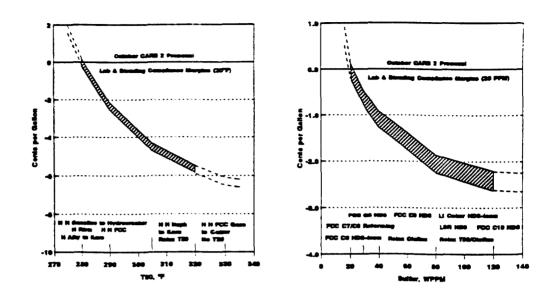
These average costs are graphically illustrated below:


The Knees case costs less than half as much as the most expensive flat limits case, whereas FCAA costs only 35% of Flat and the Average case costs almost 60% as much. The rough cost of a low C_p/C_p aromatic case was estimated by hand at 50¢/G, or more than double the Flat case costs.

 Average total investment and investment range required in billions of dollars (\$MMM) over the Base case are listed below. The Knees case saves \$3 to \$5 billion relative to the Flat case.

	<u>FCAA</u>	<u>Flat</u>	<u>Average</u>	<u>Knees</u>
Average, \$MMM	3	7	4+	4-
Range, \$MMM	2-4	6-10	3-6	3-5

 Average total investments and its MTBE and refining components are illustrated as follows:


> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30052

The foreign MTBE investments are almost the same in these four cases at \$2 billion. The California refining investment for the Knees case would be only about 30% of the Flat case. The Average case would require about 45%, and the FCAA case requires only about 15% of the Flat case refinery investment.

Additive individual property change cost curves were developed to help CARB optimize costs versus benefits for each regulated property. These curves are all shown as cost reductions from the Flat case. The Flat case limits proposed by CARB staff on October 4 were all more restrictive than the optimum break points, or knees, of the property change cost curves. This is illustrated by the following charts:

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30053

 The following table combines the impacts of these property changes to the knees, or optimum point, of the cost curves. Note that increasing from the Flat to these knees reduces combined cost by about 13¢/G.

	Flat 10/4 CARB <u>- Comply</u>	Knee Curve Optimum	Property Change	Cost Impact ¢/G
<u>Property</u>				
Aromatics, Vol. %	20	25	+5	(2.6)
Olefins, Vol. %	3.0	7.5	+4.5	(2.6)
Sulfur, ppm	20	80	+60	(2.0)
RVP, psi	6. 6	7.1	+0.5	(1.7)
T90, °F	280	305	+25	(4.5)
Combined				(13.4)

 Flat limits would require large compliance margins to include the poor lab test reproducibility plus refinery blending margins for property variations and unit shutdowns, as shown below. Simple quarterly average limits would eliminate these compliance margins:

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30054

	Compliance Margins						
	Lab	Lab Lab Plu					
	<u>Testing</u>	<u>Blending</u>	<u>Blending</u>				
<u>Property</u>							
Aromatics, Vol. %	З	2	5				
Oxygen, Wt. %	0.2	-	0.2				
Olefins, Vol. %	1	1	2				
Benzene, Vol. %	0.2	0.2	0.4				
Sulfur, Wt. ppm	15	5	20				
RVP, psi	0.3	0.1	0.4				
T90, °F	10	10	20				
T50, °F	10	5	15				

 In the Flat case, physically blending gasoline would be extremely difficult due to loss of all flexibility, because binding property limits increase by 6, while components increase by only 4. In the Knees case, physical gasoline blending would be much less difficult, because averaging increases flexibility and components increase by 8. The Flat case would double required refinery gasoline tankage, while the Knees case would require only 1.4 times as much, as shown below:

	Base	FCAA	Flat	Average	Knees
	<u>CARB 1</u>	<u>State</u>	10/4	@ 10/4	<u>Curves</u>
Flexibility	High	Mid	Nil	Low	Mid
Difficulty	Low	Mid	Wild	High	Mid
Tankage, % Base	100	140	200	150	140
Components Typical Pool	8	13	12	15	16
<u>Property Limits</u> Binding/Flat Average Almost Binding Non-Binding	3 - 1 11	2 5# 1 9	9 - - 8	2 6 1 8	2 6 - 9

2 of these are not very restrictive.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30055

- The refining industry needs some oxygen content flexibility to meet octanes with limited aromatics.
 Because T50 is not controllable (in known commercial processing), CARB should exclude T50 from the Phase 2 regulations.
- Because of the increased processing required to reformulate gasoline, refinery emissions will increase. In the Flat case, emissions of NO_x, CO and PM increased moderately. CO₂ emissions increased by 22,000 tons per day (T/D) from about 300 new sources. In the Average case, SO_x emissions decreased moderately, while emissions of CO₂ increased by 8,600 T/D from about 200 new sources.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30056

Page 10

finished

product

vields

III. GASOLINE Each refinery is unique in its process units configuration and relative sizes, although refineries can be classified in broad REFINING categories. We divided the California refining industry for PRIMER this study into conversion and simple refinery groups. There were seventeen conversion and twelve smaller, simple refineries operating in 1989. The conversion refineries differ types of from simple refineries in that they can upgrade residual fuel refineries oil (heavier than diesel) into major light products – gasoline. jet and diesel. The conversion refineries produced 99% of the California gasoline output in 1989 and processed over 90% of the crude. The simple refineries also can be divided into specialty asphalt and/or lube plants, which do not make finished gasoline, and hydroskimming refineries, which make a low yield of finished gasoline.

> Each refinery makes a different slate and yield of products. The California refining industry is highly oriented to maximize gasoline and kero jet and minimize residual fuel oil. Average California yields of major fuels products in 1989 were as follows:

- gasoline 46%;
- kero/jet 10%;
- No. 2 diesel 15%; and
- residual fuel oils 12%.

These major fuels products comprised 83% of total refinery output. Minor products, comprising 3 to 5% each of refinery output, include asphalt, coke, LPG and process gas. California conversion refineries gasoline ranges from about

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30057

40 to 65% of total output, whereas simple refineries gasoline make varies from 0 to about 20% of total output. Crude oil comprises about 96% of California refinery input. The remainder consists primarily of unfinished products, butanes and oxygenates.

Gasoline is blended from many components yielded by refinery processing units. Typical California gasoline consists of about 40% cracked, 35% reformate and 25% minor components. The latter is made up of about 10% alkylate and up to 5% each of light straight run gasoline, butane, light hydrocrackate and ether. These gasoline components range from zero to twice these amounts in individual refineries. Most California conversion refineries make from seven to ten gasoline components, whereas the simple refineries make only two or three gasoline components.

The following table shows California summer gasoline pool properties:

finished		Typical 1989	Individual Refinery Range
gasoline	Octane, (R+M)/2	88.5 8.5	87-90 7.5-9.0
properties	RVP, p s i Distilled, °F		
	10%	130	120-140
	50%	218	200-230
	90%	328	310-360
	Aromatics, %	35	25-45
	Olefins, %	9.5	0-20
	Benzene, %	2	1-4
	Oxygen, %	0.2	0-3

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30058 Page 12

	Typical 	Individual Refinery Range
Oxygenates, %	1	0-10
Sulfur, ppm	160	100-300

Most refineries blend the components in this pool into three finished gasolines: unleaded regular, midgrade and premium grades. Most refiners design their gasoline blends using a gasoline blending linear program (LP) to enable them to use all of their gasoline components while making on-test gasoline for each grade. Most refineries have in-line gasoline blenders to control recipes and continuously monitor limiting properties.

Octane and RVP have been blended very close to specifications. Other specifications (distillation, corrosion, gum, etc.) have not normally been binding. Reformulation will increase the number of components. However, it will require more precise blending to meet more specifications simultaneously (up to nine limits). This will require blending compliance margins or averaging due to minor variations in component properties and unit shutdowns. Averaging for the added limits would allow meeting the target property over a period of time (i.e., quarterly).

The following table shows typical California gasoline component properties:

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30059

gasoline				90%				
component		Octane (R+M)/2	RVP psi	Distilled °F	Benzene %	Aromatics	Olefins 	Sulfur ppm
properties	Light FCC Gasoline	87	9	240	2	9	37	100
properties	Heavy FCC Gasoline	87	1	400	0	60	12	600
-	Reformate							
	High ON (100 RONC)	95	3	340	2	69	0	0
	Low ON (90 RONC)	86	2	340	1	50	0	0
	Alkylate	91	5	280	0	0	0	20
	Light Straight							
	Run/Natural	72	13	160	1	2	0	150
	Isomerate – C ₄ /C ₈	90	18	140	0	0	0	0
	Light Hydrocrackate	87	14	160	1	1	0	20
	Light Coker	77	11	160	2	4	46	2,100
	Poly Gasoline	86	9	350	0	0	100	80
	MTBE	110	8	138	0	0	0	10
	Normal Butane	97	61	33	0	0	0	20
	Light Reformate	81	8	170	8	9	0	0
	Toluene	104	1	231	0	100	0	0

Each component differs significantly in several key properties. Note that reformate has high aromatics and no olefins. FCC heavy gasoline also has high aromatics but contains about 12% olefins. Light FCC gasoline contains high olefins and only about 9% aromatics. The only other high aromatics stock is toluene, and the other high olefin stocks are poly gasoline and light coker gasoline. The other gasoline components are low in aromatics and olefins. Most of the sulfur in gasoline is contained in heavy FCC, light coker and light FCC gasoline. Prior to the Clean Air Act, the primary specified properties of gasoline were octane, RVP These have been met by varying the and distillation. reformate octane to meet blended gasoline octane, adding butane to meet RVP and blending a wide mixture of available components to meet nonbinding distillation temperature limits.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30060

Page 14

use of reformulation Existing process unit flexibilities are insufficient to meet reformulated gasoline properties. Minimal reformulation will require production of ether inside of refineries and use of significantly more ether produced outside refineries. Ether consumes field butane, recovered from natural gas liquids, and methanol, which is produced from natural gas. Aromatics will be decreased by reducing reformer severity and feed rate concomitant with increasing ether. See the Model section of the report for a detailed discussion of refining changes.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30061

We used our refinery LP model for the aggregate group of IV. ANALYTICAL conversion refineries in California. APPROACH Aggregate modeling permits determination of refining industry capability and costs without revealing any specific refinery's confidential LP models TM&C's California conversion refinery aggregate data. model was originally developed and extensively calibrated for prior studies. TM&C's model was already extensively modified to include gasoline reformulation capability. It had been calibrated to accurately predict aromatics, olefins, benzene, sulfur, RVP, 90% distilled temperature (T90) and driveability index (DI). It was extensively reviewed by WSPA LP experts. LP models will be more thoroughly discussed in a following report section.

We developed and agreed upon all of the assumptions and bases for this study with WSPA. Major assumptions included: supply and demand forecasts, fixed product and bases requirements, investment costs, rate of return on investment, crude and product pricing outlook, refinery process unit capacities and utilization limits, new unit sizing, product grade ratios and properties, crude and minor product flexibilities, and MTBE supply sources. These assumptions will be covered in more detail in a major report section below.

> WSPA determined that model runs producing gasoline to various property specifications should be made for 1996, allowing investment in additional refining facilities. In the

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30062 1996 base cases, all gasoline was produced to conventional specifications. We made LP model runs for summer and winter base cases, a Los Angeles only FCAA partial reformulation summer case, one winter CARB Phase 2 case and 31 complete CARB Phase 2 reformulation cases. It should not be inferred that the average/typical gasoline properties not specified by CARB and the compositions of any of the gasoline pools determined in this study would be produced and distributed by any specific California refiner. Each company in WSPA continues to conduct its separate research, planning, manufacturing, trading and marketing activities.

We compared the results of the reformulation cases to the base case, using a Lotus 1-2-3 program to generate analvsis pertinent tabular refining industry results. These results of results included the run basis, gasoline properties, the incremental cost of decreasing limiting gasoline properties, and detailed gasoline compositions. Tabular results also included material balance changes, reformulation costs and cost sensitivities. required new process unit rates, and All process unit rate changes and absolute investments. utilizations were also compared.

The LP technique systematically finds the least cost solutionoptimizedfor any given case. Although there are hundreds of feasiblereformulationsolutions with the large number of variables that can becostsmodified, the LP seeks the one mathematically optimal

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30063

Page 17

solution. The advantage of comparing a reformulation case LP run against a base case LP run is that both are optimized, and the difference in cost is the least cost for reformulation. This technique is much better than comparing simulation cases because it offers a consistent approach to least cost and not an arbitrary selection of alternate feasible solutions. This approach avoids significant under- or overestimation of gasoline reformulation's economic impact.

All of the calculated reformulation costs are based on our modeling aggregation of refineries and do not apply to any individual refinery. Actually, every refinery is unique in processing, raw materials, products and product properties. Although we calculated the average or typical reformulation cost for the group of all conversion refineries, cost results are low or conservative due to unavoidable over-optimization in our aggregate model. Our cost results are also reported as a range for each reformulation to cover reasonable changes in the major cost variables. The probable real range of individual refinery costs would be wider than indicated, especially higher, due to differences in refinery size, processing and initial gasoline properties.

Each LP run was optimized based on a combination of relevant refining costs in constant 1991 dollars. Each LP solution considers raw material cost, variable product prices, variable operating costs, incremental capital costs; and additional fixed operating costs. For each case, we made

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30064

relevant refining costs

cost

variations

several iterative runs to optimize new process plant sizing and provide one new unit of each type for each refinery for more accurate capital cost. Numerous model limits were added to correspond with realistic refinery situations and to avoid over-optimization. However, the nature of refining industry LP models is such that their tendency to overoptimize cannot be totally eliminated. Off-line, we considered external effects, including MTBE investment costs, physical gasoline blending constraints and the impact of BTU content on mileage, to maintain constant total miles traveled.

The shadow values on each run were checked to make sure the model was not unreasonably constrained. We applied our well-seasoned judgment to ascertain that the solution was realistic and that there were no anomalies. In addition to utilizing our extensive judgment and internal crosschecking of the results for consistency, the results of this study were subjected to critical review by a group of WSPA refining industry experts. We also checked the strategies chosen by the model for realism and compared the results between different cases for consistent strategies and reformulation costs. Differences had to be understandable and reasonable.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30065

> > TURNER, MASON & COMPANY Consulting Engineers

critical review V. ASSUMPTIONS The assumptions and bases for our study are outlined in detail on the A- tables attached. All of our work was done in constant 1991 dollars. We assumed that the base case and (CARB Phase 1) investments required for 1996 were sunk. They could not be saved in CARB Phase 2, due to the fact that most of these investments are already committed.

We based capital charges on a risk-free 15% discounted cash flow (DCF) rate of return on investment (ROI) hurdle rate in constant dollars. Use of a 15% ROI has been the charge common practice of the petroleum refining industry, WSPA and CARB in past studies. Due to risk factors, the risk-free 15% estimated DCF ROI rate for planning purposes typically turns out to be only an 8% DCF ROI rate on a post-audit basis. In the base cases, we utilized new plant sizes characteristic of California. In the Phase 2 cases, units are sized to provide one unit for each refinery. Detailed investment assumptions are shown in Tables A-1 and A-6.

In making the refinery conversion to reformulated gasoline, product demands for finished motor gasoline and middle distillates, as well as most minor products, remained fixed for all reformulation cases. Only high-sulfur residual fuel oil, coke and C_s – products were allowed to vary. Alaska North Slope crude was allowed to vary, along with MTBE, methanol, natural gasoline, purchased butanes and natural gas feed to the H₂ plant. All other raw materials were fixed, as noted in Table A-2. Finished gasoline outturn was

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30066

adjusted to maintain constant miles traveled when the BTU content shifted, based on the 0.8 R factor used by the EPA in their RVP reduction study. That is, 0.8 of the differences (up or down) in gasoline heat of combustion are reflected in vehicle fuel economy.

We based our major crude and product pricing outlook, shown in Table A-5, primarily on pricing in 1989-91. We provided the pricing for other crudes, low aromatic diesel and minor products and developed prices for both California and the Gulf Coast using TM&C location differentials.

We developed our summer supply and demand estimates from the consensus U.S. supply and demand estimate for major products and crudes that was published by the Oil & supply Gas Journal in early 1991. We obtained from DOE much and demand more detailed actual supply and demand data for the summer guarters and the year 1989 for both crudes and products. Using the DOE data, we were able to develop our summer supply and demand outlook and to allocate part of the consensus supply and demand estimate first to PADD V and then to California conversion refineries. The DOE information also allowed us to express the consensus supply and demand estimate in greater detail. Our development of the U.S. supply and demand data is summarized in Tables A-7 through A-12. Our allocation to PADD V is detailed in Tables A1-1 through A1-4. Our allocation to

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30067

California conversion refineries can be found in Tables A1-6 through A1-12.

We classified forecasted crude inputs by the types used by the NPC and API in prior studies by TM&C, as shown in Table A-13. We allocated these crudes in detail to fit our specific PADD V refinery model groups, using the 1989 detailed crude run property and import data as well as production data supplied by DOE, as shown in Tables A1-8 through A1-10.

Our basis and initial unit capacities for the model are showncapacitieson Tables A-14 through A-17. We allowed the model to addandrefining capacity as required for all of the cases. Weutilizationestimated maximum capacity utilization for major units usingthe DOE 1987-89 data, which are summarized in Tables A-14and A-15.

MTBE

We allowed the conversion refineries to produce maximum MTBE from isobutylene in their cat-cracked and coker butylene/butane streams. (No ether production was permitted in refineries with less than 20 MBPSD of FCC capacity, because the small ether unit would be uneconomic.) We allowed the refineries to produce TAME from the FCC and coker isoamylenes in cases with low olefin gasoline limits. All other ether was assumed purchased in the form of MTBE from outside sources, with no butane dehydrogenation capacity included in the refineries. We

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30068

estimated the investment for outside MTBE from the Middle East, as shown on Table A-18. Our estimated MTBE price and investment costs were very close to those made independently by other contractors. The price paid by refineries for purchased MTBE includes a 40¢/G capital charge to payout the very large outside investment in MTBE. These investments are summarized along with refinery investments to show total investments.

Our outlook for gasoline and residual fuel grade ratios is shown in Table A1-5. Estimated octanes are included in Table A-3. We assumed that all of the No. 2 diesel fuels grade ratios would be 0.05% sulfur, 80% of it would meet a 10% and aromatics limit and the rest of the diesel would be blended properties with no increase in cracked stocks. In the partial reformulation case, all gasoline aromatics, ether, olefins, sulfur and 90% distilled properties were capped at the 1989 survey level.

Detailed refinery raw material and product rates for each of our three groups of refineries in PADD V for 1989 are listed in Tables A1-6 and A1-7. Similar detailed crude rates are refinery shown in Tables A1-8 through A1-10. Detailed refinery groups product rates and growth for the California conversion rates refineries are listed for 1989 and 1996 in Tables A1-11 and A1-12. As most of the detail tables focused on the summer quarters, the ratio of winter to annual refinery outturns are presented in Table A1-13.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30069

VI. REFINERYOur LP model has been designed to represent the group ofLP MODELseventeen conversion refineries in California, which produceDEVELOPMENTover 99% of the gasoline. We use the concept of an averagerefinery to more easily understand the results.

TM&C developed the composite California refining industry model originally for refining industry studies conducted for industry the Federal Energy Agency (FEA) and the Department of model Energy (DOE) in the 1970s. It was upgraded, modified and very extensively validated using a 1985 industry survey for our National Petroleum Council (NPC) study of gasoline capability and cost. We then used the model in several multi-client subscription studies and a vapor pressure reduction cost study for the API in 1987.

Gasoline reformulation capability was developed and added in a 1989 gasoline reformulation screening study for API. Reformulation capability was further improved in 1990-91 for the Auto/Oil study. The model enhanced for that study was model used for this WSPA study. We converted the LP model in 1990 to run on a personal computer instead of on a large mainframe computer. TM&C's reformulation capability LP model and/or data have been sold to several companies, and others are considering purchasing our LP model and/or these reformulation data. Adding gasoline reformulation with about 80 options doubled the size of our LP model by requiring over a dozen new refining processes and much

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30070

more extensive gasoline properties on many narrow gasoline cuts.

The TM&C model has been extensively validated with historical data. Validation involved comparison of model results with industry data, then adjusting the model data until model outputs agreed with historic data. For the NPC validation, crude and major product volumes were matched exactly. After allowing residual fuels, butanes and lighter, cokes and gain to vary, DOE material balances for these products were matched within 0.3% of total input. Individual conversion units throughput was matched within 8% for a total conversion unit throughput match within 5%. Catalytic cracker conversion matched within 5%. Model utilities usage and individual fuel components were matched to DOE data within 4% of their absolute levels.

Gasoline RVP and octane numbers and distillate fuel sulfur levels were forced to survey levels. Component octane numbers were adjusted where necessary to match component NPC survey results. Then octane factors were adjusted until gasoline lead level was within 0.1 gram per gallon, reformer throughput was within 15% and reformer severity was within 0.5 octane number. The validation criteria used for the NPC study are listed on Table A2-1, and the validation results described above are detailed on Table A2-2.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30071

> > TURNER, MASON & COMPANY Consulting Engineers

model validation model calibration

In our 1987 RVP study for API, gasoline RVP and butane content were calibrated against industry survey data to fit within 0.1 RVP and 0.1% butane. During our work for Auto/Oil, the gasoline sulfur, aromatics and olefins content. plus 90% distilled representation, were calibrated against the NPRA survey results conducted for Auto/Oil. Results of this calibration showed agreement on aromatic and olefin contents within 1.4% each. The 90% distilled temperature agreed within 3°F. Model sulfur content matched the survey and NIPER results within 40 ppm. During a 1990-91 study for WSPA/GM/CARB on RVP/DI impacts, benzene, T50, T10 and DI were calibrated in our LP model. The model predicted benzene fit within 0.2, T50 and T10 matched within 3°F and DI matched within 20°F of physical blends. These differences are all less than the test reproducibilities and most are significantly less. The details of these calibrations are presented on Tables A2-3 through A2-7.

The investment estimates for new processes were extensively reviewed by the engineering staff of each participating oil company in Auto/Oil. All of our investment estimates were within 20% of individual unit estimates provided by individual participating companies and within less than 5% of the composite estimate of all of the companies.

Primary options for reducing olefins include splitting light FCC gasoline into carbon number cuts and then processing the C_5 olefins via etherification and alkylation. Light coker

reformulation options

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30072

- olefins gasoline and FCC C_s olefins can be saturated then isomerized. Alternately, light coker gasoline can be desulfurized through chemical extraction, then split and processed like FCC C_s s and C_s s. Polymer and Dimersol plants can be shut down and their C_s = or C_s =/ C_4 = feeds alkylated. Very low olefin levels require saturation and reforming of FCC C_7 and C_8 cuts.

Aromatics are reduced primarily by narrowing the catalytic reformer feed boiling range and reducing reforming severity, plus fractionating out the back end of the heavy cat-cracked aromatics gasoline and reformate. The heavy low aromatic and T90 hydrocracked and straight run naphtha are routed to treating and middle distillates. The heavy, highly aromatic gasoline fractions are routed preferentially to resid cutter, and finally, fed to hydrocracking to make lighter gasoline. The 90% distilled point is reduced in similar fashion, cutting the back end out of these same gasoline blending components and reformer feed and then blending or cracking it. In addition, heavy alkylate can be fractionated out and routed to middle distillates. Deep T90 reductions require hydrocracking heavy, heavy FCC gasoline and reformate.

Sulfur is initially reduced by hydrotreating heavy, cat-cracked gasoline, as well as hydrotreating FCC feed. Deeper sulfur
 sulfur, reductions require extractive sulfur removal from light coker gasoline and hydrotreating light straight run gasoline. Very and RVP low sulfur levels require hydrotreating FCC C₈, C₇ and C₈

gasoline. Benzene is reduced by routing benzene precursors around the reformer to gasoline. Reformate feed prefractionation, BT reformate fractionation and benzene saturation are required. Benzene extraction would probably not be used in California due to strict toxic controls and lack of a market for benzene. RVP is reduced by butane fractionation and sale. Low RVP levels require FCC C₅ fractionation and C₅= processing to ether and alkylate. Very low RVP levels require saturated C₅ sales and light hydrocrackate fractionation with added C₅ sales.

T50 and DI cannot be controlled except by added ether use or further reductions in T90. Even T90 reductions have limited impact on T50 as they must be offset by T10 increases (C_s sales) to maintain a constant RVP. The ranges of flexibility and product yields from these additional processing options, as well as the investment and operating costs, were extensively reviewed both by an API task force, the Auto/Oil Economics Subcommittee and WSPA.

– T50 and DI

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30074

Page 28

VII. MODELWe ran two 1996 base cases for this study – summerRUN(Case 0) and winter (Case W-0) for California conversionMATRIXrefineries. The summer case served as the basis for all butbaseone of the Phase 2 gasoline reformulation cases becausecasessummer reformulation presents the greatest challenge to therefining industry.

We ran a total of 32 Phase 2 full reformulation cases and one partial reformulation case. We evaluated five major premises gasoline of what the Phase 2 reformulation might be and various reformulation sensitivities to these major scenarios. Our first set of runs evaluated the FCAA amendments applied statewide and only cases to Los Angeles and San Diego. Second, we ran cases on the initial June CARB staff proposal. Then, we evaluated the revised CARB staff proposal issued on August 5, 1991 and ARCO's EC-X properties. Next, we studied the detailed October 4, 1991 CARB staff proposal. Finally, we reviewed a series of alternate proposals that were close to the break points, or "knees", of our individual property change cost curves. Most of the sensitivity runs were made to develop these individual property change cost curves. The one winter case tested the FCAA using CARB's August 5 proposal.

Cases 1 and 2 studied the impact of the FCAA. Cases 3 through 5 studied the June 1991 CARB Phase 2 proposal. Case 6 evaluated ARCO EC-X properties. Cases 7 through 22 studied the August 5 CARB staff proposal for Phase 2

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30075

TURNER, MASON & COMPANY Consulting Engineers

case matrix

Page 29

reformulation and sensitivities. Cases 23 through 25, 31 and 32 evaluated the implications of the October 4 CARB staff proposal and sensitivities. Cases 26 through 29 evaluated various alternate "knee" proposals with more cost-effective potential Phase 2 regulations. Case W-1 evaluated the wintertime economics of the August 5 CARB staff proposal (Case 8 modified for winter gasoline specifications) to confirm that the summer case is more restrictive.

Base case results for both the summer and winter cases are reported in Tables B-. Tables C- contain the results of the FCAA cases, the June CARB Phase 2 cases and the ARCO tables EC-X case. The results of the August 5 CARB staff proposal and various sensitivity cases start with Case 7 on the Ctables and continue through Tables F-. The winter case results are reported on Tables G-. The H- and I- tables report the results the CARB staff October 4 proposal case and alternate "knee" and sensitivity cases.

> LP results are reported for each of the runs. These results include gasoline properties and compositions, costs, processing, raw materials and products. A uniform table matrix was used for all reformulation runs results. This format for Tables C- through I- is shown below:

Table Description

format of

tables

- -1 Run Basis and Gasoline Pool Properties
- -2 Summary of Costs
- -3 Raw Material and Product Rate Changes
- -4 New Process Unit Rates

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30076

- Table Description
 - -5 New Process Unit Investment Costs
 - -6 Process Unit Rate Changes
 - -7 Process Unit Utilizations
 - -8 Gasoline Pool Compositions
 - -9 Incremental Costs for Gasoline Property Decrease

A few cases (Cases 27, 28 and 29) were run to obtain only costs instead of complete refinery industry impacts. These cases were reported only on Tables -1, -2, -5 and -9. Some additional tables are included for the partial reformulation Case 1 and several cases reported to DRI (Cases 7, 8, 17 and 25) to evaluate macroeconomic impacts on California.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30077

VIII. BASE CASESThe base case assumes no FCAA or CARB Phase 2HIGHLIGHTSregulations. CARB Phase 1 gasoline regulations and dieselANDsulfur and aromatic limits are in place. We ran summer andDISCUSSIONwinter base cases to determine the facilities required to meetforecasted 1996 demands with these product specifications.

Table B-2 shows details of refinery raw material input rates.Crude oil provides about 94% of input requirements, whilerawthe rest is unfinished and other products. There is somematerialstransfer of vacuum gas oil from simple refineries, plusimports. Small amounts of imported naphtha and reformateare also used. Domestic and imported MTBE is used by therefining industry. Some methanol is required for productionof MTBE within California refineries. Other raw materials areoptimized and are largely derived from natural gas liquids.

Refinery product rates are shown in Table B-3. The models were required to exactly meet the demand for most products products. Residual fuel, propane and marketable coke were allowed to seek their optimum levels. Optimized process gas and catalytic coke are consumed in the refinery as fuel. Reflecting the trend toward increased sales of the higher octane grades, the percentage of premium and midgrade gasolines has been increased over today's levels.

Tables B-4 through B-6 show details of the crude inputcrude oilrepresented in the model. Most of the crude oil rates aredetailsfixed at forecast levels based on projections from historic

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30078

process

operations

rates. In our California conversion refinery model, only Alaska North Slope crude was allowed to optimize.

New process capacity and investment required over 1991 is shown in Tables B-7 and B-8. Most of the investment is in diesel aromatics saturation and distillate hydrodesulfurization capacity units required to meet the stringent California limits on diesel aromatics and sulfur. Added hydrogen plants are required to supply these units. There is some investment in octaneproducing capacity in terms of new and revamped reformers and alkylation units. Investment in MTBE plants provides an economical source of oxygenate as well as octane numbers. We have included new and improved gasoline stabilizers and fractionators required to meet California Phase 1 RVP limits. Total process unit capacities are shown in Table B-8.

> This is not all of the industry investment that will be required by 1996. It does not include capital for environmental requirements other than diesel aromatics and sulfur limits. It also does not include capital required to sustain ongoing operations.

Table B-9 shows process unit rates in terms of barrels per calendar day (BPCD) per refinery. Catalytic cracker conversion is about 74%. The high octane catalysts are minimized in California refineries because they produce a more olefinic gasoline that would result in violation of the current Bromine Number limits in Los Angeles (15% octane

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30079

catalyst was the lowest allowed). Reformer severity was high at 99 Research octane number clear. Refinery process unit utilizations (calendar day rates divided by stream day capacities) are shown in Table B-10.

Gasoline pool compositions are shown in Table B-11.gasolineComponents are grouped in four categories: FCC gasolines,compositionother olefinic components, reformates and low aromaticand qualitysaturated stocks. The compositions of base case gasolinesare similar to those produced today.

Table B-12 shows gasoline pool properties and incremental costs. The (R+M)/2 octanes are limited at the specifications. Aromatic content of summer pool gasoline is about two percentage points lower than today's levels. Winter levels are slightly lower than summer levels due to the octane and dilution contributions of butane at the higher winter vapor pressure. Ethers are at 2% of the pool, as indicated by the projected availability of MTBE absent an oxygen mandate. The increased supply of MTBE has more than offset the need for more aromatics for the octane number increase required by the higher 1996 percentages of premium and midgrade gasoline. Olefin, benzene and sulfur levels are similar to historic levels. RVP has been reduced to 7.5 psi in the summer to meet CARB Phase 1 limits. Other measures of volatility are similar to current levels, except that T90 increased about 20°F. The heat of combustion is

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30080 shown to provide a basis for estimating changes in demand due to reformulation at constant vehicle miles travelled.

Incremental octane costs are indicated to be in the range of $0.3-0.9 \phi$ per octane number gallon. RVP marginal cost is $0.3-0.6 \phi$ per psi gallon. In this case, a decrease in RVP would result in the higher cost. These costs are shadow values from the LP model and apply only to very small changes. They are not applicable to significant changes.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30081

IX. INDIVIDUAL Our cost curves are based on the differences in refining PROPERTY margin between cases and the shadow values, or CHANGES incremental costs, for the individual components. As shown in Table 3, by comparing the costs of different combinations of cases, we calculated the costs of changes in controlled methodology properties at different levels. In some instances, we estimated the cost of changes in a controlled property from the cost of controlling a combined set of properties. For some of the extremes, we used shadow values to extrapolate the costs for the next increment of change in a controlled property. We avoided the synergism between properties to create additive curves for each property.

unit

costs

Table 5 presents a summary of the cost changes for individual property changes. As detailed on Table 5 and as visually demonstrated on the cost impact curves, V-12 through V-16, the cost of compliance for each controlled property decreased as the restriction on the property was decreased.

All of the cost impact curves have definite break points at which the cost of controlling the property changes significantly. We call these breakpoints the knees of the curves. The following table details the knees for the cost curves:

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30082

Viewaraph	Property	Curve <u>Knee</u>	Knees Case
V-12	Aromatics, %	25	25
V-13	Olefins, %	7.5	7
V-14	Benzene, %	1.0	0.8
V-15	Sulfur, wppm	80	50
V-16	RVP, psi	7.3	7.1
V-17	T90, °F	328	310

The RVP knee could not be attained because of federal mandate. For benzene, sulfur and T90, CARB staff seemed to be planning tighter limits than the knees. Our Knees case incorporated these concerns into realistic limits shown above. The overall cost for meeting the property limits in the Knees case was 11.1¢/G versus the 23.1¢/G cost for the Flat case. The curves knee level would cost only about 8¢/G.

The table below, which is taken from Table 5, shows how the cost of controlling the different properties increases dramatically as the property limits become more stringent:

	Control Level From To	Cost <u>¢/G⁽¹⁾</u>
<u>Property Controlled</u> Aromatics, %	34-33 21-20	0.2 0.6
Olefins, %	11-10 4-3	0.1 0.6
Benzene, 0.1%	2.2-2.1 0.7-0.6	0.1 0.4
Sulfur, 10 wppm	206-196 30-20	0.03 0.7
RVP, 0.1 psi	7.5-7.4 6.7-6.6	0.06 0.5

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30083

cost

slopes

TURNER, MASON & COMPANY **Consulting Engineers**

Page 37

				-		Leve To	
Pro	perty	Сол	trollec	<u>1</u>			
T9(D, 10°	۶F		3	48-	338	0.2
				2	90-:	280	2.4
(1)	¢/G	per	unit	change	in	the	controlled

property. Units for each property are noted.

Viewgraphs V-12 through V-16 present the costs of controlling individual properties as cost savings from the flat limits case (the October 4 CARB staff proposal incorporating compliance margins). The savings are shown as a range to reflect the accuracy of the study.

As shown in V-12, aromatics were controlled down to 25% by reducing reformer severity and blending additional aromatics oxygenates. Dropping the level to 22% required reducing the T90 to 300°F by fractionating out the back end of the heavy FCC gasoline and hydrocracking it. Reducing the aromatics content below 22% required investment to fractionate and hydrocrack heavy FCC gasoline and heavy reformate. To maintain octane, the LP would alkylate C_s olefins and isomerize pentanes and hexanes. Below 20% aromatics, additional ether was needed to maintain octane.

cost

savings

olefins

reduction

As shown in V-13, olefins were controlled down to about 9% by hydrotreating and isomerizing the pentane/hexane stream from the coker. Reducing the olefins level further involved a complex arrangement of FCC gasoline splitters to first

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30084

sulfur

reduction

remove C_5 olefins, then the C_6 cut, and finally the C_7/C_8 stream. First, the C_5 olefins were converted to TAME and alkylated. Second, the C_6 stream was hydrotreated and isomerized. To drop the olefin content of finished gasoline below 5%, the FCC C_7/C_8 stream had to be hydrotreated and then reformed due to octane loss.

As shown on V-14, benzene levels down to close to 1% were achieved in the gasoline pool by bypassing medium hydrocrackate around the reformer. This stream is normally reduction reformed because of its low octane. Additionally, reformate fractionation and benzene saturation became necessary. Reducing the benzene level of the gasoline pool to 0.8% required fractionating the naphtha feed to the reformer to concentrate low octane benzene precursors, fractionating the BT reformate to light reformate and then saturating the benzene in it. Reducing the benzene level to 0.6% required splitting the C₈ stream out of FCC gasoline and hydrotreating and isomerizing it.

In V-15, we demonstrated that sulfur was removed from the gasoline pool by progressively treating the high sulfur components: light coker gasoline, heavy FCC gasoline, light FCC gasoline and light straight run gasoline. Fractionating the C_{10} portion of the FCC gasoline stream and hydrotreating it reduced the pool gasoline sulfur level to 120 wppm. Dropping the sulfur level to 80 wppm required hydrotreating and isomerizing the light coker gasoline and hydrotreating

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30085

the light straight run gasoline. To drop the sulfur level below 80 wppm, the LP added FCC gasoline splitters, fractionated out the C₉ component and hydrotreated it. Continued sulfur reduction brought on the fractionation, hydrodesulfurization and reforming of the FCC gasoline C₈ cut. Dropping the sulfur level of the pool gasoline below 40 wppm required hydrotreating and reforming the C₇ fraction and hydrotreating and isomerizing the C₆ fraction of the FCC gasoline.

As shown in V-16, RVP was initially reduced by fractionating butanes out of the gasoline pool and selling them. Reducing the RVP from 7.3 psi to 6.9 psi involved investment in FCC reduction gasoline splitters to fractionate out the C_s stream and using the C_s olefins to produce TAME and alkylate. Reducing the RVP from 6.9 to 6.6 psi forced the sale of FCC pentanes. Reducing the RVP below 6.6 psi required selling the light hydrocrackate and light straight gasoline or fractionating them for added C_s sales.

> As shown in V-17, the model reduced T90 by cutting the heavy components out of gasoline streams and blending the components into heavier oils or cracking them into lighter gasolines. Reducing the T90 to 320°F was achieved by fractionating the back end out of heavy FCC gasoline and using it as resid cutter. Fractionating reformer feed and blending the 300+°F heavy naphtha into kerosene jet reduced the T90 to 305°F. Reducing the T90 below 305°F involved cutting deeper into the FCC gasoline, fractionating

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30086

T90

reduction

heavy reformate and hydrocracking these heavy gasolines. Getting below 290°F also involved fractionating alkylate and blending the heavy alkylate to jet.

Controlling some properties synergistically controlls others. Reducing T90 significantly reduces aromatics because the heavy-heavy FCC gasoline and heavy reformate that are removed from the gasoline pool to drop T90 are rich in aromatics. Reducing T90 also reduces sulfur because heavy FCC gasoline has a high sulfur content. However, reducing T90 is antagonistic to controlling RVP because the heavy components cut out of the gasoline pool have a very low Reducing olefins also drops sulfur content of the RVP. gasoline pool as very high sulfur light coker gasoline is hydrotreated and isomerized, intermediate sulfur light FCC gasoline with C, olefins is etherified and alkylated, and the FCC C₅ cut is hydrotreated and isomerized. Processing C₅ olefin rich FCC gasoline to reduce olefins also reduces RVP. Blending ether to meet mandated oxygen content greatly reduces aromatics as the high octane ether backs out some of the need for aromatic octane.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30087

TURNER, MASON & COMPANY Consulting Engineers

synergy

X. REFORMULATION The CARB staff proposed some mild reformulation limits in CASE June that we studied in Cases 3 to 5. The more stringent RESULTS CARB August proposal and ARCO EC-X proposal were studied in Cases 6 to 22. The CARB October 4 proposal, and our alternate cases are covered in Cases 23 to 30. Our discussion of reformulation case results will cite a few cases as examples. These are: the FCAA Case 2 as a relatively mild case; the Flat October 4 CARB proposed Case 25 as one of the more severe cases studied with flat limits and realistic compliance margins; and our alternate proposed Knees Case 30. Average Case 23, with the flat limits of Case 25 modified to averages at the flat level, will illustrate the

25 modified to averages at the flat level, will illustrate the advantage of averaging with less restrictive refinery property limits on the ultimate cost to the California motorist. While these cases are cited as examples, the points discussed apply to all of the cases.

The cost of reformulated gasoline ranges from 6-11¢/G forthe FCAA Case 2 up to 20-28¢/G for the proposed CARBcost ofCase 25 with flat limits and compliance margins. Case 23reformulatedwith average limits reduces the cost to 11-16¢/G. Bygasolineinvestigating the cost curves for each property, we havearrived a more cost-effective set of specifications which areclose to the knees in our Knees Case 30 with costs in therange of 9-14¢/G.

The California refinery investment required for the Flat Case 25 would be in the range of \$4 to \$7 billion. The

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30088

Knees case would require only about 30%, the Average case about 45% and the FCAA case only 14% as much refinery investment as the Flat case.

Foreign ether investment is about the same for all reformulation cases studied at about \$2 to \$3 billion.

All of the reformulation cases require a large increase of about 100 MBPCD of MTBE supplied to the refinery. This material MTBE contribution to the gasoline pool means that less balance gasoline has to be made from crude oil for two reasons. First, MTBE directly reduces the need for hydrocarbon gasoline that is made from crude. Secondly, the octane contributed by MTBE is offset by lower reformer severity, which improves gasoline yield. This in turn reduces crude demand further. The net result in a relatively mild reformulation case, such as FCAA Case 2, is a 115 MBPCD reduction in crude requirement.

The addition of MTBE, reduction in aromatic content and reduction in T90 tend to reduce the heat of combustion of gasoline. To compensate for this and maintain constant total vehicle miles travelled (TVMT), gasoline production is increased by 2 to 3%.

Reductions in T90 are accomplished by heavy component fractionation and rejection from gasoline. One of the dispositions of the heavy, heavy aromatic gasoline cuts is to

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30089 residual fuel. In severe reformulation cases such as Flat Case 25, this low value cutter results in a significant increase in residual fuel production from crude and increases the amount of crude required to make gasoline. In mild reformulation cases like the FCAA case, the crude oil reduction results in a decrease in residual fuel.

In order to meet low RVP limits below about 7.0 psi, it is necessary to remove saturated $C_s s$ from gasoline. Pentanes, light straight run gasoline and light hydrocrackate are shipped to the Gulf Coast and sold as petrochemical feeds. Removal of $C_s s$ requires more gasoline from crude oil with a concomitant increase in residual fuel.

In order to simultaneously meet all of the stringent specifications in Flat Case 25, it is necessary to completely fractionate many gasoline streams. These include a heavy naphtha splitter, FCC gasoline splitters, hydrocrackate fractionation, coker light gasoline splitter, reformer feed fractionator, reformate fractionator and an alkylate splitter. In addition to existing fractionation, this fractionation capacity corresponds to more than double the gasoline production, since some streams must be fractionated as unit feeds and multi-fractionated into cuts again as products. Fractionation equipment will cost about \$1.4 billion, or nearly 30% of refinery investment in this case. In the alternate Knees Case 30, this added fractionation is reduced to about equal to

process

detail

investment

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30090

gasoline production. This will cost only \$0.3 billion, or 20% of total refinery investment.

There is a considerable amount of severe and mild hydrogen processing required in Flat Case 25. The severe part includes hydrocracking of heavy gasoline to reduce T90 and benzene saturation. The mild part includes FCC gasoline hydro-desulfurization to remove sulfur and hydrotreating of distillate. This would require either expansion or addition of hydrogen plants. In total, for the Flat Case 25, these hydrogen process facilities will cost about \$2.3 billion, or 45% of total refinery investment. In the Knees Case 30, the amount of new hydrogen processing is reduced to primarily mild and benzene saturation so that existing hydrogen generation capacity is almost adequate. Hydrogen processing will require nearly one-third of total refinery investment, or \$0.5 billion in Knees Case 30.

In FCAA Case 2, MTBE is produced from all available isobutylene. In Flat Case 25 and Knees Case 30, vapor pressure and olefin limits combine to make the addition of TAME plant capacity economical. In the severe Flat Case 25, alkylation capacity is also built to handle the production of amylene alkylate. This case also requires a great deal of isomerization capacity to improve the octane number of the olefin saturated FCC and coker C₆ streams. Alkylation and isomerization facilities will cost about

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30091

\$1.3 billion, or 25% of total Flat Case 25 refinery investment. These steps are not necessary in the knees Case 30.

The addition of MTBE to the gasoline pool reduces the need for other gasoline components. This is reflected in reductions in both FCC feed rate and conversion. The added octane from MTBE reduces the need for octane from reformate. Hence, reformer feed rate and severity are reduced. This reduced demand for gasoline from crude lowers crude unit utilization.

One of the most notable changes in gasoline composition involves FCC gasoline. In the Base Case, FCC gasoline is about 37% of the gasoline pool and is mostly split into only light and heavy gasoline at a 255°F cut point. In the severe Flat Case 25, all of the FCC gasoline is split into individual carbon number cuts, and only 15% of the pool is FCC gasoline cuts. In the Knees Case 30, fractionation is less complete, but FCC gasoline cuts are 22% of the pool.

Reformate is not fractionated in the Base and mild FCAA Case 2 and comprises 35% and 25% of the pool, respectively. It is all fractionated in the severe Flat Case 25, and the heart cut contributes a little more than 20% to the pool. The Knees Case 30 has partial splitting, and 24% of the pool is reformate and its cuts.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30092

process unit utilization

gasoline pool composition

These decreases in FCC gasoline and reformate are reflected in the increase in low aromatic, saturated components from 25% in the Base up to 40 to 64% for these reformulation cases. There is no light reformate in gasoline in the Base Case. It gets as high as 11% in the Flat Case 25 and must all be severely treated to saturate benzene. This is an expensive step and destroys octane by converting benzene into cyclohexane.

In most cases, conventional alkylate is 10 to 11% of the pool. However, in Flat Case 25 the low vapor pressure and olefin limits require removal of amylenes from the pool, which boosts the alkylate to nearly 18%, including nearly 4% amylene alkylate.

In order to reduce olefins and maintain octane number in Flat Case 25, much of the FCC C_s s must be hydrotreated and then isomerized. Isomerate becomes 7% of the pool in Flat Case 25, but is in the 1 to 2% range in the other cases being discussed.

Light and medium hydrocrackate get as high as 15% of the pool in Flat Case 25, reflecting the hydrocracking of heavy gasoline to reduce T90. In the Knees case, this component is about 12% and is in the 5 to 7% range in the Base and FCAA Case 2.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30093

MTBE and TAME total just over 11% in all three of these cases. It must be emphasized that variability in this component on a blend-to-blend basis would add flexibility in controlling octane at the fixed aromatics levels required in reformulated CARB Phase 2 gasoline.

The incremental costs shown in Table H-9 for Flat Case 25 point up the extreme difficulty in meeting the restrictions in this case. Octane, RVP, benzene, sulfur and T90 incremental costs are 2 to 17 times higher than the corresponding figures for the Knees Case 30 shown in Table I-9. While these shadow costs apply to only very small changes, they are a reflection of the high cost of meeting the onerous restrictions of Case 25.

> We ran a winter base case and one Case W-1, which was similar to summer Case 8 adjusted for winter volatility constraints and the winter CO nonattainment area requirement for 2.7% minimum oxygen. This case verified that the summer case was generally more severe in terms of the cost of reformulated gasoline and investment requirements.

> The winter case cost of reformulation was 12c to 19c/G of gasoline, compared to 16c to 22c/G for Case 8. Refinery investments at \$1.5 to \$2.3 billion were right at half of summer investments. Foreign investments for MTBE plants are \$2.4 to \$3.9 billion, about 30% higher than the summer

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30094

gasoline property incremental costs

winter case case. This would indicate that foreign MTBE investment should be midway between the summer and winter requirements, with adequate storage to even out producton in face of the seasonal demand swing.

There were a few differences in the processes selected. There was a greater requirement for FCC gasoline hydrodesulfurization and alkylate splitting in the winter case. This indicates that each refiner will have to carefully study its winter operation before committing to summer investment requirements. All of the other summer process equipment is more than adequate to meet winter requirements.

Reduced C_p/C_p aromatics in gasoline are purported to reduce reactivity of exhaust gases by a small amount. By extrapolation of our LP results, we made an approximate guesstimate by hand of the cost of a severe reduction in C_p/C_p aromatics down to 1%. This evaluation could not be made using our refinery LP without extensive additional data to represent added processing options. Results were as follows:

	Case			Very Low C _s /C _s
	<u> </u>	_23_	_21_	<u>Aromatics</u>
C _s /C _s Aromatics, %	24	17	12	1
Ether, %	2	10	15	24
T10, °F	125	132	149	155
T90, °F	348	300	270	240
Pentane Sales, % of				
Gasoline Pool	0	0	8	16

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30095

low C_s/C_s aromatics

	Case			Very Low C _s /C _s
	0	_23_		<u>Aromatics</u>
<u>Cost Over Base Case</u> Investment, \$MMM Unit Gasoline Cost, ¢/G	0	3-6	8-12	~ 16-22
All Restrictions C _s /C _s Restrictions	0 0	11-16 6-9	26-36 15-20	~ 45-60 ~ 35-45

With the exception of alkylate, the octane of the available refinery C₈+ streams after aromatics removal and olefins saturation is unacceptably low for blending into gasoline. Loss of these very low RVP C_a/C_a components would necessitate C₅ rejection to maintain RVP. Therefore, the impacts of eliminating most of the C₈/C₉ aromatics would be to drastically narrow the composition of the summer gasoline from a primarily C_s/C_g mix to an impractical C_g/C_7 mix. This would reduce the T10 to T90 boiling range to about 155 to 240°F, compared to the CARB 1 base of 125 to 348°F. It is questionable whether the existing automobile fleet could run well on such a narrow boiling fuel. Total aromatics would be reduced to about 12%, and ether content of the gasoline would have to be increased to about 24% (above the legal limit of 15%) to maintain octane. This would require unmanageable pentane sales of about 16% of the gasoline pool.

The total costs for these cases are higher than the C_{g}/C_{g} aromatics reduction costs because they include costs for reductions in olefins, benzene, sulfur, RVP, T50 and Dl. The

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30096

wholesale elimination of most of the C_{g}/C_{g} aromatics would have extremely high costs with apparently low emission benefits.

CARB Phase 2 regulations with quarterly averaging of controlled properties at the flat limit level would make the cost average vs. of reformulating gasoline only about half as expensive as the flat limits proposed flat limits. Lab plus blending compliance margins increased the cost of reformulating gasoline by about 75% over averaging. Reformulation costs rose from 11-16¢/G to 20-28¢/G.

> Flat limits effectively create a much more severe actual limit on regulated properties than the promulgated specification because refiners must always include a compliance margin to keep from exceeding the specifications. As we discuss later in the section on the need for compliance margins, the refining/blending/testing process is subject to inaccuracies and unplanned unit outages. To avoid the stiff penalties for exceeding the flat limits of the regulations, refiners will incorporate compliance margins to compensate for the inaccuracies of the properties associated with gasoline production. The compliance margins then become de facto extensions of the regulations, making the regulation more burdensome and expensive to meet.

> Averaging controlled properties on a quarterly basis allows refineries to avoid large compliance margins and produce

> > ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30097

reformulated gasoline that meets the specifications intended in the regulations. Averaging has precedent; the Environmental Protection Agency, as part of its lead phasedown regulations, has used quarterly averaging to regulate the amount of lead allowed in leaded gasoline. Refiners have still blended conservatively to not exceed the allowed average and incur fines, but their compliance margin has been very small.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30098

Page 52

XI. NEED FOR COMPLIANCE MARGINS

flexibility

actual

refinery

Because refineries have a limited number of blending stocks, they are limited in the number of specifications they can meet simultaneously. Current gasoline specifications are written loosely enough that a diligent refinery blender can usually optimize on two or three binding specifications and still easily be within specification on all other properties. The CARB Phase 2 proposed regulations require so many added tight property specifications that the refinery will have to meet as many as nine limitations simultaneously instead of the current two or three.

The refinery LP was able to concurrently meet all nine property specifications of the very restrictive CARB Phase 2 proposed regulations with a combination of investment in LP versus new processes and the availability of multiple narrow range components, neither of which will be available to all the refineries. To meet the proposed Phase 2 regulations, we allowed the LP almost unlimited new process opportunities, and the LP typically invested in twelve to fifteen new or expanded units. Individual refineries may not have the resources for such a massive construction program. То simulate the operation of a complex refinery, the LP portrays gasoline stocks as a collection of up to forty components with very narrow property ranges. Actual refinery production consists of about one-third to one-half as many components with broader property ranges. At times, unit shutdowns decrease the number of blending components even more, making blending to multiple property limits still more difficult.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30099

Sampling inaccuracies add another degree of uncertainty to gasoline blending. Thus, the LP normally optimizes by blending components in ways not available to the refiner.

First, the refiner does not have as many blending components as the refinery LP. Second, because of variation in feedstocks and unit operations, the refiner has only approximate knowledge of the properties of the blending components, while the refinery LP is based on exact properties. Because refining is a continuous process involving enormous volumes, samples often offer only approximations of the actual properties of the refinery streams. When the stream is blended, it may not behave as predicted. Because of these process limitations, the refinery is more limited on the number of specifications it can meet simultaneously. In actual practice, the refinery must give away (be below the limit) on some specifications in order to meet all specifications. On average, the give-aways are the blending margins shown on V-6.

