EXAMPLE 4. Identify the constraining component under VFR conditions of the example airport. Use previously calculated data.

SOLUTION: The work sheet below illustrates one method of recording data.

1. Capacity and Demand. The airport components, hourly capacities and demands obtained from examples 1, 2, and 3 are entered in columns 2 and 3 of the work sheet.

2 Demand Ratio. Divide each component demand by the runway demand and enter in column 4.
3. ComponentQuotients. Divide each components hourly capacity by its demand ratio and enter in column 5.
4. Gonstraining Component. Identify the lowest component quotient in column 5 (i.e. 54).

Component	Hourly Capacity	Hourly Componet Demand Component Capacity		
		Demiand	Runway Demand	Demand Ratio
1	2	3	4	5
Runway	89	50	50/50 = 1.00	$89 / 4.00=89$
Twy Xing A	107	20	$20 / 50=.40$	107/.40 $=257$
Twy_Xing_B	125	24	$24 / 50=.48$	125\%.48 $=260$
Gates	29	27	$27 / 50=.54$	$29 / .54=54$

Work sheet for identifying the constraining component.
5. Conclusion. The constraining component is the terminal gate complex which limits the airports hourly capacity to 54 operations per hour.

EXAMPLE 5. Determine the ASV of the example airport assuming there are 219, 750 annual operations, 690 average day operations and 50 peak hour operations.

SOLUTION: The work sheet on page 12 illustrates one method of recording data.

1. Calculate $\mathbf{C}_{\mathbf{W}}$ •
a. Runway-use Configuration. Identify the different runway-use conditions used over the course of a year and the mix index for each use. Enter in columns 1 through 4.
b. Percent of Use (P). Identify the percent of the time each configuration is used and enter in column 5. The figures shown on the work sheet in column 5 are hypothetical.
c. Runway Hourly Capacity (C). Calculate the hourly capacities of operating conditions as in example 1 and enter in column 6. Example 1 dataare used for operating conditions 1 and 2.
d Maximum Capacity Configuration. Identify the runway-use configuration that provides the maximum capacity.
e. Percent of Maximum Capacity. Divide the hourly capacity of each runwayuse configuration by the capacity of the configuration that provides the maximum capacity and enter in column 7.

f. ASV Weighting Factor (W) From Table 3-1, identify the weighting factor (W) for each operating condition and'enter in column 8.

Table 3-1. asv inighting Factore

Percent of Mexime Capacity	Weighting Factors			
	VR	IfR		
		$M \ln \operatorname{Index}_{(0-20)}$	$\begin{aligned} & \text { Pexx Index } \\ & (21-50) \end{aligned}$	$\underset{(51-180)}{ }$
914	1	1	1	1
81-90	5	1	3	5
66-80	15	2	8	15
51-65	20	3	12	20
--so	25	4	16	25

Figure A2-5. Annual service volume

operatiny Condition			$\begin{aligned} & \text { max } \\ & \text { Inde } \end{aligned}$	Percent of year $\times \quad(\mathrm{P})$	$\begin{gathered} \text { Eourly } \\ \text { Capacity } \\ \text { (C) } \end{gathered}$	Percent Maxime Capacity	Meighting Factor ractor (m)
10.	Weather	Ruy-ure Dlagran					
2	2			4			:
1	VFR		191	74.5	51	U0 57	20
2	IFR						
3	VFR		62	5	62	70	15
4	IFR		91	5	52	58	20
5	VFR		62	4	59	66	15
6	IFR		91	4	46	52	20
7	IFR	Belowminimums		3			25

Work sheet for ASV factors.
g. Weighted Hourly Capacity (\mathbf{C}_{w}. Calculate the weighted hourly capacity using the following equation:

$$
\begin{aligned}
C_{w}= & \frac{\left(P_{1} C_{1} W_{1}\right)+\left(P_{2} C_{2} W_{2}\right) \cdot .\left(P_{n} C_{n} W_{n}\right)}{\left(P_{1} W_{1}\right)\left(P_{2} W_{2}\right)+\cdots\left(P_{n} W_{n}\right)} \\
C_{w}= & \frac{(.74 \cdot 89 \cdot 1)+(.05 \cdot 51 \cdot 20)+(.05 \cdot 62 \cdot 15)+(.05 \cdot 52 \cdot 20)+(.04 \cdot 59 \cdot 15)+}{(.74 \cdot 1)+(.05 \cdot 20)+(.05 \cdot 15)+(.05 \cdot 20)+(.04 \cdot 15)+} \\
& \frac{(.04 \cdot 46 \cdot 20)+(.03 \cdot 0 \cdot 25)}{(.04 \cdot 29)+(.03 \cdot 25)} \\
C_{w}= & \frac{287.56}{5.64} \text { or } 51 \text { operations per hour. }
\end{aligned}
$$

2. Daily Demand Ratio (D) . Calculate D using the equation:

$$
\mathbf{D}=\frac{\text { Annual }}{\text { Average Day-peak month }}=\frac{\mathbf{2 1 9 , 7 5 0}}{690}=\mathbf{3 1 8}
$$

3. Hourly Demand Ratio (H). Calculate H from the equation:

$$
\mathbf{B}=\frac{\text { Average Day--peak month }}{\text { Avetage Peak Hour--peak month }}=\frac{\mathbf{6 9 0}}{\mathbf{5 0}}=\mathbf{1 4}
$$

4. Calculate ASV. ASV is calculated from the equation $\mathbf{A S V}=\mathbf{C} \cdot \mathbf{D} \cdot \mathbf{D} \cdot \mathbf{B}$

$$
A S V=51 \cdot \mathbf{3 1 8 \cdot 1 4}=\mathbf{2 2 7}, 052 \text { operations per year. }
$$

5. Conclusion. ASV is an indicator of the annual operational capability of an airport adjusted for differences in hourly capacities which occur over the course of a year. In this example, the airport theoretically could. have accomodated and additional 7, $\mathbf{3 0 2}$ operation8 during the year.

Figure A2-5. Annual service volume (cont.)

EXAMPLE 6. Determine the hourly delay in VFR and IFR weather conditions for the example airport in its predominate mode of operation. The peak 15 minute demand in VFR is 20 operations and in IFR it is 15 operations. Extract necessary data from examples 1 through 5.

SOLUTION: The work sheet on page 16 illustrates one method of recording data.

