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Overview: Applications

Results apply/extend a variety of models/results in IO, behavioral
economics, and game theory

Cover all standard contests and auctions, war of attrition, & all-pay
auction
More exotic auctions and contests
Innovation contests with spillovers
Pricing games
Price matching policies
Behavioral economics (inequality aversion, loss aversion, regret,
reference pricing)
Evolutionary equilibria (ESS)
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Model and Notation

Players: i 2 f1, 2g
Actions (bids, prices, e¤ort, etc.): xi 2 A = [0,∞)
Payo¤s (coin-�ip tie-breaking rule suppressed):

ui (xi , xj ) =
�
v � βxi � δxj if xi > xj
�γ� αxi � θxj if xi < xj

v � 0
V � v + γ > 0

Γ: An arbitrary game with this structure.
η � α+ θ � β� δ

x�: Symmetric pure-strategy (Nash) equilibrium

F � (x): Symmetric (non-degenerate) mixed-strategy equilibrium
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Spillover E¤ects

Recall payo¤s:

ui (xi , xj ) =
�
v � βxi � δxj if xi > xj
�γ� αxi � θxj if xi < xj

First-order
�
positive
negative

�
spillovers as δ

�
<
>

�
0

Second-order
�
positive
negative

�
spillovers as θ

�
<
>

�
0

Simplest example: Second price auction (γ = β = α = θ = 0; δ = 1),
where

ui (xi , xj ) =
�
v � xj if xi > xj
0 if xi < xj

Second-price auction has �rst-order negative spillovers (δ = 1 > 0 )
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Proposition 1: Characterization of Symmetric
Pure-Strategy Equilibria

Γ has a symmetric pure-strategy Nash equilibrium if and only if the
following three conditions jointly hold:

(i) β � 0
(ii) α � 0, and
(ii) η < 0.

Furthermore, there is but one such equilibrium and it is given by

x� = �V
η
� v + γ

β+ δ� α� θ
.
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Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria

Γ has a nondegenerate symmetric mixed-strategy equilibrium if and only if
one of the following three sets of conditions holds:

(i) β > 0 and α > 0; or

(ii) β = 0, α > 0 and either ηθ = 0 or η < α; or

(iii) β = 0, α < 0 and either α < η < 0 or η < θ = 0.

In cases (i) and (ii) the equilibrium is unique within the class of
symmetric equilibria (pure or mixed).

In case (iii) there exists a continuum of nondegenerate symmetric
mixed-strategy equilibria, as well as a unique symmetric pure-strategy
equilibrium (given in Proposition 1).
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Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria (Continued)

The nondegenerate symmetric mixed strategy equilibria are atomless and
described by the distribution function F � (w) on [m�, u�), where

F � (w) =

8>>>>>>><>>>>>>>:

α
α�β

 
1�

�
V+ηm�

V+ηw

� α�β
η

!
if η 6= 0; α� β 6= 0

α
θ�δ ln

�
V+(θ�δ)w

V

�
if η 6= 0; α� β = 0

α
α�β

�
1� exp

�
� α�β

V w
��

if η = 0; α� β 6= 0
α
V w if η = 0; α� β = 0

,
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Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria (Continued)

[m�, u�) is the interval de�ned by the lower bound

m� =

(
0 if α > 0

m0 2
�
�V

η ,∞
�

if α < 0
,

and upper bound

u� =

8>>>>>>>><>>>>>>>>:

�V
η if α > 0; β = 0; η < 0

V
η

�
(α/β)

η
α�β � 1

�
if α > 0; β > 0; α 6= β; η 6= 0

V
η (exp (η/α)� 1) if α = β > 0; η 6= 0
V

α�β ln
α
β if α > 0; β > 0; α 6= β; η = 0

V/α if α > 0; β > 0; α = β; η = 0
∞ if otherwise
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Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria (Finale)

Finally, the corresponding equilibrium payo¤s are given by

EU� =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

θv+δγ
θ�δ +

θβV
η(θ�δ)

�
1�

�
α
β

� η
α�β

�
if η 6= 0; α 6= β; θ 6= δ; β 6= 0

�γ+ θV
η �

θV
η

α
η ln

α
β if η 6= 0; α 6= β; θ = δ; β 6= 0

θv+δγ
θ�δ +

αδ
θ�δm

� if η 6= 0; α 6= β; θ 6= 0; β = 0
�γ� αm� if η 6= 0; α 6= β; θ = 0; β = 0
θv+δγ

θ�δ +
θβV
(θ�δ)2

�
1� exp

�
θ�δ

β

��
if η 6= 0; α� β = 0

θv+δγ
θ�δ +

θβV
(θ�δ)2

ln
�

α
β

�
if η = 0; α� β 6= 0; β 6= 0

θv+δγ
θ�δ if η = 0; α� β 6= 0; β = 0
�γ� θ

2αV if η = 0; α� β = 0

.
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Proposition 3: Summary Characterization