When facing flat limits, the refiner must also compensate for lack of precision in laboratory testing. As shown in V-3, the inaccuracy in laboratory tests can be as high as 40%. If the definition of meeting a regulated property is the analysis of an outside laboratory and failure to meet the test carries serious economic consequences, the refiner must account for the reproducibility of the test in its blending and set its

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30100

TURNER, MASON & COMPANY Consulting Engineers

blending margins

lab

compliance

margins

1P

blending specifications to include lab compliance margins, as shown in V-6.

Most of the discussion and our reporting has centered around gasoline pool properties. However, in all cases we produced at least three grades of gasoline: gasoline premium. intermediate and regular. The refinery LP blended each blending grade to specifications. We tested a refinery's ability to meet specifications on each gasoline grade by combining the refinery LP components into blending components refineries could produce. We then reblended to individual gasolines specifications with a gasoline blending LP. We evaluated Case 21, the case with the most stringent lab and blending compliance margins for the CARB staff August 5 proposal, and Case 8 with only lab compliance margins. We had a difficult time reblending Case 21 to specification, while reblending Case 8 was relatively easy.

> Case 21 was such a severe reformulation case that the number of blending components decreased as added blending components from lower reformulation limits were processed out of existence. As shown in Table X-5, we combined the refinery LP components into refineryproducible components. As shown in Table X-1, we then blended the twelve components we produced to verify that we had properly combined properties. We then blended the individual gasoline streams according to the refinery LP recipes, as shown in Tables X-2 through X-4. For the three

> > ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30101

Page 55

blends, all properties except octane were within reasonable tolerance. Premium octane was below specification by 0.8 octane number, a significant difference. Using a gasoline blending LP, we attempted to reblend all properties to specification. To blend premium octane to within 0.1 octane number of specification, we had to allow the aromatics and benzene contents and distillation to fluctuate. The reblend was difficult, requiring us to rerun the case seven times to maximize premium octane and stay within blending tolerance on aromatics and distillation.

Case 8, with much less severe reformulation limits, required very little reblending. As shown in Tables X-6 and X-10, 37 refinery LP blending components were combined to eighteen components available to the refineries. As shown in Tables X-7 through X-9, when we blended the refinery-producible components according to the refinery LP recipes, premium octane was down only 0.3 number, and regular benzene content was high by 0.1 volume %. Other properties were very close to specification. The gasoline LP blended to the tolerances we had established for the properties on the first pass, so we considered the problem solved.

The individual refinery would have even more difficulty than we did in blending to the proposed Phase 2 specifications. Our analysis represents the aggregate refinery. Because the individual refinery will not have as many process units, it will not have all the components available to the aggregate

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30102

refinery model and will typically face blending problems similar to the ones we faced in reblending Case 21 for less restrictive property limits.

.

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30103

We calculated the impact the CARB staff October 4 proposal XII. REFINERY **EMISSIONS** would have on refinery emissions for Case 25 with flat limits or Case 23 with average limits. Our analysis was limited to IMPACTS emissions from increased fuel consumption in low NO. burners, sulfur plant emissions and FCC stack emissions. We did not calculate fugitive emissions from new units or new offsite facilities and tankage.

changes in

refinery

new

emissions

The estimated increase in total California refinery emissions to produce reformulated gasoline meeting the CARB staff October 4 proposal in tons per day is shown in the following table:

	Flat Limits Case 25	Average Limits Case 23
SO,	0	(5)
SO _x NO _x	5	1
CO	7	1
PM	3	0
CO2	22,000	8,600

We calculated the number of new source permits required to construct new process heaters and fired boilers. We assumed that 450 psig steam would be available in the California conversion refineries for reboiling towers and source supplying preheat for processes. Fired heaters would be permits required to reboil streams boiling above 300°F or to supply preheat above 300°F. Additional steam demand would come from gas-fired boilers with a capacity of 150M pounds/hour. Associated refinery added fuel consumed and

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30104

estimated new furnaces and boilers (statewide total) are shown below:

	Flat Limits <u>Case 25</u>	Average Limits <u>Case 23</u>
Added Fuel Use, MMBTU/Hr.	15,000	5,900
Number of New Fired Heaters	260	180
Number of New Boilers	34	17

Although we did not calculate the fugitive emissions from new process units and new offsites, we did estimate the increased amount of new tankage that would be required for the CARB staff October 4 proposal. Naturally, we considered the tankage number of new blending components required. More importantly, we considered the difficulty a refiner would have blending to meet the constraints of the flat limits case. We also incorporated the refiner's need to isolate and test components before blending and to provide for fluctuations in component qualities. We estimated that meeting the CARB staff October 4 proposed reformulations using averaging would increase gasoline tankage requirements 50% above the base case. Using flat limits would increase gasoline tankage requirements to double that of the base case.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30105

XIII. MODELING ASSUMPTIONS AND CONSTRAINTS

> aggregate model constraints

cost

ranges

Our California refining industry model with seventeen conversion refineries could over-optimize relative to individual refinery models. Individual refineries do not contain the same average size process units, nor process the same average slate of raw materials, nor make the same products. Further, all LP models tend to over-optimize because they represent curves with straight line segments. We are extremely aware of these tendencies and have taken extraordinary steps to avoid over-optimization. We have added extra constraining equations and have extensively calibrated our model against aggregate industry results for the same group of refineries. On the other hand, individual refineries can exploit their own particular process capacity strengths to fill their own raw material and product niche, tending to make them nearly as efficient as the aggregate model.

We have provided ranges of cost results rather than individual refinery results. Each refinery is unique and will have different reformulation costs. We have limited new unit sizes to practical ranges and required added units in refineries without needed equipment. When the LP called for additional existing process unit capacity, we sized the capacity to be built in those refineries that did not already have the capacity. Thus, we have avoided implying that one refinery could utilize process capacity at another refinery.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30106

Page 60

In early cases, results could be over-optimized by gasoline grade. Our reformulation model contains up to about 100 gasoline gasoline components with about 25 to 40 active in each grade case. Physical reformulated gasoline components would be optimization limited to around 12 to 15 in each refinery. To avoid this potential for over-optimization, we have included restrictive equations to limit over-distribution of theoretical LP components to grades. For Cases 23 and later, we added more restrictive component equations after calculating physical equivalent blends off-line, using our gasoline blending LP program.

The TM&C LP models used investment costs that were estimated from curves based on actual unit construction costs. Individual process unit costs were reviewed by the industry experts from WSPA members and increased by 3% accuracy to account for increases in costs due to permitting and obtaining emissions offsets. It should be noted that curve type investment costs have an accuracy of only $\pm 25\%$. Major equipment components would have to be costed out in a detailed engineering cost estimate to attain a better accuracy of $\pm 10\%$.

These cost curves also reflect normal engineering
construction industry load. At times of peak load or slack
load, the cost could be significantly higher or lower. The
next few years promise a fairly high overall load due to the
required reduction in low sulfur diesel in the U.S. and low

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30107

aromatic diesel in California, the FCAA requirements for ether and reformulated gasoline by 1995, other refining industry environmental improvements and the significant refinery rebuilding in the Middle East as a result of the recent war with Iraq. WSPA and TM&C decided that because of the significant engineering and construction activity load outlook, the normal range for estimating accuracy should be biased to the high side. Therefore, LP model calculated investment costs are expressed along with a cost range of -15/+35%. The model studies further assume full utilization from initial startup with no problems. All of these factors tend to understate the specific risks associated with each project and the buildup time and other risks related to uncertainties. That is the reason why the risk-free 15% DCF ROI hurdle rate was used.

Our LP model uses process unit yields that were initialized to match the last NPC survey (1985) and are typical for each group of refineries. These yields are based on existing technology and take into account the impact of major quality variables. However, each refinery has unique yields from each process based on specific design factors and secondary feed and product property considerations. We also assumed currently available catalyst and the ability to block out alternate operating modes perfectly.

Our model results were based on using 1989 NPRA average survey gasoline properties as the base line from which the

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30108

TURNER, MASON & COMPANY Consulting Engineers

process unit yi<mark>elds</mark> base uncontrolled properties could not be downgraded. The line appropriate legal limitation will be 1990 gasoline properties, gasoline measured more accurately than the 1989 survey data. These were not defined, so this substitute was used. Base line gasoline will not be fully defined until 1990 industry statistics are compiled. More stringent properties on base line gasoline would make the partial reformulation case more constrained. This was more than offset by assuming tighter caps on unreformulated than required.

The level of aromatics and olefins in gasoline was indicated by the NPRA survey for Auto/Oil. Most respondents product indicated a very limited amount of data in this area and test based their responses on the FIA test. The FIA test indicates a reproducibility of only $\pm 3\%$ on aromatics and about $\pm 5\%$ accuracy on olefins. In addition, some respondents reported data from alternate test methods, such as mass SDeC. chromatograph or PIANO analysis. The lack of accuracy and method consistency was apparent from the standard deviations calculated from the survey results. Standard deviations for aromatics ranged from 8% to 9% for most of the major aromatic components and for finished gasoline. Standard deviations for olefins ranged from 6% to 8% for finished gasoline and reached as high as 11% for whole FCC gasoline. Test method accuracy for sulfur was similar, only worse. The xray method for sulfur testing has an accuracy of ± 30 ppm at the 50 ppm level and ± 90 ppm at the 300 ppm level. Relative test accuracy is ± 100 ppm at the

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30109

1,000 ppm level. Finished gasoline standard deviation was in the 100 to 300 range. Sulfur accuracy was further compromised by numerous respondents reporting "less than" instead of specific sulfur results.

We assumed the 0.8 total vehicle miles traveled/BTUs factor used by EPA in prior studies. We showed a possible range on this variable of 0.6 to 1.0. Preliminary test data from Auto/Oil indicate that this BTU factor may be in the 1.0 to 1.4 range. The cost of the BTU impact ranges from about 3c to 5c/G for the 0.6 to 1.0 BTU factor range used. If the higher range were used, it could add another 1c to 2c/G to reformulation costs.

TVMT/BTU factor

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30110

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 1 of 6

Table Description

- V- Viewgraphs Summary of Results Presentation CARB/WSPA/TM&C Meetings
- V-1 Major TM&C Assumptions and Basis
- V-2 Strengths and Limitations
- V-3 Precision of Assumed Lab Test Methods
- V-4 Inadequacies of Alternate Lab Test Methods
- V-5 Typical Blending Flexibility, Difficulty and Tankage
- V-6 Compliance Margins With Flat Limits
- V-7 Case Descriptions
- V-8 Property Control Maximum Limits
- V-9 Investments Required Over Base
- V-10 Cost Results Over Base
- V-11 Cost of Average Vs. Flat Limits on Properties
- V-12 Cost Impact of Increased Aromatics
- V-13 Cost Impact of Increased Olefins
- V-14 Cost Impact of Increased Benzene
- V-15 Cost Impact of Increased Sulfur
- V-16 Cost Impact of Increased RVP
- V-17 Cost Impact of Increased T90
- V-18 Summary of Cost Impacts of Property Increases
- V-19 Summary of Conclusions

Summary of All Results

- 1 Summary of Unit Costs: Cases 1-22
- 1A Summary of Unit Costs: Cases 23-32
- 2 Compliance Margin Change Cost Impacts
- 3 Property Limit Change Cost Impacts
- 4 Summary of Calculated Costs Hand Cases
- 5 Calculated Cost Changes for Property Changes

A- <u>Assumptions and Bases</u>

- A-1 Investment
- CAP Unit Capacities and Investment Data
- Basic Investment Data
- A-2 Allocation Approach and Flexibility
- A-3 Product Grade Ratio and Properties

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30111

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 2 of 6

Table Description

- <u>A-</u> <u>Assumptions and Bases</u> (Continued)
- A-4 Proposed Model Gasoline Reformulation Processing Options
- A-5 Average Spot Pricing Actual and Outlook
- A-6 Fixed Cost Factors for Added Process Facilities
- A-7 U.S. Product Demand Growth Rates
- A-8 U.S. Product Demands Actual and Outlook
- A-9 U.S. Supply and Demand 1989 Annual
- A-10 U.S. Supply and Demand 1996 Annual
- A-11 U.S. Supply and Demand Second and Third Quarters 1989
- A-12 U.S. Supply and Demand Second and Third Quarters 1996
- A-13 U.S. Crude Runs Outlook
- A-14 Refinery Process Capacities Basis
- A-15 Actual Average Utilization Data %
- A-16 Existing Refinery Process Unit Capacities Before Additions
- A-17 Refinery Process Unit Count and Percent
- A-18 Oxygenates Investment Costs

1989 and 1996 Supply and Demand for PADD V and

- A1- 1989 Raw Materials and Products Detail for PADD V Models
- A1-1 1989 Summer Supply and Demand Actual
- A1-2 1996 Summer Supply and Demand Outlook
- A1-3 1989 Annual Supply and Demand Estimate
- A1-4 1996 Annual Supply and Demand Outlook
- A1-5 Product Grade Ratios % and MBPCD
- A1-6 Summer 1989 Refinery Raw Material Input Rates Detail
- A1-7 Summer 1989 Refinery Product Rates Detail
- A1-8 Summer 1989 Refinery Crude Input Detail
- A1-9 Summer 1989 Refinery Domestic Crude Detail
- A1-10 Summer 1989 Refinery Foreign Crude Detail
- A1-11 VCC Summer Refinery Production Rates Actual and Outlook
- A1-12 VCC Summer Refinery Production Growth Rates Actual and Outlook
- A1-13 Refinery Winter Vs. Annual Refinery Production Ratios
- A2- LP Model Calibrations
- A2-1 Criteria NPC Study

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30112

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 3 of 6

Table Description

- <u>A2-</u> <u>LP Model Calibrations</u> (Continued)
- A2-2 1984 Calibration Run Results
- A2-3 Gasoline Distillation
- A2-4 Gasoline Distillation
- A2-5 Gasoline Aromatics and Olefins
- A2-6 Gasoline Aromatics, Olefins and T90
- A2-7 Gasoline Sulfur and Benzene

<u>B- 1996 Base Case Results – Summer/Winter</u>

- B-2 Raw Materials Input Rates Detail
- B-3 Product Rates Detail
- B-4 Crude Input Summary
- B-5 Domestic Crude Input Rates Detail
- B-6 Foreign Crude Input Rates Detail
- B-7 New Capacity and Investment Required
- B-7A New Process Investments Detail
- B-8 Process Unit Capacities
- B-9 Process Unit Rates
- B-10 Process Unit Utilizations
- B-11 Gasoline Pool Compositions
- B-12 Gasoline Pool Properties and Incremental Costs
- C- 1996 Phase 2 Results: Summer Cases 1-7
- C-1 Run Basis and Gasoline Pool Properties
- C-1A Run Basis and Reformulated Gasoline Pool Properties
- C-1B Run Basis and Unreformulated Gasoline Pool Properties
- C-2 Summary of Costs
- C-2A Refinery Margin Detail Case 7 Over Base
- C-3 Raw Material and Product Rate Changes
- C-4 New Process Unit Rates
- C-5 New Process Unit Investment Costs
- C-6 Process Unit Rate Changes
- C-7 Process Unit Utilizations
- C-8 Gasoline Pool Compositions
- C-9 Gasoline Property Decrease Incremental Costs

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30113

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 4 of 6

Table Description

- <u>D-</u> <u>1996 Phase 2 Results: Summer Cases 8-13</u>
- D-1 Run Basis and Gasoline Pool Properties
- D-2 Summary of Costs
- D-2A Refinery Margin Detail Case 8 Over Base
- D-2B Added Manpower and Fixed Costs Case 8 Over Base
- D-3 Raw Material and Product Rate Changes
- D-4 New Process Unit Rates
- D-5 New Process Unit Investment Costs
- D-6 Process Unit Rate Changes
- D-7 Process Unit Utilizations
- D-8 Gasoline Pool Compositions
- D-9 Gasoline Property Decrease Incremental Costs
- E- 1996 Phase 2 Results: Summer Cases 14-18
- E-1 Run Basis and Gasoline Pool Properties
- E-2 Summary of Costs
- E-2A Refinery Margin Detail Case 17 Over Base
- E-2B Added Manpower and Fixed Costs Case 17 Over Base
- E-3 Raw Material and Product Rate Changes
- E-4 New Process Unit Rates
- E-5 New Process Unit Investment Costs
- E-6 Process Unit Rate Changes
- E-7 Process Unit Utilizations
- E-8 Gasoline Pool Compositions
- E-9 Gasoline Property Decrease Incremental Costs
- F- 1996 Phase 2 Results: Summer Cases 19-22
- F-1 Run Basis and Gasoline Pool Properties
- F-2 Summary of Costs
- F-3 Raw Material and Product Rate Changes
- F-4 New Process Unit Rates
- F-5 New Process Unit Investment Costs
- F-6 Process Unit Rate Changes
- F-7 Process Unit Utilizations
- F-8 Gasoline Pool Compositions

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30114

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 5 of 6

Description Table

- 1996 Phase 2 Results: Summer Cases 19-22 (Continued)
- <u>F-</u> F-9 Gasoline Property Decrease - Incremental Costs
- 1996 Phase 2 Results: Winter Cases WO-W1 G-
- Run Basis and Gasoline Pool Properties G-1
- Summary of Costs G-2
- Raw Material and Product Rate Changes G-3
- G-4 New Process Unit Rates
- New Process Unit Investment Costs G-5
- G-6 Process Unit Rate Changes
- **Process Unit Utilizations** G-7
- G-8 Gasoline Pool Compositions
- G-9 Gasoline Property Decrease - Incremental Costs
- 1996 Phase 2 Results: Summer Cases 23-27 H-
- H-1 Run Basis and Gasoline Pool Properties
- H-2 Summary of Costs
- H-2A Refinery Margin Detail - Case 25 Over Base
- H-2B Added Manpower and Fixed Costs – Cases 25 Over Base
- H-3 Raw Material and Product Rate Changes
- H-4 New Process Unit Rates
- New Process Unit Investment Costs H-5
- Process Unit Rate Changes H-6
- **Process Unit Utilizations** H-7
- Gasoline Pool Compositions H-8
- H-9 Gasoline Property Decrease - Incremental Costs
- 1-1996 Phase 2 Results: Summer Cases 28-32
- Run Basis and Gasoline Pool Properties 1-1
- 1-2 Summary of Costs
- Raw Material and Product Rate Changes 1-3
- New Process Unit Rates 1-4
- New Process Unit Investment Costs 1-5
- Process Unit Rate Changes 1-6
- 1-7 **Process Unit Utilizations**

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30115

WSPA STUDY OF CARB PHASE 2 GASOLINE

Page 6 of 6

Table Description

- <u>I- 1996 Phase 2 Results: Summer Cases 28-32</u> (Continued)
- I-8 Gasoline Pool Compositions
- 1-9 Gasoline Property Decrease Incremental Costs
- <u>X-</u> <u>Physical Gasoline Blending LP Results</u> Case 21
- X-1 Pool Comparisons Compositions and Properties
- X-2 Regular Comparisons Compositions and Properties
- X-3 Intermediate Comparisons Compositions and Properties
- X-4 Premium Comparisons Compositions and Properties
- X-5 Theoretical (Refinery LP) to Physical (Gasoline LP) Combinations Case 8
- X-6 Pool Comparisons Compositions and Properties
- X-7 Regular Comparisons Compositions and Properties
- X-8 Intermediate Comparisons Compositions and Properties
- X-9 Premium Comparisons Compositions and Properties
- X-10 Theoretical (Refinery LP) to Physical (Gasoline LP) Combinations
- Y-1 Reduce C_{a}/C_{a} Aromatics in Gasoline

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30116

REC 11/18/91

VIEWGRAPH 1 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

MAJOR TM&C ASSUMPTIONS AND BASES

- Model validated/calibrated 17 California conversion refineries
- Investment MTBE Middle East basis ROI 18%
- Investment Refinery ROI 15%, realistic, reviewed, optimized from unit curves
- Pricing 1996 spot \$16.70 ANS, 65¢ gasoline, 96¢ MTBE, \$13 bunker
 1988-91 spot \$16.90 ANS, 65.2¢ gasoline, 98.4¢ MTBE, \$13.10 bunker
- Major light products constant; adjust gasoline to constant vehicle miles traveled
- Flexibility optimum ANS, MTBE, bunker, coke, C₅, C₄, C₃, gas
- 1996 supply and demand summer consensus outlook
- 1996 grades 25% premium gasoline, 80% low aromatics diesel
- Capacities Base plus required; summer utilizations; add to each refinery; 2 MBPSD minimum unit size; debottlenecking up to 20%
- Reformulation options (#) aromatics (21), oxygen (4), olefins (12), benzene (8), sulfur (13), RVP (8), T90 (20)

REC - 10/23/91

U.S. District Com C.A. No. 95-2379 SUBJECT TO PROT

ភ្លៃដ្ឋា

(al. (a.) (Rx) E ORDER

VIEWGRAPH 2 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

STRENGTHS AND LIMITATIONS

Strengths

- TM&C Selected as modeling contractor by NPC, API, Auto/Oil, WSPA
- Recognized Refining Industry Experts Cunningham, Michalski, others
- Best Refining Industry Models critiqued by 5 industry task groups
- Validated, Accurate Models unit/refinery yields and properties reproduced history
- Flexible Models over 50 different gasoline reformulation options
- Costs Results conservative, optimized, unbiased
- Valid Basis constant major light products/net margins; optimum minor products
- Realistic Investments, Valid Pricing Outlook, Calibrated Operating Costs
- Reasonable Supply and Demand consensus outlook seasonalized
- Optimized Capacities 1 new unit of each type per refinery; realistic minimum sizes

Limitations (Compensation)

- Over-optimized excess flexibility with 17 refineries in one model (calibrated)
- No individual refinery costs (proprietary/antitrust preclude)
- Over-optimized gasolines meet 9-10 limits simultaneously (lab and blend margins)
- Marginal refineries obscured (cost and price impacts offset conservative costs)
- Property cost curves interdependent (synergisms minimized conservative costs)

REC - 10/23/91

U.S. Distri C.A. No. 9 SUBJECT TO P

30118

VIEWGRAPH 3 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

PRECISION OF ASSUMED LAB TEST METHODS

	Proposed <u>Flat Limit</u>	Repro- <u>ducibility</u>	Repeat- _ability_	Test Name	ASTM Method D-
Aromatics, Vol. %	25	±5-10%	±5% ⁽¹⁾	GC-PID/FID	Not std.
Oxygen, Wt. %	1.8-2.2	±22%	±10%	GC	4815-89
Olefins, Vol. %	5	±20%	±8%	Bromine No. ⁽²⁾⁽³⁾	1159-89
Benzene, Vol. %	1.0	±28%	±15% ⁽¹⁾	GC	3606-87
Sulfur, Wt. PPM	40	±38%	±28%	Coulometry ⁽³⁾	3120-87
RVP, PSI	7.0	±0.3	±0.2 ⁽¹⁾	Grabner	13CRR-2262b
T90, °F	300	±12	±7	Distillation	86-90
T50, °F	210	±12	±7	Distillation	86-90
(1) Estimated					

⁽¹⁾ Estimated.

ARCO et al. U.S. District Com C.A. No. 95-2379 SUBJECT TO PROT 301

NOCAL et al. rt (C.D. Ca.) KMW (JRx) ECTIVE ORDER ⁽²⁾ Results may be affected by oxygenates.

⁽³⁾ Significantly more precise than method indicated in CARB proposal.

DAB/REC - 11/4/91

1

VIEWGRAPH 4 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

INADEQUACIES OF ALTERNATE LAB TEST METHODS

	Proposed <u>Flat Limit</u>	Repro- <u>ducibility</u>	Repeat- <u>ability</u>	<u>Test Name</u>	ASTM <u>Method D-</u>
Aromatics, Vol. %	25	±3	±1.4	FIA ⁽¹⁾	1319-89
Olefins, Vol. %	5	±3.7 ⁽²⁾	±0.9	FIA ⁽¹⁾⁽³⁾	1319-89
Sulfur, Wt. PPM	40	±60% ⁽²⁾	±60% ⁽²⁾	X-Ray ⁽³⁾	2622-87
RVP, PSI	7.0	±0.9 ⁽²⁾	±0.3 ⁽²⁾	Dry ⁽⁴⁾	4953-90
		±0.7 ⁽²⁾	±0.2	Reid ⁽⁵⁾	323-90

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30120

- (1) Results affected by oxygenates.
- ⁽²⁾ Very poor precision.
- ⁽³⁾ Method indicated in CARB proposal.
- ⁽⁴⁾ Results not affected by any oxygenates.
- ⁽⁵⁾ Results affected by alcohols.

DAB/REC - 11/4/91

VIEWGRAPH 5 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

TYPICAL BLENDING FLEXIBILITY, DIFFICULTY AND TANKAGE

		Current/ CARB 1	Federal CAA	<u>10/4 CARB</u> Flat Limits	2 Proposal Averaging	CARB 2 Knees [*]
	Number of Components		<u></u>			
	in Gasoline Pool					
	LP Model Used	21	29	27	34	35
	Real Equivalent	10	15	14	17	18
	Typical Refinery	8	13	12	15	16
	Number of Property Limits					
	Binding/Flat	3	2	9	2	3
	Average (with NB Caps)	-	5 *	-	6	4
3	Almost Binding	1	1	-	. 1	1
-	Non-Binding (NB)	11	9	8	8	9
	Level of Flexibility	High	Mid	Nil	Low	Mid
	Level of Difficulty	Low	Mid	Extreme	High	Mid
	Tankage Required	Base	1.4 Base	2 Base	1.5 Base	1.4 Base

At flat limits. Close to property cost curve break points.

2 of these are not very restrictive.

REC - 11/12/91

SUBJEC

0

ORDER

VIEWGRAPH 6 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING **CARB Phase 2 Gasoline Regulations**

COMPLIANCE MARGINS WITH FLAT LIMITS

	Proposed	Co	Refinery		
	Flat Limit	Lab Testing	Blending	Lab Plus Blending	Blend <u>Target</u>
<u>Property</u>					
Aromatics, Vol. %	25	3	2	5	20
Oxygen, Wt. %	1.8-2.2	0.2 ⁽¹⁾	_(2)	0.2 ⁽²⁾	2.0-2.0
Olefins, Vol. %	5.0	1.0	1.0	2.0	3.0
Benzene, Vol. %	1.0	0.2 ⁽³⁾	0.2	0.4	0.6
Sulfur, Wt. PPM	40	15	5	20	20
RVP, PSI	7.0	0.3	0.1 ⁽²⁾	0.4 ⁽²⁾	6.6
T90, °F	300	10 ⁽³⁾	10	20	280
T50, °F	210	10 ⁽³⁾	5	15	195

⁽¹⁾ Repeatability.
 ⁽²⁾ Conservative; need 0.1 higher margin.

Average of reproducibility and repeatability. (3)

REC - 11/4/91

TURNER, MASON & COMPANY **Consulting Engineers**

ARCO et al. U.S. Distric C.A. No. 99 SUBJECT TO PI PRO W (JRx) 0 2 . 2 ORDER

VIEWGRAPH 7 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

CASE DESCRIPTIONS

	<u>Case</u> Base 2 6	CARB Phase 1 Regulations Federal CAA – Statewide – No Compliance Margins (Average Limits) EC-X – No Compliance Margins (Average Limits)
		CARB Phase 2 Proposal
	23	October – With No Compliance Margins (Average Limits)
	24	October – With Lab Testing (L) Compliance Margins
SUBJE	25	October – With Lab Testing Plus Blending (B) Compliance Margins
ARCO U.S. I C.A. N JECT T	31	October – With L Plus B Compliance Margins (Average BZ, S)
et al. v J District Co O PRO 301		Alternate for CARB 2
UNOCA	30	C – Property Cost Curve Knees
L et al. D. Ca.) V(JRx) [VE O		
ORDER	DAB/REC -	11/6/91

VIEWGRAPH 8 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

PROPERTY CONTROL MAXIMUM LIMITS

Case	<u>Name</u>	Comply <u>Margins</u>	<u>A</u>	OX <u>(min)</u>	<u>OL</u>	BZ	S	<u>RVP</u>	<u>T90</u>	<u>T50</u>
Base	CARB 1	Lab	-	0.4	13 *	-	210 [•]	7.5	-	-
2	CAA	No	25 [•]	2.0	13 *	0.95	163	7.1	328	-
6	EC-X	Νο	20	2.7	4	0.8	40	6.7	295	-
	CARB 2									
23	10/4	Νο	25	1.8	5	0.95	40	7.0	300	210 *
24	10/4	Lab	22	2.0	4	0.8	25	6.7	290	200 *
25	10/4	L + B	20	2.0	3	0.6	20	6.6	280	195 [•]
31	11/4	L + B(A)	20	2.0	3	0.8	30 •	6.6	280	195 *
	<u>Alternate</u>									
30	Knees	No	25	2.0	7	0.8	50	7.1	310	-
+ I P		les les lesse Ree	. 14							

* LP results slightly below limit.

LP results significantly below limit – by blending compliance margin or more.

DAB/REC - 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30124

VIEWGRAPH 9 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

INVESTMENTS REQUIRED OVER BASE

		Comply	Investments \$MMM (Billions)									
<u>Case</u>	<u>Name</u>	<u>Margins</u>	Refining	MTBE*	Total	Range						
2	CAA	No	0.7	2.2	2.9	2.2-3.7						
6	EC-X	Νο	2.5	3.3	5.8	4.6-7.5						
	CARB 2											
23	10/4	Νο	2.3	2.0	4.3	3.4-5.6						
24	10/4	Lab	3.4	2.2	5.6	4.6-7.4						
25	10/4	L + B	5.1	2.2	7.3	6.0-9.7						
31	10/4	L + B(A)	4.7	2.2	6.4	5.7-9.1						
	<u>Alternate</u>											
30	С	No (Knees)) 1.5	2.2	3.7	2.9-4.7						
* In Mi	* In Middle East/Far East											

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30125

REC - 11/12/91

VIEWGRAPH 10 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

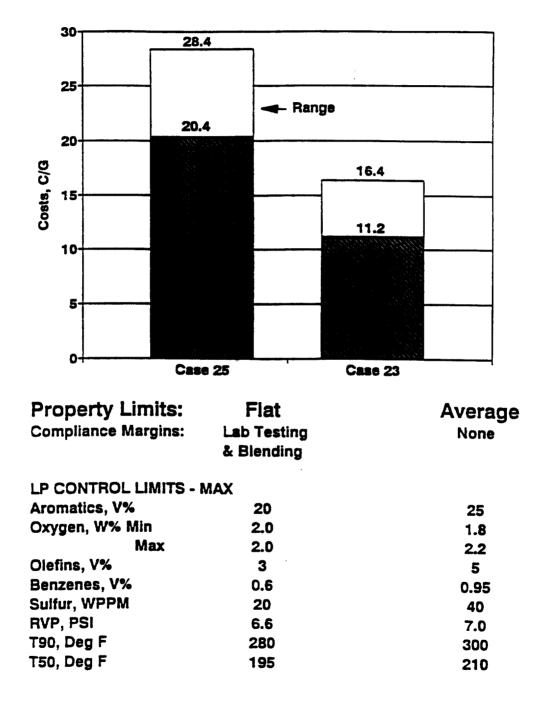
COST RESULTS OVER BASE

			Cos	<u>ts, ¢/G</u>
Case	<u>Name</u>	Compliance Margins	Typical	Range
2	CAA	No (Averaging)	8.1	6.5-10.8
6	EC-X	No (Averaging)	17.0	14.3-21.8
	CARB 2			
23	10/4	No (Averaging)	13.0	11.2-16.4
24	10/4	Lab Testing	17.1	14.8-21.4
25	10/4	Lab + Blending	23.1	20.4-28.4
31	10/4	L + B(Avg. BZ, S)	21.1	18.5-26.1
	<u>Alternate</u>			
30	C	No (Knees)	11.1	9.3-14.2

REC - 11/12/91

C.A. No. SUBJECT TO

301

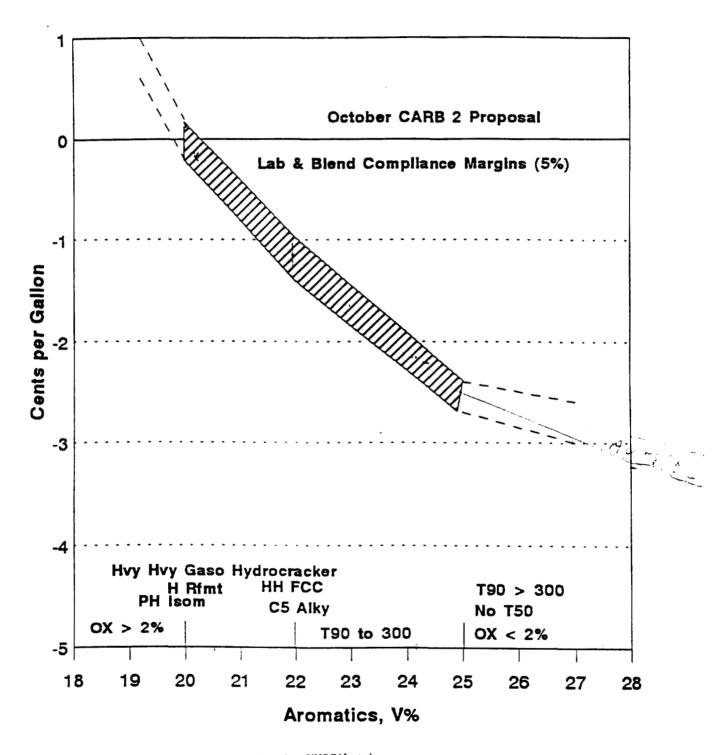

20

IVE

ORDER

្រខ

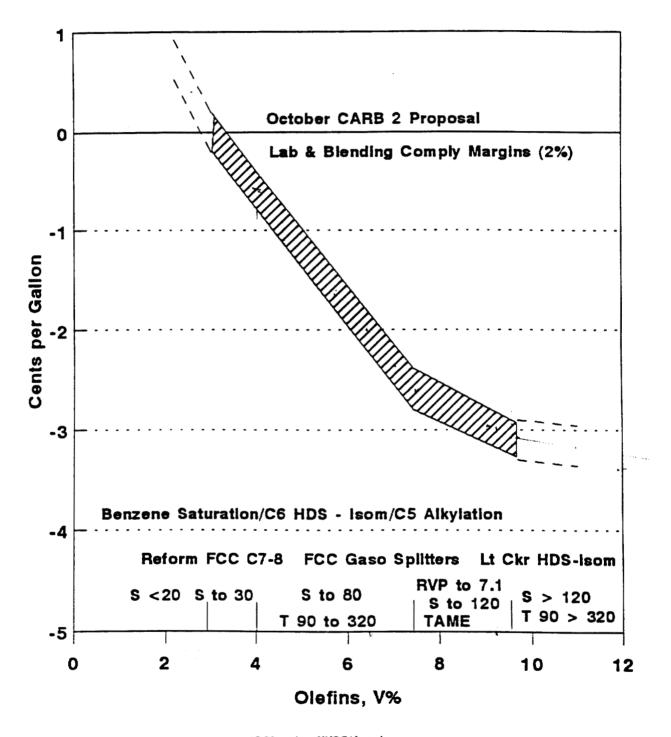
VIEWGRAPH 11 COST OF AVERAGE VS FLAT PROPERTY LIMITS FOR 10/4/91 CARB PHASE 2 PROPOSAL WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE



REC/CLM 10/24/91

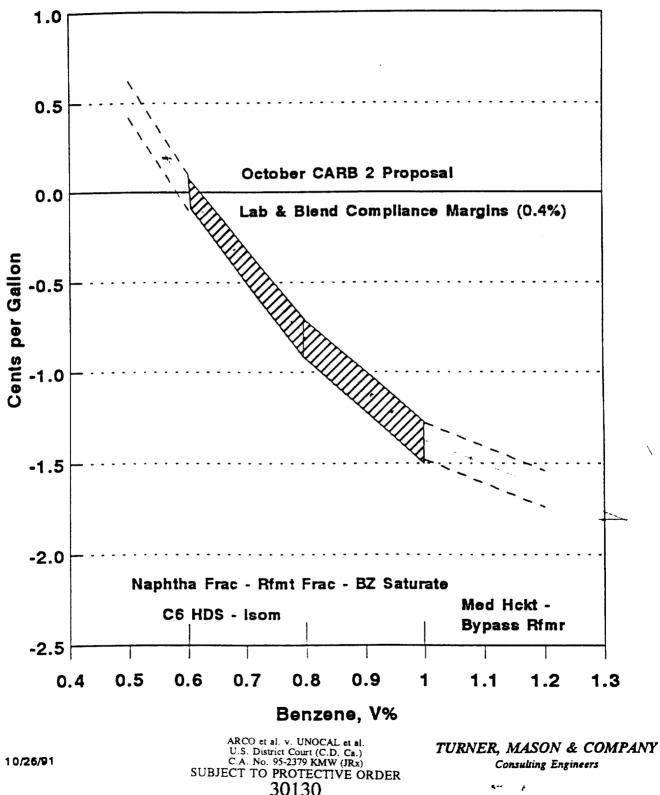
ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) 30127

SUBJECT TO PROTECTIVE ORDER TURNER, MASON & COMPANY Consulting Engineers

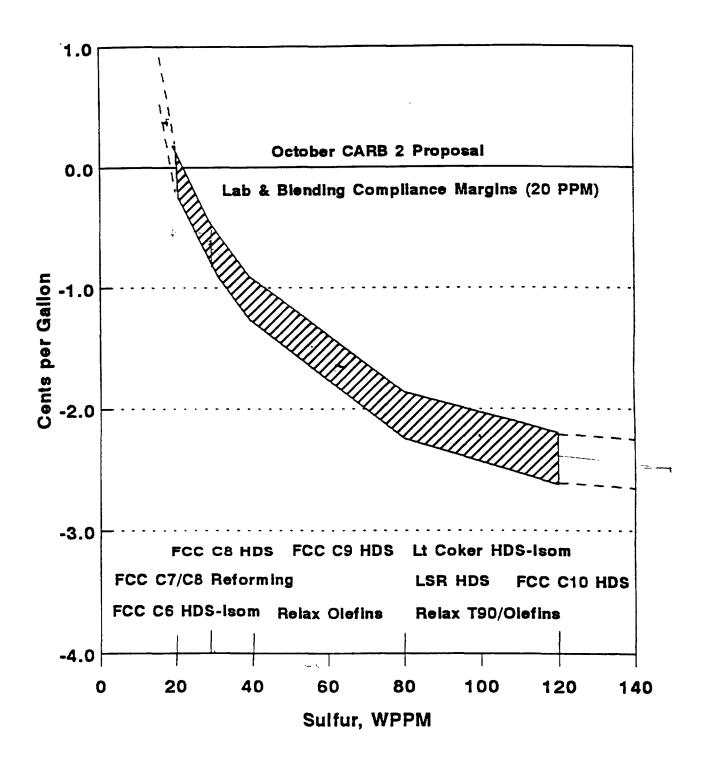

VIEWGRAPH 12 COST IMPACTS OF INCREASED AROMATICS WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE

REC/CLM 10/26/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30128

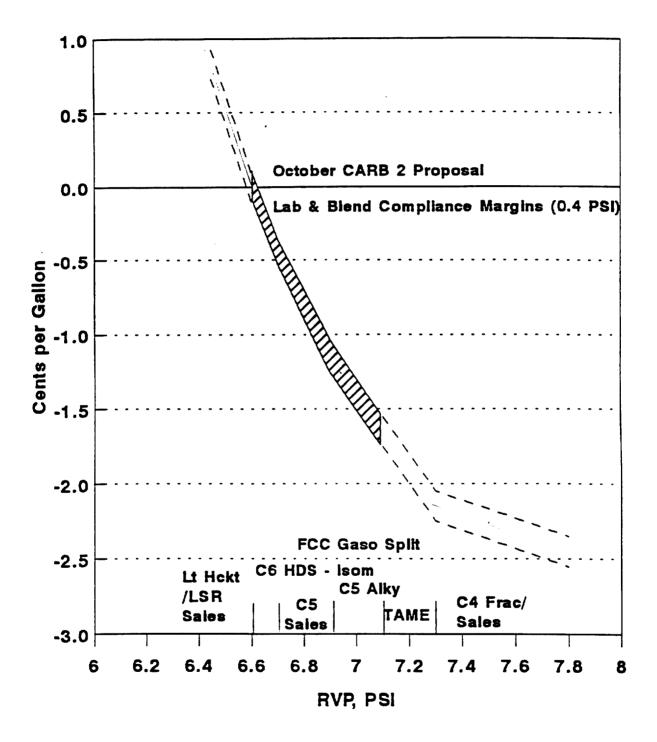

VIEWGRAPH 13 COST IMPACTS OF INCREASED OLEFINS WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE

REC/CLM 10/24/91


ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30129

VIEWGRAPH 14 COST IMPACTS OF INCREASED BENZENE WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE

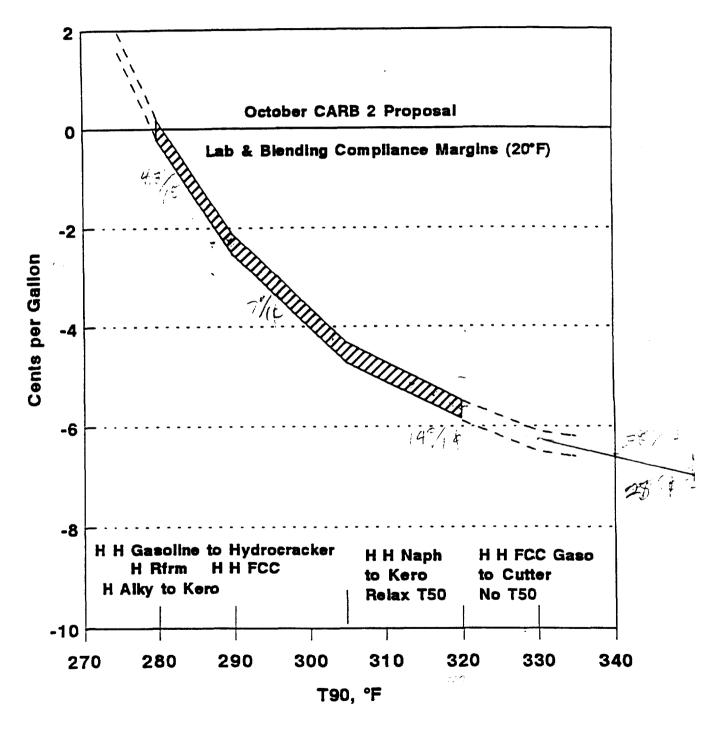
REC/CLM 10/26/91

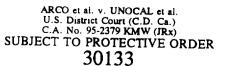

VIEWGRAPH 15 COST IMPACTS OF INCREASED SULFUR WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE

REC/CLM 11/4/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30131

VIEWGRAPH 16 COST IMPACTS OF INCREASED RVP WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE




Based on 280-290 F T90. Curve shifts to left by 0.1 for 20 F T 90 increase.

GWM/REC/CLM 11/4/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30132

VIEWGRAPH 17 COST IMPACTS OF INCREASED T90 WSPA/TM&C STUDY OF CARB PHASE 2 GASOLINE

TURNER, MASON & COMPANY Consulting Engineers

GWM/REC/CLM 10/26/91

VIEWGRAPH 18 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

COST IMPACTS OF PROPERTY INCREASES

	10/4 CARB 2 Less Comply	Cost Curve Optimum	Property Change	Cost Impact, ¢/G_
<u>Property</u> Aromatics, Vol. %	20	25	+5	(2.4)-(2.8)
Olefins, Vol. %	3.0	7.5	+4.5	(2.4)-(2.8)
Sulfur, PPM	20	80	+60	(1.8)-(2.2)
RVP, PSI	6.6	7.1 [•]	+0.5	(1.6)-(1.8)
T90, °F	280	305	+25	(4.3)-(4.7)
Combined				(12.5)-(14.3)

ARCO et al. v. UNOCAL et al. U.S. Distriet Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30134

* Federal CAA limit (lower than optimum).

REC - 11/4/91

VIEWGRAPH 19 WSPA/TM&C ECONOMIC STUDY CARB/WSPA/TM&C ECONOMICS MEETING CARB Phase 2 Gasoline Regulations

CONCLUSIONS SUMMARY

- Federal CAA (statewide) requires \$2.2-3.7 MMM investment and costs 6-11¢/G
- CARB Phase 2 gasoline (October proposal) with compliance margins for lab testing plus blending requires investments of \$6.0-9.7 MMM and costs 20-28¢/G
- Changing October CARB 2 proposal flat limits to average limits (system caps):
 - Reduces costs by 9-12¢/G to 11-16¢/G

U.S. District C. C.A. No. 95-23 SUBJECT TO PRO

02

ORDER

- Reduces required investments by \$2.6-4.1 MMM to \$3.4-5.6 MMM.
- Drops required investments in California refineries by over 50%.
- Shifting to optimum on cost curves would change October CARB 2 proposal for: Aromatics by 5 to 25% RVP by 0.5 to 7.1 PSI Olefins by 4.5 to 7.5% T90 by 25°F to 305 Sulfur by 60 to 80 PPM

and reduce costs by 12-14¢/G based on additive cost curves.

• Alternate C (knees) requires \$2.9-4.7 MMM investment and costs 9-14¢/G.

• Need flexibility of 1.5 to 2.7 Wt. % oxygen and no T50 limit (not controllable).

TABLE 1

SUMMARY OF UNIT COSTS

1996 CASE RESULTS - INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(#/G of base gasoline - constant 1991 \$)

		MAXIMUM PROPERTY CONTROL LIMITS (1)							SOURCE	CALCULA	TED COSTS		
CASE	DESCRIPTION	▲	<u>0X</u>	OL	<u>82</u>	Ş	RVP	<u>190</u>	<u>T50</u>	DI	TABLE	TYPICAL	RANGE
	PA CLEAN AIR ACT REGS 1	25	~ ~		0.05		7.1	328			~ ~		
1	EX. NORTH	25 25	2.0 2.0	13 13	0.95 0.95	163 163	7.1	328			C-2 C-2	8.8	7.3-11.5
2	+ NONE	6	20	13	0.33	103	7.1	320			6-2	8.1	6.5-10.8
<u>7/91 M</u>	MIN CARE 2 - LAB COMPLY MARGIN	S											
3	+ NONE	25	2.0	8	0.8	120	6.7	328			C-2	9.5	7.8-12.3
4	- 80 S	25	20	8	0.8	40	6.7	328			C-2	10.0	8.2-13.0
5	- 33 T90	25	2.0	8	0.8	120	6.7	295		-	C-2	13.5	11.6-17.0
ARCO	PROPOSAL												
6	EC-X	20	27	4	0.8	40	6.7	295			C-2	17.0	14.3-21.7
•													
8/5/91	CARB 2 - LAB COMPLY MARGINS												
7	+ 9 DI	22	21	4	0.8	20	6.7	290	195	1084	C-2	17.4	14.9-22.0
8	• NONE	22	21	4	0.8	20	6.7	290	195	1075	D-2	18.0	15.5-22.4
9	+ .4 RVP	22	21	4	0.8	20	7.1	290	195	1075	D-2	16.7	14.3-21.0
10	+ 30 T90(2)	22	21	4	0.8	20	6.7	320			D-2	14.6	12_2-18.7
11	• 15 T90(2)	22	21	4	0.8	20	6.7	305			D-2	15.8	13.3-20.1
12	+ 22 S	22	21	4	0.8	42	6.7	290	195	1075	D-2	17.2	14.8-21.5
13	+ 4 OL/100 S/30 T90(2)	22	21	8.1	0.8	120	6.7	320			D-2	11.2	9.3-14.7
14	• 3 OL/60 S/30 T90(2)	22	21	7.4	0.8	80	6.7	320			E-2	11.3	9.4-14.7
15	+ 3 A/30 T90(2)	25	21	4	0.8	20	6.7	320			E-2	13.1	11.1 -16.6
16	• 3 OL/60 S/30 T90/NO C5 OL(2)	22	21	7.1	0.8	80	6.7	320			E-2	11.7	9.8-15.0
17	• LAB COMPLY MARGINS	25	2.0	5	0.95	30	7.0	300	200	1100	E-2	13.5	11.5-17.0
18	• 3 A/3 OL/30 S/.4 RVP/15 T90(2)	25	21	7.5	0.8	50	7.1	305			E-2	11.8	9.9-15.2
19	- BLEND COMPLY MARGINS(2)	20	25	2	0.8	10	6.5	280			F-2	23.5	20.4-29.2
20	+ 6 OL/100 S/.4 RVP/30 T90(2)	22	21	10	0.8	120	7.1	320			F-2	9.8	7.9-13.1
21	- BLEND COMPLY MARGINS	20	2.5	2	0.8	10	6.5	280	187	1055	F-2	26.9	23.6-23.2
22	• .2 RVP	22	21	4	0.8	20	6.9	290	195	1075	F-2	17.1	14.7-21.4
													···· -···

(1) OX = Oxygen is the only minimum control limit.
 (2) No T50/DI Limits.

,

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30136

TURNER, MASON & COMPANY Consulting Engineers

REC - 11/13/91

TABLE 1-A

SUMMARY OF UNIT COSTS

1996 CASE RESULTS - INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(¢/G of base gasoline - constant 1991 \$)

			MAXIMUM PROPERTY CONTROL LIMITS (1)									CALCUL	ATED COSTS
CASE	DESCRIPTION	Δ	<u>OX</u>	OL	BZ	S	RVP	<u>T90</u>	<u>T50</u>	DI	TABLE	TYPICAL	RANGE
<u>10/4/</u> 9	DI CARB 2												
23	- NONE/(2.2 MAX OX)	25	1.8	5	0.95	40	7.0	300	210		H-2	13.0	11.2-16.4
24	- LAB COMPLY MARGINS(2)	22	2.0	4	0.8	25	6.7	290	200		H-2	17.1	14.8-21.4
25	- LAB/BLEND CMPL MGNS(2)	20	2	3	0.6	20	6.6	280	195		H-2	23.1	20.4-28.4
31	- LAB COMPLY MARGINS(3)	20	2	3	0.8	30	6.6	280	195		i-2	21.1	18.5-26.1
32	- LAB COMPLY MARGINS(4)	20	2	3	0.6	20	6.6	280	195		1-2	22.8	20.0-28.1
ALTE	RNATES												
26	- ALTERNATE A	25	1.8	7	0.8	30	7.1	295	195		H-2	13.8	11.9-17.3
27	- TEST FOR EMISSIONS(2)	20	2.0	5	0.8	30	7.0	300	200		H-2	15.9	13.5-20.1
28	- ALTERNATE B	25	1.8	8	0.8	80	7.1	320			1-2	9.2	7.7-12.0
29	- ALTERNATE B - 50S	25	1.8	7	0.8	30	7.1	320			1-2	11.0	9.2-14.1
30	- ALTERNATE C - KNEE	25	2	7	0.8	50	7.1	310			I-2	11.1	9.3-14.2
	÷												

(1) OX = Oxygen is the only minimum control limit.

(2) Fixed OX (max = min).

(3) With averaging on benzene and sulfur limits, fixed OX Max = Min.

(4) Case 25 with Lt. Hydrocrackate split for added C5 sales.

REC - 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30137

TABLE 2

COMPLIANCE MARGIN CHANGE COST REDUCTIONS

FROM 1996 CASE RESULTS COMPARISONS

WSPA STUDY OF CARB PHASE 2 GASOLINES (e/G of base gasoline - constant 1991 \$)

CASES	CARB 2 PROPOSAL	COMPLIANCE MARGINS		ULATED EDUCTIONS
DELTA	DATE	INCREMENT / DECREMENT	TYPICAL	RANGE
		NO LAB TESTING / NO BLENDING		
21 - 17	8/5	+5 A, -0.5 OX, +3 OL, +0.15 BZ, +20 S, +0.5 RVP, +20 T90, +13 T50, +45 Di	16.1	14.5 - 19.4
25 - 23	10/4	+5 A, -0.2 OX, +2 OL, +0.35 BZ, +20 S. +0.4 RVP, +20 T90, +15 T50	10.1	9.2 - 12.0
32 - 23(1)	10/4	+5 A, -0.2 OX, +2 OL, +0.35 BZ, +20 S, +0.4 RVP, +20 T90, +15 T50	9.8	8.8-11.7
		NO BLENDING		
21 - 8	8/5	+2 A, -0.4 OX, +2 OL, +10 S, +.2 RVP, +10 T90, +8 T50, +20 DI	11.6	10.5 - 14.0
25 - 24	10/4	+2 A, +1 OL, +0.2 BZ, +5 S, +.1 RVP, +10 T90, +5 T50	6.0	5.6 - 7.0
32 - 24(1)	10/4	+2 A, +1 OL, +0.2 BZ, +5 S, +.1 RVP, +10 T90, +5 T50	5.7	5.2-6.7
		NO LAB TESTING		
8 - 17	8/5	+3 A, -0.1 OX, +1 OL, +0.15 BZ, +10 S, +0.3 RVP, +10 T90, +5 T50, +25 DI	4.5	4.0 - 5.4
24 - 23	10/4	+3 A, -0.2 OX, +1 OL, +0.15 BZ, +15 S, +0.3 RVP, +10 T90, +10 T50	4.1	3.6 - 5.0

(1) Case 32 is the same as case 25 with LL. Hydrocrackate split for added C5 sales.