2. Identify Delay Figure Nos. From figure 3-2 (illustrated), identify the runway-use configuration as No. 43 and figures 3-85 and 3-91 for determining VFR and IFR delay. Enter in columns2, 3, and 4,

Rumuay-use_Diagram	$\begin{gathered} \mathrm{D}_{\mathrm{ALG}} \\ \mathrm{Hot} \end{gathered}$	Rumar Intensection Distamce im Feet		Figume Mo,			
				For Capacity		1 For Metay	
		(x)	(y)	VFR	IFR	VFR	IfR
3	43	0101999	- 400	3-27	3-59	3-85	3-91
	44	$\mathbf{2 0 0 0}$ to 4999	- 8000	3-28	3-60	3-86	3-98
\rightarrow	45	sow to 8000	- 4000	3-29	3-61	3-86	3-99
$\mathrm{y}-$	46	0 ro1999	- 5000	3-30	3-62	3-85	3-99
	47	2000 to 4999	- 4000	3-31	$3-63$	3-71	3-102
	48	5000 то 8000	- 4000	3-32	3-64	3-71	3-102
	49	0801999	- 4000	3-27	3-59	3.85	3-91
	so	2000 то 4999	-4000	3-28	3-60	3-6	3-99
$\rightarrow 2$	51	5000 то $\mathbf{2 0 0 0}$	- 5000	349	3-61	3-6	3-99
$y-1$	s2	0 тo 1999	- 5000	3-50	3-62	3-85	3-99
	s3	$\mathbf{2 0 0 0}$ то 4999	- 5000	3-31	3-65	3-71	3-90
-	54	$\mathbf{5 0 0 0}$ то 8000	- 4000	3.3	3-43	3-71	3-90
*		0 r					

3. Demands. Enter the hourly demand from example 1 (50 VFR, 34 IFR) in column 6, and the 15 minute demands of 20 VFR and 15 IFR in column 7.
4. Demand/Capacity Ratio. Calculate the D/C ratios and enter in column 8 .

$$
\begin{aligned}
& D / C \text { ratio } \mathbf{V F R}=\mathbf{5 0 / 8 9}=0.56 \\
& D / C \text { ratio } \mathbf{I P R}=\mathbf{3 4 / 5 1}=0 e 67
\end{aligned}
$$

5. Delay Indices. From figure 3-85 and 3-91 (illustrated), obtain arrival delay index (ADI) and departure delay index (DDI) and enter in columns 11 and $\mathbf{1 3 .}$ Enter example 1 mix indices in column 10 (62 VFR, 91 IFR) and percent arrivals in column9 (459 VFR, 559 IFR).

Figure 3-85. Delay imoices for mumay-use diacran mos.: 43,49,55,61 for YFR comeitions.

VFR	ADI at40\%$=\mathbf{0 . 9 0}$
n	50%
n	$=1.00$
45%	$=0.95$

$\begin{aligned} \text { VFR DDI at } 40 \% & =0.90 \\ \mathbf{n} \quad 50 \% & =0.67\end{aligned}$

ARRIVAL DELAY INDEX $=1.00$

Figune 3-91. Delay indices fon mumar-use diacran mos: $2,3,5,9,32-35,37-43,43,55,51-65,72-74,76$,
77, 79, $80,82-85,87-99,91,92,94,95,97-100,102$ FOR I FR COMDITIOMS.

$\begin{aligned} \text { Mi ADI at } & 50 \% & =0.57 \\ \cdots \quad & 60 \% & =0.38 \\ \text { a } & 55 \% & =0.47\end{aligned}$

Figure A2-6. Hourly delay (cont.)
f. Delay Factors. Calculate the arrival and departure delay factors (ADF and DDF) using the equation $A D F=A D I \cdot(D / C)$ and $D D F=D D I \cdot(D / C)$. Enter results in columns 12 and 14.

ADF for VFR $=\mathbf{0 . 9 5 \cdot 0 . 5 6}=0.53$ DDF for $V F R=\mathbf{0 . 7 8 \cdot 0 . 5 6}=0.44$
ADF for $I F R=1.00 \cdot 0.67=\mathbf{0 . 6 7} \quad D D F$ for IFR $=\mathbf{0 . 4 7 \cdot 0 . 6 7}=0.31$
7. Demand Profile Factor (DPF). Divide the 15 minute demand (column 7) by the hourly demand (column 5) and multiply the result by 100. Enter results in column 15.

```
DPF for VFR =(20/50)\cdot100=40%
DPF for IFR =(15/34)\cdot100=44%
```

8. Determine Average Delay. Using figure 3-69 (illustrated), the delay factors (columns 12 and 14), and the demand profile factors (column 15), determine the average delay to an arriving and a departing aircraft for VFR and IFR conditions and enter in column 16 and 17.

Figure 3-69. Average aircraft delay im am hour.
9. Hourly Delay. Calculate the hourly delay using the following equation and enter in column 18.

Hourly delay $\mathbf{=}$ Hourlydemand $[(\%$ arrivals•average arrival delay) + (\% departures average departure delay)]

Delay in $I F R=34[(\mathbf{0 . 5 5 \cdot 2 . 8})+(\mathbf{0 . 4 5 \cdot 0 . 0 6)} \mathbf{=}=53$ minutes

	$\frac{\text { telog }}{\text { be }}$							$\begin{array}{\|l} \text { norouat } \\ \text { Arrivele } \\ \hline \end{array}$	$\begin{aligned} & \text { nux } \\ & \frac{206 x}{10} \\ & \hline \end{aligned}$								
	43	85		89	50	20	. 56	45	62	. 95	. 53	. 78	. 44	40	1.3	. 95	55
	43		91	51	34	15	. 67	55	91	1. 00	. 67	. 47	. 31	44	2.9	. 60	53

Work sheet for hourly delay.
10. Conclusion. Because the demand is significantly less than capacity, and the scheduled airline operations are reasonably constant in VFR or IFR weather conditions, there is little difference in the minutes of delay experienced in the typical VFR or IFR hour.

EXAMPLE 7. Determine the daily delay in VFR conditions for the example airport. The hourly demand for a typical VFR day is as plotted. Demand is always less than capacity. For demands of 11 to 44 operations per hour, arrivals equal departures. Fordemands aver 44 operations per hour, the arrival rate drops to 45 percent. Noise abatement practices limit the airport to the use of one runway from 10:00 pan to 7:00 am.

Histograph of daily demand

SOLUTION: The work sheet on page 18 illustrates one method of recording data.

1. Calculate Capacities. Calculated runway capacities for the different operating conditions are illustrated below. Assumptions were made for demand, aircraft mix, and percent of touch and go's for the first four operating conditions. Data fromexample 1 are used for the fifth aperating condition.