The symmetric equilibria to Γ are characterized as follows:

(a) The unique symmetric equilibrium is in pure strategies if and only if
one of the following three conditions holds (i) β > 0, α � 0, and
η < 0; (ii) β = 0, α = 0, and η < 0; or (iii) β = 0, η � α < 0, and
θ 6= 0;

(b) The unique symmetric equilibrium is in nondegenerate mixed
strategies if and only one of the following two conditions holds: (i)
β > 0 and α > 0; or (ii) β = 0, α > 0 and either ηθ = 0 or η < α;

(c) There is a unique symmetric pure-strategy equilibrium and a
continuum of nondegenerate symmetric mixed-strategy equilibria if
and only if β = 0, α < 0 and either α < η < 0 or η < θ = 0;

(d) If none of the conditions in (a) through (c) hold, Γ does not have a
symmetric equilibrium (either pure or mixed).
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Example: Partnership Dissolution (The Self-Auction)

Two partners wish to dissolve a partnership each values at v > 0.

Submit bids simultaneously; high bidder pays other partner her bid to
gain ownership:

ui (xi , xj ) =
�
v � xi if xi > xj
xj if xι < xj

Γ is covered by Proposition 1, since β = �θ = 1, γ = α = δ = 0,
and η = �2.
Proposition 1 implies that the unique symmetric pure-strategy
equilibrium is

x� = � v + γ

β+ δ� α� θ
=
v
2
.

Proposition 2 implies absence of any non-degenerate symmetric
mixed-strategy equilibria.
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Example: An Innovation Contest with Spillovers

Extend Dasgupta�s (1986) all-pay auction innovation contest model
Each �rm�s expenditure on R&D has bene�cial spillover on rival

ui
�
xi , xj

�
=

�
v � xi � δxj if xi > xj
�xi � θxj if xι < xj

.

Greater bene�t to winner than loser ( δ < θ < 0)

This is a Γ with δ < θ < 0, V = v > 0 = γ, and α = β = 1.
Since α� β = 0 and η > 0, Propositions 2 and 3 imply that the
unique symmetric equilibrium is

F � (x) =
1

θ � δ
ln
�
1+

θ � δ

v
x
�
on
�
0,

v
θ � δ

�
exp

�
θ � δ

α

�
� 1
��
.

Essentially an all-pay auction with asymmetric �rst-and second-order
positive spillovers
When δ = θ, can use Proposition 2 to show strategies identical to
those in a standard all-pay auction: F � (x) = x/v .
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Example: Varian/Rosenthal Sales Models

L > 0 :�loyal" consumers, unit demand, choke price r > 0
S > 0 : �shoppers�purchase from �rm charging lowest price
Price setting �rms, zero cost, and payo¤s

πi (pi , pj ) =
�
(S + L) pi if pi < pj
Lpi if pi > pj

Letting xi � r � pi � 0, we can rewrite payo¤s as

ui (xi , xj ) =
�
(S + L) r � (S + L) xi if xi > xj

rL� Lxi if xi < xj

Here, Γ has v = (S + L) r , γ = �rL, etc., so Proposition 2 implies

F � (x) =
L
S

�
r

r � x � 1
�
on
�
0,

rS
S + L

�
.

Use fact that G � (p) = Pr (P � p) = 1� F � (r � p):

G � (p) = 1� L
S

�
r � p
p

�
on
�
r
L

S + L
, r
�
.
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Example: Inequality Aversion in a Job Tournament

Two workers compete in a winner-take-all fashion for a promotion
worth µ > 0, but get disutility from e¤ort inequality:

ui (xi , xj ) =
�

µ� xi � b (xi � xj ) if xi > xj
�xi � a (xj � xi ) if xi < xj

0 < b (winner gets disutility from "slaughtering" the loser) and
0 < a < 1 (loser gets disutility from being "slaughtered."

Rewrite as

ui (x1, x2) =
�

µ� (1+ b) xi + bxj if xi > xj
� (1� a) xi � axj if xi < xj

.

This is a Γ with V = v = µ > 0, γ = 0, α = 1� a > 0,
δ = �b < 0, etc.
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Example: Inequality Aversion in a Job Tournament
(Continued)

Propositions 1, 2 and 3 imply that the unique symmetric equilibrium
is in mixed strategies and given by

F � (x) =
1� a
a+ b

�
exp

�
a+ b

µ
x
�
� 1
�

on
�
0, µ
a+b ln

1+b
1�a
�
.