REC 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30138

TABLE 3

PROPERTY LIMIT CHANGE COST REDUCTIONS

FROM 1996 CASE RESULTS COMPARISONS

WSPA STUDY OF CARB PHASE 2 GASOLINES (#/G of base gasoline - constant 1991 \$)

CASES	SES PROPERTY		ATED JCTIONS
DELTA	INCREMENT / DECREMENT	TYPICAL	RANGE
<u>Official</u>			
	<u>RVP(PSI)</u>		
8 - 9	+0.4 RVP: 6.7 to 7.1	1.3	1.2 - 1.4 •
8 - 22	+0.2 RVP: 6.7 to 6.9	0.9	0.8 - 1.0 •
22 - 9	+0.2 RVP: 6.9 to 7.1	0.4	0.3 - 0.5
	AROMATICS(%)		
15 - 10	+3 A: 22 to 25	1.5	1.1 - 2.1
	OLEFINS ESTIMATE(%)		
3/4/8/10/12/13/14	+3.4 OL: 4 to 7.4	2.1 #	1.9 - 2.5 #
8/9/13/14/20	+2.3 OL: 7.4 to 9.7	0.5 #	0.3 - 0.6 #
3/4/8/10/12/13/14/16	+3.1 OL (C5 OL = 0): 4 to 7.1	1.7 #	1.4 - 2.1 #
	SULFUR ESTIMATE(PPM)(1)		
28 - 29	+50 S: 30 to 80	1.4	1.2 - 1.6
	COMBINED T90(*F) & T50 / DI	4.0	3.8 - 4.7
5 - 3	+33 T90: 295 to 328	4.0 3.4	3.8 - 4.7 3.3 - 3.7
8 - 10	+30 T90: 290 to 320, No T50/Di +15 T90: 290 to 305, No T50/Di	2.2	3.3 - 3.7 2.1 - 2.3 •
8 - 11 11 - 10	+15 T90: 305 to 320. No T50/Di	1.2	1.1 - 1.4
11 - 10	+15 130. 305 to 320, No 1500D1	•.2	1.1 - 1.4
	COMBINED T50(*F) & DI		
21 - 19	+6 T50, +28 DI	6.1	5.6 - 7.2
	COMBINED OLEFIN (%) & SULFUR (PPM)		
10 - 14	+3.4 OL. +60 S	3.3	2.8 - 4.0
28 - 29	+1.0 OL. +50 S	1.8	1.5 - 2.1
LV - LJ		•••	
	COMBINED - ALL BUT OXYGEN		
8 - 18	+3 A, +3.4 OL, +30 S, +0.4 RVP, +15 T90, No T50/Di	6.2	5.6 - 7.2
3/4/8/9/10/11/12/ 13/14/15	Sum of Cost of Indiv. Property Changes from Cases 8 to 18	7.6 #	7.0 - 9.0 #

(1) Corrected by 0.4 ¢/G for Olefin change (7 to 8%) using Olefin cost curve.

 Adjusted for rounding to encompass typical.
 # Estimated costs calculated from multiple cases.
 REC 11/6/91
 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30139

TABLE 4 SUMMARY OF CALCULATED COSTS 1996 CASE RESULTS – INCREASE OVER BASE CASE WSPA STUDY OF CARB PHASE 2 GASOLINE (Constant 1991 \$)

				MAXIMUM PROPERTY CONTROL LIMITS (1)						CALCULATE	DCOSTS
CASE	DESCRIPTION	Δ	<u>OX</u>	<u>OL</u>	BZ	S	AVP	<u>190</u>	<u>T50</u>	¢/Q	MMM\$/YR
	HAND CASES										
-	WSPA 1 (A +20S)	25	1.8	7	0.8	50	7.1	295	195	13.0	2.03
-	WSPA 2 (B -30S)	25	1.8	8	0.8	50	7.1	820	-	9.7	1.52
-	WSPA 3 (A +20S, +15 T90, +10 T50)	25	1.8	7	0.8	50	7.1	310	205	11.1	1.73
-	GM Target (1 % C8A+)	12	4.3	3	0.8	20	6.6	240	180	~ 50	~8

(1) OX = Oxygen is the only minimum control limit.

REC - 11/12/91

TABLE 5 SUMMARY OF CALCULATED COST CHANGES(1) FOR PROPERTY CHANGES WSPA STUDY OF CARB PHASE 2 GASOLINE (Constant 1991 \$)

	PROPE			COST INCREASE
PROPERTY	CHANG		<u>¢/G</u>	MMM\$/YR
	From	То		
Aromatics, V%	34	32	0.4	0.06
	32	25	1.4	0.22
	25	22	1.5	0.23
	22	20	1.2	0.19
Olefins, V%	11	10	0.1	0.02 -
	10	8	0.2	0.03
	8	7	0.4	0.06
	7	5	1.2	0.19
	5	3	1.2	0.19
Sulfur, WPPM	206	150	0.3 +	0.05
	150	50	1.3 -	0.20 -
	50	30	0.7 -	0.10
	30	20	0.7 -	0.10
T90, °F	348	329	0.8 +	0.13
	329	310	1.4 -	0.21
	310	300	1.1	0.17
	300	295	0.7	0.11
	295	290	0.8 -	0.12
	290	280	2.3	0.36
RVP, psi	7.5	7.1	0.5	0.08
	7.1	6.9	0.5 +	0.08 +
	6.9	6.6	1.1	0.18
Benzene, V%	2.2	0.95	1.5	0.23 +
	0.95	0.8	0.4	0.06 +
	0.8	0.6	0.8	0.13

(1) Assuming property limits shift in combinations that allow all property limits to be met simultaneously.

REC - 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30141

INVESTMENT ASSUMPTIONS

WSPA STUDY OF CARB PHASE 2 GASOLINE

- Investment costs are the mid-1991 curve costs shown in LP model data Table I enclosed. Process code names are listed in LP model data Table CAP attached.
- The investment required to meet Base Case 0 demands without gasoline reformulation is sunk investment. Allow the LP models to add economic capacity as required, using fixed cost factors shown in Table A-6.
- Process facilities investment sized by model for each case based on one new unit per refinery. New unit minimum size is 2.0 MBPSD.
- Existing unit capacity can be expanded by up to 20%, based on an equal % of the current investment cost for the average size of the existing units.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30142

REC 11/4/91

TABLE CAP

UNIT CAPACITIES AND INVESTMENT DATA WSPA STUDY OF CARB PHASE 2 GASOLINE

•	ALL PROCESS UNITS ARE ALL PROCESS CAPACITIES	IN MB, ARE I	/CD Basi	EXCE	PT SULI FEED I	FUR WH	ICH IS XCEPT	MST/CL FOR).
•	 ALKYLATION, HYDROGEN, SULFUR, AROMATICS, LUBE /WAX, WHICH ARE BASED UPON PRODUCT RATE. 								
•	POWER GENERATION CAPAC STEAM PRODUCTION IS ML		s Mi	(#*24					
*			cos	ST					NO.
	UNIT NAME COL 7	30		TION	MB/SD 42	MB/CD 48	MB/CD 54	MB/CD 60	REF. 66
*	PADD V CAL CONVERSION, F	EBRUAI	RY						
*	1/89 CAPACITIES+CAP UNDER TO 1/1995								
•	UNIT NAME	SYMB			D SIZE	BASE	MIN	MAX	NO OF REFIN
	CRUDE DISTILLATION	H> ACU		IT	SCP 70	BAS 119.6	MIN	MAX 119.6	NRF 17
	HEAVY NAPHTHA SPLITTE			1 1	7.7 4	0		10 10	
	BT NAPTHA SPLITTER COKER DELAYED	LNS KRD	1	1	20	23.75	5	23.755	;
	COKER FLUID	KRF			20	5.3 0		5.3 0	
	COKER NAP SPLITTER COKER L GASO DS/SPL	KNS CGS		1	2 2.5	0		10	
	VISBREAKER & THRM CRK				20	2.3		2.3	
	SOLVENT DEASPHALTER NAPHTHA HYDROTREATER	SDA NDS			20 25	2.59 24.8		2.59 24.8	
	DISTILLATE HDS	DDS		1	10.4	21.98		100	
	FCC FEED HYDROFINER VAC RESID HYDROFINER	FDS RDS	1	1	36 15	31.8	31	100 1.4	
	ATM RESID HYDROFINER	ARD			30	0		0	
	CAT REFORMER 450 PSI CAT REFORMER 200 PSI	RFH RFL			20 20	8.85	6.6	8.85	
	CAT REF(CONT)100 PSI	RFC			20	3.39	3.1	3.39	
	REFORMATE FRACTIONAT AROMATIC EXTRACT/FRAC	RFT T AFF	1	1	14.8 2	0		100 0	
	BENZENE SATURATION	BSU		1	4.8	Ō		10	
	FLUID CAT CRACKER FCC GASO SPLITTER	FCC FGS	1	1	35 21.9	36.8 0		36.8 100	
	FCC GASO FRACT	FGF	1		22.2	17		17	
	FCC GASO HDS GASO AROMATICS SATUR	GDS GAS		1	2 2	0		10 10	
	DIESEL AROMATICS SAT	DAS		i	13.3	11.72		100	
	HYDROCRACKER-2 STAGE HYDROCRACKER-LOW CONV	HCR	1	1	19.2 15	16.9 4.2	3.2	100	
	HYDROCRACKER-HVY GASO	LHC	'	1	4.6	0		10	
	HYDROCRK H GASO TO C4 HYDROCRACKATE SPLITTE	HC4		1 1	4.6 2	0 0		10 25	
	RESID HYDROCONVERSION	RHC	1		18	õ		õ	
	ALKYLATION PLANT ALKYLATE SPLITTER	ALK		1	5.4	6.60		100	
	OLEFIN CAT POLY	AKS Plm	1	1	5.3 2	0 0.50		100 0.50	
	IC4 DEHYDROGENATION	C4D	1		15	0		0	
	MTBE UNIT TOL DEALKYLATION	BEU HDA	1	1	1.63 5	0.85 0		10 0	
	LUBE/WAX PLANT	LUB			7	1.3		1.3	
	PEN/HEX ISOMERIZATION TIP PEN/HEX ISOM	PHI TIP		1 1	7 7	0 .38		10 10	
	BUTANE ISOMERIZATION	C4I		1	2.	0.28	- -	10	
	HYDROGEN PLT MBPD FOE SULFUR PLANT, MLT/D	HZP SUL		1	2.6	3.36	2.7	10 .167	
	FUEL MIXING (FOE)	FUM			10	20		20	
	STEAM PRODUCED, MLB/HR POWER GENERATION, MKW				150 200	600 0		600 0	
	PLANT FUEL ADJUSTMENT	PFA	1		2	10		10	
	REFINERY LOSS V I T ARE USED TO SELEC	REL T WHE		R TH	2 E OBJEC	10 TIVE S	SEES OF	10 NLY VAR	ABLE
	COSTS (V), INCREMEN	ITAL 1	INVE	STHE	NT COST	rs (1)	OR TOT	TAL	
*	INVESTMENT COSTS-IN INVESTMENTS ARE CALCULA					SED OVE	ER BASE	(BAS))
•	(SCP) IS THE STANDARD S	SIZE P	OR	NEW (CAPACII	ľΥ.			
*	(MAX)(MIN) LIMIT THE TO (NRF) IS THE NUMBER OF	REFIN	IEP1	CITY	USABLE	E IN A	RUN (E	MODEL	NEW)
*	ASSUME 50% OF 450 PS1 F	EFM L	JPGR	ADED					
	TO 200 PS1 @ 91% OF FOR	MER C	AP4	CITY					
		i v TI	NO		at al				

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30143

TABLE I BASIC INVESTMENT DATA WSPA STUDY OF CARB PHASE 2 GASOLINE

•	TABLE 1	IS A CONT	INUATI	ON OF			ID CON	TAINS	BASIC	
	INTESTICAL PAIR (HID IVI GOL. BONDI) HIT IST									
*	(STF) IS	THE ON-S	TREAM	FACTOR	FOR (CONVER1	LING F	ROM MB	SD TO M	B/CD.
•		INDICATE								
٠	COAS	FOR VCC	COSTS	S INCL.	MORE	STRING	SENT E	NVIRON	MENTAL C	OST.
*		THE EXPO HE SIZE (UNIT
	(CAT) IS	THE INIT	IAL CA	TALYST	CHARI	GE (SMP	() FOR	A UNI	T OF SIZ	
*		THE PAID THE NUMB								
•		S THE FRA								
•	OFF ((CHG) (.2)	SITE FACI			NRCE /		E4011		VECTNENT	•
•		TO EARN								
•	COL 7	18	24	30	36	42	48	54	60	66
	1	CAPACITY	OPER	ON SITE	E EXP	CATA R	IOY :	SHIFT	FRACT	CAPIT
•			ACTOR	INVEST	r	LYST A		MEN	OFF SITE	CHARG
*		CAP	STF	SMM Bli	BLE	SMM S	PDR	MAN	OFF	CHG
	ACU	50	.96	41.5	.7	4 71		2	0.5	.242
	NFS	15	.95	5.4	.7			.5		.242
	LNS KRD	15 25	.95 .95	5.4 97.4	.7 .6			.5 4		.242 .242
	KRF	25	. 95	121.5				4	0.5	.242
	KNS	15	.95	6.2	.7			.5 0.5		.242
	CGS VBR	3	.95 .88	3 22.1	.65 .65		0.1	1.5		.242 .242
	SDA	10	. 88	10.6	.6	.06		1	0.4	.242
	NDS	15 15	. 88 . 88	13.6 15.9	.6 .65	.09 .09		.5 1		.242 .242
	DDS FDS	20	. 88	35.6	.65	.28		1		.242
	ARD	40	. 88	61.1	.65	2.3	2.0	2	0.5	.242
	RDS	20	.88	57.2	.65	2.0	2.0	2		.242
	RFH RFL	15 15	.88 .88	24.6 27.5	.65 .65	.9 1.2	.8 1.0	1		.242 .242
	RFC	15	. 88	34.3	.65	1.2	1.0	1	0.5	.242
	RFT	15	. 88	10.2	.7			.5		.242
	AEF BSU	6 10	.88 .83	17.8 13.5	.6 .65	2	.37 1.0	1		.242 .242
	FCC	40	.95	114.5		.8	3.9	3.5		.242
	FGS	20	.95	19.7	.7			1		.242
	FGF GDS	15 15	.95 .88	5.4 14.6	.7 .6	.2		.5 .5		.242 .242
	GAS	10	. 88	36.6	.65	.5	.6	1.5	.4	.242
	DAS	20	.88	47.6	.65	.5	.6	1.5		.242
	HCR HCL	20 20	.88 .88	82.1 60.8	.65 .65	3.5 2.5	3.5 2.5	2 2		.242 .242
	LHC	10	.88	55.0	.65	1.6	1.8	2	.4	.242
	HC4	10	.88	57.3	. 65	1.2	2	z		.242
	HCS RHC	15 20	.95 .88	6.0 249.5	.7 .65	1.0	5	.5 6		.242 .242
	ALK	7	. 83	24.3	. 65		-	2		.242
	AKS	15	.83	5.4	.7	-	-	.5		.242
	PLM C4D	2 13.6	.83 .83	5.4 89.0	.65 .65	.2 14.9	.3 7.0	1 2		.242 .242
	BEU	3	.83	8.1	.6	.1	.6	1	0.4	.242
	HDA	3	.88	10.6	.65	.3	.6	.5		.242
	LUB Phi	25	.88 .88	78.4 14.6	.65 .65	.7	1	3		.242 .242
	TIP	5	.88	25.7	.7	.9	ż	i		.242
	C41 H2P	2 2.5	.83 .83	6.7 49.3	.65 .65	.2		1		.242
	SUL	.08	. 59	12.8	.6	.9		1		.242 .242
	KWG	200	.86	8.9	.7			1	0	.242
*	STG	150	.86	4.6	.7	11001		1 1 1 1 0 4		.242
•	NO INVEST	INVESTMEN	1 15 P A 15 R	EQUIRED	UNII, FOR	, INCLU (FUM.R	EL PF	IAILGA A), IN	S. TABLE C	AP
•	THE \	ALUE UND	ER BAS	AND UN	IDER N	AX SHC	ULD BI	ETHE	SAME FOR	
*		OF THESE							MODE	
*) (FOE) H ER = 1988				UUI VAL	ENI I	U 47 M	mal//D	
:	ALKY INC	LUDES DI	DLEFIN	SELECT	IVE H					
		ISOM & T						VESTME	NI. NAPH	HA HDS

TURNER, MASON & COMPANY Consulting Engineers

ARCO et al. V. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30144

ALLOCATION APPROACH AND FLEXIBILITY

BASE CASE 1996 LP MODEL RUNS

WSPA STUDY OF CARB PHASE 2 GASOLINE

- Start with (1) 1989 DOE U.S. supply and demands that have been sorted into our California conversion refinery model group, and (2) a supply and demand outlook for PADD V. Develop more detailed supply and demand forecasts for minor products for PADD V. Allocate the PADD V refinery raw materials and products to our three model groupings within PADD V.
- Meet forecasted PADD V refinery production for finished motor gasolines and diesel/No. 2 fuel, adjusted for BTU changes to maintain constant total vehicle miles traveled. Adjust refinery production outlook as required for kero jet, residual fuels and minor products. Allocate to our three models within PADD V (VCC – conversion in California, VCOC – conversion outside California and VS – simple).
- Fit the PADD V domestic and foreign crude runs, actual and forecast, into the types (sweet, light high sulfur and heavy high sulfur) used in the National Petroleum Council and API studies (see Table A-13). Allocate these crudes to our three model groups. Use the TM&C crude assay library and the 1989 detailed crude run property data supplied by DOE to develop the detailed crude run forecast from this allocation. Optimize rate of ANS swing crude in model VCC.
- Optimize marketable coke, catalytic coke, bunker residual fuel, C₅s, C₄s, C₃s, process gas and sulfur product rates in model runs.
- Optimize input rates for MTBE, natural gasoline, IC₄, NC₄, methanol and natural gas process feed to hydrogen plants in model runs.
- Use TM&C Gulf Coast major crude and product pricing outlook. Provide pricing for other crudes and minor products. Develop pricing for model VCC from Gulf Coast and Los Angeles values and location differentials (see Table A-5).
- Use base unit capacities in each model (see Tables A-14 and A-16). Allow models to add capacity (see Table A-1).

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30145

REC 11/11/91

PRODUCT GRADE RATIOS AND PROPERTIES

WSPA STUDY OF CARB PHASE 2 GASOLINE

• Set base future summer gasoline RVP (without compliance margin) at 7.8 psi maximum. Use 0.3 psi RVP compliance margin. Set base future winter (first and fourth guarters) gasoline RVP at 10.5 psi maximum.

	<u>Base</u>	<u>CAA</u>	<u>CARB 2</u>
Summer			
 Regulation Limit 	7.8	7.5	7.0
– Maximum	7.5	7.1	6.7
Winter – Maximum	10.5	10.5	10.5

- The TM&C model was calibrated to 1988 and 1989 finished gasoline properties from 1989 NPRA survey for Auto/Oil and 1988 NIPER data by adjusting component data. Results fit adjusted 1989 average gasoline qualities from the NPRA survey data for aromatics and olefins within ±1.5%.
- Use outlook for gasoline grade ratios (Table A1-5) and match 1989 NPRA refinery survey octane results by grade.

Leaded Regular	88.2
Unleaded Regular	87.4
Unleaded Midgrade	89.3*
Unleaded Premium	92.0
Gasoline Pool - Clear	
1989	88.5
1996	89.0
* Estimated	

 Assume 95% of diesel is 0.05% sulfur in California (100% in VCC model). Assume a 10% aromatic limit on 80% of diesel and no aromatic limit and no increase in high aromatic (cracked) components on the other 20% of diesel.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30146

REC 11/11/91

TM&C MODEL PROCESSING OPTIONS

REFORMULATED GASOLINE STUDY

Improvement in Gasoline Quality Sulfur

- High sulfur FCC gasoline to splitter columns
 - Heavy heavy FCC gasoline to HDS unit
 - · Medium/heartcut FCC gasoline to HDS unit and cat reforming
 - Heavy heavy FCC gasoline to resid cutter
 - Heavy heavy FCC gasoline to aromatics saturation unit and distillate blending
 - C, FCC gasoline to naphtha HDS, fractionation and isomerization
 - C, FCC gasoline to TAME, alkylation, naphtha HDS, fractionation
- High sulfur FCC feed to HDS unit
 - High sulfur atmospheric resid to ARDS unit and FCC feed
- De Light coker gasoline to naphtha HDS, fractionation and isomerization
- Light coker gasoline to sulfur extraction (chemical), splitter; C_ss to TAME, alkylation; C_s to naphtha HDS, fractionation and isomerization
 - Light straight run/natural gasoline to naphtha HDS

<u>Benzene</u>

- Reformer feed to prefractionator to concentrate benzene precursors and reduce reformate splitting required
- Reformate to splitter columns
 - Light reformate to benzene saturation
- Light straight run to naphtha HDS, distillation and isomerization
- Light coker gasoline to naphtha HDS, distillation and isomerization
- Light hydrocrackate to benzene saturation
- Bypass reformer benzene precursors
 - Increase cut point on light straight run gasoline to gasoline blending or isomerization
 - Fractionate medium hydrocrackate out of heavy hydrocrackate and blend to gasoline

Olefins/Bromine Number

- FCC gasoline to multiple splitter columns
 - FCC isoamylene to TAME
 - FCC C_s olefins to alkylation
 - FCC C, olefins to naphtha HDS, distillation and isomerization
 - Medium FCC gasoline to naphtha HDS and cat reforming
 - Heartcut FCC gasoline to naphtha HDS and cat reforming
 - Heavy heavy FCC gasoline to gasoline HDS unit
 - Heavy heavy FCC gasoline to aromatics saturation and distillate blending

TURNER, MASON & COMPANY Consulting Engineers

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30147

- Heavy heavy FCC gasoline to resid cutter
- Heavy heavy FCC gasoline to new gasoline hydrocracker to 300°F- or to Cas
- Reduce FCC conversion level and feed rate
- Increase FCC feed hydrotreating
- Reduce FCC resid cracking
- Shut down polymer and dimersol unit and send C₃/C₄ olefins to alkylation
- Light coker gasoline to naphtha HDS, distillation and isomerization

Aromatics

- Reduce reformer severity
- Naphtha to splitter columns
 - · Heavy heavy naphtha to distillate HDS and kero jet blending
 - Heavy heavy naphtha to new gasoline hydrocracker to 300°F- or to Cas
- FCC gasoline to splitter columns
 - Heavy heavy FCC gasoline to resid cutter
 - Heavy heavy FCC gasoline to new gasoline hydrocracker to 300°F- or to C.s.
 - Heavy heavy FCC gasoline to aromatics saturation and distillate blending
- Reformate to splitter columns
 - · Heavy reformate to resid cutter
 - Heavy reformate to new gasoline hydrocracker to 300°F- or to C₄s
 - Heavy reformate to aromatics saturation and distillate blending
- Reduce heavy hydrocrackate cut point to 300°F
 - Hydrocrack heavy hydrocrackate to 300°F- on gasoline operation
 - Switch to maximum jet operation
- Bypass reformer higher cut point on light gasolines, lower cut point on kerosene
 - Medium (BT) naphtha to gasoline blending
 - Medium hydrocrackate to gasoline blending
 - Heavy heavy naphtha to distillate HDS and kero jet blending
 - · Heavy heavy naphtha to new gasoline hydrocracker to 300°F- or to C,s
- Coker naphtha to splitter column
 - Heavy heavy coker naphtha to resid cutter
 - Heavy heavy coker naphtha to aromatics saturation and distillate blending
 - Heavy heavy coker naphtha to new gasoline hydrocracker to 300°F- or to C_s

90% Distilled

- Same as aromatics reduction options except no reformer severity reduction, no medium naphtha or medium hydrocrackate to gasoline blending
- Alkylate fractionation
 - Heavy alkylate to JP-4 blending
 - Heavy alkylate to distillate blending
 - Heavy alkylate to new gasoline hydrocracker to 300°F- or to C₄s

F	RE	EC	;
1	1	/1	1/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30148

AVERAGE TM&C SPOT PRICING OUTLOOK(1)

WSPA STUDY OF CARB PHASE 2 GASOLINE

		Gulf Coast		<u>California</u>
				nd and
				Quarters
	1989	1996	1996	
<u>Major Products, ¢/G</u>				
Unieaded Regular Gasoline	55.6	58.0	59.5	65.5
Unleaded Premium Gasoline	61.5	63.0	65.0	71.0
Jet Fuel A-Kero	55.1	57.0	55.5	60.0
Distillate Fuel (0.25% Sulfur)	51.8	53.5	52.0	56.5
Distillate Fuel (0.05% Sulfur)	-	•	55.0	59.5
Residual Fuel (1% Sulfur), \$/B	16.21	15.80	15.00	15.30
Residual Fuel (3% Sulfur), \$/B	13.30	13.00	12.60	13.00
Major Crudes, \$/B [@]				
Domestic – West Texas Intermediate	19.64	20.00	19.80	-
 West Texas Sour 	18.13	18.22	18.02	-
 Alaska North Slope 	17.40	17.45	17.20	16.70
 California Kern River 	•	-	-	12.80
Foreign – United Kingdom Brent	19.37	19.90	19.60	-
- Dubai	17.54	18.10	17.85	-
- Mexico Isthmus	18.07	17.82	17.62	-
– Mexico Maya – Saudi Light	15.13	14.42	14.23 17.95	-
- Saudi Heavy	-	-	16.50	17.60 16.15
Other, ¢/G			. 0.00	10.10
Natural Gasoline	41.2	48.0	49.5	50.0
Iso-Butane	36.4	48.0	49.5 43.0	50.0 55.0
Normal Butane	28.6	35.0	43.0 38.3 ⁽³⁾	
Propane	28.6	35.0	29.0	33.1 ⁽⁴⁾
Natural Gas, \$/MMBTU ⁽²⁾	<u></u> .1	2.30	29.0	32.6
MTBE	- 89.0	2.30 89.5	2.20 93.0	3.25 96.0
Methanol	05.0	03.0	60.0	96.0 - 65.0
	•	•	00.0	0.00

- ⁽¹⁾ Based on constant 1991 dollars.
- ⁽²⁾ Delivered.
- ⁽³⁾ To Petrochemicals
- (4) To fuel.

.

REC/CLM 11/11/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30149

TM&C FIXED COSTS FACTORS

FOR ADDED PROCESS FACILITIES

WSPA STUDY OF CARB PHASE 2 GASOLINE

	% of Inve	estment
	Annual Cost	Initial
<u>Initial Cost</u> Investment – Gulf Coast	-	100
Investment – California ⁽¹⁾	-	118
Owner Engineering and Start-Up	-	10
<u>Operating Costs</u> Capital Charge ⁽²⁾	24.2	-
Maintenance		
On-Site	4.0	-
Off-Site	2.0	-
Taxes and Insurance	1.5	-
Miscellaneous Fixed Costs	0.6	•
Operator Wages Average <u>\$16/hour</u> Salaries and Wages of All Other Refinery Personnel ⁽³⁾ is <u>222%</u> of Process Operators' Wages Benefits @ <u>36%</u> of Salaries and Wages		

⁽¹⁾ Includes 3% premium for emissions offsets and extra permitting costs.

- ⁽²⁾ Based on 15% DCF annual rate of return, fifteen-year project life, tenyear tax life, double declining balance tax depreciation (10% in first year), 39% income tax rate (including 5% state) and two-year construction time.
- ⁽³⁾ All refinery personnel except process operators and maintenance. Includes off-site operators, supervisory, administrative, technical, laboratory and clerical.

JRA/REC 11/11/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30150

U.S. ANNUAL PRODUCT DEMAND GROWTH RATE

ACTUAL AND OUTLOOK

WSPA STUDY OF CARB PHASE 2 GASOLINE

(% change/year)

	Actual 1989 vs. 1984	Outlook 1996 vs. 1989
Motor Gasoline	1.8	0.4
Jet – Naphtha	(0.8)	0.7
Kero Jet/Kerosene	5.2	1.6
Diesel/No. 2 Fuel	1.8	1.2
Residual Fuel	(0.9)	0.0
Asphalt	3.3	1.7
Natural Gas Liquids	0.2	1.6
Other Products	(0.2)	1.1
Total Products	1.4	0.9
Crude Run	2.2	0.6
Domestic Crude Production	(2.8)	(1.3)

REC 11/11/91

March 10 (1997) And a second state of the second

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30151

TURNER, MASON & COMPANY Consulting Engineers

the second target an experiment of the second

U.S. ANNUAL PRODUCT DEMANDS

ACTUAL AND OUTLOOK

WSPA STUDY OF CARB PHASE 2 GASOLINE

(MBPCD)

	Act	tual	Outlook
	1984	1989	1996
Motor Gasoline	6,692	7,319	7,524
Jet – Naphtha	223	214	224
Kero Jet/Kerosene	1,068	1,379	1,545
Diesel/No. 2 Fuel	2,844	3,103	3,370
Residual Fuel	1,369	1,306	1,306
Asphalt	408	479	538
Natural Gas Liquids	1,772	1,789	2,006
Other Products	<u> 1,650</u>	1,630	1,715
Total Products	16,026	17,219	18,228
Crude Run	12,044	13,420	14,035
Domestic Crude Production	8,879	7,726	7,060

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30152

,

REC 11/11/91

U.S. 1989 ANNUAL SUPPLY AND DEMAND – ACTUAL WSPA STUDY OF CARB PHASE 2 GASOLINE (MBPCD)

	Supply					Demand		
	Field Produc-		From inven- tory	Net Receipts	Retinery Produc- tion	Relinery Input	Exports	Products Demand
	tion	Imports						
<u>Crudes</u> Domastic	7,726		(14)	37		7,649	136	(36)
Foreign		5,808		(37)		5,771		1
[Total Crudes]	7,726	5,808	(14)			13,420	136	(35)
Products - NGL / Unfin.								
Natural Gasoline	313	7	(3)	(O)	0	185	7	125
Ethane	485	8	(27)		14	5		476
Propane	474	107	17	თ	396	11	24	959
Normal Butane	155	52	12	5	142	149	11	207
iso - Butane	150	- 8	4	თ	15	146		31
(Sub-Total) *	1,577	182	5	5	568	497	42	1,789
Unfinished Oils								
Mogas Components								
Oxygenates and Other [Sub-Total] *								(158)
[Total - NGL / Uni & Other]*	1,577	795	S	. 0	568	1,101	111	1,631
Products - Finished								
Motor Gasoline		408	(5)		6,933		16	7.319
Aviation Gasolines			(1)		27			27
Naphtha Jet		3			212			214
Kero Jet		102	თ	()	1,209		21	1,284
Kerosane		14	(2)		84		1	95
Diesel / No. 2		300	(22)		2,905		80	3,103
Residual Fuels		594	(3)		930		215	1,306
Petrochem Naphtha *					172			512
Lube and Wax *					193			172
Marketable Coke - 400 #B					335		231	104
Asphalt / Road Oll		34	1		445			479
Others *					518			279
Process Gas - FOE					683			683
[Total Products]	1,577	2,250	(45)	0	15,214	1,101	676	17,219
Total Crudes and Products	9,303	8,059	(59)	0	15,214	14,521	812	17,184
(Gain) / Loss					(694)			• • - •

.

* Individual rows do not balance due to incomplete data.

DRA/GWM 11/18/91

۰.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30153

U.S. 1996 ANNUAL SUPPLY AND DEMAND – OUTLOOK WSPA STUDY OF CARB PHASE 2 GASOLINE (MBPCD)

			Supply			Demand			
	Field Produc-	1	From Inven-	Net	Refinery Produc-	Refinery	_	Products	
	tion	imports	tory	Receipts	tion	Input	Exports	Demand	
Crudes			_						
Domestic	7,060	~ ~~~	(7)	(3)		7,052	101	(100)	
Foreign	7 000	6,980 6,980	-	3		6,983		0	
[Total Crudes]	7,060	0,960	(7)			14,035	101	(100)	
Products ~ NGL / Unfin.									
Natural Gasoline	305								
Ethane	493								
Propane	492								
Normal Butane	149								
lso - Butane	147								
[Sub-Total] *	1.586				512			2.006	
Unfinished Oils	.,000				512			2,000	
Mogas Components									
Oxygenates and Other									
[Sub-Total] *	0							(158)	
[Total - NGL / Unf & Other]*	1,586	1,078	(8)		512	1,137	100	1,848	
	1,500	1,010	(0)		JIZ	1,137	100	1,046	
Products ~ Finished									
Motor Gasoline		409	(2)		7,135		18	7,524	
Aviation Gasolines					28			28	
Naphtha Jet		3			221			224	
Kero Jet		112	(2)		1,363		18	1,454	
Kerosene		14			78		1	91	
Diesel / No. 2		378	(5)		3,074		77	3,370	
Residual Fuels		564	(3)		979		234	1,306	
Petrochem Naphtha *					192			571	
Lube and Wax *					216			176	
Marketable Coke - 400 #B					348		246	101	
Asphalt / Road Oil		37	(1)		502			538	
Others *					560			304	
Process Gas - FOE					691			691	
[Total Products]	1,586	2.595	(21)	0	15,899	1 ,137	694	18.228	
Total Crudes and Products	8,649	9.575	(28)	•	15,899	15,172	795	18,129	
(Gain) / Loss	-,		()		(727)	13,172	1 30	10,129	
(,					(161)				

* Individual rows do not balance due to incomplete outlook data. The sum of all * rows balances.

DRA/GWM

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30154

U.S. 1989 SUMMER SUPPLY AND DEMAND – ACTUAL DOE WSPA STUDY OF CARB PHASE 2 GASOLINE

(MBPCD)

	Supply					Demand			
	Field Produc- tion	Imports	From Inven- tory	Net Receipts	Refinery Produc- tion	Refinery Input	Exports	Products Demand	
Crudes									
Domestic	7,641		(45)	(2)		7,715	129	(250)	
Foreign		6,011	(62)	4		5,953		0	
[Total Crudes]	7,641	6,011	(107)	2		13,668	129	(250)	
Products - NGL / Unfin.									
Natural Gasoline	319	7	(19)	0		148	7	152	
Ethane	466	8	(38)	(1)	15	5		445	
Propane	470	96	(153)	1	393	12	24	771	
Normal Butane	153	45	(87)	(1)	182	62	13	218	
lso - Butane	150	8	(5)	0	17	155		15	
[Sub - Total]	1,558	164	(302)	(1)	607	382	44	1.600	
Unfinished Oils		372	7	1		550		(1 70)	
Mogas Components		55		0		(6)		61	
Oxygenates and Other	56		(1)	0		52		3	
[Sub - Total]	56	427	6	1		5 96		(106)	
[Total - NGL / Unf & Other]	1,614	591	(296)	0	607	978	44	1,494	
Products - Finished									
Motor Gasoline		365	17	(1)	7,052		47	7,385	
Aviation Gasolines				(1)	28			27	
Naphtha Jet		4	(2)	0	212			214	
Kero Jet		104	(21)	(1)	1,148		13	1,218	
Kerosene		1	(8)	1	60		1	53	
Diesel / No. 2		276	(141)	2	2.836		79	2,894	
Residual Fuels		528	(39)	(1)	901		210	1,179	
Petrochem Naphtha		64		(2)	116		5	173	
P / Chem Gas Oil + C. Black		56		0	236		23	269	
Special Naphtha / Misc.		6	(3)	0	61		14	50	
Lube and Wax		12	(3)	1	181		20	171	
Marketable Coke - 400 #B		1	(1)	0	336		240	96	
Catalytic Coke - 400 #B					215			215	
Asphait / Road Oll		36	57	1	514		5	603	
Others Process Gas - FOE		2		0	66 703		2	67 703	
[Total Products]	1,614	2,045	(440)	(1)	15,272	978	700	16,812	
Total Crudes and Products (Gain) / Loss	9,255	8.056	(547)	1	15,272 (626)	14,646	830	16.562	

Note: Rows and columns may not balance due to rounding.

DRA/BT

11/11/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30155

TABLE A-12 U.S. 1996 SUMMER SUPPLY AND DEMAND - OUTLOOK WSPA STUDY OF CARB PHASE 2 GASOLINE (MBPCD)

			Supply			Demand			
	Field Produc- tion	Imports	From inven- tory	Net Receipts	Refinery Produc- tion	Refinery Input	Exports	Products Demand	
<u>Crudes</u> Domestic									
Foreign [Total Crudes]									
<u>Products - NGL / Unfin.</u> Natural Gasoline Ethane Propane Normal Butane									
iso - Butane [Sub - Total] Unfinished Oils Mogas Components	-								
Oxygenates and Other [Sub - Total] [Total - NGL / Unf & Other]									
Products – Finished Motor Gasoline Aviation Gasolines		426	23		7 ,27 1 32		17	7,702	
Naphtha Jet Kero Jet		3 113	1 (5)		228 1,324		9	33 232 1,422	
Kerosene		7	(6)		58			59	
Diesel / No. 2 Residual Fuels Petrochem Naphtha		337 498	(212) (2)		3,0 3 6 9 29		71 215	3 .089 1,210	
P / Chem Gas Oil + C, Black Special Naphtha / Misc. Lube and Wax									
Marketable Coke - 400 #B			8		348		257	98	
Catalytic Coke - 400 #B Asphalt / Road Oll Others Process Gas - FOE		44	49		633			726	
[Total Products] Total Crudes and Products (Gain) / Loss		1,428	(143)		13, 858		571	14,572	

Note: Rows and columns may not balance due to rounding.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30156

DRA/BT 11/11/91

.

U.S. CRUDE RUNS ACTUAL & OUTLOOK TYPES OF DOMESTIC AND IMPORTED – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

			ACTUAL			OUTLOC	ж
		1984(1)	1985	<u>1988</u>	1989(2)	1996	
TYPES							
Domestic	Sweet	4,728	4,663	3,740		2,900	
	Lt Hi Sulfur	818	812	731		630	
	Hvy Hi Sulfur	<u>3,152</u>	<u>3,326</u>	<u>3,668</u>		<u>3,522</u>	(3)
	Subtotal	8,698	8, 8 01	8,139	7,715	7,052	
Imported	Sweet	1,583	1,580	2,051	2,322	2,300	+(4)
. •	Lt Hi Sulfur	418	384	935	1,090	1,100	+
	Hvy Hi Sulfur	<u>1,345</u>	<u>1.237</u>	<u>2.121</u>	2,541	<u>2,500</u>	+
	Subtotal	3,346	3,201	5,107	5,953	6,983	
Combined	Sweet	6,311	6,243	5,791		5,200	+
	Lt Hi Sulfur	1,236	1,196	1,666		1,730	+
	Hvy Hi Sulfur	<u>4,497</u>	<u>4,563</u>	<u>5,789</u>		<u>6,022</u>	+
	Total	12,044	12,002	13,246	13,668	14,035	

• Definition of crude types (NPC/TM&C): Sweet ≤0.50%s, Lt ≤15% vac resid @ 1050° F.

- (1) From NPC survey and report.
- (2) TM&C data from DOE for 2nd & 3rd qtrs.
- (3) ANS (included in Heavy Hi Sulfur)rates are 1779, 1975, 1850 and 1872 MBPD in '85, '88, '89 and '96 respectively.
- (4) Give LP flexibility to import up to 300 MBPCD more or less sweet than shown and to optimize import rates of various high sulfur Saudi Arabian crudes above minimums shown.

CLM/REC 11/11/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30157

REFINERY PROCESS CAPACITIES BASIS

WSPA STUDY OF CARB PHASE 2 GASOLINE

- Start with all operable refineries as of January 1, 1989, reported by DOE in the 1988 *PSA*.
- Add changes in process unit capacity from January 1, 1989 to January 1, 1991, reported by DOE in 1988 and 1990 PSAs.
- Add process unit capacity that is under construction and was not completed by January 1, 1991, according to *Hydrocarbon Processing* and *Oil* & Gas Journal through 4/91.
- Add some 1/1/90 unit capacities indicated in Auto/Oil survey not shown by published data.
- Exclude refineries that reported no inputs to DOE in 1988.
- Add refineries that have announced restarts and have actively begun the restart process.
- Delete refineries that have announced pending shutdowns. Deletion of some downstream equipment when indicated by announcement.
- Assume following maximum utilizations of stream day capacities:

	<u>2nd</u>	and 3rd Qtrs.	<u>1st</u> :	and 4th Otrs.
	VCC	U.S. Average	VCC	U.S. Average
Crude	96	95	96	95
FCC/Coking	95	92	88	88
Hydrocracking	88	86	85	82
Dependent Downstream ⁽¹⁾	83	85	80	81
Other Downstream	88	91	85	87

⁽¹⁾ Units for which operation is dependent on simultaneous operation of other downstream units, i.e., alkylation, polymerization, C₄ isomerization, hydrogen and MTBE.

Sulfur recovery maximum utilization of stream day capacities is: 59% in model VCC.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30158

GWM/REC 11/11/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORD 30159

TABLE A-15

ACTUAL AVERAGE UTILIZATION DATA - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

RDER	CAPACITY	WINTER QUARTERS	SUMMER QUARTERS	WINTER QUARTERS	SUMMER QUARTERS	WINTER QUARTERS	SUMMER QUARTERS	WINTER QUARTERS	ANNUAL AVERAGE	SUMMER QUARTERS	WINTER QUARTERS	
	<u>*</u>	<u>1987</u>	<u>1988</u>	<u>1988</u>	<u>1989</u>	<u>1989</u>	1990	<u>1990</u>	<u>1987-90</u>	AVERAGE	AVERAGE	
FCC												
US	100.0	81.8	87.2	84.9	91.8	80.7	87.0	83.8	85.3	88.7	82.6	
PADDI	15.0	91.5	90.8	90.7	95.5				92.1	•		
PADD III	65.0	82.6	89.5	88.0	95.9	80.9	88.3	83.3	86.9	91.2	83.7	
PADD V	20.0	81.6	85.5	80.5	93.0	79.2	85.9	87.8	84.8	88.1	82.3	
HCKA												
US	100.0	77.4	79.1	75.9	78.4	71.0	74.4	71.0	75.3	77.3	73.8	
PADDI	7.0	74.3	78.9	62.9	88.3				76.1	•		
PADD III	49.0	77.9	71.8	71.4	80.9	66.4	70.4	68.3	72.4	74.4	71.0	
PADD V	44.0	81.6	86.9	8 5.9	76.2	81.6	78.7	76.1	81.0	80.6	81.3	
COKER												
US	100.0	89.0	89.3	89.5	90.4	86.3	85.1	84.1	87.7	68.3	87.2	
PADDI	7.0	89.9	65.0	88.1	74.5				84.4	•		
PADD III	51.0	95.2	90.9	93.5	95.8	90.9	86.9	85.2	91.2	91.2	91.2	
PADD V	42.0	85.2	89.8	87.6	90.7	82.6	84.1	84.9	86.4	88.2	85.1	
CRUDE												
US	100.0	79.5	83.4	82.1	84.9	84.8	86.7	89.5	84.4	85.0	84.0	
PADDI	13.0	81.8	85.0	84.1	81.8				83.2	•		
PADD III	61.0	80.0	81.5	81.2	84.5	82.7	87.9	83.4	83.0	84.7	81.8	
PADD V	26.0	75.2	82.5	81.4	85.5	86.2	87.7	88.1	83.8	85.3	82.7	

* Annual average 1987-1989.

GWM/CLM 11/11/91

REFINERY PROCESS UNIT CAPACITIES DETAIL EXISITING⁽¹⁾ BEFORE REQUIRED ADDITIONS WSPA STUDY OF CARB PHASE 2 GASOLINE

	vocc		VS	Estimated U.S. Total
Number of Refineries	7	17	23	202
Feed Rate				
Crude – Atmospheric	657	2,119	428	16,216
Crude - Vacuum	262	1,231	169	7,058
Catalytic Cracking	128	659	-	5,392
Hydrocracking	61.5	327#	•	989
Hydrocracking (Low Conversion)	15.4	81.8#	-	247
Coking - Delayed	70.0	409	-	1,348
Coking - Fluid	-	94.5	-	200
Combined	70.0	504	-	1,548
Combined Coke, 400 Lb./B	17.5	102	•	351
Thermal Cracking/Visbreaking	13.0	44.8	5.0	182
Solvent Deasphalting	20.0	50.0	-	308
Catalytic Reforming				
100 psi	48.8	65.5	-	1,217
200 psi	70.0	123	6.0	700
450 psi	21.0	342	14.5	2,034
Total	140	530	20.5	3,951
Hydrotreating				-,
Naphtha	127#	479	20.5	3,951
Distillate	81.5	387	7.6	2,929
Heavy Gas Oil	7.5	615	13.8	1,830
Residuum	-	26.5	•	321
FCC Gasoline Fractionation#	54.0	304		1,501
				.,
Product Rate		400		
Alkylation	29.3	130	-	1,043
Polymerization	6.6	10.3	-	109
Isomerization – C_s/C_s	4.0	7.4	1.0	3 79
Isomerization – C,	4.3	5.8	-	64.2
Hydrogen, MMSCFPSD	116	1,353#	•	2,994
Hydrogen, FOE	5.9	69.6#	-	155
Asphalt	1.3	35.8	102	800
Lube	-	25.1	6.0	229
MTBE	-	4.8	-	38.2
Sulfur, MLTPD	0.3	4.3	0.7	23.2

⁽¹⁾ 1/1/91 existing (DOE PSA 1990), plus under construction 4/91 Hydrocarbon Processing and Oil & Gas Journal.

increased based on NPRA survey.

GWM/CLM 11/11/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30160

REFINERY PROCESS UNIT COUNT⁽¹⁾ AND PERCENTAGE⁽²⁾

1995 BASE⁽³⁾ BEFORE REQUIRED ADDITION - VCC

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Count	<u>Percentage</u>
Number of Refineries	17	100
Feed Rate		
Crude – Atmospheric	17	100
Crude – Vacuum	17	100
Catalytic Cracking	14	82
Hydrocracking	14	82
Coking – Delayed	9	53
Coking - Fluid	3	18
Combined	12	71
Combined Coke, 400 Lb./B	12	71
Thermal Cracking/Visbreaking	3	18
Solvent Deasphalting	1	6
Catalytic Reforming		
100 psi	3	18
200 psi	5	29
450 psi	14	82
Total	17	100
Hydrotreating		
Naphtha	16	94
Distillate	12	71
Heavy Gas Oil	13	76
Residuum	1	6
Product Rate		
Alkylation	14	82
Polymerization	4	24
isomerization $-C_r/C_s$	1	6
Isomerization $-C_4$	2	12
Hydrogen	15	88
Asphait	3	18
Lube	3	18
MTBE	2	12
Sulfur, MSTPD	16	94

⁽¹⁾ Number of refineries having each process.

⁽²⁾ Percent of refineries having each process.

⁽³⁾ 1/1/91 existing (DOE PSA 1990), plus under construction 4/91 Hydrocarbon Processing and Oil & Gas Journal.

GWM/REC/CLM 11/11/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30161

ASSUMED OXYGENATES INVESTMENT COSTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1989 \$)

<u>Middle East</u>	Methanol	Field Butane <u>Isomerization</u>	Isobutane Dehydrogenation	MTBE	Combined MTBE Complex
Standard Size MBPSD	300 MMGPY	12.1 MBPSD	11.9 MBPSD	12.5 MBPSD	12.5
	(21.7 MBPSD)				
<u>TM&C Estimates – Used</u>					
Unit Investment, MM\$ ⁽¹⁾	375	35	140	25	275 ⁽²⁾
Unit Cost, MM\$/MBPCD	19.2	2.8	13.5	2.2	24.3
<u>Other Estimates (For Comparison)</u> Unit Investment, MM\$ ⁽³⁾	370	55	129	30	288 ⁽²⁾

ARCO et al. v. UNOCAL et al U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE C 30162 ORDER **REC/DRA** 11/11/91

⁽¹⁾ Includes 35% off-sites.

⁽²⁾ Includes one-fifth of a standard size methanol plant, or \$75 million.
 ⁽³⁾ Made by another consulting firm; includes contingency, no working capital and 40% offsites.

PADD V

1989 SUMMER SUPPLY AND DEMAND – ACTUAL – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

			Supply	_			Demand	
-	Field Produc-		From Inven-	Net	Refinery Produc-	Refinery		Products
	tion	imports	tory	Receipts	tion	Input	Exports	Demand
Crudes								
Domestic	2,878		(19)	(375)		2,402	124	(41)
Foreign		301				301		
[Total Crudes]	2,878	301	(19)	(375)		2,702	124	(41)
Products - NGL / Unfin.								
Natural Gasoline	43				_	4	1	39
Ethane		_			2			2
Propane	11	2	(4)		35		7	37
Normal Butane	21	1	(9)		26	9	4	26
lso - Butane	7	1	(2)		3	8		1
[Sub - Total]	82	4	(15)		66	21	11	105
Unfinished Oils		5	13	6		37		(1 3)
Mogas Components		2	(1)			(9)		10
Oxygenates and Other	14					13		1
(Sub - Total)	14	6	12	6		41		(3)
[Total - NGL / Unf & Other]	96	10	(3)	6	66	62	11	102
Products - Finished								
Motor Gasoline		31	(13)	60	1,214		9	1,283
Aviation Gasolines			(-)		7			7
Naphtha Jet		1	(1)	10	55			65
Kero Jet		11	3	10	327		1	350
Kerosene					4			4
Diesel / No. 2		4	2	20	442		23	445
Residual Fuels		13	3		380		164	232
Petrochem Naphtha		1			7			8
P / Chem Gas Oil + C. Black					13		9	5
Special Naphtha / Misc.					3		2	1
Lube and Wax		1			22		4	19
Marketable Coke – 400 #B			(1)		101		92	8
Catalytic Coke - 400 #B					34			34
Asphalt / Road Oil			4	,	72		1	76
Others Process Gas - FOE					145			145
[Total Products]	96	73	(6)	106	2.892	62	317	2.782
Total Crudes and Products	2,974	373	(25)	(269)	2.892	2.764	440	2,741
(Gain) / Loss			\ /	()	(128)		++U	6,771

Note: Rows and columns may not balance due to rounding.

en el la companya de la companya de

DRA/BT

7/2/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30163

TURNER, MASON & COMPANY Consulting Engineers

ata cana anti subsecto ana

PADD V

1996 SUMMER SUPPLY AND DEMAND – OUTLOOK – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

	Supply					Demand			
	Field Produc- tion	Imports	From Inven- tory	Net Receipts	Refinery Produc- tion	Refinery Input	Exports	Products Demand	
<u>Crudes</u> Domestic Foreign [Total Crudes]									
<u>Products – NGL / Unfin.</u> Natural Gasoline Ethane Propane Normal Butane									
lso – Butane [Sub – Total] Unfinished Oils Mogas Components									
Oxygenates and Other [Sub - Total] [Total - NGL / Unf & Other]									
Products - Finished Motor Gasoline Aviation Gasolines		26	(10)	69	1,323		4	1,405	
Naphtha Jet Kero Jet		30	2	12 8	8 54 372		2	8 67 410	
Kerosene			-	•	5		-	5	
Diesel / No. 2 Residual Fuels Petrochem Naphtha		4 5	(5) 5	30	490 402		43 165	476 247	
P / Chem Gas Oil + C. Black Special Naphtha / Misc. Lube and Wax									
Marketable Coke - 400 #B					120		109	11	
Catalytic Coke - 400 #B Asphalt / Road Oll Others Process Gas - FOE		4	2		80			86	
[Total Products] Total Crudes and Products (Gain) / Loss		69	(5)	119	2,854		323	2,714	

Note: Rows and coulmns may not balance due to rounding.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30164

TURNER, MASON & COMPANY Consulting Engineers

.