Bremer			crpeast		aiporaft gix				$\frac{\max }{\operatorname{mos}}$	$\begin{array}{\|c\|c\|} \hline \text { arrivale } \\ \vdots \\ \hline \end{array}$	e_{0}^{20000}	Pamay ${ }^{\text {a }}$ 183								
			1	20,	${ }^{\text {a }}$	${ }^{2}$	-	1						$1{ }^{1}$		İ				
11-19		1	3		23	75	2	0	2	50	5	30	45	60		1	103	1.04	. 86	92
11-19		43	27		4	5	5	0	5	\cdots	20	"	\cdots	"		1	108	1.08	. 85	97
20-35		.	\cdots		35	35	30	0	30	\%	10	"	n	!		2	102	1.03	. 92	97
36-44		*	"		30	27	42	1	45	50	8	"	\cdots	"		"	94	1.03	. 92	89
45		43	27		26	20	50	4	62	45	12	30	45	60		2	, 88	1.06	. 94	89

Work sheet for hourly capacity.

Figure A2-7. Daily delay, D / C ratio equal or less than $\mathbf{1 . 0 0}$

Appendix 2

2. Calculate Hourly Delay. The hourly runway delay calculations of example 6 are repeated 24 times to develop average arrival and departure delays per aircraft and the minutes of delay for each hour. Assume the demand is fairly uniform so that the DPF (column 11) is 25 when the demand is less than 10 operations per hour. When the demand is 10 or more, the DPF is 40. Forty percent of the operations occur in a 15 minute period whenever the demand is 10 or more.

$\frac{\text { Hour }}{1}$	$\frac{\text { nesec. }}{2}$			$\frac{\frac{\mathrm{D} / \mathrm{C}}{\mathrm{Ratio}}}{\mathrm{~S}}$	$\begin{array}{\|c} \text { nix } \\ \text { Index } \\ \hline 6 \\ \hline \end{array}$			Dopart. Doelay Indox Poctor DoI Dop		$\begin{array}{\|c} \hline \text { Delay } \\ \text { Mactor } \\ \text { Dpt } \end{array}$	$\begin{aligned} & \text { Roor. Delay } \\ & \text { (Cuimutata) } \end{aligned}$		$\begin{array}{\|c\|} \hline \text { Bourly } \\ \text { Dolay } \\ \text { (Cimetas) } \\ 14 \end{array}$		
		$\frac{\text { Dagand }}{3}$	$\frac{C_{\text {Cancity }}}{4}$					$\frac{\operatorname{Arr} \cdot}{12}$	$\frac{D_{01} p_{0}}{13}$						
24:00-01:00		1	92	. 01	0	0	0			0	0	0	0	∞	0
01:00-02:00		0	-	-	-	-	-	-	-	-	-	-	-		
02:00-03:00		"	-	-	-	-	-	-	-	-	-	-	-		
03:00-04:00		"	-	-	-	-	-	-	-	-	-	-	-		
04,00-05 200		"	-	-	-	-	-	-	-	-	-	-	-		
05,00-06, 00		3	92	. 03	0	. 64	. 02	. 50	. 01	25	0	0	0		
06,00-07:00		10	92	. 11	2	. 64	. 07	. 50	. 06	40	. 05	. 05	1		
07:00-08:00		20	97	. 21	30	1.00	. 21	. 63	. 13	"	. 30	. 15	4		
08,00-09:00		39	89	. 44	45	1.00	. 44	. 65	. 29	"	. 95	. 50	28		
09،00-10:00		45	"	. 51	62	. 95	. 48	. 78	. 37	n	1.10	. 80	42		
10,00-11:00		33	89	. 37	30	1.00	. 37	. 63	. 23	"	. 70	. 35	17		
11,00-12,00		25	97	. 26	"	"	. 26	"	. 16	"	. 40	. 20	7		
12,00-13:00		25	97	. 26	"	"	. 26	"	. 16	"	. 40	. 20	7		
13:00-14:00		30	89	. 34	"	"	. 34	"	. 21	"	. 60	. 30	14		
14,00-15:00		32	"	. 36	30	1.00	. 36	. 63	. 23	"	. 65	. 35	16		
15,00-16:00		45	"	. 51	62	. 95	. 48	. 78	. 39	"	1.10	. 80	42		
16:00-17:00		50	"	. 56	"	n	. 53	"	. 44	"	1.30	. 95	55		
17:00-18:00		48	"	. 54	62	. 95	. 51	. 78	. 43	"	1.20	. 90	50		
18:00-19:00		38	89	. 43	45	1.00	. 43	. 65	. 28	"	. 90	. 40	25		
19:00-20:00		17	97	. 18	5	"	. 18	. 63	. 11	"	. 25	. 15	4		
20,00-21,00		10	*	. 10	"	"	. 10	"	. 06	"	. 05	. 05	1		
21:00-22,00		10	97	. 10	5	1.00	. 10	. 63	. 06	40	. 05	. 05	1		
22800-23:00		6	92	. 07	2	. 64	. 04	. 50	. 04	25	0	0	0		
23،00-24:00		4	92	. 04	0	. 64	. 03	. 50	. 02	25	0	0	0		
											Deilly Delay		295		

Work sheet for daily runway delay.
3. Total Delay. Sum the hourly delays, i.e. 295 minutes.
4. Conclusion. The 295 minutes of \&lay for the day is influenced by scheduling practices within the hour.

[^0]EXAMPLE 8 . Determine the daily delay in VFR conditions if the example airport closes the north-south runway and the demand during the 3:00 PM to 6:00 PM time period is increased to exceed the runways capacity.

SOLUTIONS The work sheet cm page 21 illustrate one method of recording data.

1. Identify Saturated Time Periods:
a. Calculate Capacities. Calculated runway capacities for the single runway condition are illustrated below. Since operations are limited to a single runway, capacity values will differ from those of example 7. Enter data from below and from example 7 in columns 3,4,6, and 11.

Figure A2-8. Daily delay when D / C ratio is greater than $\mathbf{1 . 0 0}$
b. Identify Saturated Period. Compare calculated capacities to the demand histograph. The time period from initial overload through recovery (15:00 to $\mathbf{2 0 : 0 0}$) is the saturated period,

Time Period	Demand	Capacity	Overload (Recovery)	Cummulative Overload
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	32	69	0	$\mathbf{0}$
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	61	55	6	6
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	65	55	10	16
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	60	55	5	$\mathbf{2 1}$
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	38	55	$\mathbf{(1 7)}$	$\mathbf{4}$
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	17	55	$\mathbf{(4)}$	0
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	10	92	0	0

2. Saturated Period Delay. Calculate the delay for the saturated period as follows:

a. Duration of Overload Phase. Identified as 15:00 to 18:00 hours.
b. AD/C Ratio. Calculate the $A D / C$ ratio for the overload period and enter in column 5.

$$
A D / C=\frac{61+65+60}{55+55+55}=\frac{186}{165}=113
$$

c. Percent Arrivals. Given as 45\%.
d. Delay Indices. Obtain ADI and DDI from figure 3-71 and enter in columns 7 and 9 .

e. Arrival and Departure Delay Factors. Calculate ADF and DDF for the saturated period by multiplying AD1 and DDI by the AD/C ratio and enter in columns 8 and 10 .

$$
\begin{aligned}
& A D F=\mathbf{0 . 7 8 \cdot 1 . 1 3}=0.88 \\
& D D F=\mathbf{1 . 0 0 \cdot 1 . 1 3}=1.13
\end{aligned}
$$

f. Average Delays. Determine average delay from figure 3-70 for a 3-hour overload phase and entered in columns 12 and 13.