When the winner enjoys "slaughtering" the loser, such that a 2 (0, 1)
and b 2 (�1, 0):

If b 6= �a, solution identical to that above.
If b = �a, the equilibrium distribution of e¤ort takes on the all-pay
auction form

F � (x) =
1� a

µ
on
�
0,

µ

1� a

�
.

Expected payo¤s are not zero (as in the standard all-pay auction), but

EU� = � a
2 (1� a)µ
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Example: Loss Aversion in a Job Tournament

Two workers compete in a winner-take-all fashion for a bonus valued
at µ > 0. Worker i�s income is thus

yi =
�

µ� xi if xi > xj
�xi if xι < xj

Worker utility (over income) is ui = yi if player i wins, and λyi if
player i loses, where λ > 1. Hence, utility (as a function of e¤ort) is

ui (xi , xj ) =
�

µ� xi if xi > xj
�λxi if xι < xj

This is a Γ with v = µ > 0, γ = 0, α = λ > 0, β = 1 > 0, θ =
δ = 0, and η = α� β = λ� 1 > 0.
Propositions 2 and 3 reveal that the unique nondegenerate symmetric
mixed-strategy equilibrium is

F � (x) =
λx

µ+ (λ� 1)x on [0, µ] .
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Example: Winner Regret in Auctions

First price auction with regret (Engelbrecht-Wiggans (1989),
Engelbrecht-Wiggans and Katok (2007), and Filiz-Ozbay and Ozbay
(2007)):

ui (x1, x2) =
�
v � xi � µ (xi � xj ) if xi > xj

0 if xi < xj
.

xi is player i�s bid, v > 0 the value of the item, and µ > 0 a "regret"
parameter
Winner regret refers to the fact that the high bidder derives disutility
from leaving money on the table (the di¤erence between the winning
and losing bid). The payo¤s may be rewritten as

ui (x1, x2) =
�
v � (µ+ 1) xi + µxj if xi > xj

0 if xi < xj

V = v , α = θ = 0, β = (1+ µ) > 0, δ = �µ, and η = �1.
Propositions 1 and 3 imply the unique symmetric equilibrium is
x� = v .
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Example: Auctions with Winner and Loser Regret

Can show both �rst and second order spillover e¤ects arise in this case

ui (x1, x2) =
�
v � xi (µ+ 1) + µxj if xi > xj

�ρ (v � xj ) if xi < xj
.

This is a Γ with V = (1+ ρ) v , α = (1+ ρ) > 0, β = (1+ µ) > 0,
θ = �ρ, δ = �µ, and η = 0.

When ρ 6= µ, Propositions 2 and 3 imply the unique symmetric
equilibrium is

F �(x) =
�
1+ ρ

ρ� µ

��
1� exp

�
�ρ� µ

1+ ρ

x
v

��
on
h
0, 1�δ

δ�µ ln
�
1+ρ
1+µ

�i
When ρ = µ, Proposition 2 yields the standard all-pay auction form:
F � (x) = x/v , but EU� = �ρv/2.
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Example: Evolutionary Stationary Strategies (ESS) in the
All-Pay Auction

One can also use Proposition 2 to �nd the unique symmetric ESS
equilibrium in the standard two-player all-pay auction
Finite agent ESS equilibrium of Scha¤er (1988) requires each player
maximize di¤erence in payo¤s:

ui (x1, x2) =
�
v � xi � (�xj ) if xi > xj
�xi � (v � xj ) if xi < xj

This is a Γ with payo¤s

ui (x1, x2) =
�

v � xi + xj if xi > xj
�v � xi + xj if xi < xj

.

and V = 2v > 0, β = α = �θ = �δ = 1, α� β = 0 and η = 0.
Proposition 2 implies the unique symmetric ESS equilibrium to the
original game is F �(x) = x

2v on [0, 2v ] .
Entails overdissipation of rents, as Hehenkamp, Leininger, and
Possajennikov�s (2004) showed for a Tullock contest.
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Concluding Remarks

Characterized symmetric equilibria for wide class of complete
information contests with rank-order spillovers

Simple closed form expressions for equilibrium strategies and payo¤s

May be used to establish uniqueness of symmetric equilibria in existing
models, as well as closed-form expressions for equilibrium behavior

Useful for examining implications of behavioral economics on contests
and auctions

Evolution in contests

Caveats

Complete information; but Baye, Kovenock, and de Vries (2005)
consider the (simpler) incomplete information case, as do Lizzeri and
Perisco (2000)
Two players (genuine)
Symmetric equilibria (genuine)
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