DRA/BT 11/11/91

PADD V

1989 ANNUAL SUPPLY AND DEMAND – ACTUAL – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

			Supply				Demand	
	Field		From		Retinery			
	Produc-		Inven-	Net	Produc-	Refinery	_	Products
	tion	Imports	tory	Pieceipts	tion	input	Exports	Demand
Crudes								
Domestic	2,959		(5)	(506)		2,326	125	(3)
Foreign		268	_	23		291		_
[Total Crudes]	2,959	258	(5)	(483)		2,617	125	(3)
Products - NGL / Unfin.								
Natural Gasoline	42		0	თ		27	1	14
Ehane	0				1			2
Ргорале	11	2	0		35	0	7	41
Normal Butane	21	2	0		19	27	3	13
iso - Butane	7	1	0	(1)	3	11		(1)
[Sub-Total] *	81	5	1	(1)	59	65	11	68
Unfinished Oils				• •				
Mogas Components								
Oxygenates and Other								
[Sub-Total] *								(10)
[Total - NGL / Unf & Other]*	81	12	0	3	59	80	26	58
Products - Finished								
Motor Gasoline		23	4	63	1,189		2	1,277
Aviation Gasolines		0	(0)		6			6
Naphtha Jet			(\mathbf{O})	12	52			63
Kero Jet		19	D	8	335		5	357
Kerosene			ത		6			5
Diesel / No. 2		3	1	22	437		44	418
Residual Fuels		12	1		374		145	242
Petrochem Naphtha *					9			13
Lube and Wax *					21			18
Marketable Coke - 400 #B			(1)		104		90	13
Asphalt / Road Oil		3	0		61			65
Others *					50			35
Process Gas - FOE					143			143
[Total Products]	81	72	5	108	2.845	80	312	2.719
Total Crudes and Products	3,040	340	Ő	(375)	2.845	2.697	437	2.716
(Gain) / Loss				, - /	(148)			

Individual rows do not balance due to incomplete data.

DRA/GWM 11/18/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30165

PADD V

1996 ANNUAL SUPPLY AND DEMAND – OUTLOOK – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

			Supply				Demand	
	Field Produc- tion	Imports	From inven- tory	Net Receipts .	Refinery Produc- tion	Refinery Input	Exports	Products Demand
Crudes								
Domestic	3,105		(3)	(380)	0	2,676	46	0
Foreign		199		3		202		0
[Total Crudes]	3,105	199	(3)	(377)	0	2,878	46	0
Products - NGL / Unfin.								
Natural Gasoline	44							
Ethane	0							
Propane	12							
Normal Butane	22							
iso - Butane	7							
[Sub-Total] *	85				70			76
Unfinished Oils								
Mogas Components								
Oxygenates and Other								44 P
[Sub-Total] * [Total - NGL / Unf & Other]*	85	(11)	(1)	4	70	83	14	(10) 66
Products - Finished								
Motor Gasoline		22	(1)	69	1,296		5	1,382
Aviation Gasolines		-0	(0)	0	6		0	6
Naphtha Jet		Ō	(0)	12	53		0	65
Kero Jet		26	(0)	8	372		3	402
Kerosene		0	0	0	5		0	5
Diesel / No. 2		3	(1)	28	480		45	465
Residual Fuels		5	(0)	0	415		168	251
Petrochem Naphtha *					9			14
Lube and Wax *					22			19
Marketable Coke - 400 #B		0	(0)	0	1 16		102	14
Asphalt / Road Oil		3	(0)	0	63		0	67
Others *					60			42
Process Gas - FOE					156			156
[Total Products]	85	48	(4)	121	3,124	83	337	2,954
Total Crudes and Products	3,190	247	(n)	(256)	3,124	2.962	383	2,954
(Gain) / Loss					(162)			

* Individual rows do not balance due to incomplete outlook data. The sum of all * rows balance.

 $(\Phi^{(1,0)})$, (0,1,0) , $(0,1,\Phi^{(1,0)})$, $(0,1,\Phi^{(1,0)})$, (0,1,0)

DRA/GWM

11/1**1/9**1

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30166

PRODUCT GRADE DISTRIBUTION

ANNUAL REFINERY OUTPUT

WSPA STUDY OF CARB PHASE 2 GASOLINE

	%	•	MBPC	D
	PADD	U.S.	PADD	U.S.
	V	TOTAL	V	TOTAL
<u>Residual Fuel</u> 1989 - Actual - DOE				
≤.30% S	8.4	10.1	32	91
0.31 – 1.00% S	9.2	18.3	35	165
>1.01% S	<u>82.4</u>	<u>71.6</u>	<u>313</u>	<u>645</u>
Total	100	100	380	901
1996				
≤.30% S	10.1	11.1	42	108
0.31 – 1.00% S	9.1	18.9	38	185
>1.01% S	80.9	<u>70.0</u>	<u>335</u>	<u>686</u>
Total	100.0	100.0	415	979
<u>Motor Gasolines</u> 1989 – Actual				
Leaded Regular	21.8	10.8	272	786
Unleaded Regular	52.9	58.9	636	4.129
Unleaded Midgrade	1.5	6.8	18	479
Unleaded Premium	<u>23.8</u>	<u>23.5</u>	288	1.656
Total	100.0	100.0	1,214	7,050
1996				
Unleaded Regular	54.8	55.7	725	4,052
Unleaded Midgrade	20.2	19.0	268	1,378
Unleaded Premium	25.0	25.3	331	1,841
Total	100.0	100.0	1,323	
I ULAI	100.0	100.0	1,323	7,271

REC/BT 11/11/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30167

REFINERY RAW MATERIALS INPUT RATES DETAIL

SUMMER 1989 ACTUAL - MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	vcoc	VCC	vs	U.S. <u>TOTAL</u>
DOMESTIC CRUDES	493	1 ,695	214	7,715
FOREIGN CRUDES	<u>142</u>	<u>154</u>	<u>5</u>	<u>5,955</u>
SUBTOTAL CRUDES	634	1,849	219	1 3,668
NATURAL GASOLINE / LSR		4		148
REFORMATE 100 RONC	(22)	15	(2)	(5)
NAPHTHA	2	7	(1)	114
VACUUM GAS OIL	(11)	45	(5)	423
VACUUM RESID				14
NORMAL BUTANE	3	6		62
ISO - BUTANE	2	6		154
МТВЕ		12	1	52
PROPANE				17
NAT. GAS FD. TO H2 FOE				
METHANOL				
TOTAL INPUT	608	1,944	212	14,647

REC/CLM 6/28/91

retoring an entry of the

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30168

REFINERY PRODUCT RATES DETAIL

SUMMER 1989 ACTUAL - MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	vcoc	VCC	<u>vs</u>	U.S. <u>TOTAL</u>
MOTOR GASOLINES				
LOW LEAD REGULAR	66	200	6	786
UNLEADED REGULAR	109	515	12	4,129
UNLEADED INTERMEDIATE	3	15		480
UNLEADED PREMIUM	48	240		1,656
SUB TOTAL	226	970	18	7,051
AVIATION GASOLINES		7		28
NAPHTHA JET	11	40	4	212
KERO JET / KEROSENE	107	198	27	1,209
DISTILLATE FUELS - 0.05% S		92		92
DISTILLATE FUELS - 0.25% S	115	185	50	2,745
RESIDUAL FUELS				
< 0.3% SULFUR	10	4	18	91
0.3 - 0.7% SULFUR				
0.7 - 1.0% SULFUR	22	9	4	165
1.0 - 2.0% SULFUR				
> 2.0% SULFUR	79	212	22	645
SUB TOTAL	111	225	44	901
ASPHALT / ROAD OIL		24	48	514
MARKETABLE COKE - 400#	12	89		336
CATALYTIC COKE - 400#	6	28		215
BENZENE				23
TOLUENE				33
XYLENE		1		45
SPCL. NAPH. / MISC.		4	2	130
PETROCHEM NAPHTHA		4	2	15
LUBES		13	6	166
WAX		3		15
PETROCHEM GAS OIL		7	4	196
CARBON BLACK FEED		2		40
PROPENE				104
BUTANES /BUTENES	3	26		202
PROPANE	9	26		296
PROCESS GAS / C2 / C2=	21	123	3	718
(GAIN) / LOSS	(14)	(123)	4	(639)
TOTAL PRODUCTS	607	1,944	212	14,647

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30169

TURNER, MASON & COMPANY Consulting Engineers

REC/CLM 6/28/91

REFINERY CRUDE INPUT SUMMARY

SUMMER 1989 ACTUAL

WSPA STUDY OF CARB PHASE 2 GASOLINE

RATES - MBPD	Туре	VCOC	<u>vcc</u>	<u>vs</u>	U.S. <u>TOTAL</u>
<u>Domestic</u> Low Sulfur High Sulfur Light High Sulfur Heavy Subtotal	S HL HH	28 0 <u>465</u> 493	91 0 <u>1.604</u> 1,695	31 0 <u>183</u> 214	3,750 655 <u>3,310</u> 7,715
<u>Foreign</u> Low Sulfur High Sulfur Light High Sulfur Heavy Subtotal	S HL HH	131 11 <u>0</u> 142	106 23 25 154	0 5 5	2,322 1,090 <u>2,541</u> 5,953
<u>Combined</u> Low Sulfur High Sulfur Light High Sulfur Heavy Total	S HL HH	159 11 465 635	196 23 <u>1,630</u> 1,849	32 0 <u>187</u> 219	6,072 1,746 <u>5,851</u> 13,668
OUALITIES					
<u>Calculated</u> Domestic Gravity, Deg. API Domestic Sulfur, % wt.		27.3 0.99	23.8 1.13	24.2 1.48	31.7 0. 8 7
Foreign Gravity, Deg. API Foreign Sulfur, % wt.		42.0 0.14	39.2 0.33	22.9 2.66	31.9 1.39
Combined Gravity, Deg. API Combined Sulfur, % wt.		30.6 0.80	25.1 1.07	24.2 1.51	31.8 1.10
DOE Reported Combined Gravity, Deg. API Combined Sulfur, % wt.		30.6 0.78	24.4 1.13	24.1 1.59	32.0 1.07

CLM/REC 6/28/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30170

TURNER, MASON & COMPANY Consulting Engineers

.

REFINERY DOMESTIC CRUDE INPUT RATES DETAIL

SUMMER 1989 ACTUAL

WSPA STUDY OF CARB PHASE 2 GASOLINE

					_		MBPCD		
		LP		GRAV.	SULF				U.S.
LOCA	TION / NAME	Code	Туре	<u>• API</u>	<u>%</u>	VCOC	<u>vcc</u>	<u>vs</u>	TOTAL
AK	COOK	AKC	S	34.0	0.11	28		10	39
	NORTH SLOPE	ANS	нн	27.5	1. 05	442	908	105	1,840
CA	BETA	CBT	нн	15.1	3.70		16		16
	ELK HILLS	CEH	S	36.2	0.36		91	12	138
	HUNTINGTON BEACH	СНВ	нн	19.6	1.56		21		21
	HONDO	CAH	нн	17.1	5.15		8	29	62
	LA BASIN LIGHT	CLL	нн	27.0	1. 10		32		32
	SAN ARDO	CSA	нн	13.1	1. 76		65		65
	SJV LIGHT	CJL	нн	26.0	1.20		95		95
	SJV KERN RIVER	СЈН	нн	14.1	1.05		72	49	121
	SJV HEAVY	CVH	нн	13.8	0.98	22	245		273
	VENTURA	CCV	нн	30.9	1.12	1			49
	WILMINGTON HEAVY	CWH	нн	17.1	1.70		91		91
	WILMINGTON LIGHT	CWL	нн	22.2	1.35		51		51
NV	SWEET	NVS	S	37.0	0.30			9	9
Total						493	1,695	214	7,715

CLM/REC 6/28/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30171

TURNER, MASON & COMPANY Consulting Engineers

.

REFINERY FOREIGN CRUDE INPUT RATES DETAIL

SUMMER 1989 ACTUAL

WSPA STUDY OF CARB PHASE 2 GASOLINE

						MBPC	D	
			GRAV.	SULF				U.S.
<u>COUNTRY</u>	NAME	TYPE	°API	<u>%</u>	VCOC	VCC	<u>vs</u>	TOTAL
Abu Dhabi/Dubi	ai/Oman/UAE	HL	38.7	0.62		21		51
Canada	Heavy	HH	22.0	2.80			5	208
	Rangeland	HL	40.3	0.58	11			101
China	Daqing	S	32.4	0.09	9	21		92
Ecuador	Oriente	HH	30.0	0.90		25		100
Indonesia	Minas	S	35.0	0.09	44	32		88
	Attika	S	43.0	0.10	25	17		42
	Cond.	S	55.0	0.10	32	29		71
Iraq	Kirkuk	HL	35.9	1.95		3		428
Misc. Low Sulfu	ır	S	41.1	0.16	_21	8		88
Total					142	154	5	5,953

CLM/REC 6/28/91

e deserve a server a server

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30172

VCC CALIFORNIA REFINERY PRODUCTION RATES

SUMMER ACTUAL AND OUTLOOK

WSPA STUDY OF CARB PHASE 2 GASOLINE

(MBPCD)

	Act 1984	ual			
Motor Gasoline Jet – Naphtha Kero Jet/Kerosene Diesel/No. 2 Fuel Residual Fuel Asphalt Propane and Butane Other Products	804 37 165 228 173 22 36 120	970 40 198 277 225 24 52 158	1,019 42 235 303 140 28 73 202		
Total Products	1,585	1,944	2,042		
Crude Run Crude Production	1,474	1,849	1,954		
California Alaska	1,106 1,577	1,014 1,879	1,180 1,905		

⁽¹⁾ Using a PADD V forecast, TM&C estimated California conversion refineries' production.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30173

TURNER, MASON & COMPANY Consulting Engineers

REC 11/11/91

CALIFORNIA REFINERY PRODUCTION GROWTH RATES

VCC - SUMMER ACTUAL AND OUTLOOK

WSPA STUDY OF CARB PHASE 2 GASOLINE

(% change/year)

.

	Actual 1989 vs. 1984	Outlook 1996 vs. 1989
Motor Gasoline	3.8	0.7
Jet – Naphtha	1.6	0.7
Kero Jet/Kerosene	3.7	2.5
Diesel/No. 2 Fuel	4.0	1.3
Residual Fuel	5.4	(7.0)
Asphalt	1.8	2.2
Butane and Propane	7.6	5.0
Other Products	5.7	3.6
Total Products	4.2	0.7
Crude Run	4.6	0.8
PADD V Crude Production	1.5	0.9

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30174

REC 11/11/91

.

PADD V REFINERY PRODUCTION RATIOS WINTER QUARTERS vs. ANNUAL WSPA STUDY OF CARB PHASE 2 GASOLINE (% of Annual)

	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>	1987-90 <u>Average</u>
LPG	90.3	9 0.2	84.5	81.2	86.5
Gasoline	97.0	100.1	97.0	99.3	98.3
Kerosene Jet Fuel	99.2	102.4	102.4	104.5	102.1
Distillate Fuel	98.8	97.9	97.4	99.9	9 8.5
Residual Fuel	101.5	105.2	101.7	98.2	101.6
Asphalt	54.6	78.7	83.5	82.4	74.8

REC/CLM 11/11/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30175

1984 CALIBRATION CRITERIA

NPC STUDY

	Maximum Variance
 Match Material Balance from DOE Allow Residual Fuels, C4- and Gain to Vary 	<u>+</u> 0.3% of Total Input
 Match Utilities from DOE Usage Fuel Composition 	+ 3% of Target + 4% of Total Fuel
 Match Major Product Primary Qualities⁽¹⁾ Mogas Octanes: (R+M)/2 Mogas Lead, Gms./Gal. Mogas RVP, psi Distillate Fuels Sulfur, Wt.% 	+ 0.1 - 0.1 - 0.5 - 0.2(2)
 Match Unit Utilizations⁽¹⁾ Conversion Units by Type Composite of Conversion Units Catalytic Reformers 	+ 8% + 5% + 15%
 Match Unit Severities⁽¹⁾ Cat Cracking Conversion, % Reformate Octane, RONC 	<u>+ 5%</u> <u>+</u> 0.5
 Judgement Review of Shadow Values None Constraining Severely 	<u>+</u> 20%

(1) From NPC survey data.

REC 2/24/86

(2) Adjusted to zero on future runs by allowing high-sulfur diesel to bypass distillate HDS unit.

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30176

> > TURNER, MASON & COMPANY Consulting Engineers

> > > .

1984 CALIBRATION RUN RESULTS

ACTUAL VARIANCES(1) COMPARED TO ACCEPTABLE VARIANCES

NPC STUDY

	Maximum Acceptable									
	Variance	1C	<u>IIDC</u>	<u>IILC</u>	<u>1110C</u>	IIILC	<u></u>	VCOC	VCC	VCLA
Material Balance, % Total Input		**************************************				- <u></u>				- B- da din sy san ay
Residual Fuels	+ 0.3	0.05	-0.01	0.04	0.26	0.18	0.01	0.1	-0.1	U.05
Propane	Ŧ 0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produced Fuels (FOE)	Ŧ 0.3	-0.08	0.03	-0.02	-0.11	-0.25	-0.27	-0.12	0.07	-0.03
Gatn	Ŧ 0.2	-0.01	0.01	0.03	0.15	-0.16	0.0	0.01	0.0	0.08
Utilities Usage, % Target										
Total Fuels (FOE)	+ 2% + 4%	-0.1	0.4	0.3	-0.9	0.1	-1.1	-0.3	-0.7	-0.9
Purchased Fuels (FOE)(2)	Ŧ 4x	0.9	0.0	0.6	0.4	3.6	2.6	1.5	-1.4	-0.5
Produced Fuels (FDE)(2)	+ 4%	-1.0	0.4	-0.3	-1.3	-3.5	-3.7	-1.8	0.7	-0.4
Power (KWH)	+ 4x + 3x	0.4	0.2	0.5	-2.5	-0.2	-1.4	-0.2	0.0	-1.0
Product Qualities	-							- • -		
Motor Gasolines										
Octane - R+M/2										
Grade	+0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pool	+0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lead, Gms./Gal.						•	• -			
Regular Leaded	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Premium Leaded	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RVP, ps1						- • -	- • -			••••
Grade	-0.5	-0.46	-0.4	-0.1	0.0	0.0	0.0	0.0	0.0	0.0
Pool	-0.2	-0.14	-0.17	-0.04	0.0	0.0	0.0	0.0	0.0	0.0
Distillate Fuels, X S ⁽³⁾	-0.2	-0.01	-0.17	-0.17	0.0	-0.15	0.0	0.0	-0.25	0.0
Distillate Fuels, x s(3) Capacity Utilization, x(4)							•••		0120	0.0
Cat Cracking	+ 8 + 8 + 8 + 5	1.8	4.9	2,5	-2.5	-6,7	4.9	7.7	-5.0	-0.5
Hydrocracking	Ŧ 8	2.2	7.3	*	8.3				4.0	0.4
Coking Combined	∓ 8	•	-1.1	-	7.1	-	+	+	-5.3	-5.2
Composite Conversion ⁽⁵⁾	Ŧ 5	*	3.9	*	0.6	•	*		-1.8	-1.7
Cat Reforming Combined	₹ 15	-14.8	2.7	-5.4	-0.3	-1.3	-4.7	5.0	-6.2	3.4
Unit Severities	-		· -				•••	••••	~	
Cat Cracking Conversion, %	+ 5	3.2	-1.5	-4.3	0.0	1.3	-2.2	-1.9	3.1	-1.7
Reformate Octane, RONC	Ŧ 0.5	-0.1	0.1	0.2	-0.3	-0.3	0.1	0.0	0.0	-0.1

LP run results minus target (from DOE or survey data).
 Variance expressed as % of total fuel.

(3) Forecast case runs changed to allow bypassing distillate HDS with high-sulfur distillate, hence forecast case runs variance from distillate fuels sulfur target is zero.

(4) Utilizations based on calendar day capacities and actual feed rates, ignoring severity effects.
 (5) Utilizations for cat cracking, hydrocracking and coking combined on an actual feed basis, ignoring severity effects.

Survey data excluded by NPC.

REC/JRW/GWM 3/26/86

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30177

GASOLINE DISTILLATION CALIBRATION

1988 ANNUAL DATA FOR PADD III

WSPA STUDY OF CARB PHASE 2 GASOLINE

	TM&C LP Results ⁽¹⁾⁽²⁾ IIIC	NIPER Data Actual Production ⁽³⁾	Difference	Reproduc- ibility
Distillation, % at				
170°F	38	38	-	-
212°F	53	53	-	-
257°F	69	69	-	-
300°F	82	82	-	-
356°F	93	93	-	-
50% Point, °F	203	203	-	15
90% Point, °F	336	336	-	16
Temperature @ V/L = 20, °F	122	122	-	2

- ⁽¹⁾ Based on weighted average model IIIC gasoline pool component composition from 1988 calibration runs for models IIILC and IIIDC in 1989 subscription study U.S. Gasoline Outlook, 1989-94.
- ⁽²⁾ Based on adjusted LP model component gasoline distillations calibrated to match NIPER data on finished gasoline distillation.
- ⁽³⁾ Calculated weighted average of summer and winter NIPER data for PADD III production based on PADD III plus shipments to PADDs I and II.

GWM 07/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30178

COMPARISON OF MEASURED VS. PREDICTED GASOLINE DISTILLATION

90% DISTILLED TEMPERATURE FOR TEST FUELS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(°F)

		Pred	dicted		cted – Isured
	Measured Average	TBP Method	LP Model Method	TBP Method	LP Model Method
Fuel					
1	330	329	329	(1)	(1)
2	286	284	286	(2)	0
З	356	355	359	(1)	3
4	356	354	360	(2)	4
5	292	287	285	(5)	(7)
6	328	332	326	4	(2)
7	326	333	328	7	2
Average Net (Bias) Absolute				0 3	0 3

CLM/REC 7/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30179

CALIBRATION OF GASOLINE POOL PROPERTIES

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Sun	/ey			
		Pool			
		Hydro-	TM&C	<u>Base Cases</u>	
	Finished	carbon		Adjusted	
	Gasoline	Type	<u>1995</u>	to 1989	Difference ⁽¹⁾
PADD V (California)					
Aromatics, %	35.8	35.2	34.0	33.8	(1.4)
Olefins, %	9.5	9.5	10.9	10.9	1.4
(R+M)/2 (Clear)	88.5	-	89.0	88.5	-
MTBE, %	_(2)	-	2.0	0	-
RVP, psi	8.5	-	7.7	8.5	-
90% Distilled, °F	328	-	348	-	-
Total U.S.					
Aromatics, %	31.6	31.8	32.0	31.6	(0.2)
Olefins, %	12.3	12.7	13.5	13.4	0.7
(R+M)/2 (Clear)	88.6	-	88.9	88.6	-
MTBE, %	0.9	0.8	2.2	0.8	-
RVP, psi	9.5	-	8.5	9.5	-
90% Distilled, °F	336	-	346	-	-

⁽¹⁾ Adjusted TM&C minus Survey Pool Hydrocarbon Type. Not adjusted to fit 90% distilled.

⁽²⁾ Deleted by NPRA.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30180

GWM 7/12/91

CALIBRATION OF GASOLINE POOL PROPERTIES

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Surv				
	Finished Gasoline	Pool Hydro- carbon <u>Type</u>	<u>TM&C_I</u> 1995	Base Cases Adjusted to 1989	Difference ⁽¹⁾
PADD VCHA				• <u></u>	
(High Aromatics)					
Aromatics, %	40.2	39.7	43.2	41.0	1.3
Olefins, %	0.2(2)	0.3(2)	2.7	2.6	2.3
(R+M)/2 (Clear)	87.8	-	88.8	87.8	-
MTBE, %	0.0	-	2.0	0.0	-
RVP, psi	9.8	-	8.2	9.8	-
90% Distilled, °F	316	-	319	319	3
PADD IIICHT <u>(High 90% Point)</u>					
Aromatics, %	27.9 ⁽³⁾	27.4 ⁽³⁾	31.1	31.4	4.0
Olefins, %	15.6	16.0	15.0	15.1	(0.9)
(R+M)/2 (Clear)	89.2	-	89.4	89.2	-
MTBE, %	0.6	0.7	2.5	0.7	-
RVP, psi	9.3	-	8.6	9.3	-
90% Distilled, °F	359	-	355	355	(4)

⁽¹⁾ Adjusted TM&C minus NPRA Survey Pool Hydrocarbon Type or Finished Gasoline 90% Point.

⁽²⁾ Survey olefins level is too low for light coker gasoline content.

⁽³⁾ Survey aromatics level is too low, and it is inconsistent with IIIC data.

GWM 07/12/91

۰.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30181

AVERAGE SUMMER GASOLINE PROPERTIES

AS PRODUCED

WSPA STUDY OF CARB PHASE 2 GASOLINE

			TM&C Model			
	NPC ⁽¹⁾	CARB ⁽¹⁾	NIF	PER	NPRA	Base Case
	1984	1987	1988	1989	1989	1996
PADD V (California)						
Benzene, %	2.46	1.86	1.79	2.00	-	2.26
Sulfur, ppm	-	-	130	130	161	183
(R+M)/2, Clear	86.4	-	88.6	88.5	88.5	89.0
RVP, psi	10.0	-	8.7	8.5	8.5	7.7
PADD V (Excl. California)						
Benzene, %	1.67	-	2.13	2.58	•	2.84
Sulfur, ppm	-	-	470	370	389	284
(R+M)/2, Ciear	86.3	-	88.1	87.9	87.7	88.7
RVP, psi	12.8	-	11.3	10.0	10.3	8.6
<u>Total U.S.</u>						
Benzene, %	1.96	-	1.58	1.75	-	2.02
Sulfur, ppm	-	-	290	301	321	306
(R+M)/2, Clear	86.2	-	88.4	88.4	88.6	88.9
RVP, psi	11.7	-	10.7	9.3	9.5	8.5

⁽¹⁾ Annual data.

GWM 7/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30182

TURNER, MASON & COMPANY Consulting Engineers

.

REFINERY RAW MATERIALS INPUT RATES DETAIL 1996 BASE RESULTS - MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
Domestic Crudes	1,733	1,630
Foreign Crudes	155	155
Sub Total Crudes	1,888	1,785
Natural Gasoline	4	4
Reformate, 100 RONC	2	2
Naphtha	3	5
Vacuum Gas Oil	45	45
Vac Resid		
Normal Butane		27
Iso-Butane	3	10
MTBE	6	6
Propane		
Nat. Gas Fd to H2, FOE	46	22
Methanol	5	5
Total Input	2,002	1,912

GWM/CLM 10/02/91

•

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30183

REFINERY PRODUCT RATES DETAIL

1996 BASE RESULTS - MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
Motor Gasolines		
Unleaded Regular	557	539
Unleaded Intermediate	207	200
Unleaded Premium	255	246
Sub Total	1,019	985
Aviation Gasolines	8	8
Naphtha Jet	42	42
Kero Jet / Kerosene	235	245
Distillate Fuels - 0.05% S	61	5 9
Distillate Fuels - 0.05% S, 10% Arom	242	235
Residual Fuels		
< 0.3% Sultur	4	6
0.7 - 1.0% Sultur	9	7
1.0 - 2.0% Sultur		
> 2.0% Sulfur	38	65
Sub Total	51	78
Asphalt / Road Oll	28	17
Marketable Coke - 400#	138	128
Catalytic Coke - 400#	32	30
Benzene		
Toluene		
Xylene		
Spcl. Naph. / Misc.	4	4
Petrochem Naphtha	3	3
Lubes / Wax	22	22
Petrochem Gas Oil	7	7
Carbon Black Feed	2	2
Propene	13	10
Butanes / Butene	29	3
Propane	45	41
Process Gas / C2 / C2=, FOE	163	129
(Gain) / Loss	(142)	(136)
Total Products	2,002	1,912

GWM/CLM 10/02/91

.

2.0**4**

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30184

REFINERY CRUDE INPUT SUMMARY

1996 BASE CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Type	Summer	Winter
RATES - MBPD	-		
Domestic			•
Low Sultur	S	91	91
High Sulfur Light	HL		
High Sulfur Heavy	HH	1,642	1,539
Subtotal		1,733	1,630
Foreign			
Low Sulfur	S	106	106
High Sulfur Light	HL	24	24
High Sulfur Heavy	HH	25	<u>_</u> 25
Subtotal		155	155
Combined			
Low Sulfur	S	197	197
High Sulfur Light	HL	24	24
High Sultur Heavy	HH	1 ,667	1,564
Total		1,888	1,785
QUALITIES - Calculated			
Domestic Gravity, Deg. API		22.9	22.6
Domestic Sulfur, % wt.		1.40	1.41
		1.40	1.41
Foreign Gravity, Deg. API		39.3	39.3
Foreign Sulfur, % wt.		0.33	0.33
Combined Gravity, Deg. API		24.1	23.9
Combined Sulfur, % wt.		1.32	1.32

CLM/REC 10/02/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30185

REFINERY DOMESTIC CRUDE INPUT RATES DETAIL 1996 BASE CASE RESULTS – MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

LOCA ⁻	TION / NAME	Type	Summer	<u>Winter</u>
AK	COOK	S		
	NORTH SLOPE	нн	857	754
CA	BETA	нн	39	39
	ELK HILLS	S	91	91
	HUNTINGTON BEACH	нн	19	19
	HONDO	нн	71	71
	LA BASIN LIGHT	HH	29	29
	SAN ARDO	нн	72	72
	SJV LIGHT	нн	104	104
	SJV KERN RIVER	нн	84	84
	SJV HEAVY	нн	239	239
	VENTURA	нн		
	WILMINGTON HEAVY+	нн	82	82
	WILMINGTON LIGHT	нн	46	46
NV	SWEET	S		
	TOTAL		1,733	1,630

CLM/REC/GWM 10/02/91

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30186

REFINERY FOREIGN CRUDE INPUT RATES DETAIL 1996 BASE CASE RESULTS – MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

COUNTRY	NAME	TYPE	SUMMER/ <u>WINTER</u>
Abu Dhabi/Dubai/Oman/UAE		HL	21
China	Daqing	S	20
Ecuador	Oriente	HH	25
Indonesia	Minas	S	32
	Attaka	S	17
	Cond.	S	29
Iraq	Kirkuk	HL	3
Misc. Low Sulfur		S	8
Total			155

CLM/REC/GWM 10/02/91

1

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30187

NEW PROCESS CAPACITY AND INVESTMENT REQUIRED OVER 1991

1996 BASE CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
New Capacity, MBPSD		
Distillate HDS	38	49
Diesel Aromatics Saturation	226	226
Cat Reformer, 200 PSi	44	44
MTBE	13	13
Alkylation	5	5
Hydrogen, MMSCFPSD	24	24
Suttur, MLTPD		
Fractionation(2)	44	44
Improvements, MBPSD		
Cat Reformers - Reduce Pressure	171	171
Gasoline Stabilizers – Fractionation(2)	180	180
Investment, MM\$ (In Constant 1991 \$)(3)		
New Capacity	1,310	1,330
New Fractionation(2)	10	10
Improve Cat Reformers – C5+ Yield	60	60
Improve Fractionation/C4 Handling(2)	10	10
Total Refinery	1,390	1,410

(1) Estimated.

(2) RVP reduction survey for API in 1987.

(3) This is not the complete industry investment required. It does not include capital for environmental restrictions other than diesel sulfur and aromatics restrictions. It also excludes sustaining capital.

CLM/GWM/REC 10/02/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30188

TABLE B-7A

NEW PROCESS INVESTMENTS DETAIL

1996 BASE CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(\$MM - in constant 1991 \$)

	Summer	Winter
Distillate HDS	70	90
Diesel Aromatics Saturation	950	950
Cat Reformer, 200 PSI	130	130
МТВЕ	80	80
Alkylation	20	20
Hydrogen, MMSCFPSD	60	60
Total Refinery	1,310	1,330

CLM 10/02/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30189

REFINERY PROCESS UNIT CAPACITIES DETAIL 1996 BASE CASE RESULTS(1)(2) WSPA STUDY OF CARB PHASE 2 GASOLINE (MBPSD)

	Summer/
	Winter
Number of Refineries	17
Feed Rate	
Crude - Atmospheric	2119
Crude - Vacuum	1231
Catalytic Cracking	659
Hydrocracking - High Conversion	327 •
Hydrocracking - Low Conversion	81.8 *
Coking - Delayed	409
Coking - Fluid	94.5
Combined	504
Combined Coke, 400 #B	102
Thermal Cracking / Visbreaking	44.8
Solvent Deasphalting	50.0
Catalytic Reforming	
100 psi	65.5
200 psi(3)	321
450 psi(3)	171
Total	557
Hydrotreating	
Naphtha	479
Distillate(4)	425
Heavy Gas Oil	615
Residuum - Vacuum	26.5
Diesel Aromatics Saturation	226
FCC Gasoline Fractionation	304 •
Product Rate	
Alkylation	135
Polymerization	10.3
MTBE	17.3
isomerization - C5/C6 with recycle	7.4
- C4	5.8
Hydrogen, MMSCFPSD	1378 *
Hydrogen, FOE	71.1
Asphalt	35.8
Lube	25.1
Sultur, MLTPD	4.3

Increased based on NPRA survey.

(1) 1/1/91 existing (DOE-PSA 1990) plus under construction 4/91 Hydrocarbon Processing (Table A-19).

(2) Includes required and estimated additions to meet 1996 demands (Table B-7).

(3) Includes one-half of 450 psi reformers converted to 200 psi operation with 9% capacity reduction.

(4) Winter capacity is 11 MSPSD higher than indicated summer capacity.

GWM/REC 10/02/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30190

REFINERY PROCESS UNIT RATES

1996 BASE CASE RESULTS - MBPCD PER REFINERY

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
Crude - Atmospheric	111.1	105.0
Catalytic Cracking(1)	36.8	34.1
Catalytic Cracking(2)	37.3	34.6
Conversion, %	74.4	74.4
Octane Catalyst, %	15.0	15.0
FCC Gasoline Fractionation	15.2	14.1
Hydrocracking – High Conversion	16.9	16.3
Jet Yield, % of Maximum	96.7	100.0
Hydrocracking – Low Conversion	3.2	3.1
Hydrocracking - Combined	20.1	19.4
Coking - Delayed	22.9	21.2
- Fiuid	5.3	4.9
Thermal Cracking, Visbreaking	2.3	2.2
Solvent Deasphalting	1.0	2.5
Catalytic Reforming – 100 PSI(1)	3.4	2.6
- 200 PSI(1)	16.6	14.6
- 450 PSI(1)	8.9	6.0
- Combined(2)	26.4	21.5
- RONC	99.2	99.3
Hydrotreating - Naphtha	18.8	15. 6
- Distillate	22.0	21.8
- Heavy Gas Oli	31.0	30.0
- Residuum - Vac	1.4	1.4
Diesel Aromatics Saturation	11.7	11.1
Alkylation	6.6	6.3
Polymerization	0.0	0.0
Isomerization - C5/C6, Recycle	0.4	0.3
- C4	0.3	0.0
Hydrogen, MMSCFPCD	58.1	56.0
Lubes	1.3	1.3
MTBE	0.8	0.8
Sultur, LTPCD	130	123

(1) Include effects of nonunitary capacity for some feedstocks and severities.

(2) Based on actual feed rates, ignoring severity effects.

GWM/CLM 10/02/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30191

REFINERY PROCESS UNIT UTILIZATIONS (1)

1996 BASE CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

-	Summer	Winter
Crude Distillation - Atmospheric	89.2	84.3
Catalytic Cracking (2)	95.0	88.0
Catalytic Cracking (3)	96.2	89.2
Catalytic Gasoline Fractionation	84.9	79.0
Hydrocracking - High Conversion	88.0	85.0
- Low Conversion	67.0	64.9
Coking - Delayed	95.0	88.0
– Fluid	95.0	88.0
Thermal Cracking, Visbreaking	88.0	85.0
Solvent Deasphalting	32.5	85.0
Catalytic Reforming – 100 PSI (2)	88.0	67.6
- 200 PSI (2)	88.0	77.7
- 450 PSI (2)	88.0	59.6
- Combined (3)	80.4	65.8
Hydrotreating - Naphtha	66.7	55.3
- Distillate	88.0	85.0
- Heavy Gas Oil	85.8	83.1
- Residuum, Vacuum	88.0	85.0
Diesel Aromatics Saturation	88.0	83.7
Alkylation	83.0	79.8
Polymerization	0.0	0.0
Isomerization - C5/C6, Recycle	88.0	78.1
- C4	83.0	0.0
Hydrogen	72.9	70.4
Lubes	87.6	84.6
MTBE	83.0	76.3
Sulfur	45.9	43.5
Dependent Downstream Unit Maximum	83.0	80.0
Other Downstream Unit Maximum	88.0	85.0

(1) Calendar day rates divided by stream day capacity.

(2) Include effects of nonunitary capacity factors for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

GWM/CLM 11/12/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30192

GASOLINE POOL COMPOSITIONS

1996 BASE CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
FCC Gasoline	11.0	10.4
Lt FCC 255-	14.9	14.4
Hvy FCC 255+	10.4	10.0
Total FCC Gasoline	36.3	34.8
Butenes		
Poly Gasoline		
Lt Coker Gasoline (C5-180)	2.8	2.7
Total Olefinic	2.8	2.7
Reformate (220-350 Feed)	22.1	18.2
Reformate (220-300 Feed)	5.9	6.1
BT Reformate (150-220 Feed)	7.2	5.5
Total Reformate	35.2	29.8
Aikylate (C3/C4)	10.8	10.6
Butanes	3.0	8.4
Natural/LSR Gasoline	3.8	3.6
Lt Naphtha (150-220)		
Isomerate (C5-C6)	0.6	0.6
Lt Hydrocrackate (C5-180)	5.0	5.0
Medium Hydrocrackate (180–225)	0.5	2.5
MTBE	2.0	2.0
Total Low Aromatics, Saturated	25.7	32.7
Total	100.0	100.0

CLM 10/02/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30193

GASOLINE POOL PROPERTIES AND INCREMENTAL COSTS

1996 BASE CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Summer	Winter
Average Properties		
(R+M)/2 Octane, Clear	88.9	* 88.9 *
Aromatics, V%	34	31
Ethers, V%	2.0	• 2.0 •
Oxygen, W%	0.4	• 0.4 •
Olefins, V%	11	10
Benzene, V%	2.2	2.0
Sulfur, WPPM	206	169
Reid Vapor Pressure, PSI	7.5	• 10.5 •
Temperature at V/L = 20, °F	145	128
Distillation		
90°F, V%	12	17
1 30°F, V%	23	27
170°F, V%	33	37
212°F, V%	50	54
257°F, V%	67	70
300°F, V%	81	83
356°F, V%	91	92
10 V%, *F	125	102
50 V%, *F	212	203
90 V%, *F	348	342
Driveability Index	1171	1104
Heat Content, MBTU/G	114.4	113.0
Incremental Costs for Property Decrease(1)		
(c/G Per Unit in Constant 1989 \$)		
(R+M)/2 Octane, Clear	(0.9)	(0.3)

(0.9)	(0.3)
0.6	0.3
(0.1)	(0.4)
	0.6

• Input limit.

(1) Shadow costs for very small changes. Not applicable for significant changes.

REC/CLM 10/02/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30194

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

		×				1/2										
				Case 1(1)				MIN CARB	2-1		PLY	+ CHANGES	ARCO		Case 7	
		Base		CAA/		Case 2		Case 3		Case 4		Case 5	Case 6	A	CARE 2	
	Reformulated Properties*	Case 0		LA		CAA		+ None		-80 S		-33 190	EC-X	-	LC+9DI	
	Aromatics, Vol.%, Max. Avg.		-		-		-	25	-	25	-	25	20		22	
	Regulatory Cap			25		25		25		25		25	20		25	
	Ethers, Vol.%, Minimum	2.0		11		11		11		11		11	15		11.7	
	Bromine No., Maximum	26	(2)	26		26	(2)			16		16			8	
	Requiatory Cap	30	(2)	30			à			20		20	10		10	
	Berzene, Vol.%, Max. Avg.		(4)	0.95		0.95	~~	0.8		0.8		0.8	0.8		0.8	
	Sulfur, Wt. PPM, Maximum	250		163	(3)	163	ത			40		120	40		20	
	Regulatory Cap	300		300	(-)	300	~~/	150		50		150	50		30	
	Reid Vapor Pressure, PSI, Max			7.1		7.1		6.7		6.7		6.7	6.7		6.7	
	Regulatory Cap	7.8		7.5		7.5		7.0		7.0		7.0	7.0		7.0	
	T90, *F, Maximum	7.0			(3)	328	(3)		(3)	328	(3)	295	295		290	
	Regulatory Cap			328	(0)	328	(4)	328	(0)	328	(0)	305	305		300	
	Driveability Index, Maximum												~~~		1084	
	Regulatory Cap														1100	
	Ethers, Vol.% Pool															
	Purchased	0.6		4.8		9.4		9.3		9.7		10.1	13.2		11.9	
	Manufactured	1.4		1.4		1.6		1.7		1.3		1.5	1.8		1.8	
	Gasoline Pool Properties															
	(R+M)/2 Octane, Clear*	88.9		88.9		88.9		88.9		88.9		88.9	88.9		88.9	
	Aromatics, Vol.%	34		29		25		25	•	25	•	24	20	•	22	٠
	Ethers, Vol.%	2.0	•	6.2		11.0		11.0		11.0	•	11.6	15.0	•	13.7	
	Oxygen, Wt.%	0.4	•	1.1		2.0	•	20		20	•	21	2.7	•	2.5	
	Olefins, Vol.%	11		11		10		8	•	8	٠	8	- 4	•	4	•
	Bromine No.	22		22		21		16	•	16	•	16		•	8	•
	Benzene, Vol.%	2.2		1.3	•	0.95	•	0.8	•	0.8	•	0.8	0.8	•	0.8	•
	Sultur, Wt. PPM	206		155		163	٠	90		40	•	72	40	•	20	•
	Reid Vapor Pressure, PSI*	7.5		7.3		7.1		6.7		6.7		6.7	6.7		6.7	
	Temperature at V/L = 20, *F	145		145		145		147		147		146	146		146	
	Distillation															
	90°F, Vol.%	12		11		10		9		10		8	8		8	
	130°F, Vol.%	23		23		21		20		20		19	18		18	
	170°F, Vol.%	44 33		40		4.7 39		37		36		37	38		38	
• • •	212°F, Vol.%	⁴¹⁴ 50		55		56		55		54		57	58		58	
	257°F, Vol.%	67		72		72		72		72		77	77		78	
	300°F, Vol.%	81		85		85		85		85		91	91		93	
	356*F, Vol.%	91		94		94		94		94		98	98		98	
	T10, •F	125		127		131		134		134		138	140		139	
	T50, *F	212		197		198		201		203		196	195		195	٠
	T90, *F	348		328	•	328	٠	328	•	328	•	295	295	•	290	•
	Driveability Index	1171		1109		1118		1132		1137		1090	1090		1084	•
	Heat Content, MBTU/G	114.4		112.8		111.6		111.8		111.8		111.4	110.4		110.8	

* Input limit.

(1) 55% reformulated, 100% in LA refineries. Reformulated properties apply to LA refineries.

Gasoline pool properties are average for entire state.

(2) LA only.

(3) CAA requires no degradation from 1990 base.

CLM/REC

11/4/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30195

TABLE C-1A

RUN BASIS AND REFORMULATED GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

Reformulated Properties*	Base		Case 1(1)	
	Case 0		CAA/LA	
Aromatics, Vol.%, Max. Avg.			25	
Ethers, Vol.%, Minimum	. 2		11	
Bromine No., Maximum	26	(2)	26	
Regulatory Cap		(2)	30	
Benzene, Vol.%, Max. Avg.			0.95	
Sulfur, Wt. PPM, Maximum	250		163	(3)
Regulatory Cap	300		300	
Reid Vapor Pressure, PSI, Max	7.5		7.1	
Regulatory Cap	7.8		7.5	
T90, °F, Maximum			328	(3)
Ethers, Vol.% Pool				
Purchased	0.6		8.5	
Manufactured	1.4		2.5	
Gasoline Pool Properties				
(R+M)/2 Octane, Clear*	88.9		88.9	
Aromatics, Vol.%	34		24	
Ethers, Vol.%	2.0		11.0	
Oxygen, Wt.%	0.4		2.0	
Olefins, Vol.%	11		10	
Bromine No.	22		20	
Benzene, Vol.%	2.2		0.95	٠
Sulfur, Wt. PPM	206		163	
Reid Vapor Pressure, PSI*	7.5		7.1	
Temperature at V/L = 20, *F	145		145	
Distillation				
90°F, Vol.%	12		11	
130°F, Vol.%	23		20	
170°F, Vol.%	33		36	
212°F, Vol.%	50		56	
257°F, Vol.%	67		73	
300°F, Vol.%	81		85	
356°F, Vol.%	91		94	
T10, •F	125		130	
T50, °F	212		200	
T90, °F	348		328	•
Driveability Index	1171		1123	
Heat Content, MBTU/G	114.4		111.5	

* Input Limit

(1) 55% reformulated, 100% in LA refineries. Reformulated properties apply to LA refineries.

(2) LA only.

(3) CAA requires no degredation.

CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30196

TABLE C-1B

RUN BASIS AND UNREFORMULATED GASOLINE POOL PROPERTIES

.

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

Unreformulated Properties*	Base Case 0	Case 1(1) CAA/LA	
Aromatics, Vol.%, Max. Avg.		34	(3)
Ethers, Vol.%, Minimum	2	•	
Bromine No., Maximum	26 (2)	1 22	(3)
	30 (2)		(0)
Benzene, Vol.%, Max. Avg.	00 (L)	1.8	(3)
Sultur, Wt. PPM, Maximum	250	163	
Regulatory Cap	300	300	(0)
Reid Vapor Pressure, PSI, Max	7.5	7.5	
Regulatory Cap	7.8	7.8	
T90, °F, Maximum		328	(3)
		020	
Ethers, Vol.% Pool			
Purchased	0.6	0.2	
Manufactured	1.4	0.1	
Gasoline Pool Properties			
(R+M)/2 Octane, Clear*	88.9	88.9	
Aromatics, Vol.%	34	34	
Ethers, Vol.%	2.0 •	0.3	
Oxygen, Wt.%	0.4 *	0.1	
Olefins, Vol.%	11	11	
Bromine No.	22	22	
Benzene, Vol.%	2.2	1.8	•
Sulfur, Wt. PPM	206	144	
Reid Vapor Pressure, PSI*	7.5	7.5	
Temperature at V/L = 20, °F	145	144	
Distillation			
90°F, Vol.%	12	12	
1 30°F , Vol.%	23	25	
170°F, Vol.%	33	36	
212°F, Vol.%	50	53	ER
257°F, Vol.%	67	70	ĝ
300°F, Vol.%	81	85	ORDER
356°F, Vol.%	91	94	ភូភូដីដា
T10, *F	125	125	• INOCAL 61 8 9 KMW (JR 1ECTIVE 97
T50, •F	212	204	UNOCAL UNOCAL 79 KMW 79 KMW
T90, •F	348	328	
Driveability Index	1171	1127	
Heat Content, MBTU/G	114.4	114.3	
			Jan S
			ARCO et al. v. U.S. District C C.A. No. 95-2 LJECT TO PRO 30
• Input limit.			
(1) 55% reformulated, 100% in LA refineries. Unreform outside LA.	ulated propertie	es apply to refineries	s SUB
(2) LA only.			•,
(2) CAA requires no degredation			

(3) CAA requires no degredation.

CLM 11/4/91

SUMMARY OF COSTS

1996 CASE RESULTS⁽¹⁾ – INCREASE OVER BASE CASE⁽²⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 1 of 2

			Min. CARB 2	- Lab Comp	ly + Changes	ARCO	Case 7
	Case 1 ⁽³⁾	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	CAA/LA	CAA	<u>+ None</u>	<u>-80 S</u>	<u>-33 T90</u>	EC-X	- <u>L C +9 DI</u>
Investments, MM\$							
Refinery	530	650	1,020	1,230	1,790	2,510	2,860
MTBE ⁽⁴⁾	<u>1,070</u>	<u>2,240</u>	<u>2,230</u>	<u>2,310</u>	<u>2,410</u>	<u>3,250</u>	<u>2,890</u>
Total	1,600	2,890	3,250	3,540	4,200	5,760	5,750
Range, MMM\$ ⁽⁵⁾	1.2-2.0	2.2-3.7	2.5-4.2	2.8-4.5	3.3-5.4	4.6-7.5	4.6-7.5
Daily Costs, M\$/D							
Capital Charge ⁽⁶⁾	350	434	676	818	1,186	1,663	1,896
Net Upgrading Costs ⁽⁷⁾	981	1,931	2,078	2,173	2,586	3,269	2,992
Variable Operating Costs	58	(49)	144	78	547	352	672
Fixed Operating Cost ⁽⁰⁾	155	201	<u> 279</u>	<u> </u>	<u> 456</u>	<u> 621</u>	<u>_681</u>
Total Refinery	1,544	2,517	3,177	3,381	4,775	5,905	6,241
<u>Annual Cost, MM\$/Yr.</u>							
Refinery	564	919	1,160	1,234	1,744	2,157	2,279
Other ⁽⁹⁾	<u>196</u>	<u> </u>	<u> </u>	317	<u> </u>	498	440
Total	760	1,261	1,478	1,551	2,119	2,655	2,719
Total Unit Cost, ¢/G of Base <u>Gasoline</u>							
Average	8.8 ⁽¹⁰⁾	8.1	9.5	10.0	13.5	17.0	17.4
Range ⁽¹¹⁾	7.3-11.5	6.5-10.8	7.8-12.3	8.2-13.0	11.6-17.0	14.3-21.7	14.9-22.0

ARCO et al. v. UNOCAL et al. U.S. Distriet Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRX) SUBJECT TO PROTECTIVE ORDER 30198

SUMMARY OF COSTS

1996 CASE RESULTS⁽¹⁾ – INCREASE OVER BASE CASE⁽²⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 2 of 2

- ⁽¹⁾ For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.
- ⁽²⁾ Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.
- ⁽³⁾ 55% reformulation; 100% in LA refineries.
- ⁽⁴⁾ For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).
- ⁽⁵⁾ For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.
- ⁽⁶⁾ Based on expected 15% DCF rate of return on new refining facilities investment.
- ⁽⁷⁾ Raw material upgrading costs.
- ⁽⁸⁾ For new refining facilities only.
- ⁽⁹⁾ Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.
- ⁽¹⁰⁾ For reformulation portion only.
- ⁽¹¹⁾ For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

TABLE C-2A

COMPOSITE REFINERY MARGIN & COST INCREASE DETAIL 1996 CASE 7 OVER (UNDER) BASE CASE WSPA STUDY OF CARB PHASE 2 GASOLINE

	MBPD	C/GAL	<u>\$/B</u>	<u>M\$/D</u>
Products				
Motor Gasolines-Regular	13.9	65.5	27.51	383
Motor Gasolines-Intermediate	5.2	67.7	28.43	147
Motor Gasolines-Premium	6.4	71.0	29.82	190
No. 6 Bunker	30.0	ės s	13.00	390
Propane	(10.8)	32.6	13.69	(148)
Propane to Fuel	11.6		20.47	237
Propylene	(1.6)	29.6	12.43	(20)
Propylene to Fuel	(11.6)		20.47	(238)
Process Gas to Fuel	(14.2)		20.47	(290)
Pentanes to P/C	12.1	20.0	8.40	101
Normal Butane to Fuel	(2.9)		20.47	(59)
FCC Coke to Fuel	(5.3)		20.47	(109)
Loss(Gain)	<u>14.1</u>			
Subtotal	46.8			583
Sulfur(M L T; \$/L T)	(0.2)		70.00	(13)
Total				570
Raw Materials				
Alaska North Slope Crude	(105.2)		16.70	(1,757)
Naphtha	3.5	52.5	22.05	78
MTBE	117.9	96.0	40.32	4,754
Methanol	1.3	65.0	27.30	35
NC4	20.0	34.1	14.32	286
Natural Gas to H2 plant	9.2		20.47	188
Total	46.7			3.585
	-0.7			0,000
Gross Margin				(3,015)
Variable Cost				
<u>Variable Cost</u> Natural Gas	45.0		00 47	~~~
	45.3		20.47	928
Produced Fuels	(21.5)		20.47	(350)
Other				<u>184</u>
Total Variable Cost				762
Gross Margin after Variable Cost				(3,777)

RMA 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30200

TURNER, MASON & COMPANY Consulting Engineers

.