Figure A2-8. Daily delay when D/C ratio is greater than $\mathbf{1 . 0 0}$ (cont.)
g．Saturated Period Delay．Calculate the saturated period（DTS）de\＆y and enter in column 14.

```
DTS = (61+65+60+38+17)(45\cdot4.9+(100-45)\cdot13.7)/100
    = 241(974.0)/100
    = 2,347 minutes of delay
```

3．Hourly Delays Unsaturated Periods．Calculate hourly delays for the unsaturated periods（24：00 to 15：00 and 20：00 to 24：00）as in example 6 ．

	Nec．			D／C IRatio	$\operatorname{mix}_{\text {Index }} \left\lvert\, \begin{aligned} & \text { Ingrivan } \\ & \text { Index } \\ & \hline \end{aligned}\right.$		DelayFactorAD？AD	$\begin{gathered} \hline \text { Depart } \\ \hline \text { Inde才 } \\ \text { DoI } \\ \hline 9 \end{gathered}$		$\begin{aligned} & \text { Delay } \\ & \text { Prector } \\ & \text { DpF } \\ & \hline 11 \end{aligned}$	$\begin{aligned} & \text { Aver. Dolay } \\ & \text { (pinutes) } \end{aligned}$		$\begin{gathered} \text { Sourly } \\ \text { Delay } \\ \text { (Bimetes) } \\ \hline \end{gathered}$		
Hour															
24：00－01：00		1	92			－				－1－1	－I－	－	－	－	－
01：00－02，00		0	＂			－									
02800－03：00		0	＂		－			－		－	－				
03800－04：00		0	＂			－		－				－			
04400－05100		0	＂	－			－	－			－	－	－		
05800－06：00		3	＂	． 03	5	． 65	． 02	． 50	． 02	40	0.0	0.0	0		
06，00－07：00			921	111	${ }^{5} 1$	．65］	． 07.1	． 50	． 06	$n 10$	0.1	0.0	1		
07，00－08 000		20	69	． 29	30	． 70	． 20	． 52	． 15	＂	0.2	0.2	4		
08200－09， 00		39	63	． 62	45	． 72	． 45	． 64	． 40	＂	1.0	0.8	35		
09800－10：00		45	62	． 73	62	． 67	． 49	． 74	1．54，	＂	1.1	1． 4	57		
10：00－12：00		33	69	$1{ }^{\text {1／P }}$	30	． 70	． 34	． 56	． 27	＂	0.6	0.4	17		
21800－12，00		25	n	． 36	n	n	1 蓢	1 师	119	＂	0.4	0.2	8		
12，00－23，00		25	n	． 36	＂	11	䀎圆	0 閚	－吨	＂	0.4	0.2	8		
13800－14：00		30	n	． 43	＂	＂	目吅	． 33		＂	0.5	0.3	12		
14：00－25：00		32	69	． 46	30	． 70	． 32	． 56	． 26	40	0.6	0.4	16		
15800－16：00		61	557												
16：00－17：00		65		1.13	71	1 新	1808	1.00	1.13	40	4.9	13.7	2347		
17800－18：00		60	）							1					
18：00－19：00		38	11												
19：00－20：00		17	55							J					
20：00－21：00		10	92 －	$\bullet \bullet$	5	18	107	110	1 128	40	Oel	0.0	1		
21：00－22：00		10	$n \cdot$	11	＂	＂	107	＂	1 月1\％	＂	0.1	0.0	¢		
22：00－23：00		6	＂	07	＂	＂	104置	＂	． 04	＂	0.0	0.0	0		
23：00－24：00		4	92 －	阿氨	51	18		． 50	． 02	40	0.0	0.0	0		
											pelly delay		2507		

Work sheet for daily delay when D／C ratio is greater than 1.00 ．
4．Daily Delay．Sum the hourly delays for the saturated and unsaturated periods，i．e．2， 507 minutes．

5．Conclusion．When demand exceeds capacity for several consecutive hours， daily delays increase significantly．

Figure A2－8．Daily delay when D／C ratio is greater than 1.00 （cont．）

EXAMPLE 9. Determine the annual runway delay for the example airport, assuming that the airport has an annual demand of 153,000 operations, a demand profile factor of 40, no runway closures, and relatively uniform daily demand throughout each month.

SOLUTION: The work sheet on page 25 illustrates one method of recording data.
NOTE: Use procedures illustrated in examples 7 and 8 to determine the delays for VFR and IFR days. To allow for seasonal variations of demand, 24 representative days are used, i.e., a VFR and an IFR day for each calender month.

1. Distribute Demands. Distribute the annual demand of 153,000 operationsto representative daily demands as follows:
a. Distribute to Months. Distribute annual demand to the 12 calendar months and enter in column 3. Use historical data when available.
b. Distribute to Days. Monthly demand is uniformly distributed over the days of the month and entered in column 4.

$$
\text { January: } \frac{11,631 \text { operations }}{31 \text { days }}=375 \text { operations/average day }
$$

2. Develop Representative Days Demands. Adjust average day demand to representative day demands to account for differences in VFR and IFR operations, as follows:
a., Percent IFR Weather, From historical records, determine the percent of the time that IFR (and PVC) weather conditions prevail in each of the months and enter in column 6.

January: $\begin{aligned} & \text { 18\% IFR weather } . \\ & \\ & \mathbf{8 2 8} \text { VFR weather }\end{aligned}$
b Number of Representative Days. Convert percentages of VFR and IFR weather to days and enter results in column 7.

January: 31 days $\cdot 828$ VFR weather $=25.4$ VFR days
31 days $\cdot \mathbf{1 8}$ IFR weather $=\mathbf{5 . 6} \mathrm{IFR}$ days
c. Percent IFR Demand. The IFR demand is 68% of VFR demand.
d. Representative Day Demands. Calculate daily demand as follows and enter in column 8.

$$
\text { January: } \frac{100 \cdot 375}{100-18(1-68 / 100)}=\frac{37500}{94.24}=398 \text { VFR ops/day }
$$

$$
\mathbf{3 9 8 \cdot 6 8 / \mathbf { 1 0 0 }}=271 \text { IFR ops/day }
$$

3 Develop Hourly Demand for Representative Days．Fran historical data， deter\＆e the percentage of daily operations occuring in each hour of the day．The percentage of demand for each hour is assumed to be the same for each representative day whether it is an IFR or VFR day．Awork sheet，similar to that on page 24，is useful for keeping track of hourly demands．

4．Representative Daily Delay．Calculated delay for a VFR day in January is illustrated below using the procedures of examples 7 and 8．Enter calculated delays in column 9.

