
An Introductory Look at the Chained Consumer Price Index

U.S. Department of Labor • Bureau of Labor Statistics • Washington, DC 20212

ESTIMATION METHODOLGY

1. Price Index Formula Notation

2. The Cost-of-Living Index Concept

$$\prod_{i} IX_{[0,t]}^{C} = \frac{\min \sum_{i} P_{t} \times_{i} Q_{t} \Big|_{U=U_{0}}}{\sum_{i} P_{0} \times_{i} Q_{0}}$$

• The minimum expenditure (P_t•Q_t) required in comparison period (t) to attain the same level of satisfaction or utility (U₀) achieved in base period (0), divided by the actual expenditure (P₀•Q₀) in base period (0).

3. Price Index Formulas Commonly Used to Approximate a Cost-of-Living Index

FIRST ORDER APPROXIMATIONS:

LASPEYRES:	$IX_{[0,t]}^{L} = \sum_{i} {}_{i} s_{0} \left(\frac{{}_{i} P_{t}}{{}_{i} P_{0}} \right)$
PAASCHE:	$IX_{[0:t]}^{P} = \left[\sum_{i} s_{t} \left(\frac{i}{p_{0}} p_{0}\right)\right]^{-1}$
GEOMETRIC MEAN:	$IX_{[0,t]}^{G} = \prod_{i} \left(\frac{i p_{t}}{i p_{0}} \right)^{S_{0}}$

SECOND ORDER APPROXIMATIONS:

TORNQVIST:	$IX_{[0:t]}^{T} = \prod_{i} \left(\frac{i P_{i}}{i P_{0.}} \right)^{\left(\frac{i S_{0}^{+} i S_{r}}{2}\right)}$
FISHER IDEAL:	$IX_{[0;t]}^{F} = \left(IX_{[0:t]}^{L} \times IX_{[0:t]}^{P}\right)^{1/2}$

KEY:

$_{i}p_{t}$	=	Price of item (i) in comparison period (t)
$_{i}p_{0}$	=	Price of item (i) in base period (0)
$_{i}S_{t}$	=	Expenditure on item (i) in comparison period (t), divided by expenditures on all items in comparison period (t)
$_{i}S_{0}$	=	Expenditure on item (i) in base period (0), divided by expenditures on all items in base period (0)

4. Estimation of Price Change in the Chained Consumer Price Index (C-CPI-U)

LOWER-LEVEL AGGREGATION:

$${}_{i,a}IX_{[0;t]}^{L} = \sum_{k \in i,a} {}_{k} S_{0} \left(\frac{{}_{k} p_{t}}{{}_{k} p_{0}} \right) \quad \text{or} \quad IX_{[0;t]}^{G} = \prod_{k \in i,a} \left(\frac{{}_{k} p_{t}}{{}_{k} p_{0}} \right)^{k} S_{0}$$

UPPER-LEVEL AGGREGATION:

Long-term Price Change

Month-to-Month Price Change

Initial C-CPI-U	$ _{I,A}IX_{[z;y,t]}^{Gi} = _{I,A}IX_{[z;y-1,12]}^{Gr} \times \prod_{n=1}^{t} _{I,A}IX_{[n-1;n]}^{Gi}$	$ I_{I,A}IX_{[t-1;t]}^{Gi} = I_y \prod_{i,a \in I,A} \left(\frac{{}_{i,a}IX_{[0;t]}^{LorG}}{{}_{i,a}IX_{[0;t-1]}^{LorG}} \right)^{i,a} {}^{S_{b_1}} $
Interim C-CPI-U	$ _{I,A}IX_{[z;y,t]}^{G_r} = _{I,A}IX_{[z;y-1,12]}^T \times \prod_{n=1}^t _{I,A}IX_{[n-1;n]}^{G_r}$	$ _{I,A} IX_{[t-1;t]}^{Gr} = \mathbf{I}_{y} \prod_{i,a \in I,A} \left(\frac{\prod_{i,a} IX_{[0;t]}^{LorG}}{\prod_{i,a} IX_{[0;t-1]}^{LorG}} \right)^{i,a} \mathbf{S}_{b_{2}} $
	$I_{I,A}IX_{[z;y,t]}^T = I_{I,A}IX_{[z;t-1]}^T \times_{I,A}IX_{[t-1;t]}^T$	$I_{I,A}IX_{[t-1;t]}^{T} = \prod_{i,a \in I,A} \left(\frac{i_{,a}IX_{[0;t]}^{L_{o}G}}{i_{,a}IX_{[0;t-1]}^{L_{o}G}} \right)^{\frac{i_{,a}S_{t-1} + i_{,a}S_{t}}{2}}$

KEY:

K	=	unique good or service
Α	=	CPI aggregate area
a	=	CPI elementary area
I	=	CPI aggregate item
i	=	CPI elementary item
0	=	elementary index base period
t	=	month
У	=	year
$_k p_t$	=	price of good (k) in month (t)
$_kp_0$	=	price of good (k) in base-period (0)
kS0	=	expenditure for good (k) in base period (0), divided by
		expenditure for all (k) goods in elementary item (i), area
		() ! ! ! ! (0)

(a) in base period (0)

z = December 1999 index base period

b_i = expenditure reference period of CPI-U index of year (y);

NOTE: b_i = 1999-2000 for y=2002 and y=2003.

 $\begin{array}{ll} b_r &= \text{ expenditure reference period of CPI-U index of year} \\ &\quad (y+1). \ NOTE: \ b_i = b_i \ \text{for } y{=}2002 \ \text{and } b_i {=} 2001{\text -}2002 \ \text{for} \\ &\quad y{=}2003. \end{array}$

 IX^{L} = Laspeyres elementary index IX^{G} = Geometric Mean elementary index

 IX^{Gi} = Initial C-CPI-U index IX^{Gr} = Interim C-CPI-U index IX^{T} = Final C-CPI-U index

i.aSbi = expenditure for elementary item (i) in area (a) in expenditure period (b_i), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in expenditure period (b_i)

 $_{i,a}S_{br} = \text{expenditure for elementary item (i) in area (a) in expenditure period (b_r), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in expenditure period (b_r)$

 $_{i,a}S_t$ = expenditure for elementary item (i) in area (a) in month (t), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in month (t)

 $_{i,a}S_{\ell\ell}=$ expenditure for elementary item (i) in area (a) in month (t-1), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in month (t-1)

 λ_y = Adjustment factor used in year (y) to calculate Initial (y) and Interim (y-1) C-CPI-U indexes published in year (y); NOTE: λ_y =1 for C-CPI-U indexes published in 2002.