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES 1996 CASE RESULTS

INCREASE OVER BASE CASE – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

	Case 1	М	N CARB 2 - I	ARCO	Case 7		
	CAA/	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	LA	CAA	+ None	-80 S	-33 T90	EC-X	-L C +9 DI
Raw Materials				1			
Alaska North Slope	(38)	(115)	(<u>111</u>)	(113)	(50)	(140)	(105)
Subtotal Crudes	(38)	(115)	(111)	(113)	(50)	(140)	(105)
Natural Gasoline							
Naphtha	3	(3)	4	(3)	4	4	4
MTBE	44	91	91	95	99	133	118
Methanol	0	1	1	(0)	0	1	1
Normal Butane			3	1	7	20	20
Isobutane							
Natural Gas to H2 Plant Fee	d <u>3</u>	4	5	_6	<u>(19</u>)	8	9
Total	12	(22)	(7)	(14)	40	26	47
Products							
Motor Gasolines	12	19	18	18	21	29	25
No. 6 Bunker	5	(12)	(8)	(13)	38	18	30
Normal Butane		ÌŐ	(3)	(3)	(3)	(3)	(3)
Propane	1	(4)	(5)	(5)	1	Ő	1
Propylene, Low Value	(2)	(i)	1	ල	(13)	(13)	(13)
Process Gas	(5)	(22)	(20)	(21)	(41)	(21)	(14)
Lt Coker Naphtha to P/C	(-)	(,	8	14	28	(/	(14)
Pentanes to P/C			·	14	10	7	12
Isobutane						•	15
Marketable Coke	0	0	0	(2)	(4)	(0)	0
FCC Coke	·	(0)	(1)	(2)	(1)	Ő	(5)
Loss(Gain)	0	(2)	1	4	6	15	14
2000(02)	v	(=)	•	-	Ū		
Total	12	(22)	(7)	(14)	40	26	47
Crude Property Increase							
Gravity, *API	(0.1)	(0.2)	(0.2)	(0.2)	(0.1)	(0.3)	(0.2)
Sulfur, Wt%	0.00	0.01	0.01	0.01	0.00	0.01	0.01
	0.00	0.01	0.01	0.01	0.00	0.01	0.01
Gasoline Demand Increase,	<u>%(1)</u>						
Results	1.1 (2)		1.8	1.8	2.0	2.8	2.5
Target	1.1 (2)) 1.9	1.8	1.8	21	2.8	2.5

(1) To maintain constant miles traveled with lower BTU content reformulated gasoline.

(2) Unreformulated: 0.1% Results, 0.1% Target Reformulated: 2.0% Results, 2.0% Target

CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30201

NEW PROCESS UNIT RATES

1996 CASE RESULTS

INCREASE OVER BASE CASE – MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Case 1	м	IN CARB 2 -	+ CHANGES	ARCO	Case 7	
	CAA/	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	LA		+ None	<u>-80 S</u>	<u>-33 T90</u>	EC-X	<u>-L C +9 DI</u>
Heavy Naphtha Splitter					132	121	128
FCC Gasoline Splitters	158	142	179	149	218	338	347
FCC Gasoline Fractionation				35	61		
Hydrocracking - Heavy Gasolin	e					8	
Hydrocrackate Fractionation	76	128	128	137	152	148	152
Hydrotreating - Distillate	72	9	25	52	118	91	103
Reformer Feed Fractionation	159	263	305	294	260	283	290
Reformate Fractionation	38	95	212	206	267	148	1 97
Benzene Saturation	22	47	75	74	87	58	73
FCC Gasoline Selective HDS				94		20	136
Gasoline Aromatics Saturation						10	6
Alkylation	3		6	1	43	56	65
Alkylate Splitter					171		189
MTBE /TAME		3	3		2	5	5
Isomerization - C5/C6	7		19	14		51	49
- C4		3	9	8	22	33	36
Hydrogen - MMSCFPSD	3	5	5	5	44	48	71

A 1 - N - Bartiste (1) - where a second

CLM 11/4/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30202

TURNER, MASON & COMPANY Consulting Engineers

ş

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 \$)

	Case 1		MIN CARB 2 - LAB COMPLY + CHA			ARCO	Case 7
	CAA/	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	LA		+ None	-80 S	- <u>33 T90</u>	EC-X	-L C +9 DI
Heavy Naphtha Splitter					90	80	90
FCC Gasoline Splitters	80	80	90	140	180	470	520
FCC Gasoline Fractionation				10	30		
Hydrocracking - Heavy Gasoline						130	
Hydrocrackate Fractionation	90	90	90	90	100	100	100
Hydrotreating - Distillate	110	10	40	90	240	180	210
Reformer Feed Fractionation	80	140	160	160	140	150	150
Reformate Fractionation	30	70	130	120	150	100	120
Benzene Saturation	80	170	240	230	260	190	210
FCC Gasoline Selective HDS				210		70	270
Gasoline Aromatics Saturation						1 0 0	60
Alkylation	20		30		250	340	380
Alkylate Splitter					110		120
MTBE/TAME		20	20		10	30	30
Isomerization - C5/C6	40		120	90		290	270
- C4		20	50	40	120	170	170
Hydrogen	10	10	10	10	70	70	110
MTBE Storage & Blending	20	40	40	40	40	50	50
Total Refinery	530	650	1,020	1,230	1,790	2,510	2,860

CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30203

PROCESS UNIT RATE CHANGES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPCD PER REFINERY

WSPA STUDY OF CARB PHASE 2 GASOLINE

		Case 1	м	IN CARB 2 - LA	AB COMPLY +	CHANGES	ARCO	Case 7
	Base	CAA/	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	Case 0	LA	CAA	+ None	-80 S	- <u>33 T90</u>	EC-X	-L C +9 DI
Crude - Atmospheric	111.1	(2.3)	(6.8)	(6.5)	(6.6)	(3.0)	(8.2)	(6.2)
Heavy Naphtha Splitter				-		7.3	6.8	7.2
Catalytic Cracking (1)	36.8		(0.7)	(0.7)	(4.0)	(0.8)	(4.9)	(3.4)
Catalytic Cracking (2)	37.3		(0.7)	(0.7)	(4.0)	(0.8)	(5.4)	(3.9)
Conversion, %	74.4		(0. 0)	(2.8)	(1.0)	(2.7)	(0.3)	(1.8)
Octane Catalyst, %	15.0		0.0	0.0	(0.0)			
FCC Gasoline Splitters		8.8	8.0	10.0	8.3	12.2	18.9	19.4
FCC Gasoline Fractionation	15.2	(2.7)	(5.2)	(5.2)	3.8	5.2	(15.2)	(15.2)
Hydrocracking - 2 Stage(1)	16.9							
Jet Yield, % of Max	96.7	(38.9)	(6.6)	(2.2)	(20.2)	(73.3)	(44.0)	(72.4)
300 - Gasoline Operation, %		38.1	9. 9			66.1	38.7	58.2
Hydrocracking - Low Conversion	3.2				1.0	1.0	1.0	1.0
- Heavy Gasoline							0.4	
- Combined(2)	20.1	(1.1)	(0.3)		1.0	(0.9)	0.3	(0.6)
Hydrocrackate Fractionation	·	7.1	6. 6	6.6	7.1	7.9	7.7	7.9
Coking - Delayed	22.9						(0.1)	
- Fluid	5.3				(0.5)	(0.8)		
Thermal Cracking, Visbreaking	23	(21)	(2.1)	(2.1)	(2.1)		(1. 8)	(0.3)
Solvent Deasphalting	1.0	1.6	0.6	0.7	1.2	0.2	1.5	0.2
Catalytic Reforming - 100 PSI (1)	3.4	(1.1)	(1.4)	(0.9)	(0.9)	(0.9)	(0.9)	(0.5)
- 200 PSI (1)	16.6		(2.4)	(2.2)	(1.6)	(2.4)	(27)	(2.0)
- 450 PSI (1)	8.9	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(3.1)
- Combined (2)	26.4	(4.4)	(5.8)	(5.4)	(4.6)	(5.2)	(4.9)	(3.5)
- RONC	99.2	(0.2)	(5.2)	(4.7)	(5.2)	(4.2)	(7.9)	(6.3)
Hydrotreating - Naphtha	18.8	(3.0)	(4.7)	(1.0)	0.2	(3.1)	0.7	1.0
- Distillate	22.0	3.7	0.5	1.3	2.7	6.1	4.7	5.3
- Heavy Gas Oil	31.0			0.8		0.8		
- Residum - Vac	1.4				45.0		(1.4)	(1.3)
Reformer Feed Fractionation		8.2	13.6	15.8	15.2	13.5	14.6	15.0
Reformate Fractionation		2.0	4.9	11.0	10.7 3.6	13.8	7.6	10.2
Benzene Saturation		1.1	2.4	3.9		4.5	2.8	3.5
FCC Gasoline Selective HDS					4.8		1.1	7.1
Gasoline Aromatics Saturation			<i></i>	(a a	(0.0)	6 0	0.5	0.3
Diesel Aromatics Saturation	11.7 6.6		(0.4)	(0.3)	(0.0)	(0.4)	(0.0)	(0.3)
	0.0	0.2		0.3	0.0	21	2.7	3.2
Alkylate Splitter						8.3		9.2
	0.8	0.1	0.2	0.2	<i>(</i> 0 1)		~ ~	
MTBE / TAME	1.3	U. I	0.2	U.2	(0.1)	0.1	0.2	0.3
	1.3	0.3			0.7		~ -	
Isomerization - C5/C6 - C5/C6, Recycle	0.4	0.3		1.0	0.7		2.7	2.5
- C4	0.4		0.2	0.5	0.4			
- CA Hydrogen - MMSCFPCD	58.1	3.2	5.1	0.5 6.4	0.4 7.6	1.1 9.9	1.6 10.1	1.8 11.5
Sullur, LTPCD	130.0	3.z 1.0	(5.0)	(7.0)	(5.0)	9.9 (7.0)	(9.0)	-
		1.0	(3.0)	(7.0)	(3.0)	(7.0)	(9.0)	(11.0)

(1) Include effects of nonunitary capacity for some feedstocks and severities.

(2) Based on actual feed rates, ignoring severity effects.

CLM/REC

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30204

PROCESS UNIT UTILIZATIONS (1)

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Base	Case 1					ARCO	Case 7
	Case	CAA	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	0(2)	<u></u>		+ None	80 S	-33 T90	EC-X	-L C +9 DI
Crude Distillation - Atmospheric	89.2	87.4	83.7	83.9	83.8	86.8	82.6	84.2
Heavy Naphtha Splitter						95.0	95.0	95.0
Catalytic Cracking (3)	95.0	95.0	93.3		84.6	93.0	82.3	86.1
Catalytic Cracking (4)	96.2	96.2	94.5		85.8	94.2	82.3	86.2
FCC Gasoline Splitters	• • •	95.0	95.0		95.0	95.0	95.0	95 .0
FCC Gasoline Fractionation	84.9	69.9	55.9		95.0	95.0		
Hydrocracking - 2 Stage(3)	88.0	88.0	88.0		88.0	88.0	88.0	88.0
- Low Conversion - Heavy Gasoline	67.0	67 .0	67.0	67.0	88.0	88.0	88.0 88.0	88.0
- Combined(4)	83.8	79.4	82.7	83.8	88.0	80.2	85.3	81.2
Hydrocrackate Fractionation		88.0	88.0	88.0	88.0	88.0	88.0	88.0
Coking - Delayed	95.0	95.0	95.0	95.0	95.0	95.0	94.6	95.0
- Fluid	95.0	95.0	95.0	95.0	86.1	80.3	95.0	95.0
Thermal Cracking, Visbreaking	88.0	7.0	7.0	7.0	7.0	88.0	17.5	78.0
Solvent Dessphalting	32.5	87.7	53.9	55.8	71.9	38.2	84.4	38.9
Catalytic Reforming - 100 PSI (3)	88.0	59.0	51.9		64.9	64.9	64.9	75.3
- 200 PSI (3)	88.0	88.0	75.2		79.8	75.3	73.9	77.4
- 460 PSI (3)	0.88	43.8	43.8		43.8	43.8	43.8	57.7
- Combined (4)	80.4	67.2	62.9	63.9	66.3	64.6	65.4	69.7
Hydrotreating - Naphtha	66.7	56.1	50. 1	63.0	67.3	55.5	69. 1	70.1
- Distillate	88.0	88.0	88.0		88.0	88.0	88.0	88.0
- Heavy Gas Oil	85.8	85.8	85.8		85.8	88.0	85.8	85.8
- Residuum, Vac	88.0	88.0	88.0		88.0	88.0	0.0	7.0
Reformer Feed Fractionation		88.0	88.0		88.0	88.0	88.0	88.0
Reformate Fractionation		88.0	88.0	88.0	88.0	88.0	88.0	88.0
Benzene Saturation		83.0	83.0	83.0	83.0	83.0	83.0	83.0
FCC Gasoline Selective HDS					88.0		88.0	88.0
Gasoline Aromatics Saturation							88.0	88.0
Diesel Aromatics Saturation	88.0	88.0	85.2	85.5	88.0	85.0	88.0	86.0
Alkylation	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0
Alkylate Solitter						83.0		83.0
Polymerization	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MTBE / TAME	83.0	83.0	83.0	83.0	79.2	83.0	83.0	63.0
Lubes	87.6	87.6	87.6	87.6	87.6	87.6	87.6	87.6
Isomerization - C5/C6		88.0		88.0	88.0		88.0	88.0
- C5/C6, Recycle	88.0	88.0	88.0		88.0	88.0	88.0	88.0
- C4	83.0	76.2	83.0	83.0	83.0	83.0	83.0	83.0
Hydrogen	72.9	76.9	79.3	81.0	82.5	83.0	83.0	83.0
Sultur	45.9	46.3	44.2	43.5	44.2	43.5	42.7	42.0

(1) Calendar day rates divided by stream day capacity.

(2) includes idle 450 psi reformer, reformate fractionation, aromatics extraction, alkylation

and polymerization capacity that was assumed not available in reformulation runs.

(3) Include effects of nonunitary capacity factors for some feedstocks and severities.

(4) Based on actual feed rates, ignoring severity effects.

CLM 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30205

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

•		Case 1		MIN CARB 2 - LAB COMPLY + CHANGES			ARCO	Case 7
	Base	CAAV	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARE 2
	Case 0	LA	CAA	+ None	-80 S	-33 T90	EC-X	-L C +9 DI
FCC Gasoline	11.1	4.7	5.7	1.2				
LL. FCC 255-	15.0	12.3	9.7	9.7	17.5	13.6		
Hvy FCC 255+	10.5	10.6	11.1	11.9				
Hvy FCC 255+ Desui					8.0		1.8	11.5
FCC Gaso (100-255)		2.6	3.9	6.4				
FCC Gaso (100-180)					0.3	21	4.2	4.6
FCC Gaso (180-225)					0.2	1.3	3.7	28
FCC Gaso (225-300)					4.0	6.0	5.8	
FCC Gaso (300-375)						5.0	1.4	
Total FCC Gasoline	36.6	30.2	30.4	29.2	30.0	28.0	16.9	18.9
Pentenes		1.0	0.9	0.5				
Poly Gasoline								
Lt. Coker Gasoline	2.8	3.9	<u>3.8</u> 4.7					
Total Olefinic	2.8	4.9	4.7	0.5			_	
Reformate	22.2	17.5	14.2	10.9	7.7			0.6
Reformate (220-300 Feed)	5.9	7.9	6.5	0.4	5.2	6.2	17.4	14.5
8T Reformate	7.2	0.9						
HC Reformate (210-300)		1.5	3.6	9.1	8.0	12.0	5.6	8.1
Heavy Reformate (300+)			0.4	26	3.8	3.3	2.2	1.9
Total Reformates(1)	35.3	27.8	24.7	23.0	24.7	21.5	25.2	25.1
Lt. Reformate (Benzene Saturated)		1.8	4.2	6.5	6.1	7.5	4.8	5.9
Alkylate/Lt Alkylate (C3/C4)	10.9	11.1	10.7	10.0	10.5	10.8	11.0	10.0
Alkylate/Lt Alkylate (C5)				1.1	0.2	0.9	3.4	2.8
Butane	2.5	1.8	1.5	1.5	1.5	1.5	1.5	1.5
Natural/LSR Gaso	3.8	3.7	3.4	2.6	2.7	2.9	2.5	2.7
BT Naphtha (150-220)						1.9	0.1	
Iso Pentane		0.9	1.0	1.4	0.1		1.9	1.6
Normal Pentane		0.2	0.2	0.3			0.4	0.3
Isomerate (C5-C5)	0.6	1.2	0.5	1.9	1.8	0.6	2.7	2.8
Isomerate (C6)			0.1	0.3			2.2	1.9
Lt. Hydrocrackate	5.0	5.7	5.1	5.0	5.4	6.5	6.2	6.5
Hydrocrackate (175-225)	0.5	4.5	2.4	5.7	6.0	6.2	6.1	6.3
MTBE	2.0	6.2	10.8	10.6	11.0	11.5	14.4	13.0
TAME		0.0	0.3	0.4		0.2	0.7	0.7
Total Low Arom., Saturated	25.3	37.1	40.2	47.3	45.3	50.5	57.9	56.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

(1) Excluding light reformate.

CLM/REC 10/31/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30206

TURNER, MASON & COMPANY Consulting Engineers

.

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(¢/G per unit in constant 1991 \$)

	Case 1			MIN CARB 2 - L	AB COMPLY .	CHANGES	ARCO	Case 7
	Base	CAA/	Case 2	Case 3	Case 4	Case 5	Case 6	8 CARB 2
	Case 0	LA	CAA	+ None	-80 S	-33 T90	EC-X	-L C +9 DI
(R+M)/2 Octane, Clear	(0.9)	(1.0)	(0.6)	(1.2)	(1.1)	(1.0)	(1.2)	(1.5)
Reid Vapor Pressure, PSI	0.6	0.7	0.6	23	2.5	4.2	4.0	3.6
Butane, Vol.%		0.0	0.0	0.8	1.0	1.8	1.6	1.5
Aromatics, Vol.%				0.2	0.3		0.2	0.2
Ethers, Vol.%	(0.1)	(0.1)	(0.2)	(0.1)	(0.1)		0.1	
Olefins, Vol.%				0.0	0.2		0.5	0.5
Benzene, Vol.%		1.3	2.8	2.0	3.0	2.5	2.3	2.0
Sulfur, 100 Wt. PPM		0.2	0.0		3.5		2.3	3.0
T90, 10 °F		0.6	1.4	1.2	0.3	3.2	2.3	2.5

(1) Shadow costs for very small changes. Not applicable for significant changes.

 $\sigma := \cdots : \mathsf{R}^{\mathsf{r}} \mathsf{s} \mapsto (\mathsf{s}_{1}) \to \cdots \to \mathsf{s}_{n} \mathsf{s}^{\mathsf{r}} \to \mathsf{s}_{n} \mathsf{s}_$

CLM 11/4/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30207

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES						
Reformulated Properties*	Base Case 0	Case 8 + None	Case 9 +0.4 RVP	Case 10 +30 T90(1)	Case 11 +15 T90(1)	Case 12 +30 S	Case 13 +5 OL/100S 30 T90(1)	
Aromatics, Vol.%, Maximum		22		22	22	22	22	
Regulatory Cap		25	- 25	25	25	25	25	
Oxygen, Wt.%, Minimum Avg	0.4	21	2.1	21	2.1	21	21	
Bromine No., Maximum	26 (2		8	8	8	8	17	
Regulatory Cap	30 (3	-, -	10	10	10	10	20	
Benzene, Vol.%, Maximum Avg	.,	0.8	0.8	0.8	0.8	0.8	0.8	
Sulfur, Wt. PPM, Maximum	250	20	20	20	20	50	120	
Regulatory Cap	300	30	30	30	30	65	150	
Reid Vapor Pressure, PSI, Max	7.5	6.7	7.1	6.7	6.7	6.7	6.7	
Regulatory Cap	7.8	7.0	7.4	7.0	7.0	7.0	7.0	
T90, °F, Maximum		290	290	320	305	290	320	
Regulatory Cap		300	300	330	315	300	330	
Driveability Index, Maximum	-	1075	1075		313	1075	330	
Regulatory Cap		1100	1100			1100		
Ethers, Vol.% Pool		1100	1100			1100		
Purchased	0.6	9.9	9.9	11.8	12.0	9.9		
				· · · · -			10.8	
Manufactured	1.4	1.8	1.8	1.8	1.8	1.9	1.7	
Gasoline Pool Properties								
(R+M)/2 Octane, Clear*	88.9	88.9	88.9	88.9	88.9	88.9	88.9	
Aromatics, Vol.%	34	22			22 '	• 22	• 22 •	
Ethers, Vol.%	20 •	11.7	• 11.7	• 13.6	13.8	11.8	12.5	
Oxygen, Wt.%	0.4 •	21	• 2.1	• 2.5	2.5	21	2.2	
Olefins, Vol.%	11	4	4	• 4	4	4	• 8	
Bromine No.	22	8	8	• 8	7	8	• 16	
Benzene, Vol.%	2.2	0.8	• 0.8	• 0.8 •	0.8	0.8	• 0.8 •	
Sulfur, Wt. PPM	206	20	• 20	· 20 ·	20	• 42	120 •	
Reid Vapor Pressure, PSI*	7.5	6.7	7.1	6.7	6.7	6.7	6.7	
Temperature at V/L = 20, *F	145	144	142	146	146	145	147	
Distillation								
90°F, Vol.%	12	8	10	9	9	8	9	
130°F, Vol.%	23	20	22	19	19	19	19	
170°F, Vol.%	33	39	41	39	39	38	38	
212°F, Vol.%	50	60	61	58	59	60	56	
257°F, Vol.%	67	79	79	74	77	79	74	
300°F, Vol.%	81	92	92	86	89	92	86	
356°F, Vol.%	91	98	98	96	97	98	95	
T10, *F	125	139	133	136	137	139	142	
T50. •F	212	192	190	195	194	192	198	
T90. •F	348	290	• 290	• 320 •		• 290	• 320 •	
Driveability Index	1171	1075	1060	1109	1093	1075	• 1127	
Heat Content, MBTU/G	114.4	110.9	110.8	110.9	110.8	111.0	111.2	

(1) No T50/DI Limits (2) L.A. only Input limit.

.

CLM/REC 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30208

SUMMARY OF COSTS

1996 CASE RESULTS⁽¹⁾ - INCREASE OVER BASE CASE⁽²⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 1 of 2

2

	8/5/91 CARB 2 Proposal - Lab Comply Margins + Changes									
	Case 8 + None	Case 9 + 0.4 RVP	Case 10 + 30 T90 ⁽³⁾	Case 11 + 15 T90 ⁽³⁾	Case 12 + 30 S	Case 13 + 5 OL/100S 30 T90 ⁽³⁾				
Investments, MM\$	 		<u> </u>			<u></u>				
Refinery	3,430	3,130	2,120	2,350	3,200	1,320				
MTBE ⁽⁴⁾	<u>2,390</u>	<u>2,400</u>	<u>2,890</u>	<u>2,940</u>	<u>2,410</u>	<u>2,610</u>				
Total	5,820	5,530	5,010	5,290	5,610	3,930				
Range, MMM\$ ⁽⁵⁾	4.7-7.6	4.5-7.2	4.0-6.5	4.2-6.8	4.5-7.3	3.1-5.0				
Daily Costs, M\$/D										
Capital Charge ⁽⁶⁾	2,277	2,076	1,404	1,559	2,124	876				
Net Upgrading Costs ⁽⁷⁾	2,442	2,271	2,726	2,889	2,424	2,400				
Variable Operating Costs	980	842	407	513	879	97				
Fixed Operating Cost ^(®)	<u>812</u>	<u>_731</u>	<u>512</u>	<u> </u>	<u> </u>	357				
Total Refinery	6,511	5,920	5,049	5,530	6,204	3,730				
Annual Cost, MM\$/Yr.										
Refinery	2,377	2,162	1,843	2,019	2,265	1,362				
Other ⁽⁹⁾	426	<u> 451</u>	428	<u>_448</u>	425	398				
Total	2,803	2,613	2,271	2,467	2,690	1,760				
Total Unit Cost,										
¢/G of Base Gasoline										
Average	18.0	16.7	14.6	15.8	17.2	11.2				
Range ⁽¹⁰⁾	15.5-22.4	14.3-21.0	12.2-18.7	13.3-20.1	14.8-21.5	9.3-14.7				

U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30209

SUMMARY OF COSTS

1996 CASE RESULTS⁽²⁾ – INCREASE OVER BASE CASE⁽³⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 2 of 2

- ⁽¹⁾ For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.
- ⁽²⁾ Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.
- ⁽³⁾ No T50/DI Limits.
- ⁽⁴⁾ For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).
- ⁽⁵⁾ For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.
- ⁽⁰⁾ Based on expected 15% DCF rate of return on new refining facilities investment.
- ⁽⁷⁾ Raw material upgrading costs.
- ⁽⁸⁾ For new refining facilities only.
- ⁽⁹⁾ Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G relining margin included in refinery costs.
- ⁽¹⁰⁾ For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

TABLE D-2A

COMPOSITE REFINERY MARGIN & COST INCREASE DETAIL 1996 CASE 8 OVER(UNDER) BASE CASE WSPA STUDY OF CARB PHASE 2 GASOLINE

	MBPD	C/GAL	<u>\$/B</u>	<u>M\$/D</u>
Products				
Motor Gasolines-Regular	13.2	65.5	27.51	363
Motor Gasolines-Intermediate	4.9	67.7	28.43	139
Motor Gasolines-Premium	6.0	71.0	29.82	180
No. 6 Bunker	31 .8		13.00	413
Propane	(8.6)	32.6	13.69	(117)
Propane to Fuel	11.6		20.47	237
Propylene	(1.6)	29.6	12.43	(20)
Propylene to Fuel	(11 .6)		20.47	(238)
Process Gas to Fuel	(3.5)		20.47	(72)
Pentanes to P/C	18.0	20.0	8.40	151
Normal Butane to Fuel	(2.9)		20.47	(59)
FCC Coke to Fuel	(3. 8)	48.7	20.47	(78)
Loss(Gain)	5.2			
Subtotal	58.6			899
Sulfur(M L T; \$/L T)	(0.1)		70.00	(8)
Total				<u> </u>
				091
Raw Materials				
Alaska North Slope Crude	(66.5)		16.70	(1,110)
Naphtha	3.5	52.5	22.05	78
Normal Butane	9.1	34.1	14.32	131
MTBE	97.2	96.0	40.32	3,918
Methanol	1.4	65.0	27.30	39
Natural Gas to H2 Plant	13.8		20.47	283
Total	58.6			3,338
				0,000
Gross Margin				(2,448)
Variable Cost				
Natural Gas	43.9		20.47	899
Produced Fuels	(10.3)		20.47	
Other	(10.5)		24.41	(210)
				291
Total Variable Cost				980
Gross Margin after Variable Cost				(3,424)

RMA 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30211

TABLE D-2B

ADDED MANPOWER AND FIXED COSTS

1996 CASE 8 INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Number of Employees
<u>Manpower</u> Direct Process Operating Labor Off-Site Operators, Administrative, Technical and Staff Maintenance Employees	800 1,400 900
Total Employees Contract Maintenance	3,100 <u>300</u>
Total Manpower	3,400
<u>Fixed Costs</u> Total Fixed Operating Costs, \$MM/Year ⁽¹⁾	285
Salaries and Wages, %	55
Maintenance Costs, \$MM/Year ⁽¹⁾	111

⁽¹⁾ Includes manpower.

GWM 11/12/91

٠.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30212

TURNER, MASON & COMPANY Consulting Engineers

.

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES

1996 CASE RESULTS INCREASE OVER BASE CASE – MBPCD

WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/5/91 CARB	2 PROPOSAL	- LAB COMPI		+ CHANGES
-	Case 8 + None	Case 9 +0.4 RVP	Case 10 +30 T90(1)	Case 11 +15 T90(1)	Case 12 +30 S	Case 13 +5 OL/100S 30 T90(1)
<u>Raw Materials</u> Alaska North Slope	(66)	(79)	(165)	(136)	(79)	(170)
Subtotal Crudes	(66)	(79)	(165)	(136)	(79)	(170)
Naphtha MTBE Methanol Normal Butane Isobutane	4 97 1 9	4 97 1 1	(2) 117 2 20 6	4 120 1 20	4 98 2 17	(3) 106 1 20 6
Natural Gas to H2 Plant Feed Total	58	38	(20) (42)	<u>(19)</u> (11)	12 52	<u>(21)</u> (61)
Products Motor Gasolines No. 6 Bunker Normal Butane Propane Propylene, Low Value Process Gas Pentanes to P/C Marketable Coke FCC Coke Loss(Gain)	24 32 (3) 3 (13) (5) 18 0 (4) 6	25 31 (3) 2 (12) (6) 0 (4) 4	24 (13) (3) (5) (10) (47) (1) (2) 15	25 8 (3) (2) (7) (43) 0 (4) 15	24 34 (3) 0 (13) (9) 16 (5) (1) 10	23 (13) (3) (6) (13) (53) (6) (2) 12
Total	59	38	(42)	(11)	52	(61)
<u>Crude Property Increase</u> Gravity, •API Sulfur, Wt%	(0.1) 0.00	(0.2) 0.00	(0.3) 0.01	(0.3) 0.01	(0.2) 0.00	(0.3) 0.01
Gasoline Demand Increase, %(Results Target	<u>2)</u> 2.4 2.4	2.5 2.5	2.3 2.4	2.5 2.5	2.3 2.4	2.2 2.2

.

(1) No T50/DI Limits

(2) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM 10/31/91

ARCO et al. v. UNOCAL et al. U.S., District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30213

NEW PROCESS UNIT RATES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	8/5/9	1 CARB 2 PRC	POSAL - LAB	COMPLY MAP	IGINS + CH	ANGES
						Case 13
	Case 8	Case 9	Case 10	Case 11	Case 12	+5 OL/100S
	+ None	+0.4 RVP	+30 T90(1)	+15 T90(1)	+30 S	30 T90(1)
Heavy Naphtha Splitter	128	127		99	129	2
FCC Gasoline Splitters	349	348	346	346	353	234
Hydrocracking - Heavy Gasoline	45	38			35	
Hydrocrackate Fractionation	179	175	134	141	171	130
Hydrotreating - Distillate	100	85	35	75	87	13
Reformer Feed Fractionation	343	335	348	350	316	255
Reformate Fractionation	347	312	273	246	310	170
Benzene Saturation	114	107	73	87	101	67
FCC Gasoline HDS	27	44	57	57		
Gasoline Aromatics Saturation	8	0				
Alkylation	65	46	48	49	72	51
Alkylate Splitter					69	
MTBE /TAME	6	6	6	6	7	4
Isomerization - C5/C6	30	30	28	28	39	1
- C4	25	15	29	32	34	29
Hydrogen – MMSCFPSD	191	172	22	52	131	1

(1) No T50/DI Limits

.

CLM 10/31/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30214

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 S)

	8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES								
	Case 8 +None	Case 9 +0.4 RVP	Case 10 +30 T90(1)	Case 11 +15 T90(1)	Case 12 +30 S	Case 13 +5 OL/100S 30 T90(1)			
Heavy Naphtha Splitter	90	90		70	90	0			
FCC Gasoline Splitters	530	520	520	520	530	210			
Hydrocracking - Heavy Gasoline	620	610			530				
Hydrocrackate Fractionation	110	110	90	90	110	90			
Hydrotreating - Distillate	200	170	60	150	170	20			
Reformer Feed Fractionation	160	160	1 70	170	160	130			
Reformate Fractionation	180	160	150	140	160	110			
Benzene Saturation	310	290	230	250	280	210			
FCC Gasoline HDS	90	140	160	160					
Gasoline Aromatics Saturation	80	0							
Alkylation	390	270	290	290	440	310			
Alkylate Splitter					60				
MTBE / TAME	30	30	40	30	40	30			
Isomerization - C5/C6	200	190	180	180	240	0			
- C4	130	80	150	160	170	150			
Hydrogen	280	250	40	70	190	10			
MTBE Storage & Blending	40	40	50	50	40	40			
Total Refinery	3,430	3,130	2,120	2.350	3,200	1,320			

(1) No T50/DI Limits

CLM 11/13/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30215

PROCESS UNIT RATE CHANGES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPCD PER REFINERY

WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/5/	LY MARGIN	ARGINS . CHANGES			
	Base Case 0	Case 8 + None	Case 9 +0.4 RVP	Case 10 +30 T90(1)	Case 11 +15 T90(1)	Case 12 +30 S	Case 13 +5 OL/100 S 30 T90(1)
Crude - Atmospheric	111.1	(3.9)	(4.6)	(9.7)	(8.0)	(4.7)	(10.0)
Heavy Naphtha Splitter		7.1	7.1	-	5.5	7.2	0.1
Catalytic Cracking (2)	36.8	(3.1)	(3.3)	(3.9)	(3.7)	(2.7)	(1.2)
Catalytic Cracking (3)	37.3	(3.4)	(3.6)	(3.9)	(4.0)	(27)	(1.2)
Conversion, %	74.4	(2.0)	(1.9)	(1.1)	(1.5)	(2.3)	(2.5)
Octane Catalyst, %	15.0			• •	•		••
FCC Gasoline Splitters		19.5	19.4	19.3	19.3	19.7	13.1
FCC Gasoline Fractionation	15.2	(15.2)	(15.2)	(15.2)	(15.2)	(15.2)	(8.2)
Hydrocracking - 2 Stage(2)	16.9				•	• - •	(
Jet Yield, % of Max	96.7	(56.9)	(46.8)	(19.5)	(34.3)	(53.8)	(11.2)
300 - Gasoline Operation, %		• •			16.5	9.9	14.5
Hydrocracking - Low Conversion	3.2	1.0	1.0		1.0	1.0	
- Heavy Gasoline		2.3	23			1.8	
- Combined(3)	20.1	3. 3	3.3		0.5	2.5	(0.4)
Hydrocrackate Fractionation		9.3	9.1	6.9	7.3	8.9	6.7
Coking - Delayed	22.9			(0.3)		(1.0)	••••
- Fluid	5.3			. ,		()))	(1.3)
Thermal Cracking, Visbreaking	2.3			(1.3)	(2.1)		(2.1)
Solvent Deasphalting	1.0	(0.0)	(0.0)	(0.5)	1.3		1.2
Catalytic Reforming - 100 PSI (2)	3.4		(,	(0.5)	(0.5)	(0.5)	(1.0)
- 200 PSI (2)	16.6			(1.0)	(1.0)	(0.7)	(4.4)
- 450 PSI (2)	8.9	(2.3)	(2.3)	(2.9)	(2.9)	(2.3)	(4.4)
- Combined (3)	26.4	0.6	(0.3)	(1.9)	(1.2)	(1.4)	(7.7)
- RONC	99.2	(4.9)	(4.5)	(7.1)	(7.1)	(4.6)	(6.0)
Hydrotreating - Naphtha	18.8	2.8	2.4	3.3	3.1	0.2	(3.4)
- Distillate	22.0	5.2	4.4	1.8	3.9	4.5	0.7
- Heavy Gas Oil	31.0						0.8
- Residuum - Vac	1.4	(0.8)	(1.0)		(0.9)		
Reformer Feed Fractionation		17.8	17.3	18.0	18.1	16.4	13.2
Reformate Fractionation		18.0	16.2	14.1	12.7	16.1	8.8
Benzene Saturation		5.6	5.2	3.6	4.3	4.9	3.3
FCC Gasoline HDS		1.4	2.6	3.0	2.9		0.0
Gasoline Aromatics Saturation		0.4					
Diesel Aromatics Saturation	11.7	(0.1)	(0.1)			(0.3)	
Alkylation	6.6	3.2	2.2	2.4	2.4	3.5	2.5
Alkylate Splitter						3.4	
Polymerization						9.4	0.1
MTBE / TAME	0.8	0.3	0.3	0.4	0.3	0.4	0.2
Lubes	1.3			•.•	0.0	0.4	V.2
Isomerization - C5/C6		1.5	1.5	1.5	1.5	2.0	0.0
- C5/C6, Recycle	0.4		•••		· · ·	2.4	0.0
- C4	0.3	1.2	0.7	1.4	1.5	1.6	1.4
Hydrogen - MMSCFPCD	58.1	17.2	16.4	9.0	1.5	14.4	6.5
Sulfur, LTPCD	130.0	(7.0)	(8.0)	(7.0)	(8.0)	(7.0)	
		(1.0)	(0.0)	(7.0)	(0.0)	(7.0)	(12.0)

(1) No T50/DI Limits

(2) Include effects of nonunitary capacity for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

REC/CLM

11/4/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30216

PROCESS UNIT UTILIZATIONS (1)

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

MARGINS + CHANGES		

					.viicedec	veb mse	etter day rates divided by stre
2.14	5'67	43.1	5.64	1.54	43.5	6.24	Sultur
1.18	0.28	0.68	0.58	83.0	9.2.8	672	Hydrogen
9.28	83.0	0.68	0.58	0.58	0.58	0.58	- 64
0.88	0.88	0.88	0.88	0.88	0.88	0.88	- CS/C6, Recycle
0.88	0.88	0.88	0.88	0.88	0.88	0 66	Isomerization - CS/C6
9.78	9.78	9.78	9.78	9.78	9.78	9.78	50/20 59000 S900
0.58	0.28	0.28	0.68	0.58	0.58	0.28	AMAT \ BUTH
50.3	0.0	0.0	r.8	0.0	0.0	0.0	
•••	83.0	•••					Alkylate Splitter
0.68	0.28	0.28	0.68	6.58	0.28	0.28	Alkylation
0.88	7.28	0.88	0.88	0.78	£.78	0.88	Diesel Aromatics Saturation
			0.00	0.88	0.88	0.00	Gasoline Aromatics Saturation
		0.88	0.88	0.88	0.88		FCC Gasoline HDS
0.68	63.0	0.28	0.28	0.58	0.28		Benzana Saturation
0.88	0.88	0.88	0.88	0.88	0.88		
0.88	0.88	0.88	0.88	0.88	0.88		
0.88	0.88	582	0.88	56.4	35.3	0.00	Reformer Feed Fractionation
0.88	8.28	8.28				0.88	- Residuum, Vac
0.88		0.88	8.28	8.28	8.28	8.28	IIO SEO ANEOH -
2. h 2	6.7a 0.88	9.77	14.87 0.88	0.88	8.97 0.88	0.88	stitics – gnitsertork Hydrotresting –
1.72	€ <u>7</u> 97	8.97	8. 2 7 1.97	0.27	8 .28	7. 99 7.08	
8.64	9.29	7.82 7.82	2.82 7.82	7.2 3 7.97	9.28	0.88	- Combined (4)
2.49	4.48 2.22	1.58	7.28	0.88	0.88	0.88	
6.29	5.27	5.2T 1.51	5.25	0.55	0.88	0.88	(5) IS9 005 - gnimoteR sityists0
L.AT	33.0	5.37	5 32 5'71	5.15 0.66	8.15	32.5	Solvent Dessphalting
0.7	0.88	5.7 2.37	E.7E	0.88	0.88	0.88	Thermal Cracking, Visbreaking
5.17 2.17	0.26	0.2	0.26	0.26	0.26	0.36	biula -
0.26	2.06	0.26	6.59	0.26	0.26	0.26	Coking - Delayed
0.88	0.88	0.88	0.88	0.88	0.88	0 30	Hydrocrackate Fractionation
1.28	6.98	1.38	8.2.8	0.88	0.88	8.68	- Combined(3)
	0.88	- 30	0.00	0.88	0.88	0 00	
0.78	0.88	0.88	0.78	0.88	0.88	0.78	- Low Conversion
0.88	0.88	0.88	0.88	0.88	0.88	0.88	Hydrocracking - 2 Stage(3)
E.9E	0.00		0.00	V 60	0.00	6.148	FCC Gasoline Fractionation
0.26	0.26	0.26	0.26	0'96	0.26	0.10	FCC Gasoline Splitters
1.56	5.98	6.28	S.88	8.88	7 .78	5. 36	Catalytic Cracking (4)
8.16	1.88	2.28	0.28	t 98	6.38	0.26	Catalytic Cracking (3)
0.26	0.26	0.26	- 34	0.26	0.26	- JU	Heavy Naphtha Splitter
1.18	4.28	7.58	1.18	2.28	0.38	S. 2 8	Crude Distillation - Atmospheric
(Z)061 0E	S 02+	(2)061 51+	(2)06100+	4VA 1.0+	BUON +	0	
S001/10 5+	Case 12	LL OSEO	01 9250	6 9550	8 625 0	esec	
C19250	-					825 8	

11/15/91 CLM

stimil IQ\02T oN (S)

(4) Based on actual feed rates, ignoring severity effects.

(3) Include effects of nonunitary capacity factors for some feedstocks and severifies.

TURNER, MASON & COMPANY Consulting Engineers

J120E

SUBJECT TO PROTECTIVE ORDER C.A. No. 95-2379 KMW (JRx) U.S. District Court (C.D. Ca.) ARCO et al. V. UNOCAL et al.

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

Base Case 6 Case 6 Case 10 Case 11 Case 11 Case 12 -s0(1/00S Case 0 +None +0.4 RVP +30 TB0(1) +15 T90(1) -30 S 30 T80(1) FCC Gasoline 11.1 LL FCC 255- 10.5 6.9 4.7 Hvy FCC 255- 10.5 2.3 4.2 4.9 4.9 FCC Gaso (100-160) 6.2 6.3 6.3 6.2 5.6 FCC Gaso (100-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (100-160) 6.2 6.3 6.3 6.2 5.6 4.4 FCC Gaso (100-225) 3.8 2.8 3.7 3.7 3.8 2.5 Total FCC Gasoline 36.6 12.5 13.7 14.9 14.4 27.1 Pertense 0.7 0.4 0.0 2.2 7.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300 Feed)			8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES						
Case 0 • None •0.4 RVP •30 T90(1) •15 T90(1) •30 S 30 T90(1) FCC Gasoline 11.1 L. FCC 255- 15.0 6.9 4.7 Hvy FCC 255- 10.5 2.3 4.2 4.9 4.9 FCC Gaso (100-255) 2.3 4.2 4.9 4.9 4.7 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (100-180) 6.2 6.3 6.3 6.2 5.6 4.4 FCC Gaso (300-375) 7 1.4 9 14.4 27.1 Pentenas 0.7 0.4 0.1 0.2 2.5 Total FCC Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate (210-300) 4.6 4.0 6.1 3.8 4.0 2.1 2.5 2.7 Reformate (210-300) 4.6 4.0 6.1 3.8 4.0 2.1 3.5 2.5 2.0 2.5 2.									
FCC Gasoline 11.1 LL FCC 255- 15.0 Hvy FCC 255- 10.5 Hvy FCC 255- 10.5 FCC Gaso (100-255) 2.3 4.2 4.9 4.9 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (180-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (180-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (180-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (180-225) 3.8 2.8 3.7 14.9 14.4 27.1 Petry Gasoline 0.1 0.1 0.2 2.7 14.4 27.1 Poty Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300) 14.8 13.0 11.1 1									
Li FCC 285- 16.0 4.7 Hwy FCC 285- 10.5 4.7 Hwy FCC 285- 10.5 4.7 FCC Gaso (100-285) 8.2 6.3 6.2 5.6 4.4 FCC Gaso (100-285) 8.2 8.3 6.3 6.2 5.6 4.4 FCC Gaso (225-300) 0.2 0.4 0.1 3.2 5.1 FCC Gaso (225-300) 0.2 0.4 0.1 3.2 5.1 FCC Gaso (300-375)		Case 0	+ None	+0.4 RVP	+30 T90(1)	+15 T90(1)	<u>+30 S</u>	30 T90(1)	
htty FCC 255+ 10.5 4.7 htty FCC 255+ Desul 2.3 4.2 4.9 4.9 FCC Gaso (100-255) 6.2 6.3 6.3 6.2 5.6 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (100-257) 1.8 3.5 11.4 2.5 11.4 2.5 11.4 2.5 11.4 2.5 11.4 2.7 14.9 14.9 14.4 27.1 14.4 27.1 Penters 0.7 0.5 0.0 0.0 0.2 2.7 2.5 7.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 Heavy Reformate (220-300 Feed) 5.9 7.9 9.4 13.3 6.8 6.1 7.2 4.6 4.0 6.1 3.8 4.0 2.1 1 1.1 10.0 13.3<	FCC Gasoline	11.1							
htty: 2.3 4.2 4.9 4.9 Hty: FCC 235- Deau! 2.3 4.2 4.9 4.9 FCC Gaso (100-255) 5.6 4.4 5.6 4.4 FCC Gaso (100-255) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (120-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (120-325) 0.2 0.4 0.1 3.2 5.1 FCC Gaso (1225-300) 0.2 0.4 0.1 3.2 5.1 FCC Gaso (130-325)	Lt. FCC 255-	15.0						6.9	
FCC Gase (100-255) 6.2 6.3 6.3 6.2 5.6 4.4 FCC Gase (100-180) 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.5 0.0 0.0 0.2 0.7 0.5 0.0 0.0 0.2 0.7 0.5 0.0 0.0 0.2 0.5 0.1 0.2 0.5 0.0 0.1 0.5 0.0	Hvy FCC 255+	10.5						4.7	
FCC Gaso (100-180) 6.2 6.3 6.3 6.2 5.6 4.4 FCC Gaso (180-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gaso (300-375) - - - 1.8 3.5 Total FCC Gaso (300-375) - - - 1.8 3.5 Total FCC Gaso (300-375) - - - 2.5 - - 2.5 - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - 2.5 - - - - 2.5 - - - 2.5 - - - - 2.5 - - - - - - - - - -	Hvy FCC 255+ Desul		2.3	4.2	4.9	4.9			
FCC Gase (180-225) 3.8 2.8 3.7 3.7 3.8 2.5 FCC Gase (225-300) 0.2 0.4 0.1 3.2 5.1 FCC Gase (225-300) 0.2 0.4 0.1 3.2 5.1 FCC Gase (235-300) 0.2 0.4 0.1 3.2 5.1 FCC Gase (300-375) 14.9 14.9 14.4 27.1 Pentenes 0.7 0.4 0.1 0.2 2.5 Poly Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 2.1 HC Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (210-300) 9.3 8.8 6.1 7.2 8.3 5.5 AlkyatavL1 Alkyatav (C2)	FCC Gaso (100-255)								
FCC Gase (222-300) 0.2 0.4 0.1 3.2 5.1 FCC Gase (222-300) 36.6 12.5 13.7 14.9 14.9 14.4 27.1 Pentanes 0.7 0.4 0.1 3.2 5.1 Poty Gasoline 2.8 0.7 0.4 0.1 0.2 0.1 0.2 Li Coker Gasoline 2.8 0.0 0.7 0.4 0.1 0.2 0.2 Petranes 0.7 0.4 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 <th0.2< th=""> 0.2 <th0.2< th=""></th0.2<></th0.2<>	FCC Gaso (100-180)		6.2	6.3	6.3	6.2	5.6	4.4	
FCC Gaso (300-375) 1.8 3.5 Total FCC Gasoline 36.6 12.5 13.7 14.9 14.9 14.4 27.1 Pentienes 0.7 0.4 0.1 0.2 2.5 2.5 2.5 Total Olefinic 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Petromate 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.2.2 0.5 7.7 7.6 0.5 0.0 0.0 2.7 Petromate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (20-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Li. Reformates(21 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformate (Benzene Saturated) 9.3 8.8 <td< td=""><td>FCC Gaso (180-225)</td><td></td><td>3.8</td><td>2.8</td><td>3.7</td><td>3.7</td><td>3.8</td><td>2.5</td></td<>	FCC Gaso (180-225)		3.8	2.8	3.7	3.7	3.8	2.5	
FCC Gaso (300-375) Total FCC Gasoline 18.5 12.5 13.7 14.9 14.9 14.4 27.1 Pentenes 0.7 0.4 0.1 0.2 0.5 0.0 0.0 2.7 Petrogasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.2 0.5 7.7 0.5 0.0 0.0 2.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (200-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (200-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (20-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (20-300) 35.3 27.7 28.4 29.0 28.0 25.5 20.7<			0.2	0.4		0.1	3.2	5.1	
Total FCC Gasoline 36.6 12.5 13.7 14.9 14.9 14.4 27.1 Penteness Poly Gassoline 0.7 0.4 0.1 0.2 LL Coker Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.2 0.5 7.7 0.5 0.0 0.0 2.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (220-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (220-300) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformate (20-300) 9.3 8.8 6.1 7.2	· · · ·						1.8	3.5	
Poly Gasoline 0.1 0.2 LL Coker Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Total Olefinic 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.2 0.5 7.7 9.4 11.3 14.2 8.2 4.1 BT Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 21.1 Total Reformates(22) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformates(C2) 3.6 2.5 2.9 3.5 2.9 2.3 Mikylate/L1 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 Alkylate/L1 Alkylate (C5) 3.6 2.5 2.9 3.5 2.9	-	36.6	12.5	13.7	14.9	14.9	the second s		
Poly Gasoline 0.1 0.2 LL Coker Gasoline 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Total Olelinic 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 2.2 0.5 7.7 9.4 11.3 14.2 8.2 4.1 BT Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 21 Total Reformates(21) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 LL Reformates(22) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 LL Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/L1 Alkylate (C3/C4) 10.9 11.7 11.3 11.	Dentanas			07	04				
LL Colar Gasoline 2.8 2.5 2.5 Total Olefinic 2.8 0.0 0.7 0.5 0.0 0.0 2.7 Reformate 22.2 0.5 7.7 9.4 11.3 14.2 8.2 4.1 BT Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 21.1 Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate(L3 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate(L3 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 1.5 1.5 BT Naphtna (150-220) 3.8 2.8 2.7 3.0 2.5 2.8				•				0.2	
Reformate 22.2 0.5 7.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate 7.2 14.8 13.0 11.1 10.0 13.3 6.8 HC Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 LL Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Atkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 Iso Pentane 0.2 0.5 0.5 0.5		28			4.1				
Reformate 22.2 0.5 7.7 Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate 7.2 14.8 13.0 11.1 10.0 13.3 6.8 HC Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 LL Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Atkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 Iso Pentane 0.2 0.5 0.5 0.5				==					
Reformate (220-300 Feed) 5.9 7.9 9.4 11.3 14.2 8.2 4.1 BT Reformate 7.2 14.8 13.0 11.1 10.0 13.3 6.8 Haavy Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Haavy Reformate (300-) 4.6 4.0 6.1 3.8 4.0 21 Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtha (150-220) 13 130 0.3 0.3 0.3 0.3 0.3	Total Olefinic	2.8	0.0	0.7	0.5	0.0	0.0	2.7	
BT Reformate 7.2 HC Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/L1 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/L1 Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtna (150-220) 10.9 1.2 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.2 0.3 1.3 1.1 Iso Pentane 0.2 0.5 0.5 0.5 0.2 0.3								7.7	
HC Reformate (210-300) 14.8 13.0 11.1 10.0 13.3 6.8 Heavy Reformate (300+) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformate (300+) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/L1 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/L1 Alkylate (C3/C4) 10.9 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtha (150-220) 11.1 12 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 1.1 IL Hydrocrackate (C6) 0.3 0.3 0.3 0.3 1.1 11.1	Reformate (220-300 Feed)	-	7.9	9.4	11.3	14.2	8.2	4.1	
Heavy Reformate (300-) 4.6 4.0 6.1 3.8 4.0 2.1 Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 Li. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/L1 Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/L1 Alkylate (C3/C4) 10.9 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Natura/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtna (150-220) 1.1 11 11.0 1.1 1.8 1.8 1.1 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 1.1 IL. Hydrocrackate (C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 <td></td> <td>7.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		7.2							
Total Reformates(2) 35.3 27.3 26.4 29.0 28.0 25.5 20.7 LL. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5	HC Reformate (210-300)		14.8			10.0	13.3	6.8	
L1. Reformate (Benzene Saturated) 9.3 8.8 6.1 7.2 8.3 5.5 Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtna (150-220) 1.1 10.2 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 0.3 1.1 1.1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE </td <td>Heavy Reformate (300+)</td> <td></td> <td>4.6</td> <td>4.0</td> <td>6.1</td> <td>3.8</td> <td>4.0</td> <td>2.1</td>	Heavy Reformate (300+)		4.6	4.0	6.1	3.8	4.0	2.1	
Alkylate/Lt Alkylate (C3/C4) 10.9 11.7 11.3 11.1 10.5 11.9 11.9 Alkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtna (150-220) 1.1 11.2 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 1.1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 Total L	Total Reformates(2)	35.3	27.3	26.4	29.0	28.0	25.5	20.7	
Alkylate/Lt Alkylate (C5) 3.6 2.5 2.9 3.5 2.9 2.3 Butane 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtha (150-220) 1.1 1.1 1.1 1.1 1.1 1.1 Iso Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 1.1 1.1 Lt. Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5 <td>LI. Reformate (Benzene Saturated)</td> <td></td> <td>9.3</td> <td>8.8</td> <td>6.1</td> <td>7.2</td> <td>8.3</td> <td>5.5</td>	LI. Reformate (Benzene Saturated)		9.3	8.8	6.1	7.2	8.3	5.5	
Butane 2.5 1.5 <t< td=""><td>Alkylate/Lt Alkylate (C3/C4)</td><td>10.9</td><td>11.7</td><td>11.3</td><td>11.1</td><td>10.5</td><td>11.9</td><td>11.9</td></t<>	Alkylate/Lt Alkylate (C3/C4)	10.9	11.7	11.3	11.1	10.5	11.9	11.9	
Butane 2.5 1.5<	Alkylate/Lt Alkylate (C5)		3.6	2.5	2.9	3.5	2.9	2.3	
Natural/LSR Gaso 3.8 2.8 2.7 3.0 2.5 2.8 2.7 BT Naphtha (150-220) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 Iso Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 1 1 1 Lt. Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	Butane	2.5	1.5	1.5	1.5		1.5		
BT Naphtha (150-220) 1.1 Iso Pentane 1.2 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 1 Lt. Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	Natural/LSR Gaso	3.8	2.8	2.7	3.0	-			
iso Pentane 1.2 2.6 2.6 2.6 1.4 1.8 Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 isomerate (C6) 0.3 0.3 0.3 0.3 1.1 1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	BT Naphtha (150-220)								
Normal Pentane 0.2 0.5 0.5 0.5 0.2 0.3 Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	, , ,		1.2	2.6	2.6	2.6		1.8	
Isomerate (C5-C6) 0.6 2.8 2.8 2.7 2.7 2.7 0.7 Isomerate (C6) 0.3 0.3 0.3 0.3 0.3 1.1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.4 49.5 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	Normal Pentane								
Isomerate (C6) 0.3 0.3 0.3 0.3 1.1 Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	Isomerate (C5-C6)	0.6	2.8	2.8					
Lt. Hydrocrackate 5.0 7.7 7.6 5.4 5.8 7.4 5.3 Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5								•••	
Hydrocrackate (175-225) 0.5 7.3 6.8 5.8 6.1 6.9 5.0 MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5		5.0			+			53	
MTBE 2.0 11.1 11.1 13.0 13.2 11.2 12.1 TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5	• • • • •	0.5							
TAME 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.4 Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5									
Total Low Arom., Saturated 25.3 60.2 59.2 55.6 57.1 60.1 49.5									
		25.3			-				
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	I Ulai LOW ALUNIL, Saluraioù	£3.3	00.2	33.2	33.0	57.1	60.1	49.5	
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	

(1) No T50/DI Limits

(2) Excluding light reformate.

CLM/REC

10/31/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30218

TURNER, MASON & COMPANY Consulting Engineers

.

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(¢/G per unit in constant 1991 \$)

		8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES						
	Base Case 0	Case 8 + None	Case 9 +0.4 RVP	Case 10 +30 T90(2)	Case 11 +15 T90(2)	Case 12 +30 S	Case 13 +5 OL/100S 30 T90(2)	
(R+M)/2 Octane, Clear	(0.9)	(1 .3)	(1. 2)	(1.4)	(1.3)	(1.3)	(1.5)	
Reid Vapor Pressure, PSI	0.6	3.5	2.5	2.4	2.8	4.1	2.5	
Butane, Vol.%		1,4	0.8	0.9	1.0	1 .6	0.9	
Aromatics, Vol.%		0.2	0.2	0.5	0.3	0.2	0.6	
Ethers, Vol.%	(0.1)	(0.0)	(0. 0)					
Olefins, Vol.%			0.1			0.6		
Benzene, Vol.%		3.3	3.3	3.5	3.5	2.5	3.6	
Sulfur, 100 Wt. PPM		9.1	7.7	8.4	8.7		0.8	
T90, 10°F		2.0	1.8	0.3	0.8	3.6	0.5	

(1) Shadow costs for very small changes.

Not applicable for significant changes.

CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30219

⁽²⁾ No T50/DI Limits

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

			Case 14	Case 15		Case 16	Case 17	Case 18
	Base		+5 OL/60S	+3A		- Case 14	+ Lab Comply	+3A/4 OL/30S
Reformulated Properties*	Case 0		30 T90(1)	30 T90(1)	W	th No CS O	Margins	.4RVP/15 T90(1)
Aromatics, Vol.%, Maximum			22	25		22	25	25
Regulatory Cap			25	28		25	25	28
Oxygen, Wt.%, Minimum Avg	0.4		2.1	2.1		21	2.0	21
Bromine No., Maximum	26	(2)	17	8		15	10	15
Regulatory Cap		(2)	20	10		18	10	18
Benzene, Vol.%, Maximum Avg	•••	\ -/	0.8	0.8		0.8	1.0	0.8
Sulfur, Wt. PPM, Maximum	250		80	20		80	30	50
Regulatory Cap	300		100	30		100	30	65
Reid Vapor Pressure, PSI, Max	7.5		6.7	6.7		6.7	7.0	7.1
Regulatory Cap	7.8		7.0	7.0		7.0	7.0	7.4
T90, *F. Maximum			320	320		320	300	305
Requiatory Cap			330	330		330	300	315
Driveability Index, Reg. Cap							1100	
Ethers, Vol.% Pool								
Purchased	0.6		10.1	9.8		9.9	9.1	9.8
Manufactured	1.4		1.8	1.9		2.0	1.9	1.9
Gasoline Pool Properties								
(R+M)/2 Octane, Clear*	88.9		88.9	88.9		88.9	88.9	88.9
Aromatics, Vol.%	34		22 '	25	•	22	• 25	• 24
Ethers, Vol.%	2.0	٠	11.9	11.7	•	11.9	11.0	• 11.7
Oxygen, Wt.%	0.4	•	2,1	21	•	2.1	2.0	• 21
Olefins, Vol.%	11		7	4	٠	7	5	• 7
Bromine No.	22		15	8	•	14	10	• 15
Benzene, Vol.%	2.2		0.8 *	0.8	•	0.8	• 1.0	• 0.8
Sulfur, Wt. PPM	206		8 0 *	20	•	80	• 30	• 50
Reid Vapor Pressure, PSI*	7.5		6.7	6.7		6.7	7.0	7.1
Temperature at V/L = 20, *F	145		147	146		146	145	144
Distillation								
90°F, Vol.%	12		9	9		9	10	10
130°F, Vol.%	23		19	20		19	21	22
170°F, Vol.%	33		37	38		37	39	40
212°F, Vol.%	50		56	57		55	57	58
257°F, Vol.%	67		73	74		73	76	76
300°F, Vol.%	81		86	86		86	90	89
356°F, Vol.%	91		95	96		96	97	97
T10, *F	125		136	135		137	133	133
T50, •F	212		199	1 97		200	195	193
T90, •F	348		320 •	320	٠	318	300	
Driveability Index	1171		1121	1114		1124	1085	1084
Heat Content, MBTU/G	114.4		111.3	111.6		111.4	111.5	

(1) No T50/DI Limits (2) L.A. Only Input limit.

CLM/REC 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30220

TURNER, MASON & COMPANY Consulting Engineers

SUMMARY OF COSTS

1996 CASE RESULTS⁽¹⁾ - INCREASE OVER BASE CASE⁽²⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 1 of 2

	8/5/91 CARB 2 Proposal - Lab Comply Margins + Changes								
	Case 14 + 5 OL/60 S 30 T90 ⁽³⁾	Case 15 + 3 A 30 T90 ⁽³⁾	Case 16 = Case 14 With No C, O	Case 17 + Lab Comply Margin	Case 18 + 3A/4 OL/30 S .4 RVP/15 T90 ⁽³⁾				
Investments, MM\$				<u></u>					
Refinery MTBE ⁽⁴⁾	1,500 <u>2,440</u>	2,080 <u>2,370</u>	1,510 <u>2,400</u>	2,270 <u>2,200</u>	1,490 <u>2,370</u>				
Total	3,940	4,450	3,910	4,470	3,860				
Range, MMM\$ ⁽⁵⁾	3.1-5.1	3.5-5.8	3.1-5.0	3.6-5.8	3.0-5.0				
Daily Costs, M\$/D									
Capital Charge ⁽⁶⁾	997	1,376	998	1,508	987				
Net Upgrading Costs ⁽⁷⁾	2,260	2,231	2,260	2,108	2,206				
Variable Operating Costs	142	555	321	624	409				
Fixed Operating Cost ^(®)	406	<u> 491</u>	399	557	387				
Total Refinery	3,805	4,653	3,978	4,797	3,989				
Annual Cost, MM\$/Yr.									
Refinery	1,389	1,699	1,453	1,751	1,457				
Other ⁽⁹⁾	386	353	373	<u> </u>	398				
Total	1,775	2,052	1,826	2,112	1,855				
Total Unit Cost, ¢/G of Base Gasoline									
Average	11.3	13.1	11.7	13.5	11.8				
Range ⁽¹⁰⁾	9.4-14.7	11.1-16.6	9.8-15 .0	11.5-17.0	9.9-15.2				

SUMMARY OF COSTS

1996 CASE RESULTS⁽²⁾ - INCREASE OVER BASE CASE⁽³⁾

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

Page 2 of 2

- ⁽¹⁾ For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.
- ⁽²⁾ Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.
- ⁽³⁾ No T50/DI Limits.
- ⁽⁴⁾ For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).
- ⁽⁵⁾ For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.
- ⁽⁶⁾ Based on expected 15% DCF rate of return on new refining facilities investment.
- ⁽⁷⁾ Raw material upgrading costs.
- ⁽⁸⁾ For new refining facilities only.
- ⁽⁹⁾ Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.
- ⁽¹⁰⁾ For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

TABLE E-2A

COMPOSITE REFINERY MARGIN & COST INCREASE DETAIL 1996 CASE 17 OVER(UNDER) BASE CASE WSPA STUDY OF CARB PHASE 2 GASOLINE

	MBPD	C/GAL	<u>\$/B</u>	<u>M\$/D</u>
Products				
Motor Gasolines-Regular	11.0	65.5		303
Motor Gasolines-Intermediate	4.1	67.7		116
Motor Gasolines-Premium	5.0	71.0		150
No. 6 Bunker	19.6	•	13.00	254
Normal Butane to Fuel	0.8		20.47	16
Propane	(1.4)	32.6		(20)
Propane to Fuel	1.3		20.47	27
Propylene	(1.6)	29.6		(20)
Propylene to Fuel	(1.3)		20.47	(27)
Process Gas to Fuel	(33.5)		20.47	(686)
Coke – Low Sulfur	3.9		7.00	27
Coke – High Sulfur	(3.9)		5.00	(20)
FCC Coke to Fuel	(1.9)		20.47	(39)
Loss(Gain)	5.0			
Subtotal	7.0			82
Sulfur(M L T; \$/L T)	(0.12)		70.00	(8)
Total				74
Raw Materials				
Alaska North Slope Crude	(68.7)		16.70	(1,148)
Naphtha	3.5	52.5		78
MTBE	88.9	96.0		3,583
Methanol	1.7	65.0		46
Natural Gas to H2 Plant	(18.4)		20.47	(376)
Total	7.0			2,184
Gross Margin				(2,110)
Variable Cost				
Natural Gas	56.8		20.47	1,163
Produced Fuels	(34.6)		20.47	(708)
Other				170
Total Variable Cost				625
Gross Margin after Variable Cost				(2,734)

RMA 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30223

.

TABLE E-2B

ADDED MANPOWER AND FIXED COSTS

1996 CASE 17 INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Number of <u>Employees</u>
<u>Manpower</u> Direct Process Operating Labor Off-Site Operators, Administrative, Technical and Staff Maintenance Employees	500 1,000 <u>600</u>
Total Employees Contract Maintenance	2,100 200
Total Manpower	2,300
<u>Fixed Costs</u> Total Fixed Operating Costs, \$MM/Year ⁽¹⁾	193
Salaries and Wages, %	55
Maintenance Costs, \$MM/Year ⁽¹⁾	72

⁽¹⁾ Includes manpower.

GWM 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30224

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

	Case 14 +5 OL/60S 30 T90(1)	Case 15 +3A 30 T90(1)	Case 16 = Case 14 With No C5 O	Case 17 + Lab Comply Margins	Case 18 +3A/4 OL/30S .4RVP/15 T90(1)
Raw Materials Alaska North Slope	(162)	(110)	(151)	(69)	(89)
Subtotal Crudes	(162)	(110)	(151)	(69)	(89)
Natural Gasoline Naphtha MTBE Methanol	(3) 99 1	4 96 2 7	(3) 97 2	4 89 2	4 96 2
Normal Butane Isobutane Natural Gas to H2 Plant Feed	20 6 (21)	(19)	20 6 (21)	(18)	6
Total	(60)	(20)	(50)	7	18
Products Motor Gasolines No. 6 Bunker Normal Butane Propane Propylene, Low Value Process Gas Lt Coker Naphtha to P/C Pentanes to P/C Isobutane	22 (13) (3) (6) (13) (53)	20 (5) (3) (2) 0 (37)	21 (13) (3) (5) (13) (49)	20 20 1 (0) (3) (33)	23 16 (0) (3) (5) (12)
Marketable Coke FCC Coke Loss(Gain)	(6) (2) 13 (60)	0 (1) 8 (20)	(0) (1) 13 (50)	0 (2) 5 	0 (2) 3 18
Crude Property Increase Gravity, *API Sulfur, Wt%	(0.3) 0.01	(0.2) 0.01	(0.3) 0.01	(0.2) 0.00	(0.2) 0.00
Gasoline Demand Increase, %(2) Results Target	2.1 2.2	1.9 2.0	2.1 2.1	2.0 2.0	2.2 2.2

(1) No T50/DI Limits.

(2) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM 11/1/91

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30225

NEW PROCESS UNIT RATES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGI					
	Case 14 +5 OL/60S 30 T90(1)	Case 15 +3A 30 T90(1)	Case 16 = Case 14 With No C5 O	Case 17 + Lab Comply Margins	Case 18 +3A/4 OL/30S .4RVP/15 T90(1)	
Heavy Naphtha Splitter	1			125	80	
FCC Gasoline Splitters	237	348	366	346	347	
FCC Gasoline Fractionation						
Hydrocrackate Fractionation	130	141	132	156	143	
Coker Lt Gasoline DS/Splitter	27		28	29	29	
Hydrotreating - Distillate	20	60	21	110	80	
Reformer Feed Fractionation	259	367	253	324	285	
Reformate Fractionation	190	271	163	151	221	
Benzene Saturation	66	87	69	71	88	
FCC Gasoline HDS		66		54	27	
Gasoline Aromatics Saturation						
Alkylation	52	23	55	18		
Alkylate Splitter				22		
MTBE /TAME	5	7	8	7	7	
Isomerization - C5/C6	15	29		20	14	
- C4	30	17	28	8	4	
Hydrogen – MMSCFPSD	1	54	1	84	1	

(1) No T50/DI Limits

CLM 11/4/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30226

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 \$)

	8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES						
	Case 14 +5 OL/60S 30 T90(1)	Case 15 +3A 30 T90(1)	Case 16 - Case 14 With No C5 O	Case 17 + Lab Comply Margins	Case 18 +3A/4 OL/30S .4RVP/15 T90(1)		
Heavy Naphtha Splitter	0			90	60		
Coker Lt. Gasoline DS/Splitter	50		50	50	50		
FCC Gasoline Splitters	210	520	290	520	280		
FCC Gasoline Fractionation							
Hydrocracking - Heavy Gasoline				140			
Hydrocrackate Fractionation	90	90	90	100	90		
Hydrotreating - Distillate	30	120	40	220	160		
Reformer Feed Fractionation	140	1 70	140	170	150		
Reformate Fractionation	110	150	100	100	130		
Benzene Saturation	210	260	220	220	260		
FCC Gasoline HDS		170		150	90		
Gasoline Aromatics Saturation							
Alkylation	310	150	330	110			
Alkylate Splitter				20			
MTBE / TAME	30	40	50	40	40		
Isomerization - C5/C6	100	190		130	90		
- C4	150	90	150	40	20		
Hydrogen	10	90	10	130	20		
MTBE Storage & Blending	40	40	40	40	40		
Total Refinery	1,500	2.080	1,510	2,270	1,490		

(1) No T50/DI Limits.

CLM 11/13/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30227

TURNER, MASON & COMPANY Consulting Engineers

the second state of the second part and detailed the second state of the

TABLE E-6 **PROCESS UNIT RATE CHANGES 1996 CASE RESULTS** INCREASE OVER BASE CASE - MBPCD PER REFINERY WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/5/91 CARE 2	PROPOSAL	- LAB COMPI	Y MARGINS	• CHANGES
	Base	Case 14 +5 OL/60S	Case 15 +3A		Case 17 + Lab Comply	Case 18 +3A/4 OL/30S
	Case 0	30 T90(1)	30 T90(1)	With No C5 O	Margins	.4RVP/15 T90(1)
Crude - Atmospheric	111.1	(9.5)	(6.5)	(8.9)	(4.0)	(5.3)
Heavy Naphtha Splitter		0.1			7.0	4.5
Catalytic Cracking (2)	36.8	(1.3)	(3.4)	• •	(2.7)	(2.7)
Catalytic Cracking (3)	37.3	(1.3)	(3.4)		(2.8)	(2.8)
Conversion, %	74.4	(2.5)	(1.6)	(2.7)	(2.3)	(2.3)
Octane Catalyst, %	15.0					
FCC Gasoline Splitters		13.2	19.5	20.4	19.4	19.4
FCC Gasoline Fractionation	15.2	(8.3)	(15.2)	(15.2)	(15.2)	(15.2)
Hydrocracking - 2 Stage(2)	16.9					
Jet Yield, % of Max	96.7	(13.7)	(31.9)	• •	(58.6)	(37.1)
300 - Gasoline Operation, %		17.0		12.1	5.1	
Hydrocracking - Low Conversion	3.2		1.0	0.0	1.0	1.0
- Heavy Gasoline					0.5	
- Combined(3)	20.1	(0.5)	1.0	(0.3)	1.3	1.0
Hydrocrackate Fractionation		6.8	7.3	6.8	· 8.1	7.4
Coking - Delayed	22.9					
- Fluid	5.3	(1.2)		(0.1)		
Coker Lt Gasoline DS/Splitter		1.5		1.6	1.6	1.6
Thermal Cracking, Visbreaking	2.3	(2.1)	(0.8)	• •		
Solvent Deasphalting	1.0	1.2	(0.7)		(0.6)	(0.6)
Catalytic Reforming - 100 PSI (1)	3.4	(1.0)		(1.0)		
- 200 PSI (1)	16.6	(4.4)		(2.9)		(1.4)
- 450 PSI (1)	8.9	(4.4)	(2.3)	• •	(2.3)	(2.9)
- Combined (2)	26.4	(7.7)	0.1	(6.1)	(0.7)	(2.4)
- RONC	99.2	(5.9)	(4.9)	•· •	(4.1)	(5.1)
Hydrotreating - Naphtha	18.8	(2.4)	4.4	(5.2)	1.5	(0.4)
- Distillate	22.0	1.0	3.1	1.1	5.7	4.2
- Heavy Gas Oll	31.0	0.8		0.8		0.0
- Residuum - Vac	1.4				(0.3)	(0.3)
Reformer Feed Fractionation		13.4	19.0	13.1	16.8	14.8
Reformate Fractionation		9.8	14.0	8.5	7.8	11.4
Benzene Saturation		3.2	4.3	3.4	3.5	4.3
FCC Gasoline HDS			3.4		2.8	1.4
Gasoline Aromatics Saturation						
Diesel Aromatics Saturation	11.7				(0.1)	(0.1)
Alkylation	6.6	2.6	1.1	2.7	0.9	
Alkylate Splitter					1.1	
Polymerization		0.1		0.5		
MTBE / TAME	0.8	0.3	0.3	0.5	0.4	0.4
Lubes	1.3					
Isomerization - C5/C6		0.8	1.5		1.0	0.7
- C5/C6, Recycle	0.4					
- C4	0.3	1.4	0.8	1.4	0.4	0.5
Hydrogen - MMSCFPCD	58.1	6.7	10.7	6.7	12.1	8.0
Sulfur, LTPCD	130.0	(11.0)	(5.0)	(9.0)	(7.0)	(8.0)

No T50/DI Limits
 Include effects of nonunitary capacity for some feedstocks and severities.
 Based on actual feed rates, ignoring severity effects.

the second second second second

REC/CLM 11/4/91

and a second second second second second second

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30228

TURNER, MASON & COMPANY Consulting Engineers

and a subscription of the second s

PROCESS UNIT UTILIZATIONS (1)

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

		BISIST CARD	2 FRUFUSA		LI MARGINO 4	CHARGES
	Base	Case 14	Case 15	Case 16	Case 17	Case 18
	Case	+5 OL/60S	+3A	= Case 14	+ Lab Comply	+3A/4 OL/30S
	0	30 790(2)	30 T90(2)	With No C5 O	Margins	.4RVP/15 T90(2)
Crude Distillation - Atmospheric	89.2	81.5	84.0	82.0	85.9	84.9
Heavy Naphtha Splitter		95.0			95.0	95 .0
Catalytic Cracking (3)	95.0	91.7	86.2	92.7	87.9	88.1
Catalytic Cracking (4)	96.2	92.9	87.5	94.0	88.9	89.0
FCC Gasoline Splitters		95.0	95 .0	95.0	95.0	95.0
FCC Gasoline Fractionation	84.9	38.3			80 A	
Hydrocracking - 2 Stage(3)	88.0	88.0 67.0	88.0 88.0	88.0 67.4	88.0 88.0	88.0 88.0
- Low Conversion - Heavy Gasoline	67.0	67.0	00.0	07.4	88.0	00.0
- Combined(4)	83.8	81.8	88.0	82.5	87.4	88.0
Hydrocrackate Fractionation	03.0	88.0	88.0	88.0	88.0	88.0
Coking - Delayed	95.0	95.0	95.0		95.0	95.0
- Fluid	95.0	73.8	95.0	93.9	95.0	95.0
Coker Lt Gasoline DS/Splitter		95.0		95.0	95.0	95.0
Thermal Cracking, Visbreaking	88.0	7.0	59.0	7.0	88.0	88.0
Solvent Deasphaiting	32.5	73.2	10.1	40.1	12.5	10.5
Catalytic Reforming - 100 PSI (3)	88.0	62.3	68. 0		88.0	88.0
- 200 PSI (3)	88.0	64.7	88.0		88.0	80.8
- 450 PSI (3)	88.0	43.8	65.6		65.6	58.7
- Combined (4)		56.9	80.7	61.8	78.6	73.1
Hydrotreating - Naphtha	66.7	58.0 88.0	82.4 88.0		72.0	65.3 88.0
- Distillate	88.0 85.8	88.0 88.0	85.8		88.0 85.8	88.0 85.9
- Heavy Gas Oll - Residuum, Vac	88.0	88.0	88.0		69.1	67.3
Reformer Feed Fractionation	00.0	88.0	88.0		88.0	88.0
Reformate Fractionation		88.0	88.0		88.0	88.0
Benzene Saturation		83.0	83.0			83.0
FCC Gasoline HDS			88.0		88.0	88.0
Gasoline Aromatics Saturation						
Diesel Aromatics Saturation	88.0	88.0	88.0	88.0	87.1	87.5
Alkylation	83.0	83.0	83.0			83.0
Alkylate Splitter					83.0	
Polymerization	0.0	14.4	0.0	83.0		0.0
MTBE / TAME	83.0	83.0	83.0			83.0
Lubes	87.6	87.6	87.6			87.6
Isomerization - C5/C6		88.0	88.0		88.0	88.0
- C5/C6, Recycle	88.0	88.0	88.0	88.0	88.0	88.0
- C4	83.0	83.0	83.0			83.0
Hydrogen	72.9	81.3	83.0			83.0
Sulfur	45.9	42.0	44.2	42.7	43.5	43.1

(1) Calendar day rates divided by stream day capacity.

(2) No T50/DI Limits.

(3) Include effects of nonunitary capacity factors for some feedstocks and severities.
 (4) Based on actual feed rates, ignoring severity effects.

CLM	
11/12/91	

¹⁴ Science and the sector system

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30229

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHAI				
	Base Case 0	Case 14 +5 OL/60S 30 T90(1)	Case 15 +3A 30 T90(1)	Case 16 = Case 14 With No C5 0	Case 17 + Lab Comply Margins	Case 18 +3A/4 OL/30S .4RVP/15 T90(1)
FCC Gasoline	11.1					
LL. FCC 255-	15.0	6.7				
Hvy FCC 255+	10.5	4.6				
Hvy FCC 255+ Desui			5.7		4.6	2.4
FCC Gaso (100-180)		4.7	6.3	7.1	6.5	6.4
FCC Gaso (180-225)		2.6	3.1	4.0	6.1	3.8
FCC Gaso (225-300)		5.2	0.5	8.0		7.6
FCC Gaso (300-375)	·	3.5		5.5		1.7
Total FCC Gasoline	36.6	27.3	15.6	24.6	17.2	21.9
Pentenes		0.3	0.6		1.4	2.2
Poly Gasoline		0.1		0.8		
Lt. Coker Gasoline	28	0.2		1.4		0.5
Total Olefinic	2.8	0.6	0.6	2.2	1.4	2.7
Reformate	22.2	2.7	3.3	11.5	10.1	4.4
Reformate (220-300 Feed)	5.9	7.3	10.5	29	12.0	9.8
BT Reformate	7.2					
HC Reformate (210–300)		7.4	10.3	6.7	5.8	8.3
Heavy Reformate (300+)		3.3	5.6	1.5	1.3	3.3
Total Reformates(2)	35.3	20.7	29.7	22.6	29.2	25.8
LL. Reformate (Benzene Saturated)		5.5	7.2	5.8	6.0	7.3
Aikyiate/Lt Aikyiate (C3/C4)	10.9	12.2	9.6	10.6	10.1	10.5
Alkylate/Lt Alkylate (C5)		2.3	27	4.2	1.4	
Butane	2.5	1.5	1.5	1.7	1.5	1.5
Natural/LSR Gaso	3.8	26	3.3	3.3	3.0	3.5
BT Naphtha (150-220)						
Iso Pentane		2.1	2.6	3.2	3.1	3.1
Normal Pentane		0.4	0.5	0.6	0.6	1.0
Isomerate (C5-C5)	0.6	0.6	2.8	0.6	0.6	0.6
Isomerate (C6)		1.4	0.3		1.7	1.2
Lt. Hydrocrackate	5.0	5.3	5.6	5.4	6.5	5.8
Hydrocrackate (175-225)	0.5	5.6	6.2	3.2	6.7	3.4
MTBE	20	11.4	11.1	11.2	10.3	11.0
TAME		0.5	0.7	0.8	0.7	0.7
Total Low Arom., Saturated	25.3	51.4	54.1	50.6	52.2	49.6
Total	100.0	100.0	100.0	100.0	100.0	100.0

(1) No T50/DI Limits.

(2) Excluding light reformate.

CLM/REC

11/1/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30230

.

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(¢/G per unit in constant 1991 \$)

		8/5/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CH/				
	Base Case 0	Case 14 +5 OL/60S 30 T90(2)	Case 15 +3A 30 T90(2)	Case 16 = Case 14 With No C5 O	Case 17 +Lab Comply Margins	Case 18 +3A/4 OL/30S .4RVP/15 T90(2)
(R+M)/2 Octane, Clear	(0.9)	(1.5)	(1. 0)	(1.4)	(1.0)	(0.6)
Reid Vapor Pressure, PSI	0.6	2.5	1.8	0.8	1.3	0.9
Butane, Vol.%		0.9	0.5		0.2	0.1
Aromatics, Vol.%		0.5	0.2	0.6	0.1	
Ethers, Vol.%	(0.1)		(0.1)		(0.1)	(0.2)
Olefins, Vol.%			0.1		0.3	0.1
Benzene, Vol.%		3.3	3.2	3.2	2.5	2.7
Sulfur, 100 Wt. PPM		1.4	6.2	0.7	5.2	2.8
T90, 10 °F		0.4	0.6		1.9	1.4

 (1) Shadow costs for very small changes. Not applicable for significant changes.
 (2) No T50/DI Limits.

CLM 11/4/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30231

TURNER, MASON & COMPANY Consulting Engineers

- Service (COLUMN) - Service) (Spanpage April

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

			8/91 CAR	B 2 PROPOSAL - LAB	COMPLY MARGI	NS ·	+ CHANGES	
			Case 19	Case 20	Case 21			
	Base		- Blend Comply	+ 6 OL/100 S	- Blend Comply		Case 22	
Reformulated Properties*	Case 0		Margins(1)	0.4 RVP/30 T90(1)	Margins(2)		+0.2 RVP	
Aromatics, Vol.%, Maximum			20	22	20		22	
Regulatory Cap			25	25	25		25	
Oxygen, Wt.%, Minimum	0.4		25	2.1	2.5		21	
Regulatory Bottom			20	2.0	2.0		20	
Bromine No., Maximum	26	(3)	4	20	4		8	
Regulatory Cap	30	(3)	10	24	10		10	
Benzene, Vol.%, Maximum Avg			0.8	0.8	0.6		8.0	
Sulfur, WL PPM, Maximum	250		10	120	10		20	
Regulatory Cap	300		30	150	30		30	
Reid Vapor Pressure, PSI, Max	7.5		6.5	7.1	6.5		6.9	
Regulatory Cap	7.8		7.0	7.4	7.0		7.2	
T90, *F, Maximum			280	320	280		290	
Regulatory Cap			300	330	300		300	
Driveability Index, Maximum					1055		1075	
Regulatory Cap					1100		1100	
Ethers, Vol.% Pool								
Purchased	0.6		13.0	10.4	12.1		9.8	
Manufactured	1.4		2.0	1.3	2.0		1.9	
Gasoline Pool Properties								
(R+M)/2 Octane, Clear*	88.9		88.9	88.9	88.9		88.9	
Aromatics, Vol.94	34		<i>au</i>	• 22 '	20	•	22	•
Ethers, Vol.%	20		10.0	• 11.7	14.1		11.7	
Oxygen, Wt.%	0.4	•	2.7		25		21	
Olefins, Vol.%	11		1	10	1		4	•
Bromine No.	22		2	19	1		8	•
Benzene, Vol.%	2.2		0.6	0.0	• 0.6	•	0.8	•
Sulfur, Wt. PPM	206		10			•	20	•
Reid Vapor Pressure, PSI*	7.5		6.5	7.1	6.5		6.9	
Temperature at V/L = 20, *F Distillation	145		147	144	144		144	
90°F, Vol.%	12		6	10	6		9	
130°F. Vol.%	23		16	21	16		21	
170°F. Vol.%	33		39	40	41		40	
212°F, Vol.%	-50		59	56	64		60	
257°F, Vol.%	67		80	74	84		79	
300°F, Vol.%	81		96	86	98		92	
356°F, Vol.%	91		99	96	100		98	
T10, *F	125		149	131	149		135	
T50, •F	212		193	197	187	•	135	
T90, *F	348		280	* 320			290	
Driveability index	1171		1083	1108	1054	•	1066	
Heat Content, MBTU/G	114.4		110.4	111.1		-	110.9	
			110.4	1 1 1 . 1	110.1		110.9	

• Input limit.

(1) No T50/DI Limits.

(2) Revised to correct coker and add it hydrocrackate splitter for added C5 sales.

the set the result of the state of the property of the

(3) L.A. only.

CLM/REC 11/12/91

 $\sim a_{22} + a_{12} + a_{22} +$

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30232

TURNER, MASON & COMPANY Consulting Engineers

unite parage en la comparage destable alles gestificanas canque e

SUMMARY OF COSTS

1996 CASE RESULTS(1) - INCREASE OVER BASE CASE(2)

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

	8/91 CARE 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES						
	Case 19	Case 20	Case 21				
	- Blend Comply	+6 OL/100 S	- Blend Comply	Case 22			
	Margins(3)	0.4 RVP/30 T90(3)	Margins	+0.2 RVP			
Investment, MM\$							
Refinery	4,330	1,030	5,650	3,230			
MTBE(4)	3.220	2,500	2.980	2.370			
Total	7,540	3,520	8,640	5,600			
Range, MMM\$(5)	6.1-9.9	2.7-4.5	7.0-11.4	4.5-7.3			
Daily Costs, MS/D							
Capital Charge(6)	2,873	682	3,747	2,138			
Net Upgrading Costs(7)	3,416	2,116	3,095	2,312			
Variable Operating Costs	1,423	3	2.062	907			
Fixed Operating Costs(8)	982	294	1,179	771			
Total Refinery	8,694	3.095	10,083	6,129			
Annual Cost. MM\$/Yr.							
Refinery	3,173	1,130	3,680	2,237			
Other(9)	492	406	529	431			
Total	3.665	1,536	4,209	2,668			
Total Unit Cost. ¢/G of Base Gasoline	2						
Average	23.5	9.8	26.9	17.1			
Range(10)	20.4-29.2	7. 9 –13.1	23.6-33.2	14.7-21.4			

(1) For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.

(2) Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.

(3) No T50/DI Limits.

(4) For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).

- (5) For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.
- (6) Based on expected 15% DCF rate of return on new refining facilities investment.
- (7) Raw material upgrading costs.
- (8) For new refining facilities only.

(9) Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.

(10) For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

NATE AND A DESCRIPTION

REC/CLM 11/13/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30233

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE - MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

	BUT OARD E FROTOGAL - EAD COME ET MARIANS + CRANGE					
	Case 19	Case 21				
	- Blend Comply	- Blend Comply	Case 22			
	Margins(1)	Margins	+0.2 RVP			
Raw Materials						
Alaska North Slope	(35)	(9)	(88)			
Subtotal Crudes	(35)	(9)	(88)			
Natural Gasoline	(4)	(4)				
Naphtha	4	4	4			
MTBE	130	121	96			
Methanoi	2	2	2			
Normal Butane	4		16			
Isobutane						
Natural Gas to H2 Plant Feed	20	(9)	(16)			
Total	121	104	13			
Products						
Motor Gasolines	28	30	24			
No. 6 Bunker	29	32	34			
Normal Butane	(3)	11	(3)			
Propane	11	11	1			
Propylene, Low Value	(13)	(13)	(13)			
Process Gas	5	(24)	(36)			
Lt St Run Naphtha to P/C	19	\;	(
Lt Hydrocrackate to P/C						
Pentanes to P/C	38	37				
iso Pentane to P/C		33				
Isobutane		~				
Marketable Coke	8	0	6			
FCC Coke	(0)	ő	(5)			
Loss(Gain)		÷	(2)			
Loss(Gain)	<u>(1)</u>	(13)	13			
Total	121	104	13			
Crude Property Increase						
Gravity, *API	(0.1)	0.0	/n m			
			(0.2)			
Sulfur, Wt%	0.00	0.00	0.00			
Gasoline Demand Increase, %(2)						
Results	2.8	2.9	2.4			
Target	2.8	3.0	24			

8/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

(1) No T50/DI Limits.

(2) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM

11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30234

TABLE F-4 NEW PROCESS UNIT RATES 1996 CASE RESULTS INCREASE OVER BASE CASE – MBPSD WSPA STUDY OF CARB PHASE 2 GASOLINE

8/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

	Case 19	Case 21	
	- Blend Comply	- Blend Comply	Case 22
	Margins(1)	Margins	+0.2 RVP
Heavy Naphtha Splitter	135	135	74
FCC Gasoline Splitters	364	371	347
FCC Gasoline Fractionation			
Hydrocracking - Heavy Gasoline	59	120	
Hydrocrackate - Fractionation	149	236	156
Lt Hydrocrackate Splitter		76	
Coker Lt Gasoline DS/Splitter	33	30	29
FCC Gasoline HDS	48		31
Hydrotreating - Naphtha	4	79	
- Distillate	102	109	155
- Heavy Gas Oil		13	
Reformer Feed Fractionation	389	419	352
Reforming - 200 PSI		61	
Reformate Fractionation	174	465	302
Benzene Saturation	75	140	106
Gasoline Aromatics Saturation			47
Alkylation	93	90	63
Alkylate Splitter	164	214	2
MTBE /TAME	9	9	7
Isomerization - C5/C6	48	100	20
- C5/C6, Recycle	24		
- C4	30	10	33
Hydrogen – MMSCFPSD	339	551	184

(1) No T50/DI Limits.

CLM 11/12/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30235

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 \$)

	8/91 CAF	18 2 PROPOSAL - LAB	COMPLY MARGINS + CHANGE			
	Case 19 - Blend Comply Margine(1)	Case 20 +6 OL/100 S 0.4 RVP/30 T90(1)	Case 21 - Blend Comply Margins	Case 22 +0.2 RVP		
Heavy Naphtha Splitter	90		90	60		
FCC Gasoline Splitters	540	60	550	520		
FCC Gasoline Fractionation		30				
Hydrocracking - Heavy Gasoline	750		1,190			
Hydrocrackate - Fractionation	100	90	130	100		
Lt Hydrocrackate Splitter			70			
Coker Lt. Gasoline DS/Splitter	60	20	50	50		
FCC Gasoline HDS	140			110		
Hydrotreating - Naphtha	10		100			
- Distillate	200	0	220	310		
- Heavy Gas Oil			30			
Reformer Feed Fractionation	190	140	200	1 80		
Reforming - 200 PSI			170			
Reformate Fractionation	200	100	410	160		
Benzene Saturation	230	220	350	290		
Gasoline Aromatics Saturation				420		
Alkylation	540	180	530	380		
Alkylate Splitter	100		120	0		
MTBE / TAME	50		50	40		
Isomerization - C5/C6	240		450	130		
- C5/C6, Recycle	210					
- C4	150	130	50	170		
Hydrogen	480	10	830	270		
MTBE Storage & Blending	50	50	50	40		
Total Refinery	4,330	1,030	5,650	3,230		

(1) No T50/DI Limits.

CLM 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30236

TABLE F-6 PROCESS UNIT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE - MBPCD PER REFINERY WSPA STUDY OF CARB PHASE 2 GASOLINE

		8/91 CARE 2 PROPO	SAL - LAB COMPLY MAR	GINS + CHANGES
		Case 19	Case 21	
	Base	- Blend Comply	- Biend Comply	Case 22
	Case 0	Margins(1)	Margins	+0.2 RVP
Crude - Atmospheric	111.1	(2.0)	(0.5)	(5.2)
Heavy Naphtha Splitter		7.5	7.6	4.1
Catalytic Cracking (2)	36.8	(0.7)		(2.6)
Catalytic Cracking (3)	37.3	(0.7)		(2.6)
Conversion, %	74.4	(2.9)	(2.8)	(23)
Octane Catalyst, %	15.0		(,	0.0
FCC Gasoline Splitters		20.3	20.8	19.4
FCC Gasoline Fractionation	15.2	(15.2)	(15.2)	(15.2)
Hydrocracking - 2 Stage(2)	16.9	(1012)	(10.2)	(1012)
Jet Yield, % of Max	96.7	(68.2)	(77.3)	(84.3)
300 - Gasoline Operation, %		71.1	0.0	66.6
Hydrocracking - Low Conversion	3.2	1.0	1.0	1.0
- Heavy Gasoline	<u></u>	3.1	6.2	1.0
- Combined(3)	20.1	21	7.2	(A M)
	EU. 1			(0.9)
Hydrocrackate Fractionation		7.7	12.2	8.1
Lt Hydrocrackate Splitter	22.9		3.9	
Coking - Delayed			0.9	
- Fluid	5.3			(1.2)
Coker Lt Gasoline DS/Splitter		1.9	1.7	1.6
Thermal Cracking, Visbreaking	23			
Solvent Deasphalting	1.0	(0.2)	(0.1)	0.0
Catalytic Reforming - 100 PSI (2)	3.4			
- 200 PSI (2)	16.6	0.0	3.1	0.0
- 450 PSI (2)	8.9	(1.5)		(2.3)
- Combined (3)	26.4	1.6	6.2	0.3
- RONC	99.2	(8.3)	(5.7)	(5.2)
Hydrotreating - Naphtha	18.8	6.2	10.1	27
- Distillate	22.0	5.3	5.7	8.0
- Heavy Gas Oil	31.0	0.8	1.5	
- Residuum - Vac	1.4			
Reformer Feed Fractionation		20.1	21.7	18.2
Reformate Fractionation		9.0	24.1	15.6
Benzene Saturation		3.7	6.8	5.2
FCC Gasoline HDS		2.5		1.6
Gasoline Aromatics Saturation				24
Diesel Aromatics Saturation	1.1.7	(0.2)	(0.3)	(0.0)
Alkylation	6.6	4.5	4.4	3.1
Alkylate Splitter		8.0	10.4	0.1
Polymerization				
MTBE / TAME	0.8	0.4	0.4	0.4
Lubes	1.3			•••
Isomerization - C5/C6		2.5	5.2	1.0
- C5/C6, Recycle	0.4	1.3		
- C4	0.3	1.4	0.5	1.6
Hydrogen - MMSCFPCD	58.1	24.6	34.9	17.0
Sulfur, LTPCD	130.0	(3.0)		(8.0)
		()		(0.0)

(1) No T50/DI Limits.

,

(2) Include effects of nonunitary capacity for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

CLM 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30237

TABLE F-7 PROCESS UNIT UTILIZATIONS (1) 1996 CASE RESULTS - % WSPA STUDY OF CARB PHASE 2 GASOLINE

8/91 CARE 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

		Case 19	Case 21	
	Base	- Blend Comply	- Biend Comply	Case 22
	Case 0	Margins(2)	Margins	+0.2 FIVP
Crude Distillation - Atmospheric	89.2	87.5	88.7	85.0
Heavy Naphtha Splitter		95.0	95.0	95. 0
Catalytic Cracking (3)	95.0	93.2	95 .0	88. 3
Catalytic Cracking (4)	96.2	94.4	96.2	89.5
FCC Gasoline Splitters		95 .0	95.0	95 .0
FCC Gasoline Fractionation	84.9			
Hydrocracking - 2 Stage(3)	88.0	88.0	88.0	88.0
- Low Conversion	67 .0	88.0	88.0	58 .0
- Heavy Gasoline		88.0	88.0	
- Combined(4)	83.8	80.7	88.0	80.2
Hydrocrackate Fractionation		88.0	88.0	88.0
Lt Hydrocrackate Splitter			88.0	
Coking - Delayed	95. 0	95.0	95.0	95 .0
- Fluid	95. 0	95. 0	95 .0	74.3
Coker LI Gasoline DS/Splitter		95.0	95 .0	95. 0
Thermal Cracking, Visbreaking	88.0	86.0	88.0	88.0
Solvent Deasphalting	32.5	25.2	28.5	33.2
Catalytic Reforming - 100 PSI (3)	88.0	88.0	88.0	\$8. 0
- 200 PSI (3)	88.0	88.0	88.0	88.0
- 450 PSI (3)	88.0	73.4	88.0	65. 6
- Combined (4)	80.4	85.4	89.6	81.5
Hydrotreating - Naphtha	66.7	88.0	88.0	76.3
- Distiliate	88.0	88.0	0.88	88.0
- Heavy Gas Oil	85.8	88.0	88.0	85.8
- Residuum, Vac	88.0	88.0	88.0	88.0
Reformer Feed Fractionation		88.0	88.0	88.0
Reformate Fractionation		88.0	88.0	88.0
Benzene Saturation		83.0	83.0	83.0
FCC Gasoline HDS		88.0		88.0
Gasoline Aromatics Saturation				88.0
Diesel Aromatics Saturation	88.0	86.5	85.7	88.0
Alkylation	83.0	83.0	83.0	83.0
Alkylate Splitter		83.0	83.0	83.0
Polymerization	0.0	0.0	0.0	0.0
MTBE / TAME	83.0	83.0	83.0	83.0
Lubes	87.6	87.6	87.6	87.6
Isomerization - C5/C6		88.0	88.0	88.0
- C5/C6, Recycle	88.0	88.0	88.0	88.0
- C4	83.0	83.0	83.0	83.0
Hydrogen	72.9	83.0	83.0	83.0
Sultur	45.9	44.9	45.9	43.1

(1) Calendar day rates divided by stream day capacity.

(2) No T50/DI Limits.

(3) Include effects of nonunitary capacity factors for some feedstocks and severities.

(4) Based on actual feed rates, ignoring severity effects.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30238

CLM 11/12/91

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

Case 19 (Case 0 (Case 0 (Case 0)) Case 21 (Case 2) Case 2 (Case 2) <thcase 2<br="">) Case 2) <thcase 2<="" th=""><th></th><th></th><th colspan="3">8/91 CARE 2 PROPOSAL - LAB COMPLY MARGINS + (</th></thcase></thcase>			8/91 CARE 2 PROPOSAL - LAB COMPLY MARGINS + (
Case 0 Margins(1) Margins 0.2 RVP FCC Gasoline 11.1 1 1 1 1 Li, FCC 255- 10.5 4.1 2.6 6.4 FCC Gaso (180-225) 1.5 3.3 6.6 6.4 FCC Gaso (180-225) 1.5 3.3 7 7 5 3.3 FCC Gaso (225-300) FCC Gaso (300-375)			Case 19	Case 21	
FCC Gasoline 11.1 Li. FCC 255- 15.0 Hwy FCC 255- 10.5 Hwy FCC 255- 10.5 FCC Gaso (100-160) 2.6 FCC Gaso (100-160) 2.6 FCC Gaso (200-375) 1.5 Total FCC Gasoline 36.6 FCC Gaso (300-375)					
L1 FCC 255- 15.0 Hvy FCC 255- Desul 4.1 2.6 FCC Gaso (100-180) 2.6 6.4 FCC Gaso (100-250) 1.5 3.3 FCC Gaso (100-255) 1.5 3.3 FCC Gaso (100-300) 7.5 1.5 3.3 FCC Gaso (300-375) 7 1.5 1.5 3.5 Total FCC Gasoline 2.8 0.0 0.0 0.6 Poly Gasoline 2.8 0.0 0.0 0.6 Reformate (220-300 Feed) 5.9 22.0 6.0 11.2 BT Reformate (220-300 Feed) 5.9 22.0 6.0 11.2 BT Reformate (220-300 Feed) 5.9 22.0 6.0 11.2 BT Reformate (220-300) 6.8 20.6 12.5 Heavy Fielomate (210-300) 6.8 20.6 12.5 Heavy Reformate (200-300) 6.8 20.6 12.5 Heavy Reformate (200-300) 6.8 20.6 12.5 Heavy Reformate (200-300) 6.8 20.6 12.5 McNate (210-300) 6.8 20.6 12.5 <		Case 0	Margins(1)	Margins	+0.2 RVP
Hwy FCC 255- 10.5 Hwy FCC 255- Desul 4.1 2.6 Hwy FCC 255- Desul 4.1 2.6 FCC Gaso (180-225) 1.5 3.3 FCC Gaso (225-300) FCC Gaso (225-300) FCC Gaso (300-375) Total FCC Gaso (300-375) 0.6 7 1.5 12.3 Pertenes 0.6 0.0 0.0 0.6 Poly Gasoline 2.8 0.0 0.0 0.6 Li Coker Gasoline 2.8 0.0 0.0 0.6 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (20-300) 6.2 11.5 8.6 Li Reformate (210-300) 6.2 11.5 8.6 Li Raffinate 1.1 1.6 4.7 Altyriate/Li Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Altyriate/Li Alkylate (C3/C4) 10.9 11.9	FCC Gasoline	11.1			
Hvy FCC 235- Desul 4.1 2.6 FCC Gaso (100-180) 2.6 6.4 FCC Gaso (180-225) 1.5 3.3 FCC Gaso (180-225) 1.5 3.3 FCC Gaso (180-225) 7 1.5 3.3 FCC Gaso (180-225) 7 1.5 12.3 FCC Gaso (180-225) 0.0 0.0 0.6 Poty Gasoline 2.8 0.0 0.0 0.6 Poty Gasoline 2.8 0.0 0.0 0.6 Reformate 2.2 1.1 7 7 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (200-) 1.1 1.6 4.7 T otal Reformate (200-) 1.1 1.6 4.7 T otal Reformate (200-) 1.1 1.5 8.6 LL Raffinate 3.3 3.4 3.1 Alkylate/L Alkylate (C3/C4) 10.9 11.9 11.1 12.1 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
FCC Gaso (180-180) 2.6 6.4 FCC Gaso (180-225) 1.5 3.3 FCC Gaso (180-225) 1.5 3.3 FCC Gaso (180-225) 7 1.5 3.3 FCC Gaso (180-225) 7 1.5 12.3 FCC Gaso (300-375) 6.6 6.7 1.5 12.3 Petrenes 0.6 0.0 0.0 0.6 Poly Gasoline 2.8 0.0 0.0 0.6 L: Coker Gasoline 2.8 0.0 0.0 0.6 Reformate 7.2 1.1 1.6 4.7 HC Reformate (220-300) 6.8 20.6 12.5 Heavy Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (210-300) 6.8 20.6 12.5 L: Reformate (210-300) 8.2 11.5 8.6 L: Reformate (210-300) 6.2 11.5 8.6 L: Reformate (210-300) 8.2 11.5 8.6 L: Reformate (210-300) 8.2 11.5 1.5 Statea/L: Alkylate/L: Alkylate (C3/0C4) 10.9 11.1		10.5			
FCC Gaso (180-225) 1.5 3.3 FCC Gaso (225-300) FCC Gaso (225-300) 1.5 3.3 FCC Gaso (300-375) 1.5 1.2.3 Total FCC Gaso (300-375) 0.6 0.6 Poly Gasoline 2.8 0.0 0.0 LL Coker Gasoline 2.8 0.0 0.0 0.6 Petrenes 2.2 1.1 1.1 1.1 1.1 Reformate 2.2.2 1.1 1.1 1.1 1.1 1.1 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 11.1 1.1 1.6 4.7 Heavy Reformate (210-300) 6.8 20.6 12.5 1.5<	•				
FCC Gaso (300-375) 1.5 12.3 Total FCC Gaso (300-375) 0.6 0.6 Pertenes 0.6 Poly Gasoline 2.8 0.0 LL Coker Gasoline 2.8 0.0 Total Diefinic 2.8 0.0 Reformate 22.2 1.1 Reformate (20-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (20-300) 6.8 20.6 12.5 Heavy Reformate (300-) 1.1 1.6 4.7 Total Reformate (300-) 1.1 1.6 4.7 Total Reformate (20-300) 6.8 20.6 12.5 Heavy Reformate (20-300) 6.8 20.6 12.5 Heavy Reformate (20-300) 1.1 1.6 4.7 Total Reformate (20) 35.3 32.0 28.2 28.4 Lt. Reformate (20-300) 1.1.9 11.1 12.1 12.1 Alkytate/L1 Alkytate (C3/C4) 10.9 11.9 11.1 12.1 Statas/L1 Alkytate (C3/C4) 10.9 11.9 11.1 12.1 Statas/L1 Alkytate (C3/C4) <td></td> <td></td> <td>2.6</td> <td></td> <td></td>			2.6		
FCC Gaso (300-375) Total FCC Gasoline 36.6 6.7 1.5 12.3 Pentenes 0.6 Poly Gasoline 11.0 0.6 LL Coker Gasoline 2.8 0.0 0.0 0.6 Total Olefinic 2.8 0.0 0.0 0.6 Reformate 22.2 1.1 1.1 1.6 4.7 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (300+) 1.1 1.6 4.7 Total Reformate (210-300) 6.2 11.5 8.6 LL Reformate (Benzene Saturated) 6.2 11.5 8.6 LL Ratifinate 33.3 34 31 Alkytate/Lt Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkytate/Lt Alkylate (C5/C5) 3.8 0.6 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Iso Pentane 0.2 0.7 0.0 0.6 Normal Pentane 0.6 0.5 0.4 </td <td>•</td> <td></td> <td></td> <td>1.5</td> <td>3.3</td>	•			1.5	3.3
Total FCC Gasoline 36.6 6.7 1.5 12.3 Pertenes 0.6 0.0 0.0 0.6 Poly Gasoline 2.8 0.0 0.0 0.6 Total Olefinic 2.8 0.0 0.0 0.6 Reformate 22.2 1.1 7 7 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (210-300) 6.8 20.6 12.5 Li Reformate (210-300) 8.8 0.6 12.5 Li Reformate (210-300) 8.2 11.5 8.6 Li Reformate (200-31 35.3 32.0 28.2 28.4 Li Reformate (200-3.3 32.0 28.2 28.4 31 Butane 2.5 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Pentenes 0.6 Poly Gazoline 2.8 0.0 0.0 0.6 LL Coker Gasoline 2.8 0.0 0.0 0.6 Reformate 2.2 1.1 1 1 Reformate 2.2 1.1 1 1 1 Reformate 7.2 1 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Poly Gasoline 2.8 0.0 0.0 0.6 Total Olefinic 2.8 0.0 0.0 0.6 Reformate 22.2 1.1 1 1 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 HC Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (300+) 1.1 1.6 4.7 Total Reformate (20 35.3 32.0 28.2 28.4 LL Reformate (300+) 10.9 11.1 1.6 4.7 Alkytate/Lt Alkytate (C3/C4) 10.9 11.9 11.1 12.1 Alkytate/Lt Alkytate (C5) 3.3 3.4 3.1 3.4 3.1 Butane 2.5 1.5 1.5 3.6 6.6<	Total FCC Gasoline	36.6	6.7	1.5	12.3
LL Coker Gasoline 2.8	Pentenas				0.6
Total Olefinic 2.8 0.0 0.0 0.6 Reformate 22.2 1.1 Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate 7.2 HC Reformate 7.2 .	Poly Gasoline				
Reformate 22.2 1.1 Reformate 22.2 1.1 Reformate 7.2 6.0 11.2 BT Reformate 7.2 6.8 20.6 12.5 HC Reformate 7.2 1.1 1.6 4.7 Total Reformate (210-300) 6.3 20.6 12.5 Hasry Reformate (300+) 1.1 1.6 4.7 Total Reformate (8enzene Saturated) 6.2 11.5 8.6 LL: Reformate (8enzene Saturated) 6.2 11.1 12.1 Alkyiate/L1 Alkyiate (C3/C4) 10.9 11.9 11.1 12.1 Alkyiate/L1 Alkyiate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 Bornate 0.2 3.0 3.0 3.0 3.0 Normal Pentane 0.2 3.0 3.0 3.0 3.0 3.0 Isomerate (C5-C5) 0.6 0.5 0.	Lt. Coker Gasoline	2.8		_	
Reformate (220-300 Feed) 5.9 23.0 6.0 11.2 BT Reformate 7.2	Total Olefinic	2.8	0.0	0.0	0.6
BT Reformate 7.2 HC Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (300+) 1.1 1.6 4.7 Total Reformates(2) 35.3 32.0 28.2 28.4 Li. Reformates(2) 35.3 32.0 28.2 28.4 Li. Reformates(Benzene Saturated) 6.2 11.5 8.6 Li. Raffinate 35.3 32.0 28.2 28.4 Li. Raffinate 35.3 32.0 28.2 28.4 Li. Raffinate 10.9 11.9 11.1 12.1 Alkylate/Lt Alkylate (C3/C4) 10.9 11.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 100 100 100 100 Iso Pentane 0.2 0.4 0.7 1.8 Isomerate (C5-C6) 0.6 0.5 0.4 0.7 Isomerate (C5) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3	Reformate	22.2	1.1		
HC Reformate (210-300) 6.8 20.6 12.5 Heavy Reformate (300+) 1.1 1.6 4.7 Total Reformates(2) 35.3 32.0 28.2 28.4 LL Reformate (Benzene Saturated) 6.2 11.5 8.6 LL Raffinate	Reformate (220-300 Feed)	5.9	23.0	6.0	11.2
Heavy Reformate (300+) 1.1 1.6 4.7 Total Reformate (300+) 35.3 32.0 28.2 28.4 Lt. Reformate (Benzene Saturated) 6.2 11.5 8.6 Lt. Reformate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/L1 Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/L1 Alkylate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) Iso Pentane 0.2 3.0 0.6 Iso Pentane 0.2 3.0 0.6 0.6 0.6 Isomerate (C5) 0.6 0.5 0.4 0.7 0.6 Isomerate (C5) 0.5 7.2 8.7 6.3 0.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	BT Reformate	7.2			
Total Reformates(2) 35.3 32.0 28.2 28.4 Lt. Reformate (Benzene Saturated) 6.2 11.5 8.6 Lt. Ratfinate 10.9 11.9 11.1 12.1 Alkylate/Lt Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/Lt Alkylate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 150 0.2 3.0 3.0 Iso Pentane 0.2 3.0 0.6 0.6 0.6 Isomerate (C5-C6) 0.6 0.5 0.4 0.7 0.6 Isomerate (C5) 0.5 7.2 8.7 6.3 Lt. Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 58.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	HC Reformate (210-300)		6.8	20.6	12.5
Lt. Reformate (Benzene Saturated) 8.2 11.5 8.6 Lt. Ratflinate Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/Lt Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/Lt Alkylate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 0 0.2 3.0 0.6 Iso Pentane 0.2 3.0 0.6 0.6 Normal Pentane 0.2 3.0 0.6 0.6 Isomerate (C5) 0.6 0.5 0.4 0.7 Isomerate (C5) 0.5 7.2 8.7 6.3 Li. Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 58.7 Totai Low Arom., Saturated 25.3 61.3 70.3 58.7	Heavy Reformate (300+)		1.1	1.6	4.7
LL. Ratfinate Alkyiate/Lt Alkyiate (C3/C4) 10.9 11.9 11.1 12.1 Alkyiate/Lt Alkyiate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) Iso Pentane 0.2 3.0 Normal Pentane 0.2 3.0 Normal Pentane 0.5 0.4 0.7 isomerate (C5) 0.6 0.5 0.4 0.7 isomerate (C5) 6.1 11.5 1.8 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	Total Reformates(2)	35.3	32.0	28.2	28.4
Alkylate/L1 Alkylate (C3/C4) 10.9 11.9 11.1 12.1 Alkylate/L1 Alkylate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 0.6 3.4 2.6 Iso Pentane 0.2 3.0 Normal Pentane 0.6 0.5 0.4 Isomerate (C5) 0.6 0.5 0.4 0.7 Isomerate (C5) 0.5 7.2 8.7 6.3 L1. Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 58.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	Lt. Reformate (Benzene Saturated)		6.2	11.5	8.6
Alkylate/Lt Alkylate (C5) 3.3 3.4 3.1 Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 0.2 3.0 3.0 3.0 Iso Pentane 0.2 3.0 3.0 3.0 Normal Pentane 0.2 3.0 3.0 3.0 Isomerate (C5-C6) 0.6 0.5 0.4 0.7 Isomerate (C5) 6.1 11.5 1.8 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	Lt. Raffinate				
Butane 2.5 1.5 1.5 1.5 Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 0.2 3.0 0.2 3.0 Iso Pentane 0.2 3.0 0.6 0.6 0.6 Iso Pentane 0.6 0.5 0.4 0.7 0.6 Isomerate (C5) 0.6 0.5 0.4 0.7 Isomerate (C5) 0.5 7.2 8.7 6.3 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 58.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	Alkylate/Lt Alkylate (C3/C4)	10.9	11.9	11.1	12.1
Natural/LSR Gaso 3.8 0.6 3.4 2.6 BT Naphtha (150-220) 0.2 3.0 0.6 3.4 2.6 Iso Pentane 0.2 3.0 0.6 0.7 1.8 0.6 0.7 1.8 1.1 11.0	Alkylate/Lt Alkylate (C5)		3.3	3.4	3.1
BT Naphtha (150-220) 0.2 3.0 Iso Pentane 0.2 0.6 Isomerate (C5-C6) 0.6 0.5 0.4 0.7 Isomerate (C5) 6.1 11.5 1.8 Li. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	Butane		1.5	1.5	1.5
Iso Pentane 0.2 3.0 Normal Pentane 0.6 0.5 0.4 0.7 Isomerate (C5-C6) 0.6 0.5 0.4 0.7 Isomerate (C5) 6.1 11.5 1.8 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7		3.8	0.6	3.4	2.6
Normal Pentane 0.6 isomerate (C5-C6) 0.6 0.5 0.4 0.7 isomerate (C5) 6.1 11.5 1.8 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7			,		
Isomerate (C5-C6) 0.6 0.5 0.4 0.7 Isomerate (C6) 6.1 11.5 1.8 Lt. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7			0.2		3.0
Isomerate (C5) 6.1 11.5 1.8 Li. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7					0.6
Li. Hydrocrackate 5.0 8.7 4.6 6.7 Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7		0.6			
Hydrocrackate (175-225) 0.5 7.2 8.7 6.3 MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7					
MTBE 2.0 14.3 13.4 11.0 TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7					6.7
TAME 0.8 0.8 0.7 Total Low Arom., Saturated 25.3 61.3 70.3 58.7	•				6.3
Total Low Arom., Saturated 25.3 61.3 70.3 58.7		20			
					0.7
	Total Low Arom., Saturated	25.3	61.3	70.3	58.7
Total 100.0 100.0 100.0 100.0	Total	100.0	100.0	100.0	100.0

(1) No T50/DI Limits.

(2) Excluding light reformate.

CLM 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30239

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(#/G per unit in constant 1991 \$)

		891 CAHB 2 PROPUSAL - LAB COMPLY MANGE			NS + CHANGES	
	Base Case 0	Case 19 - Blend Comply Margins(2)	Case 20 +6 OL/100 S 0.4 RVP/30 T90(2)	Case 21 - Blend Comply Margins	Case 22 +0.2 RVP	
(R+M)/2 Octane, Ciear	(0. 9)	(2.2)	(1.4)	(1.3)	(1 .3)	
Reid Vapor Pressure, PSI	0.6	6.4	1.0	6.6	26	
Butane, Vol.%		2.7		5.2	0.9	
Aromatics, Vol.%		0.5	0.6	0.3	0.2	
Ethers, Vol.%	(0.1)	0.1		0.4 ((3) (0.0)	
Olefins, Vol.%					0.0	
Benzene, Vol.%		2.3	3.3	4.4	3.2	
Sulfur, 100 Wt. PPM		29.1	0.0	40.4	1 1.0	
T90, 10°F		3.6	0.1	3.9	20	

8/91 CARB 2 PROPOSAL - LAB COMPLY MARGINS + CHANGES

(1) Shadow costs for very small changes. Not applicable for significant changes.

- Million and the state of the paper

(2) No T50/DI Limits.

(3) Premium only.

CLM 11/12/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30240

RUN BASIS AND GASOLINE POOL PROPERTIES WINTER 1996 CASE RESULTS WSPA STUDY OF CARB PHASE 2 GASOLINE

	Base			
Reformulated Properties*	Case W-0		Case W-1(1)	
Aromatics, Vol.%, Maximum			22	
Regulatory Cap			25	
Oxygen, Wt.%, Minimum	0.4		2.7	
Regulatory Bottom/Cap			2.7	
Bromine No., Maximum	26	(2)	8	
Regulatory Cap	30	(2)	10	
Benzene, Vol.%, Maximum Avg			0.8	
Sulfur, Wt. PPM, Maximum	250		20	
Regulatory Cap	300		30	
Reid Vapor Pressure, PSI, Max	10.5		10.5	
Regulatory Cap	10.8		10.8	
T90, *F, Maximum			290	
Regulatory Cap			300	
Driveability Index, Maximum			1075	
Regulatory Cap			1100	
Ethers, Vol.% Pool Purchased	~ ~ ~		10.0	
Manufactured	0.6		13.2	
Manulaciureu	1.4		1.8	
Gasoline Pool Properties				
(R+M)/2 Octane, Clear*	88.9		88.9	
Aromatics, Vol%	31		20	
Ethers, Vol.%	2.0	•	15.0	•
Oxygen, Wt.%	0.4	•	2.7	•
Olefins, Vol.%	10		4	•
Bromine No.	21		8	•
Benzene, Vol.%	2.0		0.8	•
Sultur, Wt. PPM	1 69		20	•
Reid Vapor Pressure, PSI*	10.5		10.5	
Temperature at V/L = 20, *F	128		125	ER
Distillation				Ĩ
90°F, Vol.%	17		15	et al. Ca.) JRx) E ORDER
130°F, Vol.%	27		26	E S S S S S S S S S S S S S S S S S S S
170°F, Vol.%	37		47	A DA
212°F, Vol.%	54		63	v. UNOCAI Court (C.D 2379 KMW 07 ECTTY
257°F, Vol.%	70		80	
300°F, Vol.%	83		92	
356°F, Vol.%	92		98	30 PB 35
T10, *F	102		115	
T50, •F	203		177	RCO et al J.S. Distri- CT TO P
T90, •F	342		290	• <u>Coc</u>
Driveability Index	1104		994	BJI
Heat Content, MBTU/G	113.0		109.0	ns
	113.0		109.0	0,

(1) 8/91 Carb proposal with lab compliance margins, 2.7% oxygen and 10.5 RVP.

(2) L.A. only.

• Input limit.

CLM/REC 11/4/91

TURNER, MASON & COMPANY Consulting Engineers

.

SUMMARY OF COSTS

WINTER 1996 CASE RESULTS(1)

INCREASE OVER BASE CASE(2)

WSPA STUDY OF CARB PHASE 2 GASOLINE (in constant 1991 \$)

	Case W-1(3)
Investment, MM\$	
Refinery	1,710
MTBE(4)	<u>3,140</u>
Total	4,850
Range, MMM\$(5)	3.8-6.2
Daily Costs, M\$/D	
Capital Charge(6)	1,136
Net Upgrading Costs(7)	2,825
Variable Operating Costs	445
Fixed Operating Costs(8)	431
Total Refinery	4,838
Annual Cost, MM\$/Yr.	
Refinery	1,766
Other(9)	466
Total	2,232
Total Unit Cost, ¢/G of Base Gasoline	
Average	14.8
Range(10)	12.3-19.1

- (1) For reformulation run, based on a composite model of conversion refineries. Individual refinery costs will differ from average.
- (2) Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.
- (3) 8/91 Carb proposal with lab compliance margins, 2.7% oxygen and 10.5 RVP.
- (4) For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).
- (5) For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.
- (6) Based on expected 15% DCF rate of return on new refining facilities investment.
- (7) Raw material upgrading costs.
- (8) For new refining facilities only.
- (9) Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.
- (10) For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

REC/CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30242

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES WINTER 1996 CASE RESULTS INCREASE OVER BASE CASE – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

114

(128)	
(128)	
2	
128	
1	
1	
4	
8	
28	
(5)	
0	
(6)	
(14)	
(1)	
5	
(0.3)	
0.01	
	ARCO et al. v. UNOCAL et al.
	U.S. District Court (C.D. Ca.)
28	C.A. No. 95-2379 KMW (JRx)
	SUBJECT TO PROTECTIVE ORDER
2.0	30243
	(128) (128) (128) 1 1 4 -4 -8 28 (5) 0 (6) (14) (1) -5 -8 (0.3)

(1) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM 10/28/91

NEW PROCESS UNIT RATES

WINTER 1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

-

	Case W-1
Heavy Naphtha Splitter	74
BT Naphtha Splitter	1
FCC Gasoline Splitters	335
FCC Gasoline Fractionation	
Hydrocracking – 2 stage	
- Heavy Gasoline	
Hydrocrackate Fractionation	121
Coker Lt Gasoline DS/Splitter	30
FCC Gasoline HDS	95
Hydrotreating – Naphtha	
- Distillate	59
Reformer Feed Fractionation	300
Reforming – 200 PSIG	
Reformate Fractionation	114
Benzene Saturation	59
Gasoline Aromatics Saturation	
Alkylation	
Alkylate Splitter	130
MTBE /TAME	6
Isomerization - C5/C6	18
- C5/C6, Recycle	
- C4	
Hydrogen – MMSCFPSD	57

.

	ARCO et al. v. UNOCAL et al.
_	U.S. District Court (C.D. Ca.)
CLM	C.A. No. 95-2379 KMW (JRx)
11/4/91	SUBJECT TO PROTECTIVE ORDER
11/4/31	30244
	30244

NEW PROCESS UNIT INVESTMENTS

WINTER 1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE (SMM - in constant 1991 \$)

	Case W-1
Heavy Naphtha Splitter	60
BT Naphtha Splitter	0
FCC Gasoline Splitters	390
FCC Gasoline Fractionation	
Hydrocracking - 2 Stage	
- Heavy Gasoline	
Hydrocrackate Fractionation	80
Coker LL Gasoline DS/Splitter	50
FCC Gasoline HDS	210
Hydrotreating - Naphtha	
- Distillate	100
Reformer Feed Fractionation	160
Reforming - 200 PSIG	
Reformate Fractionation	80
Benzene Saturation	200
Gasoline Aromatics Saturation	
Alkylation	
Alkylate Splitter	90
MTBE / TAME	30
Isomerization - C5/C6	120
- C5/C6, Recycle	
- C4	
Hydrogen	90
MTBE Storage & Blending	50
Total Refinery	1,710

CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30245

TABLE G-6 PROCESS UNIT RATE CHANGES WINTER 1996 CASE RESULTS INCREASE OVER BASE CASE - MBPCD PER REFINERY WSPA STUDY OF CARB PHASE 2 GASOLINE

	Base	
	Case W-0	Case W-1
Crude - Atmospheric	105.0	(7.6)
Heavy Naphtha Splitter		4.0
BT Naphtha Splitter		0.0
Catalytic Cracking (1)	34.1	(4.0)
Catalytic Cracking (2)	34.6	(4.0)
Conversion, %	74.4	(1.0)
Octane Catalyst, % FCC Gasoline Splitters	15.0	
FCC Gasoline Spitters		17.3
Hydrocracking - 2 Stage(1)	14,1	(14.1)
Jet Yield, % of Max	16.3	
300 - Gasoline Operation, %	100.0	(45.3)
Hydrocracking - Low Conversion	3.1	45.3
- Heavy Gasoline	3.1	
- Combined(2)	19.4	(1.9)
Hydrocrackate Fractionation		(1.2) 6.3
Coking - Delayed	21.2	0.3
- Fluid	4.9	
Coker Lt Gasoline DS/Splitter	4.0	1.5
Thermal Cracking, Visbreaking	2.2	1.2
Solvent Deasphalting	2.5	(1.6)
Catalytic Reforming - 100 PSI (1)	2.6	(1.0)
- 200 PSI (1)	14.6	(1.5)
- 450 PSI (1)	6.0	(0.9)
- Combined (2)	21.5	(0.6)
- RONC	99.3	(7.9)
Hydrotreating - Naphtha	15.6	3.7
- Distillate	21.8	3.0
- Heavy Gas Oil	30.0	(2.7)
- Residuum - Vac	1.4	()
Reformer Feed Fractionation		15.0
Reformate Fractionation		5.7
Benzene Saturation		2.8
FCC Gasoline HDS		4.7
Gasoline Aromatics Saturation		
Diesel Aromatics Saturation	11.1	0.2
Alkylation	6.3	0.0
Alkylate Splitter		6.1
Polymerization	,	
MTBE / TAME	0.8	0.3
Lubes	1.3	
Isomerization - C5/C6		0.9
- C5/C6, Recycle	0.3	0.1
- C4		0.1
Hydrogen - MMSCFPCD	56.0	10.3
Sulfur, LTPCD	123.0	(4.0)

(1) Include effects of nonunitary capacity for some feedstocks and severities.

(2) Based on actual feed rates, ignoring severity effects.

REC/CLM 11/4/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30246

PROCESS UNIT UTILIZATIONS (1) WINTER 1996 CASE RESULTS – % WSPA STUDY OF CARB PHASE 2 GASOLINE

	Base	
	Case W-0	Case W-1
Crude Distillation - Atmospheric	84.3	78.2
Heavy Naphtha Splitter		93.0
BT Naphtha Splitter		93.0
Catalytic Cracking (2)	88.0	77.7
Catalytic Cracking (3)	89.2	78.9
FCC Gasoline Splitters	79.0	88.0
FCC Gasoline Fractionation Hydrocracking – 2 Stage(2)	85.0	85.0
- Low Conversion	64.9	64.9
- Heavy Gasoline	••	••
- Combined(3)	81.0	75.9
Hydrocrackate Fractionation		88.0
Coking - Delayed	88.0	88.0
- Fluid	88.0	88.0
Coker Lt Gasoilne DS/Splitter		88.0
Thermal Cracking, Visbreaking	85.0	85.0
Solvent Deasphalting Catalytic Reforming - 100 PSI (2)	85.0 67.6	29.9 67.6
– 200 PSI (2)	77.7	69.8
- 450 PSI (2)	59.6	50.7
- Combined (3)	65.8	63.9
Hydrotreating - Naphtha	55.3	68.4
- Distillate	85.0	85.0
- Heavy Gas Oil	83.1	75.6
- Residuum, Vac	85.0	85.0
Reformer Feed Fractionation		85.0
Reformate Fractionation		85.0
Benzene Saturation		80.0
FCC Gasoline HDS		85.0
Gasoline Aromatics Saturation		
Diesel Aromatics Saturation	83.7	85.0
Alkylation	79.8	80.0
Alkylate Splitter		80.0
Polymerization	0.0	0.0
MTBE / TAME	76.3	80.0
	84.6	84.6
Isomerization - C5/C6	70 4	85.0
– C5/C6, Recycle – C4	78.1 0.0	85.0
Hydrogen	70.4	23.7 80.0
Sulfur	43.5	42.0
	-0.0	42.U

(1) Calendar day rates divided by stream day capacity.

(2) Include effects of nonunitary capacity factors for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

CLM 11/4/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30247

GASOLINE POOL COMPOSITIONS

WINTER 1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Base Case W-0	Case W-1
FCC Gasoline Lt. FCC 255-	10.4 14.4	
LL. FCC 255- Hvy FCC 255+	10.0	
Hvy FCC 255+ Desul	10.0	8.1
FCC Gaso (100-180)		6.1
FCC Gaso (180-225)		0.2
FCC Gaso (225-300)		1.8
FCC Gaso (300-375)		
Total FCC Gasoline	34.8	16.2
Pentenes		1.3
Poly Gasoline		
Lt. Coker Gasoline	2.7	
Total Olefinic	2.7	1.3
Reformate	18.2	4.4
Reformate (220-300 Feed)	6.1	15.7
BT Reformate	5.5	
HC Reformate (210-300)		4.3
Heavy Reformate (300+)		0.6
Total Reformates(1)	29.8	25.0
Lt. Reformate (Benzene Saturated)		4.8
Alkylate/Lt Alkylate (C3/C4)	10. 6	8.9
Alkylate/Lt Alkylate (C5)		
Butane	8.4	7.8
Natural/LSR Gaso	3.6	3.1
BT Naphtha (150-220)		
iso Pentane		2.7
Normal Pentane Isomerate (C5-C6)		1.6
isomerate (C6)	0.6	0.6
Li. Hydrocrackate	5.0	1.5
Hydrocrackate (175-225)	2.5	5.7
MTBE	2.5 2.0	5.7 14.4
TAME	2.0	0.7
Total Low Arom., Saturated	32.7	57.5
Total	100.0	100.0
(1) Evoluting light reference		ARCY

(1) Excluding light reformate.

CLM

10/28/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30248

TURNER, MASON & COMPANY Consulting Engineers

.

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

WINTER 1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(#/G per unit in constant 1991 \$)

	Base Case W-0	Case W-1
(R+M)/2 Octane, Clear	(0.3)	(0.4)
Reid Vapor Pressure, PSI	0.3	0.4
Butane, Vol.%		
Aromatics, Vol.%		
Ethers, Vol.%	(0.4)	(0.2)
Olefins, Vol.%		0.2
Benzene, Vol.%		3.2
Sulfur, 100 Wt. PPM		4.0
T90, 10°F		1.3

(1) Shadow costs for very small changes. Not applicable for significant changes.

CLM 11/4/91

,

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30249

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

				CARB 2 PROP	OSAL + CHANGES		
			Case 23	Case 24	Case 25		Case 27
	Base		No Comply	Lab Comply	Lab & Blend	Case 26	CARB
Reformulated Properties*	Case 0		Margins	Margins	Comply Margins	Alternate A	Emissions
Aromatics, Vol.%, Maximum			25	22	20	25	20
Regulatory Cap			25	25	25	25	25
Oxygen, Wt.%, Minimum	0.4		1.8	2.0	2.0	1.8	2.0
Regulatory Bottom			1.8	1.8	1.8	1.8	1.8
Bromine No., Maximum	26	(1)	10	8	6	14	10
Regulatory Cap		(1)	10	10	10	18	14
Benzene, Vol.%, Maximum Avg			0.95	0.8	0.6	0.8	0.8
Sulfur, WL PPM, Maximum	250		40	25	20	30	30
Regulatory Cap	300		40	40	40	50	50
Reid Vapor Pressure, PSI, Max	7.5		7.0	6.7	6.6	7.1	7.0
Regulatory Cap	7.8		7.0	7.0	7.0	7.4	7.3
90 Vol.% Point, *F, Maximum			300	290	280	295	300
Regulatory Cap			300	300	300	315	320
50 Vol.% Point, *F, Maximum			210	200	195	195	200
Regulatory Cap			210	210	210	210	210
						•	
Ethers, Vol.% Pool							
Purchased	0.6		8.1	9.2	9.3	8.4	9.8
Manufactured	1.4		1.9	1.9	1.8	1.6	1.3
Gasoline Pool Properties							
(R+M)/2 Octane, Clear*	88.9		88.9	88.9	88.9	88.9	88.9
Aromatics, Vol.96	34		25	• 22	• 20	• 25	• 20 •
Ethers, Vol.%*	2.0		10.0	11.1	11.1	10.0	11.1
Oxygen, Wt.%*	0.4		1.8	2.0	2.0	1.8	2.0
Olefins, Vol.%	11		5	• 4	• 3	7	5
Bromine No.	22		10	• 8	• 6	13	10
Benzene, Vol.%	2.2		0.95	• 0.8	• 0.6	• 0.8	• 0.8 •
Sullur, Wt. PPM	206		40	• 25	• 20	• 30	• 30 •
Reid Vapor Pressure, PSI*	7.5		7.0	6.7	6.6	7.1	7.0
Temperature at V/L = 20, *F	145		145	145	144	143	143
Distillation							
90°F, Vol.%	12		9	8	6	10	10
130°F, Vol.%	23		21	20	18	23	21
170°F, Vol.%	33		38	39	39	40	39
212°F, Vol.%	50		58	60	5 ¹ 59	60	60
257°F, Vol.%	67		76	79	80	78	78
300°F, Vol.96	81		90	92	96	91	90
356°F, Vol.%	91		97	98	99	98	97
T10, *F	125		132	139	144	131	132
T50. *F	212		196	192	193	191	192
T90, •F	348		300				
Driveability Index	1171		1086	1075	1075	1065	1074
Heat Content, MBTU/G	114.4		111.7	111.0	110.9	111.4	110.8
					110.0	111 .4	110.0

(1) L.A. only.

Input limit.

CLM/REC

11/6/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30250

SUMMARY OF COSTS

1996 CASE RESULTS(1) - INCREASE OVER BASE CASE(2)

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

	10/4 CARB 2 PROPOSAL + CHANGES					
	Case 23	Case 24	Case 25	-	Case 27	
	No Comply	Lab Comply	Lab & Blend	Case 26	CARB	
	Margins	Margins	Comply Margins	Alternate A	Emissions	
Investment, MM\$				1		
Refinery	2,340	3,410	5,090	✓	3,020	
MTBE(3)	1,940	<u>2.230</u>	2.240	1,990	2,330	
Total	4,280	5,640	7,330	4,470	5,350	
Range, MMM\$(4)	3.4-5.6	4.6-7.4	6.0-9.7	3.6-5.8	4.3-7.0	
Daily Costs, M\$/D						
Capital Charge(5)	1,549	2.263	7. 9 3.377	1,644	1,999	
Net Upgrading Costs(6)	1,897	2,129	7.9 3.377 6, 0 2.556	1,862	2.098	
Variable Operating Costs	655	996	3,9 1,677		753	
Fixed Operating Costs(7)	573	815			728	
Total Refinery	4,674	6,203	2,5 1.103 20,3 8,713	4,901	5,578	
Annual Cost, MM\$/Yr.						
Refinery	1,706	2,264	25.7 3,180	1,789	2,036	
Other(8)	332	415	7.6 433	370	445	
Total	2,038	2,679	3.613	2,159	2,481	
Total Unit Cost, ⊄/ <u>G of Base Gasoline</u>						
Average	13.0	17.1	23.1	13.8	15.9	
Range(9)	11.2-16.4	14.8-21.4	20.4-28.4	11.9–17.3	13.5-20.1	

(1) For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.

(2) Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.

(3) For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).

(4) For variations from investment curves of -15/+35% for refining and ±25% for MTBE.

(5) Based on expected 15% DCF rate of return on new refining facilities investment.

(6) Raw material upgrading costs.

(7) For new refining facilities only.

(8) Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.

(9) For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

REC/CLM	ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.)
11/13/91	C.A. No. 95-2379 KMW (JRx)
	SUBJECT TO PROTECTIVE ORDER
	30251

TABLE H-2A

COMPOSITE REFINERY MARGIN & COST INCREASE DETAIL 1996 CASE 25 OVER(UNDER) BASE CASE WSPA STUDY OF CARB PHASE 2 GASOLINE

	MBPD	C/GAL	<u>\$/B</u>	M\$/D
Products				
Motor Gasolines-Regular	13.0	65.5		358
Motor Gasolines-Intermediate	4.8	67.7		137
Motor Gasolines-Premium	6.0	71.0		177
No. 6 Bunker	45.1		13.00	586
Propane	4.0	32.6		55
Propane to Fuel	11.6		20.47	237
Propylene	(1. 6)	29.7		(20)
Propylene to Fuel	(11.6)		20.47	(238)
Process Gas to Fuel	(19.5)		20.47	(400)
LSR Naphtha to P/C	10.1	25.0		107
Pentanes to P/C	40.1	20.0		337
Normal Butane to Fuel	(2.9)		20.47	(59)
Marketable Coke(All Grades)	18.0		5.85	105
Loss(Gain)	(7.8)			
Subtotal	109.3			1,383
Sulfur(M L T; \$/L T)	(0.03)		70	(2)
Total	()			
				1,380
Raw Materials				
Alaska North Slope Crude	30.2		16.70	505
Natural Gasoline	(4.0)	50.0		(84)
Naphtha	3.5	52.5		78
MTBE	90.6	96.0		3,653
Methanol	1.6	65.0		45
Natural Gas to H2 Plant	(12.7)		20.47	(260)
Total	109.3			3,937
				0,337
Gross Margin				(2,557)
Variable Cost				
Natural Gas	80.4		20.47	1.645
Produced Fuels	(22.5)		20.47	(460)
Other	(a.a)		£7.4/	(480) 493
Total Variable Cost				1,678
Gross Margin after Variable Cost				(4,235)
DNA			18.50	

RMA 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30252

TABLE H-2B

ADDED MANPOWER AND FIXED COSTS

1996 CASE 25 INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

	Number of <u>Employees</u>
<u>Manpower</u> Direct Process Operating Labor Off-Site Operators, Administrative, Technical and Staff Maintenance Employees	900 1,700 <u>1,400</u>
Total Employees Contract Maintenance	4,000 400
Total Manpower	4,400
<u>Fixed Costs</u> Total Fixed Operating Costs, \$MM/Year ⁽¹⁾	400
Salaries and Wages, %	52
Maintenance Costs, \$MM/Year ⁽¹⁾	170

⁽¹⁾ Includes manpower.

GWM 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30253

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

	10/4 CA			
	Case 23	Case 24	Case 25	
	No Comply	Lab Comply	Lab & Blend	Case 26
	Margins	Margins	Comply Margins	Alternate A
Raw Materials				
Alaska North Slope	<u>(51)</u>	<u>(84)</u>	30	<u>(73)</u>
Subtotal Crudes	(51)	(84)	30	(73)
Natural Gasoline		(4)	(4)	
Naphtha	4	4	4	4
MTBE	78	90	91	81
Methanol	2	2	2	1
Normal Butane		15		(1 • •
Natural Gas to H2 Plant Feed	(19)	13	(13)	(18)
Total	14	36	109	(6)
Products				
Motor Gasolines	19	23	24	21
No. 6 Bunker	22	20	45	20
Normal Butane	(3)	(3)	(3)	(3)
Propane	(0)	1	16	0
Propylene, Low Value	7	(13)	(13)	(13)
Process Gas	(33)	(6)	(21)	(33)
Lt St Run Naphtha to P/C		-	10	
Pentanes to P/C		9	40	•
Marketable Coke		(2)	18	0
FCC Coke	(2)	(2)	0	(2)
Loss(Gain)		8	<u>ത</u>	
Total	14	36	109	(6)
Crude Property Increase				
Gravity, *API	(0.1)	(0.2)	0.0	(0.2)
Sultur, Wt%	0.00	0.00	(0.01)	0.00
	0.00	0.50	(0.01)	0.00
Gasoline Demand Increase, %(1)				
Results	1.9	2.3	2.3	2.0
Target	1.9	2.4	2.4	2.1

(1) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM 11/6/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30254

.

NEW PROCESS UNIT RATES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

	10/4 CA			
	Case 23	Case 24	Case 25	
	No Comply	Lab Comply	Lab & Blend	Case 26
	Margins	Margins	Comply Margins	Alternate A
Heavy Naphtha Splitter	121	125 🖌	137	1 29
FCC Gasoline Splitters	347	347 🛃	366	346
Hydrocracking – Heavy Gasoline	9	47	87	12
Hydrocrackate Fractionation	161	179 ^V	200	161
Coker Lt Gasoline DS/Splitter	29	29 🗸	38	29
FCC Gasoline HDS	23		69	50
Hydrotreating – Distillate	128	98 ^V ,	104	108
Reformer Feed Fractionation	293	343 /	346	314
Reformate Fractionation	210	326 1	424	321
Benzene Saturation	80	111 -	134	109
Gasoline Aromatics Saturation	9	,		3
Alkylation	20	77 - 17	103	26
Alkylate Splitter	15	27 V	41	153
	7	7 4	7	4
Isomerization - C5/C6	20	19 🗸	24	20
- C5/C6, Recycle			50	
- C4	6	33 🗸	30	13
Hydrogen – MMSCFPSD	75	1 74 V	375	80

CLM 11/6/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30255

TURNER, MASON & COMPANY Consulting Engineers

.

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 \$)

	10/4 CAR				
	Case 23 No Comply	Case 24 Lab Comply	Case 25 Lab & Blend	- Case 26	Case 27 CARB
	Margins	Margins	Comply Margins	Alternate A	Emissions
Heavy Naphtha Splitter	80	90	90	90	
BT Naphtha Splitter					0
FCC Gasoline Splitters	520	390	540	390	410
Hydrocracking - Heavy Gasoline	140	640	960	190	490
Hydrocrackate Fractionation	100	110	120	100	100
Coker Lt. Gasoline DS/Splitter	50	50	60	50	50
FCC Gasoline HDS	80		1 70	140	80
Hydrotreating - Distillate	260	200	210	220	50
Reformer Feed Fractionation	160	170	180	160	160
Reformate Fractionation	120	320	380	1 70	140
Benzene Saturation	240	300	340	300	250
Gasoline Aromatics Saturation	90			30	
Alkylation	120	480	580	150	510
Alkylate Splitter	10	30	40	100	
MTBE / TAME	40	40	40	20	
isomerization - C5/C6	130	130	120	130	330
- C5/C6, Recycle			440		
- C4	30	160	170	70	180
Hydrogen	120	260	610	1 30	210
MTBE Storage & Blending	40	40	40	40	40
Total Refinery	2,340	3,410	5,090	2,480	3,020

CLM 11/6/91

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30256

TABLE H-6 PROCESS UNIT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE - MBPCD PER REFINERY WSPA STUDY OF CARB PHASE 2 GASOLINE

	10/4 CARB 2 PROPOSAL + CHANGES						
	Case 23 Case 24 Case 25						
	Base	No Comply	Lab Comply	Lab & Blend	Case 26		
	Case 0	Margins	Margins	Comply Margins	Alternate A		
Crude - Atmospheric	111.1	(3.0)	(4.9)	1.8	(4.3)		
Heavy Naphtha Splitter		6.8	7.0	7.6	7.2		
Catalytic Cracking (1)	36.8	(2.7)	(2.7)	(0.5)			
Catalytic Cracking (2)	37.3	(2.7)	(2.7)	(0.5)	• -•		
Conversion. %	74.4	(2.3)	(2.2)	(3.1)			
Octane Catalyst, %	15.0		• •		()		
FCC Gasoline Splitters		19.4	19.4	20.4	19.3		
FCC Gasoline Fractionation	15.2	(15.2)	(15.2)	(15.2)	(15.2)		
Hydrocracking - 2 Stage(1)	16.9		• •	• •	vr		
Jet Yield, % of Max	96.7	(68.8)	(51.0)	(57.4)	(65.6)		
300 - Gasoline Operation, %				60.7	. ,		
Hydrocracking - Low Conversion	3.2	1.0	1.0		1.0		
- Heavy Gasoline		0.5	2.5	4.5	0.6		
- Combined(2)	20.1	1.5	3.5	2.8	1.6		
Hydrocrackate Fractionation		8.3	9.3	10.4	8.3		
Coking - Delayed	22.9						
- Fluid	5.3		(0.5)				
Coker Lt Gasoline DS/Splitter		1.6	1.6	2.1	1.6		
Thermal Cracking, Visbreaking	2.3						
Solvent Deasphalting	1.0	(0.5)	(0.6)	0.9	(0.6)		
Catalytic Reforming - 100 PSI (1)	3.4		(0.3)	(0.3)	(0.2)		
- 200 PSI (1)	16.6	(0.8)	(0.0)	(0.6)			
- 450 PSI (1)	8.9	(1.8)	(2.3)	(2.3)	(1.8)		
- Combined (2)	26.4	(1.7)	0.0	(0.4)	(0.7)		
- RONC	99.2	(2.7)	(5.0)	(5.4)	(3.0)		
Hydrotreating - Naphtha	18.8	0.0	3.1	3.3	0.6		
- Distillate	22.0	6.6	5.1	5.4	5.6		
- Heavy Gas Oil	31.0			0.8			
- Residuum - Vac	1.4	(0.2)			(0.4)		
Reformer Feed Fractionation		15.2	17.6	17.9	16.2		
Reformate Fractionation		10.9	16.9	21.9	16.6		
Benzene Saturation		3.9	5.4	6.5	5.3		
FCC Gasoline HDS		1.2		3.6	2.6		
Gasoline Aromatics Saturation		0.5			0.1		
Diesel Aromatics Saturation	11.7	(0.0)	(0.2)	(0.2)	(0.3)		
Alkylation	6.6	1.0	3.8	5.1	1.2		
Alkylate Splitter		0.7	1.3	2.0	7.5		
Polymerization							
MTBE / TAME	0.8	0.4	0.4	0.3	0.2		
Lubes	1.3						
Isomerization - C5/C6		1.0	1.0	1.3	1.0		
- C5/C6, Recycle	0.4			2.6			
- C4	0.3	0.3	1.6	1.5	0.6		
Hydrogen - MMSCFPCD	58.1	11.7	16.5	26.3	11.9		
Sulfur, LTPCD	130.0	(6.0)	(6.0)	(2.0)			
					•		

(1) Include effects of nonunitary capacity for some feedstocks and severities.

(2) Based on actual feed rates, ignoring severity effects.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30257

TURNER, MASON & COMPANY Consulting Engineers

CLM 11/6/91

en demandade e para e com

PROCESS UNIT UTILIZATIONS (1)

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

		_			
		Case 23	Case 24	Case 25	-
	Base	No Comply	Lab Comply	Lab & Blend	Case 26
	Case 0	Margins	Margins	Comply Margins	Alternate A
Crude Distiliation - Atmospheric	89.2	86.8	85.2	90.6	85.7
Heavy Naphtha Splitter		95.0	95.0	95.0	95.0
Catalytic Cracking (2)	95.0	88.1	88.0	93.8	87.8
Catalytic Cracking (3)	96.2	89.1	89 .2	95 .0	88.8
FCC Gasoline Splitters		95.0	95.0	95.0	95.0
FCC Gasoline Fractionation	84.9				
Hydrocracking - 2 Stage(2)	88.0	88 .0	88.0	88.0	88.0
- Low Conversion	67.0	88.0	88.0	67.0	88.0
- Heavy Gasoline		88.0	88.0	88.0	88.0
- Combined(3)	83.8	88.0	88.0	78.7	88.0
Hydrocrackate Fractionation		88.0	88.0	88.0	88.0
Coking - Delayed	95.0	95.0	95.0	95.0	95.0
- Fluid	95.0	95.0	85.9	95.0	95.0
Coker Lt Gasoline DS/Splitter		95 .0	95.0	95.0	95.0
Thermal Cracking, Visbreaking	88.0	88.0	88.0	88.0	88.0
Solvent Deasphalting	32.5	16.8	12.9	62.5	12.5
Catalytic Reforming - 100 PSI (2)	88.0	88.0	80.5	80.5	83.9
- 200 PSI (2)	88.0	83.7	87.9	84.8	88.0
- 450 PSI (2)	88.0	70.6	65.6	65.6	70.6
- Combined (3)	80.4	75.3	80.6	79.3	
Hydrotreating - Naphtha	66.7	66.7	77.7	78.4	68.6
- Distillate	88.0	88.0	88.0	88.0	88.0
- Heavy Gas Oil	85.8	85.8	85.8	88.0	85.8
- Residuum, Vac	88.0	75.8	88.0	88.0	65.9
Reformer Feed Fractionation		88.0	88.0	88.0	88.0
Reformate Fractionation		88.0	88.0	88.0	
Benzene Saturation		83.0	83.0	83.0	
FCC Gasoline HDS		88.0		88.0	88.0
Gasoline Aromatics Saturation		88.0			88.0
Diesel Aromatics Saturation	88.0	88.0	86.4	86.2	85.8
Alkylation	83.0	83.0	83.0	83.0	83.0
Alkyiate Splitter		83.0	83.0	83.0	83.0
Polymerization	0.0	0.0	0.0	0.0	0.0
MTBE / TAME	83.0	83.0	83.0	83.0	83.0
Lubes	87.6	87.6	87.6	87.6	87.6
Isomerization - C5/C6		88.0	88.0	88.0	
- C5/C6, Recycle	88.0	. 88.0	88.0	88.0	88.0
- C4	83.0	83.0	83.0	83.0	83.0
Hydrogen	72.9	83.0	83.0	83.0	
Sulfur	45.9	43.8	43.8	45.2	43.5

(1) Calendar day rates divided by stream day capacity.

(2) Include effects of nonunitary capacity factors for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

and comp

CLM 11/12/91 ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30258

TURNER, MASON & COMPANY Consulting Engineers

A set of the set of the second s

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

		10/4 CAF	_		
		Case 23	Case 24	Case 25	_
	Base	No Comply	Lab Comply	Lab & Blend	Case 26
	Case 0	Margins	Margins	Comply Margins	Alternate A
FCC Gasoline	11.1				
Lt. FCC 255-	15.0				
Hvy FCC 255+	10.5				
Hvy FCC 255+ Desul		2.0		5.9	4.3
FCC Gaso (100-180)		6.5	6.4	4.5	6.4
FCC Gaso (180-225)		2.6	3.8	2.4	3.8
FCC Gaso (225-300)		7.6	2.3	1.8	3.7
FCC Gaso (300-375)		0.5			
Total FCC Gasoline	36.6	19.2	12.5	14.6	18.2
Pentenes		0.2			2.3
Lt. Coker Gasoline	2.8				
Total Olefinic	2.8	0.2		—	2.3
Reformate	22.2	5.0			
Reformate (220-300 Feed)	5.9	10.5	8.8		7.6
BT Reformate	7.2				
HC Reformate (210-300)		8.0	13.6	20.5	13.0
Heavy Reformate (300+)		3.4	5.1	1.3	5.4
Total Reformates(1)	35.3	26.9	27.5	21.8	26.0
Lt. Reformate (Benzene Saturated)		6.6	9.2	11.1	9.0
Aikyiate/Lt Aikyiate (C3/C4)	10.9	8.3	12.2	14.0	10.2
Alkylate/Lt Alkylate (C5)		3.4	3.4	3.6	0.5
Butane	2.5	2.4	1.5	1.5	1.5
Natural/LSR Gaso	3.8	3.7	2.9		2.8
iso Pentane		3.0	2.3		3.1
Normal Pentane		0.6	0.1		0.6
Isomerate (C5-C6)	0.6	0.6	0.6	2.4	0.7
Isomerate (C6)		1.6	1.7	4.5	1.6
Lt. Hydrocrackate	5.0	6.6	7.8	9.4	6.8
Hydrocrackate (175-225)	0.5	6.9	7.2	5.9	6.6
MTBE	2.0	9.3	10.4	10.4	9.6
TAME		0.7	0.7	0.8	0.5
Total Low Arom., Saturated	25.3	53.7	60.0	63.6	53.5
Total	100.0	100.0	100.0	100.0	100.0

(1) Excluding light reformate.

CLM 11/6/91

An example of the state of the

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30259

TURNER, MASON & COMPANY Consulting Engineers

CONTRACTOR OF ADDRESS WATCHING

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(¢/G per unit in constant 1991 \$)

		10/4 CAF	B 2 PROPOS	_		
	Base Case 0	Case 23 No Comply Margins	Case 24 Lab Comply Margins	Case 25 Lab & Blend Comply Margins	Case 26 Alternate A	Case 27 CARB Emissions
(R+M)/2 Octane, Clear	(0.9)	(1.0)	(1. 2)	(2.6)	(1.1)	(2.2)
Reid Vapor Pressure, PSI	0.6	0.9	3.9	5.2	1.9	1.9
Butane, Vol.%			1.6	2.1	0.5	0.4
Aromatics, Vol.%		0.1	0.2	0.7	0.2	0.9
Ethers, Vol.%	(0.1)	(0.1)	(0.1)	0.2	(0.1)	0.4
Olefins, Vol.%		0.3	0.5			
Benzene, Vol.%		2.5	3.2	5.2	3.2	3.3
Sulfur, 100 Wt. PPM		2.8	26	12.4	7.4	7.9
T90, 10°F		1.8	2.3	3.7	1.8	0.5

(1) Shadow costs for very small changes. Not applicable for significant changes.