Hour	$\frac{\text { nisc．}}{2}$	Houriy		$\frac{\mathrm{p} / \mathrm{C}}{\mathrm{Retio}}$	$\begin{gathered} \operatorname{sex} x \\ \operatorname{lnghx} \\ \hline 10 \end{gathered}$			$\begin{array}{\|c\|} \hline \text { Dopart } \\ \hline \text { Indinx } \\ \hline \text { poy } \\ \hline 9 \\ \hline \end{array}$	Denay Pretor Dop 10	Delay Factor Dep？ 11	$\begin{array}{\|c\|} \hline \text { mar. Dolay } \\ \text { (winutes) } \\ \hline \end{array}$		BouriyDany（Mimetes）$\frac{14}{}$
		Tomand	Craecity								Rer．	Dip．	
		3	4		6						12	13	
24：00－01：00		1	－	－	－	－	－	－	－	－	－	－	－
01：00－02：00		0	－	－	－	－	－	－	－	－	－	－	－
02：50－03：00		0	－	－	－	－	－	－	－	－	－	－	－
03800－04：00		0	－	－	－	－	－	－	－	－	－	－	－
04．00－05 60		0	－	－	－	－	－	－	－	－	－	－	－
－5， $60-06300$		2	－	－	－	－	－	－	－	－	－	－	－
65s $20-97.00$		8	－	－	－	－	－	－	－	－	－	－	1
07s00－08， 00		16	97	． 16	5	1.00	． 16	． 62	． 10	40	1 A	10	2
08ı09－99：00		31	97＇	． 32	30	＂	． 32	． 63	． 20	＂	． 55	1 1－${ }_{\text {國 }}$	12
0988040880		37	89	． 42	45	＂	1 脤	． 65	． 27	＂	． 85	． 40	23
10800－12：00		27	97	． 28	30	＂	． 28	． 63	． 18	n	． 40	1 10	8
11：00－12：00		20	＂	． 21	n	＂	\bullet	\square	dol	．13＂	12	10	104
12，60－13：00		20	＂	． 21	＂	＂	． 21	n	． 13 ＂	\bullet		\bullet	4
23：00－10：00		24	＂	． 25	＂	\cdots	． 25	＂	． 16	n	． 35	． 15	6
18，00－15：00		26	97.	． 27	30	＂	． 27	． 63	． 17	＂	． 40	． 15	7
15800－26：00		37	89	． 42	45	＂	． 42	． 65	． 27	＂	． 85	． 40	23
16：00－17：00		41	＂	． 46	n	＂	． 46	＂	． 30	＂	1.00	． 50	31
17،00－18：00		39	89	1 1－j	45	n	1 1－1	． 65	15	＂	－	． 45	26
18：00－19：00		31	97	1 ［ In	30	\cdots	1 囯	163	120	＂	． 55	0 － l^{1}	12
19：00－20：00		14	97	． 14	5	1.00	10	1 ！	10	40	． 10	． 10	1
20：00－21：00		8	－	－	－	－	－	－	－	－	－	－	1
21，00－22：00		8	－	－	－	－	－	－	－	－	－	－	1
22，00－23：00		5	－	－	－	－	－	－	－	－	－	－	1
23：00－24：00		3	－	－	－	－	－	－	－	－	－	－	－
											Daily melay		163

Generally，it is not necessary to calculate delay for very low levels of demand．In this example，ane minute delay was assumed for demands between 5 to 10 operations per hour．

Figure A2－9．Annual runway delay（cont．）

TABULATION OF BCOREI DGHND FOR RUPRESENTATIVE DAES

Representative daily demand VFR - IFR calculationa.
January 12:00 to 13:00 hours.
$V F R=0.051 \cdot 398=20$
$I F R=0.051 \cdot 271=14$
5. Monthly Delay. The delay for each representative VFR and IFR day is multiplied by the number of representative days and entered in column 10. Total monthly delay is entered in column 11.
6. Annual Delay. Sum monthly delays to obtain annual delay.

Month	No. Days	Demand per Month	Awe. Daily Demand	Meather	Percent occur.	Pepresentative Day (s)			Monthly Delay (minutes)	
						No. of Days	Demand	Delay	VFR/IFR	Total
1	2	3	4	5	6	7	8	9	10	11
Jan.	31	11,631	37 s	VFR IPR	$\begin{aligned} & 82 \\ & 18 \end{aligned}$	$\begin{array}{r} 25.4 \\ 5.6 \end{array}$	$\begin{aligned} & 398 \\ & 271 \end{aligned}$	$\begin{aligned} & 163 \\ & 116 \end{aligned}$	$\begin{array}{r} 4,140 \\ 650 \end{array}$	4,790
Feb	28	10,926	390	VER IFR	$\begin{aligned} & 80 \\ & 20 \end{aligned}$	$\begin{array}{r} 22.4 \\ \text { S. } 6 \end{array}$	$\begin{aligned} & 414 \\ & 282 \end{aligned}$	$\begin{aligned} & 185 \\ & 130 \end{aligned}$	$\begin{array}{r} 4,144 \\ 728 \end{array}$	4,872
Mar.	31	12,561	40s	VER IFR	$\begin{aligned} & 85 \\ & 1 \mathrm{~s} \end{aligned}$	$\begin{array}{r} 26.4 \\ 4.6 \end{array}$	$\begin{aligned} & 430 \\ & 292 \end{aligned}$	$\begin{aligned} & 199 \\ & 146 \end{aligned}$	$\begin{array}{r} 5,254 \\ 146 \end{array}$	5,926
Apr.	30	12,096	403	VFR IFR	$\begin{aligned} & 87 \\ & 13 \end{aligned}$	$\begin{array}{r} 26.1 \\ 3.9 \end{array}$	$\begin{aligned} & 428 \\ & 291 \end{aligned}$	$\begin{aligned} & 193 \\ & 14 \mathrm{~s} \end{aligned}$	$\begin{array}{r} 5,037 \\ 566 \end{array}$	5,603
May	31	12.756	411	VFR IFR	$\begin{aligned} & 90 \\ & 10 \end{aligned}$	$\begin{array}{r} 27.9 \\ 3.1 \end{array}$	$\begin{aligned} & 436 \\ & 296 \end{aligned}$	$\begin{aligned} & 201 \\ & 148 \end{aligned}$	$\begin{array}{r} 5,608 \\ 459 \end{array}$	6,067
June	30	13,508	450	VER IPR	$\begin{array}{r} 92 \\ 8 \end{array}$	$\begin{array}{r} 27.6 \\ 2.4 \end{array}$	$\begin{aligned} & 478 \\ & 325 \end{aligned}$	$\begin{aligned} & 278 \\ & 19 \mathrm{~s} \end{aligned}$	$\begin{array}{r} 7,673 \\ 468 \end{array}$	8,141
July	31	13,832	446	$\begin{aligned} & \text { VFR } \\ & \text { IFR } \end{aligned}$	$\begin{gathered} 9 \mathrm{~s} \\ \mathrm{~S} \end{gathered}$	$\begin{array}{r} 29.4 \\ 1.6 . \end{array}$	$\begin{aligned} & 473 \\ & 322 \end{aligned}$	$\begin{aligned} & 270 \\ & 190 \end{aligned}$	$\begin{array}{r} 7,938 \\ 304 \end{array}$	8,242
Aug.	31	15,227	491	VFR IFR	$\begin{array}{r} 98 \\ 2 \end{array}$	$\begin{array}{r} 30.4 \\ 0.6 \end{array}$	$\begin{aligned} & 521 \\ & 354 \end{aligned}$	$\begin{aligned} & 355 \\ & 251 \end{aligned}$	$\begin{array}{r} 10,792 \\ 151 \end{array}$	10,943
Sep.	30	12,456	41s	VFR IPR	$\begin{array}{r} 98 \\ 2 \end{array}$	$\begin{array}{r} 29.4 \\ 0.6 \end{array}$	$\begin{aligned} & 440 \\ & 299 \end{aligned}$	$\begin{aligned} & 209 \\ & 150 \end{aligned}$	$\begin{array}{r} 6,145 \\ 90 \end{array}$	6,235
Oct.	31	13,119	423	VFR IPR	$\begin{array}{r} 96 \\ 4 \end{array}$	$\begin{array}{r} 29.8 \\ 1.2 \end{array}$	$\begin{aligned} & 499 \\ & 305 \end{aligned}$	$\begin{aligned} & 22 s \\ & 162 \end{aligned}$	$\begin{array}{r} 6.705 \\ 194 \end{array}$	6,899
Now.	30	12,456	41s	VFR IFR	$\begin{aligned} & 90 \\ & 10 \end{aligned}$	$\begin{array}{r} 27.0 \\ 3.0 \end{array}$	$\begin{aligned} & 440 \\ & 299 \end{aligned}$	$\begin{aligned} & 209 \\ & 150 \end{aligned}$	$\begin{array}{r} 5,643 \\ 450 \end{array}$	6,093
Dec.	31	12,432	401	VFR IFR	$\begin{aligned} & 85 \\ & 1 \mathrm{~s} \end{aligned}$	$\begin{array}{r} 26.3 \\ 4.7 \end{array}$	$\begin{aligned} & 426 \\ & 290 \end{aligned}$	$\begin{aligned} & 192 \\ & 143 \end{aligned}$	$\begin{array}{r} \text { s, oso } \\ 672 \end{array}$	5,722
							TOTALS:	VFR $\mathbf{I F R}$	$\begin{array}{r} 74,129 \\ 5,404 \end{array}$	79.533

Work sheet for annual delay.
7. Conclusion. Variations in demand contribute more to the 79,533 minutes of delay than weather, as can be seen in the difference between VFR delays and IFR delays for any month.

Figure A2-9. Annual delay (cont.)

EXAMPLE 10. Determine the hourly demand that results in an average departure delay of 0.5 minutes in VFR conditions. The demand profile factor is $\mathbf{4 0}$, the runway capacity is 89, the mix index is 62, and the arrival rate is 45 percent.

SOLUTION: Use a trial demand and compute the associated de\&y. Repeat for a refined demand closer to the target delay. Plotting the calculated demand--delay values on a graph will expedite the procedure,

1 Plot Known Point. From example 6, the average departure delay in VFR condition: is 0.95 minutes when the demand is 50 operations per hour. Plot this point.
2. Calculate and Plot a Second Demand--Delay. Select a second demand, calculate the delay, and plot the point.
a. A demand of 25 operations per hour is selected.
b. The demand to capacity ratio is25/89 or $\mathbf{0 . 2 8}$.
c. Fromfigure 3-85, the departure delay indexis $\mathbf{0 . 7 5}$.
d. The departure delay factor is $\mathbf{0 . 7 5 \cdot 0 . 2 8}$ or 0.21.
e. From figure 3-69, the average delay to a departure is 0.22 minutes.
f. Plot the point and connect the two points.

Demand versus delay graph.
3. Graphic Delay Demand. The 0.5 minute delay line intersects the plotted line at a demand of 34 operations per hour.

4 Check Graphic Derived Demand. Calculate and plot the graphically derived demand:
a. The demand is 34 operations per hour.
b. The demand to capacity ratio is34/89 or 0.38 .
c. The departure delay index is 0.75 .
d. The departure delay factor is $\mathbf{0 . 7 5 \cdot 0 . 3 8}$ or $\mathbf{0 . 2 8 5 ;}$ say $\mathbf{0 . 2 9}$.
e. From figure 3-69, average departure delay is 0.5 minutes.
5. Conclusion. Limiting the demand to 34 operations per hour meets the average delay of 0.5 minutes per departing aircraft.

[^1]
APPENDIX 3. EXAMPLES APPLYINGCHAPTER 4 CALCULATIONS

1. GENERAL. The examples in this appendix illustrate applications of chapter 4 capacity calculations with portions of the appropriate figures reproduced in the examples.
2. EXAMPLES. Fax examples, figures A3-1 through A3-4, follow:
a. Hourly capacity in PVC condition (figure A3-1).
b. Hourly capacity in tine absence of radar coverage or ILS (figure A3-2) .
c. Hourly capacity of parallel runway airport with one runway restricted to small aircraft (figure A3-3).
d. Hourly capacity of a single runway airport used exclusively by small aircraft that lacks radar or ILS (figure A3-4).

Appendix3
ExAMPLE 1. Determine the capacity of the example airport in PVC conditions. Operations are limited to the N-S runway. Hourly demand consists of 25 Class C and two Class Daircraft with a 55 percent arrival rate.

SOLUTIOM:

1. Capacity Fiqure. From figure $4-1$ (illustrated), the runway-use configuration is diagram No. 1, and the figure for determining capacity is No. 4-2.

[^2]$$
(\mathbf{2 5 / 2 7})+\mathbf{3 (2 / 2 7)}=93+\mathbf{3 (7)} \text { or } 114
$$
3. Percent Arrivals. 55 percent.
4. BourlyCapacity, Franfigure 4-2 (illustrated)@ the airport capacity is 46 operations per hour.