CLM 11/6/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30260

> > •

TABLE I-1

RUN BASIS AND GASOLINE POOL PROPERTIES

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

ALTERNATE B - CHANGES ALTERNATE Case 20 Case 30 Case 31 Case 32 Case 32 Reformulated Properties* Case 20 Case 25 Case 31 Case 32 - 28 / 25 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 30 30						10/4 CARB 2 PROPOSAL		10-
Batomulated Properties: Case 0 • None -50 S Knees • -28/10 S • None Aromatics, Vol.*s, Maximum Avg 25 25 25 25 25 25 25 Regulatory Cap 28 28 25 25 25 25 25 25 25 25 25 25 25 25 26 26 28 20 18 1.8 1.8 20 1.8 1.				and the second sec		free sectors and a sector sector and a		۰ <u>،</u>
Arromatics. Vol. %. Maximum Avg 25 25 26 20 <								
Regulatory Cap 28 28 28 28 25 25 Corygen, W. %, Minimum Avg 0.4 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.		Case 0	+ None	-	Knees	+.2 B/10 S	+ None	
Oxygen, W. *e, Minimum Avg 0.4 1.8 1.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8 1.8 2.0 2.0 1.8 1.8 2.0 2.0 1.8 1.8 1.8 1.8 2.0 2.0 1.8 1.8 1.8 1.8 1.8 2.0 2.0 1.8 1.8 1.8 1.8 1.8 2.0 1.8 1.9 1.9 1.9 1.9 1.9 </td <td>Aromatics, Vol.%, Maximum Avg</td> <td></td> <td></td> <td>25</td> <td>25</td> <td>20</td> <td>20</td> <td>?</td>	Aromatics, Vol.%, Maximum Avg			25	25	20	20	?
Dxygen, vit.vs. minimum Avg 0.4 1.8 1.8 2.0 2.0 2.0 2.0 Brequitary Cab 30 (1) 20 20 18 10 10 Brequitary Cab 30 (1) 20 20 18 10 10 Benzares, Vol.%, Maximum Avg 250 80 30 50 80 40 40 Reguitary Cap 300 130 50 80 40 40 Reguitary Cap 300 130 50 80 40 40 Reguitary Cap 300 330 32					28			
Bromine No., Maximum Avg 26 (1) 16 16 14 6 7 6 7 Bequiatory Cap 30 (1) 20 20 18 10 10 Benzerse, Vol.4e, Maximum Avg 0.8 0.8 0.8 0.8 0.8 0.6 7 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 30 20 3	Oxygen, Wt.%, Minimum Avg	0.4		1.8	20	2.0	2.0	2
Regulatory Cab 30 (1) 20 20 18 10 10 Benzere, Vol.%, Maximum Avg 250 80 30 50 30 30 20 30 Begulatory Cap 300 130 50 80 40 40 Rejulatory Cap 300 130 50 80 40 40 Rejulatory Cap 7.8 7.1 7.1 7.4 7.4 7.4 7.0 7.0 90 Vol.% Point, *F, Maximum Avg 320 320 330 320 300 300 300 90 Vol.% Point, *F, Maximum Avg 330 330 330 320 300			1.8	1.8	2.0	1.8	1.8	
Regulatory Cab 30 (1) 20 20 18 10 10 Benzen, Vol.%, Maximum Avg 250 80 30 50 30 30 20 .3 Begulatory Cab 300 130 50 80 40 40 Regulatory Cab 7.5 7.1 7.1 7.1 6.6 6.6 Regulatory Cab 330 320 320 310 220 230 300 200 -30 So Vol.% Point, *F, Maximum Avg 320 320 330 320 30 30 30 3	Bromine No., Maximum Avg	26 (*	1) 16	16	- 14	6-7.	6	2
Benzene, Vol. %, Maximum Avg 0.8	Regulatory Cap	30 (*	1) 20	20	18	10	10	
Sultar, Wit, PPM, Maximum Avg 250 80 30 50 30 20 30 Regulatory Cap 300 130 50 80 40 40 Reid Vapor Pressure, PSI, Max Avg 7.5 7.1 7.1 7.1 6.6 6.6 Regulatory Cap 7.8 7.4 7.4 7.4 7.0 7.0 90 Vol.4% Point, *F, Maximum Avg 320 330 320 300 300 300 300 50 Vol.4% Point, *F, Maximum Avg 195 100 1.7 196 11.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1			0.8	0.8	0.8	0.8	0.6	n"
Regulatory Cap 300 130 50 80 40 40 Reid Vapor Pressure, PSI, Max Avg 7.5 7.1 7.1 7.1 7.0	Sulfur, Wt. PPM, Maximum Avg	250	80	30	50	30		0
Reid Vapor Pressure, PSI, Max Avg 7.5 7.1 7.0 <t< td=""><td></td><td>300</td><td>130</td><td>50</td><td>80</td><td>40</td><td></td><td></td></t<>		300	130	50	80	40		
Regulatory Cap 7.8 7.4 7.4 7.4 7.4 7.0	Reid Vapor Pressure, PSI, Max Avg	7.5	7.1	7.1	7.1	6.6	-	
90 Vol.% Point, *F, Maximum Avg 320 320 320 310 280 30 30 </td <td></td> <td>7.8</td> <td>7.4</td> <td>7.4</td> <td></td> <td></td> <td></td> <td></td>		7.8	7.4	7.4				
Regulatory Cap 330 330 330 320 300 300 50 Vol. 46 Point, *F, Maximum Avg Regulatory Cap 195 195 195 195 210 210 210 210 210 210 Ethers, Vol. 46 Pool			320	320				- 20
50 Vol.% Point, *F, Maximum Avg 195 195 Regulatory Cap 210 210 Ethers, Vol.% Pool 210 210 Purchased 0.6 8.1 8.6 9.2 9.1 9.4 Manufactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+M/2 Octane, Clear* 88.9 20			330					
Regulatory Cap 210 210 Eihers, Vol.% Pool Purchased 0.6 8.1 8.6 9.2 9.1 9.4 Manutactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+My2 Octane, Clear* 88.9 6.0 6.0 5 88.9 6.0 6.0 5 88.9 6.0 6.0 5 5	-							
Ethers, Vol. % Pool Purchased 0.6 8.1 8.6 9.2 9.1 9.4 Manutactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+My2 Octane, Clear* 88.9 88.9 88.9 88.9 20 20 1.7 Aromatics, Vol.%* 2.0 10.0 10.0 11.1						-		
Purchased 0.6 8.1 8.6 9.2 9.1 9.4 Manufactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+M)/2 Octane, Clear* 88.9						210	210	
Purchased 0.6 8.1 8.6 9.2 9.1 9.4 Manufactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+M)/2 Octane, Clear* 88.9	Ethers Vol % Pool	-						
Manufactured 1.4 1.9 1.4 1.9 2.0 1.7 Gasoline Pool Properties (R+My2 Octane, Clear* 88.9 89		0.6	81	86	92	01	94	
Gasoline Pool Properties (R+M)/2 Octane, Clear* 88.9 80.9 20								
(R+M)/2 Octane, Clear* 88.9 88.9 88.9 88.9 88.9 88.9 88.9 88.9 Aromatics, Vol.%* 2.0 10.0 10.0 11.1 11.1 11.1 Oxygen, Wt.%* 0.4 1.8 1.8 2.0 2.0 2.0 Oletins, Vol.%* 11 8 * 7 7 * 3 * 2 Bromine No. 22 16 * 14 14 * 6 * 5 Benzene, Vol.%* 2.2 0.8 * 0.8 * 0.8 * 0.8 * 0.6 * Sulfur, Wt. PPM 206 80 * 30 * 50 * 30 20 * Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 146 145 Distillation 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.%					1.44	2.0	1.7	
(R+M)/2 Octane, Clear* 88.9 88.9 88.9 88.9 88.9 88.9 88.9 88.9 Aromatics, Vol.%* 2.0 10.0 10.0 11.1 11.1 11.1 Oxygen, Wt.%* 0.4 1.8 1.8 2.0 2.0 2.0 Oletins, Vol.%* 11 8 * 7 7 * 3 * 2 Bromine No. 22 16 * 14 14 * 6 * 5 Benzene, Vol.%* 2.2 0.8 * 0.8 * 0.8 * 0.8 * 0.6 * Sulfur, Wt. PPM 206 80 * 30 * 50 * 30 20 * Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 146 145 Distillation 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.%	Gasoline Pool Properties							
Aromatics, Vol.%34252525252020Ethers, Vol.%*2.010.010.011.111.111.111.1Oxygen, Wt.%*0.41.81.82.02.02.0Olefins, Vol.%*1187732Bromine No.2216141465Benzene, Vol.%2.20.80.80.80.80.6Sulfur, Wt. PPM2068030503020Reid Vapor Pressure, PSI*7.57.17.17.16.66.6Temperature at V/L = 20, *F145144143144146145Distillation90*F, Vol.%121111107790*F, Vol.%6121111107738212*F, Vol.%6505658586060257*F, Vol.%6505658586060257*F, Vol.%6919596969999356*F, Vol.%6919596969999710. *F122130130133145145150, *F348320320310280280280790, *F348320320310280280280790, *F348320320310280280280		88.9	88.9	88.9	88.9	88.9	88.9	
Ethers, Vol.%* 2.0 10.0 10.0 11.1 11.1 11.1 11.1 Oxygen, Wt.%* 0.4 1.8 1.8 2.0 2.0 2.0 Olefins, Vol.% 11 8 7 7 3 2 Bromine No. 22 16 14 14 6 5 Benzene, Vol.% 2.2 0.8 0.8 0.8 0.8 0.6 • Sulfur, Wt. PPM 206 80 30 50 30 20 • Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 144 146 145 Distillation 90*F, Vol.% 12 11 11 10 7 7 90*F, Vol.% 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.% 50 56 58 58 60 60 22*F, Vol.%	•	34						
Oxygen, Wt.%* 0.4 1.8 1.8 2.0 2.0 2.0 Oletins, Vol.% 11 8 7 7 3 2 Bromine No. 22 16 14 14 6 5 Benzene, Vol.% 2.2 0.8 0.8 0.8 0.8 0.6 * Sultur, Wt. PPM 206 80 30 50 30 20 * Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 144 146 145 Distillation 90*F, Vol.% 12 11 11 10 7 7 130*F, Vol.% 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.% 50 56 58 58 60 60 25*F, Vol.% 67 73 74 75 81 81 356*F, Vol.% 91					_			
Olefins, Vol.% 11 8 7 7 3 2 Bromine No. 22 16 14 14 6 5 Benzene, Vol.% 2.2 0.8 0.8 0.8 0.8 0.8 0.8 0.6 • Sultur, Wt. PPM 206 80 30 50 30 20 • Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 144 146 145 Distillation 7 7 7 7 7 7 7 90*F, Vol.% 12 11 11 10 7 7 7 130*F, Vol.% 23 22 23 22 17 18 17 170*F, Vol.% 33 38 39 39 37 38 25* 88 60 60 25** 81 81 81 81 81 81 81 81 85 88 96 96 96		0.4						
Bromine No. 22 16 14 14 6 5 Benzene, Vol.% 2.2 0.8 0.8 0.8 0.8 0.8 0.6 • Sultur, Wt. PPM 206 80 30 50 30 20 • Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, °F 145 144 143 144 146 145 Distillation 90°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 99 99 710, °F 125 130 13								
Benzene, Vol.% 2.2 0.8 0.8 0.8 0.8 0.8 0.6 • Sulfur, Wt. PPM 206 80 30 50 30 20 • Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, °F 145 144 143 144 146 145 Distillation 90°F, Vol.% 12 11 11 10 7 7 130°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 99 T10, °F 125 130 130 133 145 145 T50, °		22	-		-			
Sulfur, Wt. PPM 206 80 30 50 30 20 Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 144 146 145 Distillation 90*F, Vol.% 12 11 11 10 7 7 130*F, Vol.% 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.% 50 56 58 58 60 60 257*F, Vol.% 67 73 74 75 81 81 300*F, Vol.% 81 85 85 88 96 96 356*F, Vol.% 91 95 96 96 99 99 91 T50, *F 122 197 194 194 193 193 193 193 193 193 1077 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>			-				-	
Reid Vapor Pressure, PSI* 7.5 7.1 7.1 7.1 6.6 6.6 Temperature at V/L = 20, *F 145 144 143 144 146 145 Distillation 90*F, Vol.% 12 11 11 10 7 7 130*F, Vol.% 23 22 23 22 17 18 170*F, Vol.% 33 38 39 39 37 38 212*F, Vol.% 50 56 58 58 60 60 257*F, Vol.% 67 73 74 75 81 81 300*F, Vol.% 81 85 85 88 96 96 356*F, Vol.% 91 95 96 96 99 99 99 T10, *F 125 130 130 133 145 145 T50, *F 212 197 194 194 193 193 T90, *F 348 320 * 320 * 310 * 280 * 280 * Driveability Index 1171 1106<								
Temperature at V/L = 20, °F 145 144 143 144 146 145 Distillation 90°F, Vol.% 12 11 11 10 7 7 130°F, Vol.%6 12 11 11 10 7 7 130°F, Vol.%6 23 22 23 22 17 18 170°F, Vol.%6 33 38 39 39 37 38 212°F, Vol.%6 50 56 58 58 60 60 257°F, Vol.%6 67 73 74 75 81 81 300°F, Vol.%6 81 85 85 88 96 96 356°F, Vol.%6 91 95 96 96 99 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 T90, °F 348 320° 320° 310° 280° 280° Driveability Index 1171 1106 1097 109							-	
Distillation 90°F, Vol.% 12 11 11 10 7 7 130°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320<*								
90°F, Vol.% 12 11 11 10 7 7 130°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 257°F, Vol.% 91 95 96 96 99 99 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320<*				140	,	140	140	
130°F, Vol.% 23 22 23 22 17 18 170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320<*		12	• •		10	-	-	
170°F, Vol.% 33 38 39 39 37 38 212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320° 320° 310° 280° 280° Driveability Index 1171 1106 1097 1092 1080 1077					-			
212°F, Vol.% 50 56 58 58 60 60 257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10. °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320° 320° 310° 280° 280° Driveability Index 1171 1106 1097 1092 1080 1077								
257°F, Vol.% 67 73 74 75 81 81 300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320 ° 320 ° 310 ° 280 ° 280 ° Driveability Index 1171 1106 1097 1092 1080 1077	-						-	
300°F, Vol.% 81 85 85 88 96 96 356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 193 193 T90, °F 348 320 ° 320 ° 310 ° 280 ° 280 ° Driveability Index 1171 1106 1097 1092 1080 1077	-							
356°F, Vol.% 91 95 96 96 99 99 T10, °F 125 130 130 133 145 145 T50, °F 212 197 194 194 194 193 T90, °F 348 320 ° 320 ° 310 ° 280 ° 280 ° Driveability Index 1171 1106 1097 1092 1080 1077								
T10. *F 125 130 130 133 145 145 T50, *F 212 197 194 194 193 193 T90, *F 348 320 * 320 * 310 * 280 * 280 * Driveability Index 1171 1106 1097 1092 1080 1077								
T50, °F 212 197 194 194 194 193 T90, °F 348 320 ° 320 ° 310 ° 280 ° 280 ° Driveability Index 1171 1106 1097 1092 1080 1077								
T90, °F 348 320 ° 320 ° 310 ° 280 ° 280 ° Driveability Index 1171 1106 1097 1092 1080 1077								
Driveability Index 1171 1106 1097 1092 1080 1077						194	193	
							280 •	
Heat Content, MBTU/G 114.4 111.7 111.6 111.4 110.8 110.8					1092	1080	1077	
	Heat Content, MBTU/G	114.4	111.7	111.6	111.4	110.8	110.8	

(1) L.A. only.

(2) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

.

* Input limit.

CLM/REC

11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30261

TABLE 1-2

SUMMARY OF COSTS

1996 CASE RESULTS(1) - INCREASE OVER BASE CASE(2)

WSPA STUDY OF CARB PHASE 2 GASOLINE

(in constant 1991 \$)

			· •)		
				10/4 CARB	2 PROPOSAL
	ALTERNATE	B + CHANGES	ALTERNATE C	+L/B CMP	L MGNS+ (3)
	Case 28	Case 29	Case 30	Case 31	Case 32
	+ Nопе	<u>- 50 S</u>	Knees	+.2 B/10 S	+ None
Investment, MMS					
Refinery	1,250	1,730	1,460	4,720	5,170
MTBE(4)	<u>1,930</u>	2,030	2.220	2.210	2.260
Total	3,180	3,760	3,680	6,930	7,420
Range, MMM\$(5)	2.5-4.1	3.0-4.9	2. 9-4 .7	5.7-9.1	6.1-9.8
Daily Costs. MS/D			_		-
Capital Charge(6)	827	1,147 2,	3 - 7 966	3,128	3,425
Net Upgrading Costs(7)	1,636	1,767	4.7 2.025	2,256	2,466
Variable Operating Costs	257		0.9 376	1, 439	1,556
Fixed Operating Costs(8)	332	428	0,9 _367	1,028	1,111
Total Refinery	3,052	3,759 <	177 3,734	7,852	8,558
Annual Cost, MM\$/Yr,			1107 -		
Refinery	1,115	1,372	6771,363	2,865	3,124
Other(9)	329	343	2.4_369	_438	443
Total	1,444	1,715	2 /+) 1,732	3,303	3,567
Total Unit Cost. ¢/G of Base G					
Average	9.2	11.0	11.1	21 .1	22.8
Range(10)	7.7-12.0	9.2-14.1	9.3-14.2	18.5-26.1	20.0-28.1

(1) For reformulation runs, based on a composite model of conversion refineries. Individual refinery costs will differ from average.

(2) Based on normal investment costs, capital charge, fixed costs, net upgrading and variable costs over base case.

(3) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

(4) For MTBE, methanol and butane isom plus dehydro plants outside of refineries, their capital and fixed cost are included in refinery raw material costs (net upgrading costs).

(5) For variations from investment curves of -15/+35% for refining and $\pm 25\%$ for MTBE.

(6) Based on expected 15% DCF rate of return on new refining facilities investment.

(7) Raw material upgrading costs.

(8) For new refining facilities only.

(9) Added consumer costs for extra gasoline used due to lower BTU content: retail price less 10¢/G refining margin included in refinery costs.

(10) For variations in capital charge (-15/+35%), MTBE costs (-10/+20¢/G) and BTU mileage factor (±0.2).

REC/CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30262

REFINERY RAW MATERIAL AND PRODUCT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE – MBPCD WSPA STUDY OF CARB PHASE 2 GASOLINE

	ALTERNATE C	10/4 CARB 2 PROPOSAL +L/B CMPL MGNS+ (1)		
	Case 30	Case 31	Case 32	
	Knees	+.2 B/10 S	+ None	
Raw Materials				
Alaska North Slope	(97)	(27)	1	
Subtotal Crudes	(97)	_ (27)	1	
Natural Gasoline		(4)	(4)	
Naphtha	4	4	4	
MTBE Methanol	90 2	89 2	92 1	
Normal Butane	4	2	4	
Natural Gas to H2 Plant Feed	6	(13)	(13)	
Total		53	86	
Products Motor Gasolines	21	25	05	
No. 6 Bunker	4	25 35	25 58	
Normal Butane	(2)	(3)	(3)	
Propane	(3)	8	10	
Propylene, Low Value	(7)	(13)	(13)	
Process Gas	(12)	(34)	(31)	
Lt St Run Naphtha to P/C				
Pentanes to P/C iso Pentane to P/C		39 1	40	
Marketable Coke	0	(0)	2 (1)	
FCC Coke	(1)	0	0	
Loss(Gain)	3	(5)	(Ž)	
Total		53	85	
	•		~	
Crude Property Increase				
Gravity, •API	(0.2)	(0.1)	0.0	
Sultur, Wt%	0.01	0.00	0.00	
Gasoline Demand Increase, %(2)				
Results	2.0	2.4	2.4	
Target	2.1	2.5	2.5	

(1) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

Comment complete children in a complete pri-

(2) To maintain constant miles traveled with lower BTU content reformulated gasoline.

CLM 11/12/91

economica da la colorada en

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30263

NEW PROCESS UNIT RATES

1996 CASE RESULTS

INCREASE OVER BASE CASE - MBPSD

WSPA STUDY OF CARB PHASE 2 GASOLINE

		10/4 CARB 2 PROPOSAL		
	ALTERNATE C	+L/B CMPL	Y MGNS+ (1)	
	Case 30	Case 31	Case 32	
	Knees	+.2 B/10 S	+ None	
Heavy Naphtha Splitter		132	1 34	
FCC Gasoline Splitters	346	372	372	
Hydrocracking - Heavy Gasoline		80	78	
Hydrocrackate Fractionation	141	203	201	
Lt. Hydrocrackate Splitter		4	6	
Coker Lt Gasoline DS/Splitter	30	30	31	
FCC Gasoline HDS	25		75	
Hydrotreating - Distillate	63	106	109	
- Hvy. Gas Oil		16	16	
Reformer Feed Fractionation	309	319	298	
Reformate Fractionation	248	264	373	
Benzene Saturation	83	84	117	
Gasoline Aromatics Saturation				
Alkylation		91	98	
Alkylate Splitter		93	55	
MTBE /TAME	7	9	6	
Isomerization - C5/C6	19	51	35	
- C5/C6, Recycle		61	77	
- C4	5	25	29	
Hydrogen - MMSCFPSD	. 1	342	381	

(1) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

CLM 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30264

NEW PROCESS UNIT INVESTMENTS

1996 CASE RESULTS

INCREASE OVER BASE CASE

WSPA STUDY OF CARB PHASE 2 GASOLINE

(SMM - in constant 1991 \$)

.

	ALTERNATE B + CHANGES		ALTERNATE C	10/4 CARB 2 PROPOSAL +L/B CMPL MGNS+(1)		
	Case 28	Case 29	Case 30	Case 31	Case 32	
	+ None	- 50 S	Knees	+.2 B/10 S	+ None	
Heavy Naphtha Splitter	0			90	90	
BT Naphtha Splitter						
FCC Gasoline Splitters	190	320	320	550	550	
Hydrocracking - Heavy Gasoline				910	890	
Hydrocrackate Fractionation	90	90	90	120	120	
Lt. Hydrocrackate Splitter				0	10	
Coker Lt. Gasoline DS/Splitter			50	50	60	
FCC Gasoline HDS	0	170	80		180	
Hydrotreating – Distillate	60	70	120	210	220	
- Hvy. Gas Oil				40	40	
Reformer Feed Fractionation	140	170	160	170	160	
Reformate Fractionation	120	140	140	270	350	
Benzene Saturation	220	250	250	250	310	
Gasoline Aromatics Saturation						
Alkylation	70	140		530	560	
Alkylate Splitter				70	50	
MTBE / TAME	40		40	50	30	
Isomerization - C5/C6	180	200	120	220	150	
- C5/C6, Recycle				470	590	
- C4	70	110	20	130	150	
Hydrogen	10	30	10	540	620	
MTBE Storage & Blending	40	40	40	40	40	
Total Refinery	1,250	1,730	1,460	4,720	5,170	

(1) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30265

TURNER, MASON & COMPANY Consulting Engineers

CLM 11/12/91

TABLE I-6 PROCESS UNIT RATE CHANGES 1996 CASE RESULTS INCREASE OVER BASE CASE - MBPCD PER REFINERY WSPA STUDY OF CARB PHASE 2 GASOLINE

		10/4 CARB 2 PROPOSAL +L/B CMPL MGNS+ (1)		
_	ALTERNATE C			
Base	Case 30	Case 31	Case 32	
Case 0	Knees	+.2 B/10 S	+ None	
Crude - Atmospheric 111.1	(5.7)	(1.6)	0.1	
Heavy Naphtha Splitter		7.4	7.5	
Catalytic Cracking (2) 36.8	(2.9)			
Catalytic Cracking (3) 37.3	(2.9)			
Conversion, % 74.4	(2.1)	(2.7)	(2.6)	
Octane Catalyst, % 15.0				
FCC Gasoline Splitters	19.3	20.8	20.8	
FCC Gasoline Fractionation 15.2	(15.2)	(15.2)	(15.2)	
Hydrocracking - 2 Stage(2) 16.9				
Jet Yield, % of Max 96.7	(31.5)	(67.6)	(67.3)	
300 - Gasoline Operation, %		37.8	57.4	
Hydrocracking - Low Conversion 3.2	1.0	1.0	1.0	
- Heavy Gasoline		4.1	4.0	
- Combined(3) 20.1	1.0	4.1	3.4	
Hydrocrackate Fractionation	8.3	10.5	10.4	
Lt. Hydrocrackate Solitter		0.2	0.3	
Coking - Delayed 22.9				
- Fiuid 5.3				
Coker Lt Gasoline DS/Splitter	1.7	1.7	1.7	
Thermal Cracking, Visbreaking 2.3	(0.5)			
Solvent Deasphalting 1.0	(0.7)	(0.0)	1.6	
Catalytic Reforming - 100 PSI (2) 3.4	(0.3)	(0.3)		
- 200 PSI (2) 16.6	(2.0)	(1.0)	(3.1)	
- 450 PSI (2) 8.9	(2.9)	(2.3)	(2.3)	
- Combined (3) 26.4	(3.7)	(1.3)	(3.1)	
- RONC 99.2	(2.9)	(5.7)	(4.1)	
Hydrotreating - Naphtha 18.8	1.1	3.8	2.7	
- Distillate 22.0	3.3	5.5	5.7	
- Heavy Gas Oil 31.0	0.0	1.6	1.7	
- Residuum - Vac 1.4	(0.1)		1.7	
Reformer Feed Fractionation	16.0	16.5	15.4	
Reformate Fractionation	12.8	13.7	19.4	
Benzene Saturation	4.1	4.1	5.7	
FCC Gasoline HDS	1.3	7.1		
Gasoline Aromatics Saturation	ن .۱		3.9	
Diesel Aromatics Saturation 11.7		(0 0)	<i></i>	
Alkylation 6.6		(0.3)	(0.2)	
		4.4	5.1	
Alkylate Splitter		4.5	2.7	
Polymerization MTBE / TAME 0.8	0.1	• •		
	0.4	0.4	0.3	
Lubes 1.3				
Isomerization - C5/C6	1.0	2.7	1.8	
- C5/C6, Recycle 0.4		3.2	4.0	
- C4 0.3	0.2	1.2	1.4	
Hydrogen - MMSCFPCD 58.1	8.0	24.7	26. 6	
Sulfur, LTPCD 130.0	(7.0)	(3.0)	(4.0)	

(1) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

(2) Include effects of nonunitary capacity for some feedstocks and severities.

(3) Based on actual feed rates, ignoring severity effects.

CLM

11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. NO. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30266

TURNER, MASON & COMPANY Consulting Engineers

.

PROCESS UNIT UTILIZATIONS (1)

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

			10/4 CARB 2	PROPOSAL
	Base	ALTERNATE C	+L/B CMPL	MGNS+ (2)
	Case 0	Case 30	Case 31	Case 32
Crude Distillation - Atmospheric	89.2	84.6	87.9	89.2
Heavy Naphtha Splitter			95.0	95.0
Catalytic Cracking (3)	95.0	87.5	95.0	95.0
Catalytic Cracking (4)	96.2	88.7	96.2	96.2
FCC Gasoline Splitters		95.0	95.0	95.0
FCC Gasoline Fractionation	84.9			
Hydrocracking - 2 Stage(3)	88.0	88.0	88.0	88.0
- Low Conversion	67.0	88.0	88.0	88.0
- Heavy Gasoline			88.0	88.0
- Combined(4)	83.8	88.0	84.3	82.3
Hydrocrackate Fractionation		88.0	88.0	88.0
Lt. Hydrocrackate Splitter			88.0	88.0
Coking - Delayed	95.0	95.0	95.0	95 .0
- Fluid	95.0	95.0	95.0	95.0
Coker Lt Gasoline DS/Splitter		95.0	95.0	95.0
Thermal Cracking, Visbreaking	88.0	69.6	88.0	88.0
Solvent Deasphalting	32.5	8.0	32.3	88.0
Catalytic Reforming - 100 PSI (3)	88.0	80.5	80.5	88.0
- 200 PSI (3)	88.0	77.3	82.7	71.7
- 450 PSI (3)	88.0	58.7	65.6	65.6
- Combined (4)	80.4	69.2	76.6	71.0
Hydrotreating - Naphtha	66.7	70.6	80.2	76.1
- Distillate	88.0	88.0	88.0	88.0
- Heavy Gas Oil	85.8	85.8	88.0	88.0
- Residuum, Vac	88.0	84.4	88.0	88.0
Reformer Feed Fractionation		88.0	88.0	88.0
Reformate Fractionation		88.0	88.0	88.0
Benzene Saturation		83.0	83.0	83.0
FCC Gasoline HDS		88.0		88.0
Gasoline Aromatics Saturation				
Diesel Aromatics Saturation	88.0	88.0	86.0	86.1
Alkylation	83.0	83.0	83.0	83.0
Alkylate Splitter			83.0	83.0
Polymerization	0.0	12.8	0.0	0.0
MTBE / TAME	83.0	83.0	83.0	83.0
Lubes	87.6	87.6	87.6	87.6
Isomerization - C5/C6		88.0	88.0	88.0
- C5/C6, Recycle	88.0	88.0	88.0	88.0
- C4	83.0	83.0	83.0	83.0
Hydrogen	72.9	83.0	83.0	83.0
Sulfur	45.9	43.5	44.9	44.5

(1) Calendar day rates divided by stream day capacity.

(2) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

statement and a second statement

(3) Include effects of nonunitary capacity factors for some feedstocks and severities.

(4) Based on actual feed rates, ignoring severity effects.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30267

CLM 11/13/91

heilight with the state of the

TURNER, MASON & COMPANY

Consulting Engineers

GASOLINE POOL COMPOSITIONS

1996 CASE RESULTS - %

WSPA STUDY OF CARB PHASE 2 GASOLINE

			10/4/91 CARB 2 PROPOSAL			
		ALTERNATE C		MGNS+ (1)		
	Base	Case 30	Case 31	Case 32		
	Case 0	Knees	+.2 B/10 S	+ None		
FCC Gasoline	11.1					
L1. FCC 255-	15.0					
Hvy FCC 255+	10.5					
Hvy FCC 255+ Desul		2.1		6.4		
FCC Gaso (100-180)		6.4	1.8	2.0		
FCC Gaso (180-225)		3.4	4.0	4.0		
FCC Gaso (225-300)		7.6	5.8	1 .8		
FCC Gaso (300-375)		2.2				
Total FCC Gasoline	36.6	21.7	11.6	14.2		
Pentenes		1.8				
Poly Gasoline		0.1				
Lt. Coker Gasoline	2.8					
Total Olefinic	2.8	1.9	0.0	0.0		
Reformate	22.2	4.4				
Reformate (220-300 Feed)	5.9	5.3	126	0.3		
BT Reformate	7.2					
HC Reformate (210-300)		9.4	11.3	17.7		
Heavy Reformate (300+)		4.9	1.8	2.0		
Total Reformates(2)	35.3	24.0	25.7	20.0		
Lt. Reformate (Benzene Saturated)		6.8	6.9	9.6		
Alkylate/Lt Alkylate (C3/C4)	10.9	10.5	12.6	13.6		
Aikyiate/Lt Alkyiate (C5)			3.4	3.4		
Butane	2.5	2.2	1.5	1.5		
Natural/LSR Gaso	3.8	4.2				
Iso Pentane		3.0	0.1			
Normal Pentane		0.6				
Isomerate (C5-C6)	0.6	0.5	3.2	3.3		
Isomerate (C6)		1.7	7.1	6.9		
LL. Hydrocrackate	5.0	5.6	9.1	8.9		
Hydrocrackate (175-225)	0.5	6.1	7.6	7.4		
MTBE	2.0	10.4	10.4	10.4		
TAME		0.7	0.8	0.8		
Total Low Arom., Saturated	25.3	52.3	62.7	65.8		
Total	102.8	100.0	100.0	100.0		

(1) Like Case 25 except added Lt. hydrocrackate splitter for added C5 sales.

(2) Excluding light reformate.

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (Rx) SUBJECT TO PROTECTIVE ORDER 30268

TURNER, MASON & COMPANY Consulting Engineers

CLM

11/12/91

GASOLINE PROPERTY DECREASE - INCREMENTAL COSTS(1)

1996 CASE RESULTS

WSPA STUDY OF CARB PHASE 2 GASOLINE

(#/G per unit in constant 1991 \$)

		ALTERNATE B		10/4 CARB 2 PROPOSAL +L/B CMPL MGNS+ (2)		
	Base Case 0	Case 28 + None	Case 29 - 50 S	Case 30 Knees	Case 31 +.2 B/10 S	Case 32 + None
(R+M)/2 Octane, Clear	(0.9)	(1.2)	(1.2)	(0.5)	(2.0)	(2.2)
Reid Vapor Pressure, PSI	0.6	0.8	0.9	0.7	5. 6	5.6
Butane, Vol.%					2.2	2.3
Aromatics, Vol.%		0.3	0.4		0.5	0.5
Ethers, Vol.%	(0.1)	(0.1)	(0.1)	(0.3)	0.1	0.1
Olefins, Vol.%		0.2		0.2	0.5	
Benzene, Vol.%		2.2	3.0	2.6	2.5	5.6
Sulfur, 100 Wt. PPM		1.0	5.8	2.5	2.4	11.0
T90, 10°F		0.1	0.2	0.6	3.7	3.4

(1) Shadow costs for very small changes. Not applicable for significant changes.

(2) Like Case 25 except added Lt. Hydrocrackate splitter for added C5 sales.

CLM 11/12/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30269

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 21 GASOLINE POOL WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery LP	Adjusted Refinery LP(1)	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus ARLP	GBLP Minus <u>RLP</u>
COMPONENTS % OF BLEND			•••		()	
Normal Butane		2.0	2.0		(0.0)	
Reformate LF-Low Oct		7.6	7.6		0.0	
Lt Reformate (C5-210)		0.7	0.7		(0.0)	
HC Reformate-Low Oct		5.8	5.8		(0.0)	
HC Reformate-Hi Oct		14.3	14.3		0.0	
FCC Gaso (180-225)		1.7	1.7		(0.0)	
Lt Hydrocrackate		8.1	8.1		0.0	
Med Hydrocrackate		10.0	10.0		(0.0)	
Lt Alkylate		14.3	14.3		(0.0)	
Isomerate C5/C6		8.6	8.6		(0.0)	
Lt Reformate Bz Sat		12.0	12.0		(0.0)	
MTBE/TAME		15.1	15.1		(0.0)	
		100.0	100.0			
GASOLINE PROPERTIES	<u> </u>	a a a				
(R+M)/2 Octane, Clear	88.9	88.9	88.9	0.0	0.0	0.0
Aromatics, V%	20	20	20	0	0	0
Ethers, V%	15.0	15.0	15.0	0.0	0.0	0.0
Oxygen, W%	2.7	2.7	2.7	0.0	0.0	0.0
Olefins, V%	1	1	1	0	0	0
Bromine No.	1	1	1	0	0.0	0
Benzene, V%	0.60	0.60	0.60	0.00	0.00	0.00
Sulfur, WPPM	10	10	10	0	0	0
RVP, PSI	6.5	6.5	6.5	0.0	0.0	0.0
Temp. @ V/L = 20, Deg. F	145	145	145	0	0	0
Distillation: 10V%, Deg.F	149	149	149	0	0	0
50V%, Deg.F	187	187	187	0	0	0
90V%, Deg.F	270	270	270	0	0	0
Driveability Index	1,055	1,055	1,055	0	0	0
Heat Content, MBTU/Gal	110.0	110.0	110.0	0.0	0.0	0.0

(1) Adjusted to physically available components.

en el legite a sallega que la filma na ser a A

(2) Seventh pass.

CLM 11/13/91

where the state of the state of

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30270

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 21 REFORMULATED UNLEADED REGULAR WSPA STUDY OF CARB PHASE 2 GASOLINE

COMPONENTS, % OF BLEND	Refinery <u>LP</u>	Adjusted Refinery <u>LP(1)</u>	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus <u>ARLP</u>	GBLP Minus <u>RLP</u>
Normal Butane		2.0	2.0		(0.0)	
Reformate LF-Low Oct		9.6	13.5		3.9	
Lt Reformate (C5-210)		0.0	0.0		0.0	
HC Reformate-Low Oct		4.2	7.7		3.5	
HC Reformate-Hi Oct		15.1	11.4		(3.7)	
FCC Gaso (180-225)		1.5	2.7		1.2	
Lt Hydrocrackate		11.2	9.4		(1.8)	
Med Hydrocrackate		1 6 .4	9.2		(7.1)	
Lt Alkylate		8.6	5.8		(2.7)	
Isomerate C5/C6		2.7	6.6		3.9	
Lt Reformate Bz Sat		13.7	16.4		2.7	
MTBE/TAME		15.0	15.1		0.1	
		100.0	100.0			
GASOLINE PROPERTIES						
(R+M)/2 Octane, Clear	87.4	87.9	87.5	0.5	(0.4)	0.1
Aromatics, Vol. %	20	21	21	0.5	(0.4)	1
Ethers, Vol. %	15	14.9	15.0	(0.1)	0.1	0.0
Oxygen, Wt. %	2.7	2.7	2.7	(0.0)	0.0	0.0
Olefins, Vol. %	0.5	0	1	(0)	0.0	0.0
Bromine No.	1	1	2	(0)	0.8	1
Benzene, Vol. %	0.8	0.79	0.68	(0.01)	(0.11)	(0.12)
Sulfur, Wt. ppm	10	10	10	0	(0)	(0)
RVP, psi	6.5	6.5	6.5	0.0	(0.0)	(0.0)
Temp. @ V/L = 20, Deg. F	145	145	145	0	(0)	(0)
Distillation: T10, Deg.F	146	145	146	(1)	1	0
T50, Deg.F	189	189	187	(0)	(2)	(2)
T90, Deg.F	270	269	271	(1)	2	1
Driveability Index	1056	1,053	1,051	(3)	(2)	(5)
Heat Content, MBTU/Gal	109.7	109.9	109.9	0.2	(0.0)	0.2

(1) Adjusted to physically available components.

(2) Seventh Pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRx) SUBJECT TO PROTECTIVE ORDER 30271

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 21 REFORMULATED UNLEADED INTERMEDIATE WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery <u>LP</u>	Adjusted Refinery <u>LP(1)</u>	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus <u>ARLP</u>	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND						
Normal Butane		2.0	2.0		0.0	
Reformate LF-Low Oct		6.7	0.7		(5.9)	
Lt Reformate (C5-210)		3.4	0.0		(3.4)	
HC Reformate-Low Oct		17.1	7.6		(9.5)	
HC Reformate-Hi Oct		4.8	15.2		10.4	
FCC Gaso (180-225)		1.8	0.5		(1.3)	
Lt Hydrocrackate		9.6	10.8		1.2	
Med Hydrocrackate		4.3	17.8		13.4	
Lt Alkylate		16.3	15.5		(0.8)	
Isomerate C5/C6		13.6	7.9		(5.7)	
Lt Reformate Bz Sat		4.9	6.9		2.0	
MTBE/TAME		15.4	15.1		(0.3)	
		100.0	100.0			
GASOLINE PROPERTIES		<u> </u>				
(R+M)/2 Octane, Clear	89.3	89.0	89.2	(0.3)	0.2	(0.1)
Aromatics, Vol. %	20	18	20	(2)	2	(0)
Ethers, Vol. %	15	15.3	15.0	0.3	(0.3)	0.0
Oxygen, Wt. %	2.7	2.8	2.7	0.1	(0.1)	0.0
Olefins, Vol. %	0.5	1	0	0	(0)	(0)
Bromine No.	1	1	0	0	(0.7)	(1)
Benzene, Vol. %	0.8	0.80	0.74	0.00	(0.06)	(0.06)
Sulfur, Wt. ppm	10	10	10	0	(0)	(0)
RVP, psi	6.5	6.5	6.5	0.0	(0.0)	(0.0)
Temp. @ V/L = 20, Deg. F	144	145	145	1	(0)	1
Distillation: T10, Deg.F	153	157	152	4	(5)	(1)
T50, Deg.F	192	190	189	(2)	(1)	(3)
T90, Deg.F	269	269	265	0	(4)	(4)
Driveability Index	1,075	1,074	1,060	(1)	(14)	(14)
Heat Content, MBTU/Gal	109.7	109.9	110.0	0.2	0.1	0.3

(1) Adjusted to physically available components.
 (2) Seventh pass.
 CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30272

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 21 REFORMULATED UNLEADED PREMIUM WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery <u>LP</u>	Adjusted Refinery LP(1)	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus <u>ARLP</u>	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND						
Normal Butane		2.0	2.0		0.0	
Reformate LF-Low Oct		3.7	0.0		(3.7)	
Lt Reformate (C5-210)		0.0	2.8		2.8	
HC Reformate-Low Oct		0.0	0.0		0.0	
HC Reformate-Hi Oct		20.2	19.8		(0.4)	
FCC Gaso (180-225)		2.0	0.3		(1.7)	
Lt Hydrocrackate		0.2	3.1		2.9	
Med Hydrocrackate	-	0.6	5.3		4.7	
Lt Alkylate		25.1	31.8		6.7	
Isomerate C5/C6		17.2	13.4		(3.8)	
Lt Reformate Bz Sat		14.0	6.5		(7.6)	
MTBE/TAME		15.0	15.1		0.1	
		100.0	100.0			
GASOLINE PROPERTIES						
(R+M)/2 Octane, Clear	92.0	91.2	91.9	(0.8)	0.7	(0.1)
Aromatics, Vol. %	20	19	18	(1)	(1)	(2)
Ethers, Vol. %	15	14.9	15.0	(0.1)	0.1	0.0
Oxygen, Wt. %	2.7	2.7	2.7	(0.0)	0.0	0.0
Olefins, Vol. %	1	1	0	(0)	(0)	(1)
Bromine No.	1	1	0	(0)	(1.0)	(1)
Benzene, Vol. %	0.2	0.19	0.48	(0.01)	0.29	0.28
Sulfur, Wt. ppm	10	10	10	0	0	0
RVP, psi	6.5	6.5	6.5	(0.0)	0.0	(0.0)
Temp. @ V/L = 20, Deg. F	143	143	144	Ó	1	1
Distillation: T10, Deg.F	154	155	158	1	3	4
T50, Deg.F	181	184	188	3	4	7
T90, Deg.F	269	271	269	2	(2)	0
Driveability Index	1,043	1,054	1,070	11	16	27
Heat Content, MBTU/Gal	110.3	110.2	110.2	(0.1)	0.1	(0.1)
				. ,		()

(1) Adjusted to physically available components.(2) Seventh pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30273

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENT USAGE - MBPCD THEORETICAL TO PHYSICAL COMBINATIONS - CASE 21 WSPA STUDY OF CARB PHASE 2 GASOLINE

	TOTAL	RUR	<u>RUI</u>	RUP
NORMAL BUTANE	1,235	676	251	309
REFORMATE LF (80 RON)	4,546	3,136	838	571
REFORMATE LF (90 RON)	121	121		
LT REFORMATE(C5-210)	429		429	
HC REFORMATE(210-300)9	1,420	1,420		NGC NA SALAN ANA SALANA SA Na salaha sala
HC REFORMATE(210-300)B	2,148		2,148	ar a 1997. Sealachta an Stairteachta
HC REFORMATE(210-300)0	4,441	3,840	600	
HC RFMTE LT(210-300)0	4,377	1,263		3,114
FCC (180-225) LO ON/LS	483	236	105	142
FCC (180-225) HI ON/LS	555	271	121	163
LIGHT HYDROCRACKATE	5,018	3,781	1,202	34
MED HYDROCRK CRFD	4,096	3,555	541	
MED HYDROCRK VRFD	2,062	1,975		87
LT ALKY (PROPYLENE)	3,290	2,895		395
LT ALKY (BUTYLENE)	3,502		19	3,483
LT ALKY (AMYLENE)	2,027	n en en en en engele en engele en eg	2,027	un in contracture deservations
ISOMERATE PEN/HEX	8	3		5
ISOMERATE-C6	4,920	922	1,711	2,287
TIPATE-C6	370			370
LT REFORMATE B(C5-210)	7,391	4,617	611	2,163
MTBE	8,849	5,071	1,461	2,318
TAME	473		<u> </u>	
	61,761	33,782	12,537	15,441

CLM 11/13/91

> ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (IRX) SUBJECT TO PROTECTIVE ORDER 30274

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 8 GASOLINE POOL WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery	Adjusted Refinery LP(1)	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus <u>ARLP</u>	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND						
Normal Butane		2.0 1.4	2.0 1.4		0.0 -0.0	
Desulfurized C5s Natural Gasoline		0.4	0.4		-0.0	
LSR Gasoline		2.4	2.4		-0.0	
Reformate-Low Oct		7.9	7.9		-0.0	
HC Reformate-Low Oct		3.9	3.9		-0.0	
HC Reformate-Hi Oct		10.8	10.8		-0.0	
Hvy Reformate		4.7	4.7		-0.0	
FCC Gaso (100-180)		6.3	6.3		-0.0	
FCC Gaso (180-225)		3.8	3.8		-0.0	
FCC Gaso (225-300)		0.2	0.2		-0.0	
FCC Gaso (225-375) Desul		23	23		-0.0	
Lt Hydrocrackate		7.7	7.7		-0.0	
Med Hydrocrackate		7.2	7.2		-0.0	
Alikylate		15.1	15.1		-0.0	
isomerate C5/C6		3.1	3.1		-0.0	
Lt Reformate Bz Sat		9.3	9.3		-0.0	
MTBE/TAME		11.7	11.7		-0.0	
		100.0	100.0			
GASOLINE PROPERTIES			_	_		
(R+M)/2 Octane, Clear	88.9	88.9	88.9	0	0	0
Aromatics, Vol. %	22	22	22	0	(0)	0
Ethers, Vol. %	11.7	11.7	11.7	(0)	(0)	(0)
Oxygen, WL %	21	21	2.1	0	(0)	0
Olefins, Vol. %	4 7	4 7	4 7	(0)	(0)	(0)
Bromine No.		7 0.8		(0)	(0)	(0)
Benzene, Vol. %	0.8 _20	20	0.8 20	0	(0.0)	0
Sulfur, Wt. ppm RVP, psi	6.7	6.7	6.7	(0)	(0) 0	0 0
Temp. @ V/L = 20, Deg. F	144	144	144	(0)	(0)	0
Distillation: T10, Deg.F	139	139	139	(0)	(0)	(0)
T50, Deg.F	192	192	192	(0)	(0) (0)	(0)
T90, Deg.F	292	292	292	(0)	(0) (0)	(0)
Driveability Index	1076	1,076	1,076	(0)	(0)	(0)
Heat Content, MBTU/Gal	110.9	110.9	110.9	0	(0)	0

(1) Adjusted to physically available components.

(2) First pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30275

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 8 REFORMULATED UNLEADED REGULAR WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery	Adjusted Refinery LP(1)	Gaso. Blending LP(2)	ARLP Minus <u>RLP</u>	GBLP Minus ARLP	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND		2.0	21		0.1	
Normal Butane Desulfurized C5s		0.6	23		0.1 1.7	
Natural Gasoline		0.0	0.7		(0.0)	
LSR Gasoline		0.0	2.1		(0.0)	
Reformate-Low Oct		14.4	8.1		(6.3)	
HC Reformate-Low Oct		4.6	7.1		2.5	
HC Reformate-Hi Oct		5.5	5.2		(0.4)	
Hvy Reformate		6.0	6.6		0.7	
FCC Gaso (100-180)		3.3	5.0		1.7	
FCC Gaso (180-225)		6.9	4.3		(2.6)	
FCC Gaso (225-300)		0.2	0.0		(0.2)	
FCC Gaso (225-375) Desul		2.9	4.1		1.2	
Lt Hydrocrackate		10.6	2.2		(8.4)	
Med Hydrocrackate		7.2	9.2		2.0	
Alkylate		7.4	7.2		(0.3)	
Isomerate C5/C6		4.0	5.6		1.6	
Lt Reformate Bz Sat		12.0	16.5		4.5	
MTBE/TAME		11.7	11.7		(0.0)	
		100.0	100.0			
GASOLINE PROPERTIES						
(R+M)/2 Octane, Clear	87.4	87.6	87.3	0.2	(0.2)	(0.1)
Aromatics, Vol. %	22	22	22	0.2	(0.2)	(0.1)
Ethers, Vol. %	11.7	11.6	11.6	(0.1)	(0.0)	(0.1)
Oxygen, Wt. %	2.1	2.1	2.1	(0.0)	(0.0)	(0.0)
Olefins, Vol. %	3	3	3	(0)	(0)	(0.0)
Bromine No.	7	7	6	(0)	(0)	(0)
Benzene, Vol. %	0.80	0.90	0.79	0.10	(0.11)	(0.01)
Sulfur, Wt. ppm	20	20	17	0	(3)	(3)
RVP, psi	6.7	6.6	6.7	(0.1)	0.1	0.0
Temp. @ V/L = 20, Deg. F	145	146	144	1	(1)	(1)
Distillation: T10, Deg.F	139	139	134	(0)	(5)	(5)
T50, Deg.F	192	193	189	1	(4)	(3)
T90, Deg.F	292	293	294	1	1	2
Driveability Index	1,077	1,080	1,062	3	(18)	(15)
Heat Content, MBTU/Gal	110.6	110.8	110.7	0.2	(0.1)	0.1

(1) Adjusted to physically available components.

(2) First pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30276

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 8 REFORMULATED UNLEADED INTERMEDIATE WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery	Adjusted Refinery LP(1)	Gaso. Blending LP(2)	ARLP Minus RLP	GBLP Minus ARLP	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND		لمنفقت				
Normal Butane		2.0	1.8		(0.2)	
Desulfurized C5s		5.2	0.5		(4.7)	
Natural Gasoline		0.0	0.0		0.0	
LSR Gasoline		6.5	6.2		(0.3)	
Reformate-Low Oct		0.0	16.9		16.9	
HC Reformate-Low Oct		6.7	0.0		(6.7)	
HC Reformate-Hi Oct		12.5	16.8		4.4	
Hvy Reformate		2.9	0.0		(2.9)	
FCC Gaso (100-180)		9.0	4.6		(4.4)	
FCC Gaso (180-225)		0.0	6.7		6.7	
FCC Gaso (225-300)		0.6	1.1		0.5	
FCC Gaso (225-375) Desul		2.7	0.0		(2.7)	
Lt Hydrocrackate		0.0	13.1		13.1	
Med Hydrocrackate		8.3	0.0		(8.3)	
Alkylate		19.2	18.9		(0.3)	
isomerate C5/C6		1.5	0.0		(1.5)	
Lt Reformate Bz Sat		11.0	1.5		(9.5)	
MTBE/TAME		11.9	11.9		0.0	
		100.0	100.0			
GASOLINE PROPERTIES						
(R+M)/2 Octane, Clear	89.3	89.2	89.6	(0.1)	0.3	0.3
Aromatics, Vol. %	22	20	23	(2)	3	1
Ethers, Vol. %	11.7	11.8	11.8	0.1	0.0	0.1
Oxygen, Wt. %	2.1	21	21	0.0	0.0	0.0
Olefins, Vol. %	4	4	4	(0)	0	0
Bromine No.	7	7	8	(0)	1	1
Benzene, Vol. %	0.80	0.66	0.85	(0.14)	0.19	0.05
Sulfur, Wt. ppm	20	20	25	(0)	5	5
RVP, psi	6.7	7.0	6.8	0.3	(0.2)	0.1
Temp. @ V/L = 20, Deg. F	143	141	144	(2)	3	1
Distillation: T10, Deg.F	131	131	142	0	10	11
T50, Deg.F	192	187	200	(5)	13	8
T90, Deg.F	292	286	284	(6)	(2)	(8)
Driveability Index	1,063	1,043	1,095	(20)	52	32
Heat Content, MBTU/Gal	111.3	1 10.6	111.3	(0.7)	, 0.7	(0.0)

(1) Adjusted to physically available components.

(2) First pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30277

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENTS COMBINED CASE 8 REFORMULATED UNLEADED PREMIUM WSPA STUDY OF CARB PHASE 2 GASOLINE

	Refinery <u>LP</u>	Adjusted Refinery LP(1)	Gaso. Blending <u>LP(2)</u>	ARLP Minus <u>RLP</u>	GBLP Minus <u>ARLP</u>	GBLP Minus <u>RLP</u>
COMPONENTS, % OF BLEND						
Normal Butane		2.0	1.9		(0.1)	
Desulfurized C5s Natural Gesoline		0.0 0.0	0.0 0.0		0.0 0.0	
LSR Gasoline		4.2	0.0		(4.2)	
Reformate-Low Oct		4.2 0.0	0.0		(4.2) 0.0	
HC Reformate-Low Oct		0.0	0.0		0.0	
HC Reformate-Hi Oct		21.0	18.2		(2.8)	
Hvy Reformate		3.1	4.1		0.9	
FCC Gaso (100-180)		10.4	10.3		(0.1)	
FCC Gaso (180-225)		0.0	0.2		0.2	
FCC Gaso (225-300)		0.0	0.0		(0.0)	
FCC Gaso (225-375) Desul		0.4	0.0		(0.4)	
Lt Hydrocrackate		7.8	15.5		7.7	
Med Hydrocrackate		6.4	8.8		24	
Alkylate		28.4	29.2		0.8	
Isomerate C5/C6		22	0.0		(2.2)	
Lt Reformate Bz Sat		2.2	0.0		(2.2)	
MTBE/TAME		11.8	11.8		0.0	
		100.0	100.0			
GASOLINE PROPERTIES						
(R+M)/2 Octane, Clear	92.0	91.7	91.9	(0.3)	0.3	(0.1)
Aromatics, Vol. %	22	22	21	0	(1)	(1)
Ethers, Vol. %	11.7	11.7	11.7	0.0	0.0	0.0
Oxygen, Wt. %	2.1	21	2.1	0.0	0.0	0.0
Olefins, Vol. %	4	4	4	(0)	0	(0)
Bromine No.	8	8	8	(0)	0	(0)
Benzene, Vol. %	0.8	0.70	0.79	(0.10)	0.09	(0.01)
Sulfur, Wt. ppm	. 20	20	22	(0)	2	2
RVP, psi	6.7	6.6	6.6	(0.1)	(0.0)	(0.1)
Temp. @ V/L = 20, Deg. F	144	145	145	1	1	1
Distillation: T10, Deg.F	142	144	146	2	2	4
T50, Deg.F	193	194	194	1	(1)	1
T90, Deg.F Driveability Index	292 1084	292	295	0	3	3
Heat Content, MBTU/Gal	111.5	1,092 111.5	1, 095 111.3	8 0.0	3	11
	111.5	111.5	111.3	0.0	(0.2)	(0.2)

Adjusted to physically available components.
 First pass.

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30278

GASOLINE BLENDS USING REFINERY PRODUCIBLE COMPONENTS REFINERY LP COMPONENT USAGE THEORETICAL TO PHYSICAL COMBINATIONS - CASE 8 WSPA STUDY OF CARB PHASE 2 GASOLINE

	TOTAL	RUR	<u>RUI</u>	RUP
NORMAL BUTANE	1,227	671	249	307
HT NAT GASO VLS	235	235		
HT LSR(C5-150)ION/VLS	807		807	
HT LSR(C5-150)HON/VLS	649		verent støre so ger er en store	649
REFORMATE LF (80 RON)	3,517	3,517		
REFORMATE LF (90 RON)	1,327	1,327		
HC REFORMATE(210-300)9	865	865		
HC REFORMATE(210-300)B	1,517	682	835	s e d
HC REFORMATE(210-300)0	3,457		241	3,216
HC RFMTE LT(210-300)0	3,163	1,853	1,310	an a
HVY RFMTE(300+)100	2,336	2,010		326
HVY RFMTE LT(300+)100	521	Nijari Manazero (m. 1971). Mara	365	156
NORMAL PENTANE LS	121	121		
ISO PENTANE LS	644		644	
HT NORMAL PENTANE VLS	15	15		
HT ISO PENTANE VLS	53	53		
FCC (100-180) LO ON/LS	1,796	517	534	745
FCC (100-180) HI ON/LS	2,043	595	591	857
FCC (180-225) LO ON/LS	1,078	1,078		
FCC (180-225) HI ON/LS	1,226	1,226		i ann an tair
FCC (225-300) HI ON/LS	140	57	77	6
FCC GS ST(225-300)LOLS	619	485	129	5
FCC GS ST(225-300)HOLS	573	501	72	
FCC GS ST(300-375)LOLS	93		64	29
FCC GS ST(300-375)HOLS	107		74	33
LIGHT HYDROCRACKATE	4,750	3,554	over No end internet	1,196
MED HYDROCRK CRFD	2,190	167	1,036	987
MED HYDROCRK VRFD	2,247	2,247		
PROPYLENE ALKYLATE	3,415	2,499	216	700
BUTYLENE ALKYLATE	3,655			3,655
ALKYLATE (AMYLENE)	2,180	ngan watawa sa sa sa	2,180	11.4
ISOMERATE PEN/HEX	1,342	1,342		
TIPATE	371	15	19	337
ISOMERATE-C6	165		165	
LT REFORMATE B(C5-210)	5,710	4,016	1,364	330
MTBE	6,789	3,917	1,212	1,660
TAME	418		271	147
	61,361	33,565	12,455	15,341

CLM 11/13/91

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30279

TABLE Y-1

REDUCE C8/C9 AROMATICS IN GASOLINE 1996 CASE RESULTS COMPARISONS WSPA STUDY OF CARB PHASE 2 GASOLINE

	CARB 1	CAR			
		Case 23			
		10/4 AVG	Case 25	Case 21	Rough
	Case 0	No Comply	10/4	8/5	Estimate
Gasoline Properties*	Base	Margins	Flat Limits	Flat Limits	GM Target
Aromatics, %	34	25	20	20	12
Benzene	2.2	0.95	0.6	0.6	0.8
Toluene	8	7	7	7	10
C8 Aromatics (DI)	10	10	11	11	1
C9 + Aromatics (TRI)	14	7	2	1	0
Ether, %	2	10	11	15	24
Low Arom., Saturated, % (1)	25	54	64	71	88
Distillation					
@ 257 °F, %	67	76	80	86	96
@ 300 °F, %	87	90	96	100	100
T10, °F	125	132	144	149	155
, T50, °F	212	196	193	187	180
T90, °F	348	300	280	270	240
Driveability index	1,171	1,086	1,075	1,055	1,010
Sales, % of Gasoline Pool					
Pentanes	0	0	4	8	16
C8 Aromatics	0	0	0	0	4
Cost Over Base Case					
Investment (\$MMM) Unit Gasoline Pool (¢/G)	0	3-6 11-16	6-10 20-28	8–12 26–36	~16-22 (2) ~45-60 (2)
					~

(1) Components in gasoline pool.

(2) Conservative ballpark guesstimate.

REC/JWH 11/18/91

.

ARCO et al. v. UNOCAL et al. U.S. District Court (C.D. Ca.) C.A. No. 95-2379 KMW (JRx) SUBJECT TO PROTECTIVE ORDER 30280

TURNER, MASON & COMPANY

Consulting Engineers