5. Conclusion. Under these conditions, the airport loses 10 percent of its capacity when the weather deteriorates from IFR to PVC conditions.

EXAMPLE 2. Determine the IFR capacity of the example airport when the glide slope portion of the ILS is inoperative, radar coverage is out, and a circling approach is used. Demand consists of 25 Class C and 2 Class D aircraft.

shimeros:

1. Capacity Figure. Fromfigure 4-1 (illustrated), the runway-use conf iguration is diagram No. 44 \& 47 and the figure for detersining capacity is No. 4-15.

2. Inoperative Aid. The radar and glide slope are art and a circling approach is used.
3. Mix Index. For 25 Class C and 2 Class D aircraft, the mix index is:
$(25 / 27)+3(2 / 27)=93+3(7)=114$

Figure A3-2. Bourly capacity in the absence of radar coverage or ILS
4. Hourlycapacity. From figure 4-15 (illustrated), the airport capacity is 26 operations per hour.

5. Conclusion. Airport capacity is limited to 26 operations per hour when the glide slope portion of the ILS or radar are inoperative and a circling approach is used. With radar coverage, the airport capacity is $\mathbf{4 0}$ operations per hour.

Appendix3
EXAMPLS 3. Determine the VFR hourly capacity of the runway configuration depicted below When one runway is used only by Class A and B aircraft. Hourly demand consists of 20% Class $A, 15 \%$ Class $B, 55 \%$ Class C, and 10% Class D aircraft with a $\mathbf{5 0}$ percent arrival rate.

SOLUTION:

1. Capacity Figure. From figure 4-1 (illustrated) , the runway-use configuration is diagram No. 11 and the figure for determining capacity is No. 4-18.

2. Mix Index. For 55% Class C and 10% Class D aircraft, the mix index is:

$$
55+\mathbf{3 (1 0)}=85
$$

3. Percent Arrivals. 50 percent.

Figure A3-3. Hourly capacity of parallel runway airport with one runway restricted to small aircraft
4. Hourly Capacity. From figure 4-18 (illustrated), the airport capacity is 83 operations per hour.
rummay restricted use in vFr

Figure 4-18. Hourly capacity of rumay-use diagran nos. 10, 11, 12.
5. Conclusion. The capacity of a single runway under these conditions is 57 operations per hour. The capacity of full-length, parallel, unrestricted runways is 115 operations per hour. The capacity of parallel runways when one is limited to use by small aircraft is 83 operations per hour.

Figure A3-3. Hourly capacity of parallel runway airport with one runway restricted to small aircraft (cont.)

EXAMPLE 4. Determine the hourly capacity in VFR and IFR conditions of the runwaytaxiway configuration depicted below. The airport is used exclusively by small (Class A and B) aircraft and there is no radar coverage or ILS facility. Arrivals generally equal departures, and touch and go's approach the 20 percent level.

SOLURION:

1. Airport Configuration. From figure $4-26$ (illustrated), identify the runwaytaxiway configuration that best represents the airport.
2. Percent Touch-and-GO. 20 percent.
3. . Hourly Capacity. From figure 4-26, the range of VFR and IFR hourly capacity is 59 to 72 operations, and 20 to 24 operations, respectively.

4. Conclusion. The airport is able to accomodate 59 to 72 operations per hour in VFR conditions and 20 to 24 operations per hour in IFR conditions.

Figure A3-4. Hourly capacity of asingle runway airport used exclusively by small aircraft that lacks radar or ILS.

APPENDIX 4．GLOSSARY OF SYMBOLS／TERIS

```
%(C+3D) = mix index = the percent of Class C aircraft plus 3 times the percent of
    Class D aircraft
```

$\boldsymbol{8 I F R}=$ percent of the time that IFR and PVC operating conditions prevail
\%IFR demand $=\mathbf{1 0 0}$ ((IFR demand) $/$ (VFR demand)
$A=$ number of arriving aircraft in the hour

```
AD/C = averagedemand-capacity ratio = (the sum of the hourly demands during the
    overload phase)/(the sum of the hourly capacities during the overload phase)
ADF = arrival delay factor = ADI•(D/C) or ADI•(AD/C) {overload phase]
ADI = arrival delay index (figures 3-2 and 3-71 through 3-102)
Annual capacity = ASV
```

$\boldsymbol{A S V}=\mathbf{a n n u a l}$ service volume $=\mathbf{C}_{\mathbf{w}} \cdot \mathbf{D} \cdot \mathbf{H}$ or (figure 2-1) fapproximate]
$\mathbf{C}^{*}=$ hourly capacity base (figures 3-2 through 3-65)
$\mathbf{C}_{\boldsymbol{i}}=$ hourly capacity for each runway-use configuration (Cl through $\mathbf{C}_{\boldsymbol{n}}$)
Class A aircraft =single-engined small aircraft (table l-l)
Class B aircraft $=$ multi-engined small aircraft (table 1-l)
Class C aircraft = large aircraft (table l-1)
Class D aircraft = heavy aircraft (table 1-1)
$\mathbf{C}_{\mathbf{w}}=$ weighted hourly capacity $=$
$\left(P_{1} \cdot C_{1} \cdot W_{1}+P_{2} \cdot C_{2} \cdot W_{2}+\ldots+P_{n} \cdot C_{n} \cdot W_{n}\right) /\left(P_{1} \cdot W_{1}+P_{2} \cdot W_{2}+\ldots+P_{n} \cdot W_{n}\right)$
$D=$ demand ratio $=$ (annual demand)/(average daily demand during the peak mouth)
(table 3-2) Etypical]
$D A=$ number of departing aircraft in the hour
DAH = average delay per aircraft (figure 2-2) [approximate]
DAHA = average delay for arriving aircraft (figure 3-69)
DAHD = average delay for departing aircraft (figure 3-69)
DASA = average delay per arrival (figure 3-70) Isaturated period]
DASD = average delay per departure (figure 3-70) 〔saturated period】
D/C = demand-capacity ratio = (hourlydemand)/(hourlycapacity)
$\mathbf{D D F}=$ departure delay factor $=\mathbf{D D I} \cdot(\mathbf{D} / \mathbf{C})$ or DDI•(AD/C) \quad [overload phase】
DDI = departure delay index (figures 3-2 and 3-71 through 3-102)
DPF = demand profile factor $=100 \cdot \mathbf{Q} / \mathbf{E D}$

```
DTH = hourly delay \(=\) HD•(PA•DAHA \(+(100-P A) \cdot D A H D) / 100\) or HD•DAH [approximate]
```

DTS $=$ delay in saturated period $=$

$\mathbf{E}=$ exit factor (figure 3-2 through 3-65)
$\mathbf{G}^{*}=$ hourly gate capacity base (figure 3-68)
$\mathbf{H}=$ demand ratio $=$ (average daily demand)/(average peak hour demand during the
peak month) or (table 3-2) 【typicals

HD $=$ hourly demand on the runway canponent
HD $_{\mathbf{i}}$－hourly demand on the runway component during hours $\mathbf{1}$ through n of the saturated period
Hourly capacity of gates $\mathbf{=} \mathbf{G}^{\boldsymbol{*}} \cdot \mathbf{S} \cdot \mathbf{N}$（figure 3768）
Hourly capacity of runway canponent $=\mathbf{C *} \cdot \mathbf{T} \cdot \mathbf{E}$ or（figures 4－1 through 4－26）（special applications！，or（figure 2－1）【approximate】

Hourly capacity of taxiway crossing an active runway（figures 3－66 and 3－67）
Hourly delay on runway canponent＝DPH
IFR demand $=$ VFR demand ． $\mathbf{8 I F R}$ demand／100
$\mathrm{N}=$ number of gates
PA $=$ percent arrivals $=100 \cdot\left(\mathbf{A}+\frac{1}{2}(T \& G)\right) /(A+D A+(T G G))$
PAS $=$ percent of arrivals in the saturated period
PT\＆G $=$ Percent touch and $\mathbf{g o s} \mathbf{= 1 0 0 \cdot (\mathbf { T \& G }) / (\mathbf { A } + \mathrm { DA } + (\mathbf { T \& G }))}$
$\mathbf{P}_{\mathbf{i}}=$ percent of the time each runway－use configuration is in use（ Pl through Pn ）
PVC $=$ poor visibility and ceiling $=$ lower end of IFR conditions
$\boldsymbol{Q}=$ peak 15 －minute demand on the runway compoment
$\mathbf{R}=$ gate occupancy ratio $=$（average gate occupancy time of widebodied aircraft）／（average gate occupancy time of non－widebodied aircraft）

S－factor for gate size（figure 3－68）
$\mathbf{T}=$ touch and go factor（figures 3－2 through．3065）
$\boldsymbol{T \& G}=$ number of touch and go＇s in the hour
Type 1 gate $=$ a gate that is capable of accamodating all aircraft
Type 2 gate $=$ agate that will accommodate only non－widebodied aircraft
VFR demand $=($ average day demand）$/(\mathbf{1 - 8 I F R}(1-8$ IFR demand $/ \mathbf{1 0 0}) / \mathbf{1 0 0})$
$\mathbf{W}_{\mathbf{i}}=$ ASV weighting factor for each runway－use configuration（ $\mathbf{W}_{\mathbf{1}}$ through $\mathbf{W}_{\mathbf{n}}$ ） （table 3－1）

APPENDIX 5. BLANK FORMS

Figure A5-1. Hourly capacity, ASV, delay for long range planning
Figure M-2. Hourly capacity runway component
Figure A5-3. Houriy capacity taxiway component
Figure A5-4. Hourly capacity gate group component
Figure A5-5. Airport hourly capacity
Figure A5-6. Annual service volume
Figure A5-7. Hourly delay
Figure AS-8. Daily delay
Figure AS-9. Tabulation hourly demand for representative days
Figure M-10. Hourly \&lay, different demands
Figure A5-11. Annual delay
Figure A5-12. Savings associated with reduced delay
Figure M-13. The runway-use configuration sketches printout
Figure A5-1. Hourly capacity, ASV, delay for long range olanning

Weather	Taxiway Crossing	Distance from Threshold	Runway		Taxiway Crossing Capacities (Operations per Hour)	
				Mix	Arrivals and ed Operations	$\begin{gathered} \text { Departures } \\ \text { Plus } \mathbf{T} \& \mathbf{G} \end{gathered}$
1	2		4	5	6	7

Figure A5-3. Hourly capacity taxiway coponent

Non-widebody (N) Widebody (W)

	Demand		No. Gates		Gate Mix		Average Gate Time (Min.)		Gate Occupancy Ratio (T_{W} / T_{n}) (R)	Hourly Capac. Base (G*)	'Gate Size (S)	No. Gates (N)	Hourly$\begin{aligned} & \text { Capacity } \\ & (\mathbf{G} * \cdot \mathbf{s} \cdot \mathbf{N}) \end{aligned}$
	(N)	(W)	(N)	(W)	(N) (8)	(W) (8)	$\begin{aligned} & (N) \\ & \left(T_{n}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (W) } \\ & \left(T_{w}\right) \\ & \hline \end{aligned}$					
1	2	3	4	5)	7	,	9	10	11			

Component	Hourly Capacity	Hourly Demand	$\frac{\text { Demand Ratio }}{\text { Componet Demand }}$	Component Quotient Runway Demand
1				$\frac{\text { Component Capacity }}{\text { Demand Ratio }}$

Operating Condition			$\begin{gathered} \text { Mix } \\ \text { Index } \end{gathered}$	Percent of Year (P)	Hourly Capacity (C)	Percent Maximum Capacity	Weighting Factor (W) \qquad
No.	Weather	Rwy-use Diagram					
1	2	3	4	5			

Figure A5-8. Daily delay

Clock Time	Daily	Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
	Ops	VFR	IFR	VFR	IFR	VFR	IFR	VFR	IFR	VER	IFR	VFR	IFR	VFR	IFR	VFR	IFR	VFR	IFR	VFR'	IFR	VFR	IFR	VFR	IFR
x:00	8																								
12-1																									
1-2																									
2-3																									
3-4																									
4-5																									
5-6																									
6-7																									
7-8																									
8-9																									
9-10																									
10-11																									
11-12																									
12-13																									
13-14																									
14-15																									
15-16																									
16-17																									
17-18																							\%	-	
18-19																									
19-20																									
20-21																									
21-22																									
22-23																									
23-24																									

| (GA) General Aviation (AT) Air Taxi (AC) Air Carrier |
| :--- | | | Low | High |
| :--- | :--- | :--- |
| Current Delay (000 Minutes) | | |
| Projected Delay (000 Minutes) | | |
| Potential Savings (000 Minutes) | | |
| Average Cost Per Minute | | |
| Projected Benefit Per Year (000 Dollars) | I | |

Figure A5-12. Savings associated with reduced delay

Figure A5-13. The nurway-use coofiguration sketches pnatout

[^0]: Figure A2-7. Daily delay, D/C ratio equal or less than 1.00 (cont.)

[^1]: Figure A2-10. Hourly demand at a specified level of delay (oont.)

[^2]: 2. Mix Index. For 25 Class C aircraft and 2 by Class D aircraft, the mix index is:
